Whamcloud - gitweb
49cdbba5db704231abf229f1492b65c90117c663
[fs/lustre-release.git] / lustre / ptlrpc / service.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2010, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  */
32
33 #define DEBUG_SUBSYSTEM S_RPC
34
35 #include <linux/kthread.h>
36 #include <linux/ratelimit.h>
37
38 #include <obd_support.h>
39 #include <obd_class.h>
40 #include <lustre_net.h>
41 #include <lu_object.h>
42 #include <uapi/linux/lnet/lnet-types.h>
43 #include "ptlrpc_internal.h"
44 #include <linux/delay.h>
45
46 /* The following are visible and mutable through /sys/module/ptlrpc */
47 int test_req_buffer_pressure = 0;
48 module_param(test_req_buffer_pressure, int, 0444);
49 MODULE_PARM_DESC(test_req_buffer_pressure, "set non-zero to put pressure on request buffer pools");
50 module_param(at_min, int, 0644);
51 MODULE_PARM_DESC(at_min, "Adaptive timeout minimum (sec)");
52 module_param(at_max, int, 0644);
53 MODULE_PARM_DESC(at_max, "Adaptive timeout maximum (sec)");
54 module_param(at_history, int, 0644);
55 MODULE_PARM_DESC(at_history,
56                  "Adaptive timeouts remember the slowest event that took place within this period (sec)");
57 module_param(at_early_margin, int, 0644);
58 MODULE_PARM_DESC(at_early_margin, "How soon before an RPC deadline to send an early reply");
59 module_param(at_extra, int, 0644);
60 MODULE_PARM_DESC(at_extra, "How much extra time to give with each early reply");
61
62 /* forward ref */
63 static int ptlrpc_server_post_idle_rqbds(struct ptlrpc_service_part *svcpt);
64 static void ptlrpc_server_hpreq_fini(struct ptlrpc_request *req);
65 static void ptlrpc_at_remove_timed(struct ptlrpc_request *req);
66
67 /** Holds a list of all PTLRPC services */
68 LIST_HEAD(ptlrpc_all_services);
69 /** Used to protect the \e ptlrpc_all_services list */
70 struct mutex ptlrpc_all_services_mutex;
71
72 static struct ptlrpc_request_buffer_desc *
73 ptlrpc_alloc_rqbd(struct ptlrpc_service_part *svcpt)
74 {
75         struct ptlrpc_service             *svc = svcpt->scp_service;
76         struct ptlrpc_request_buffer_desc *rqbd;
77
78         OBD_CPT_ALLOC_PTR(rqbd, svc->srv_cptable, svcpt->scp_cpt);
79         if (rqbd == NULL)
80                 return NULL;
81
82         rqbd->rqbd_svcpt = svcpt;
83         rqbd->rqbd_refcount = 0;
84         rqbd->rqbd_cbid.cbid_fn = request_in_callback;
85         rqbd->rqbd_cbid.cbid_arg = rqbd;
86         INIT_LIST_HEAD(&rqbd->rqbd_reqs);
87         OBD_CPT_ALLOC_LARGE(rqbd->rqbd_buffer, svc->srv_cptable,
88                             svcpt->scp_cpt, svc->srv_buf_size);
89         if (rqbd->rqbd_buffer == NULL) {
90                 OBD_FREE_PTR(rqbd);
91                 return NULL;
92         }
93
94         spin_lock(&svcpt->scp_lock);
95         list_add(&rqbd->rqbd_list, &svcpt->scp_rqbd_idle);
96         svcpt->scp_nrqbds_total++;
97         spin_unlock(&svcpt->scp_lock);
98
99         return rqbd;
100 }
101
102 static void ptlrpc_free_rqbd(struct ptlrpc_request_buffer_desc *rqbd)
103 {
104         struct ptlrpc_service_part *svcpt = rqbd->rqbd_svcpt;
105
106         LASSERT(rqbd->rqbd_refcount == 0);
107         LASSERT(list_empty(&rqbd->rqbd_reqs));
108
109         spin_lock(&svcpt->scp_lock);
110         list_del(&rqbd->rqbd_list);
111         svcpt->scp_nrqbds_total--;
112         spin_unlock(&svcpt->scp_lock);
113
114         OBD_FREE_LARGE(rqbd->rqbd_buffer, svcpt->scp_service->srv_buf_size);
115         OBD_FREE_PTR(rqbd);
116 }
117
118 static int ptlrpc_grow_req_bufs(struct ptlrpc_service_part *svcpt, int post)
119 {
120         struct ptlrpc_service *svc = svcpt->scp_service;
121         struct ptlrpc_request_buffer_desc *rqbd;
122         int rc = 0;
123         int i;
124
125         if (svcpt->scp_rqbd_allocating)
126                 goto try_post;
127
128         spin_lock(&svcpt->scp_lock);
129         /* check again with lock */
130         if (svcpt->scp_rqbd_allocating) {
131                 /* NB: we might allow more than one thread in the future */
132                 LASSERT(svcpt->scp_rqbd_allocating == 1);
133                 spin_unlock(&svcpt->scp_lock);
134                 goto try_post;
135         }
136
137         svcpt->scp_rqbd_allocating++;
138         spin_unlock(&svcpt->scp_lock);
139
140
141         for (i = 0; i < svc->srv_nbuf_per_group; i++) {
142                 /*
143                  * NB: another thread might have recycled enough rqbds, we
144                  * need to make sure it wouldn't over-allocate, see LU-1212.
145                  */
146                 if (svcpt->scp_nrqbds_posted >= svc->srv_nbuf_per_group ||
147                     (svc->srv_nrqbds_max != 0 &&
148                      svcpt->scp_nrqbds_total > svc->srv_nrqbds_max))
149                         break;
150
151                 rqbd = ptlrpc_alloc_rqbd(svcpt);
152
153                 if (rqbd == NULL) {
154                         CERROR("%s: Can't allocate request buffer\n",
155                                svc->srv_name);
156                         rc = -ENOMEM;
157                         break;
158                 }
159         }
160
161         spin_lock(&svcpt->scp_lock);
162
163         LASSERT(svcpt->scp_rqbd_allocating == 1);
164         svcpt->scp_rqbd_allocating--;
165
166         spin_unlock(&svcpt->scp_lock);
167
168         CDEBUG(D_RPCTRACE,
169                "%s: allocate %d new %d-byte reqbufs (%d/%d left), rc = %d\n",
170                svc->srv_name, i, svc->srv_buf_size, svcpt->scp_nrqbds_posted,
171                svcpt->scp_nrqbds_total, rc);
172
173  try_post:
174         if (post && rc == 0)
175                 rc = ptlrpc_server_post_idle_rqbds(svcpt);
176
177         return rc;
178 }
179
180 /**
181  * Part of Rep-Ack logic.
182  * Puts a lock and its mode into reply state assotiated to request reply.
183  */
184 void ptlrpc_save_lock(struct ptlrpc_request *req, struct lustre_handle *lock,
185                       int mode, bool no_ack, bool convert_lock)
186 {
187         struct ptlrpc_reply_state *rs = req->rq_reply_state;
188         int idx;
189
190         LASSERT(rs != NULL);
191         LASSERT(rs->rs_nlocks < RS_MAX_LOCKS);
192
193         idx = rs->rs_nlocks++;
194         rs->rs_locks[idx] = *lock;
195         rs->rs_modes[idx] = mode;
196         rs->rs_difficult = 1;
197         rs->rs_no_ack = no_ack;
198         rs->rs_convert_lock = convert_lock;
199 }
200 EXPORT_SYMBOL(ptlrpc_save_lock);
201
202
203 struct ptlrpc_hr_partition;
204
205 struct ptlrpc_hr_thread {
206         int                             hrt_id;         /* thread ID */
207         spinlock_t                      hrt_lock;
208         wait_queue_head_t               hrt_waitq;
209         struct list_head                hrt_queue;
210         struct ptlrpc_hr_partition      *hrt_partition;
211 };
212
213 struct ptlrpc_hr_partition {
214         /* # of started threads */
215         atomic_t                        hrp_nstarted;
216         /* # of stopped threads */
217         atomic_t                        hrp_nstopped;
218         /* cpu partition id */
219         int                             hrp_cpt;
220         /* round-robin rotor for choosing thread */
221         int                             hrp_rotor;
222         /* total number of threads on this partition */
223         int                             hrp_nthrs;
224         /* threads table */
225         struct ptlrpc_hr_thread         *hrp_thrs;
226 };
227
228 #define HRT_RUNNING 0
229 #define HRT_STOPPING 1
230
231 struct ptlrpc_hr_service {
232         /* CPU partition table, it's just cfs_cpt_tab for now */
233         struct cfs_cpt_table            *hr_cpt_table;
234         /** controller sleep waitq */
235         wait_queue_head_t               hr_waitq;
236         unsigned int                    hr_stopping;
237         /** roundrobin rotor for non-affinity service */
238         unsigned int                    hr_rotor;
239         /* partition data */
240         struct ptlrpc_hr_partition      **hr_partitions;
241 };
242
243 struct rs_batch {
244         struct list_head                        rsb_replies;
245         unsigned int                    rsb_n_replies;
246         struct ptlrpc_service_part      *rsb_svcpt;
247 };
248
249 /** reply handling service. */
250 static struct ptlrpc_hr_service         ptlrpc_hr;
251
252 /**
253  * maximum mumber of replies scheduled in one batch
254  */
255 #define MAX_SCHEDULED 256
256
257 /**
258  * Initialize a reply batch.
259  *
260  * \param b batch
261  */
262 static void rs_batch_init(struct rs_batch *b)
263 {
264         memset(b, 0, sizeof(*b));
265         INIT_LIST_HEAD(&b->rsb_replies);
266 }
267
268 /**
269  * Choose an hr thread to dispatch requests to.
270  */
271 static
272 struct ptlrpc_hr_thread *ptlrpc_hr_select(struct ptlrpc_service_part *svcpt)
273 {
274         struct ptlrpc_hr_partition      *hrp;
275         unsigned int                    rotor;
276
277         if (svcpt->scp_cpt >= 0 &&
278             svcpt->scp_service->srv_cptable == ptlrpc_hr.hr_cpt_table) {
279                 /* directly match partition */
280                 hrp = ptlrpc_hr.hr_partitions[svcpt->scp_cpt];
281
282         } else {
283                 rotor = ptlrpc_hr.hr_rotor++;
284                 rotor %= cfs_cpt_number(ptlrpc_hr.hr_cpt_table);
285
286                 hrp = ptlrpc_hr.hr_partitions[rotor];
287         }
288
289         rotor = hrp->hrp_rotor++;
290         return &hrp->hrp_thrs[rotor % hrp->hrp_nthrs];
291 }
292
293 /**
294  * Dispatch all replies accumulated in the batch to one from
295  * dedicated reply handling threads.
296  *
297  * \param b batch
298  */
299 static void rs_batch_dispatch(struct rs_batch *b)
300 {
301         if (b->rsb_n_replies != 0) {
302                 struct ptlrpc_hr_thread *hrt;
303
304                 hrt = ptlrpc_hr_select(b->rsb_svcpt);
305
306                 spin_lock(&hrt->hrt_lock);
307                 list_splice_init(&b->rsb_replies, &hrt->hrt_queue);
308                 spin_unlock(&hrt->hrt_lock);
309
310                 wake_up(&hrt->hrt_waitq);
311                 b->rsb_n_replies = 0;
312         }
313 }
314
315 /**
316  * Add a reply to a batch.
317  * Add one reply object to a batch, schedule batched replies if overload.
318  *
319  * \param b batch
320  * \param rs reply
321  */
322 static void rs_batch_add(struct rs_batch *b, struct ptlrpc_reply_state *rs)
323 {
324         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
325
326         if (svcpt != b->rsb_svcpt || b->rsb_n_replies >= MAX_SCHEDULED) {
327                 if (b->rsb_svcpt != NULL) {
328                         rs_batch_dispatch(b);
329                         spin_unlock(&b->rsb_svcpt->scp_rep_lock);
330                 }
331                 spin_lock(&svcpt->scp_rep_lock);
332                 b->rsb_svcpt = svcpt;
333         }
334         spin_lock(&rs->rs_lock);
335         rs->rs_scheduled_ever = 1;
336         if (rs->rs_scheduled == 0) {
337                 list_move(&rs->rs_list, &b->rsb_replies);
338                 rs->rs_scheduled = 1;
339                 b->rsb_n_replies++;
340         }
341         rs->rs_committed = 1;
342         spin_unlock(&rs->rs_lock);
343 }
344
345 /**
346  * Reply batch finalization.
347  * Dispatch remaining replies from the batch
348  * and release remaining spinlock.
349  *
350  * \param b batch
351  */
352 static void rs_batch_fini(struct rs_batch *b)
353 {
354         if (b->rsb_svcpt != NULL) {
355                 rs_batch_dispatch(b);
356                 spin_unlock(&b->rsb_svcpt->scp_rep_lock);
357         }
358 }
359
360 #define DECLARE_RS_BATCH(b)     struct rs_batch b
361
362
363 /**
364  * Put reply state into a queue for processing because we received
365  * ACK from the client
366  */
367 void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs)
368 {
369         struct ptlrpc_hr_thread *hrt;
370
371         ENTRY;
372
373         LASSERT(list_empty(&rs->rs_list));
374
375         hrt = ptlrpc_hr_select(rs->rs_svcpt);
376
377         spin_lock(&hrt->hrt_lock);
378         list_add_tail(&rs->rs_list, &hrt->hrt_queue);
379         spin_unlock(&hrt->hrt_lock);
380
381         wake_up(&hrt->hrt_waitq);
382         EXIT;
383 }
384
385 void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs)
386 {
387         ENTRY;
388
389         assert_spin_locked(&rs->rs_svcpt->scp_rep_lock);
390         assert_spin_locked(&rs->rs_lock);
391         LASSERT(rs->rs_difficult);
392         rs->rs_scheduled_ever = 1;  /* flag any notification attempt */
393
394         if (rs->rs_scheduled) {     /* being set up or already notified */
395                 EXIT;
396                 return;
397         }
398
399         rs->rs_scheduled = 1;
400         list_del_init(&rs->rs_list);
401         ptlrpc_dispatch_difficult_reply(rs);
402         EXIT;
403 }
404 EXPORT_SYMBOL(ptlrpc_schedule_difficult_reply);
405
406 void ptlrpc_commit_replies(struct obd_export *exp)
407 {
408         struct ptlrpc_reply_state *rs, *nxt;
409         DECLARE_RS_BATCH(batch);
410
411         ENTRY;
412
413         rs_batch_init(&batch);
414         /*
415          * Find any replies that have been committed and get their service
416          * to attend to complete them.
417          */
418
419         /* CAVEAT EMPTOR: spinlock ordering!!! */
420         spin_lock(&exp->exp_uncommitted_replies_lock);
421         list_for_each_entry_safe(rs, nxt, &exp->exp_uncommitted_replies,
422                                  rs_obd_list) {
423                 LASSERT(rs->rs_difficult);
424                 /* VBR: per-export last_committed */
425                 LASSERT(rs->rs_export);
426                 if (rs->rs_transno <= exp->exp_last_committed) {
427                         list_del_init(&rs->rs_obd_list);
428                         rs_batch_add(&batch, rs);
429                 }
430         }
431         spin_unlock(&exp->exp_uncommitted_replies_lock);
432         rs_batch_fini(&batch);
433         EXIT;
434 }
435
436 static int ptlrpc_server_post_idle_rqbds(struct ptlrpc_service_part *svcpt)
437 {
438         struct ptlrpc_request_buffer_desc *rqbd;
439         int rc;
440         int posted = 0;
441
442         for (;;) {
443                 spin_lock(&svcpt->scp_lock);
444
445                 if (list_empty(&svcpt->scp_rqbd_idle)) {
446                         spin_unlock(&svcpt->scp_lock);
447                         return posted;
448                 }
449
450                 rqbd = list_entry(svcpt->scp_rqbd_idle.next,
451                                       struct ptlrpc_request_buffer_desc,
452                                       rqbd_list);
453
454                 /* assume we will post successfully */
455                 svcpt->scp_nrqbds_posted++;
456                 list_move(&rqbd->rqbd_list, &svcpt->scp_rqbd_posted);
457
458                 spin_unlock(&svcpt->scp_lock);
459
460                 rc = ptlrpc_register_rqbd(rqbd);
461                 if (rc != 0)
462                         break;
463
464                 posted = 1;
465         }
466
467         spin_lock(&svcpt->scp_lock);
468
469         svcpt->scp_nrqbds_posted--;
470         list_move_tail(&rqbd->rqbd_list, &svcpt->scp_rqbd_idle);
471
472         /*
473          * Don't complain if no request buffers are posted right now; LNET
474          * won't drop requests because we set the portal lazy!
475          */
476
477         spin_unlock(&svcpt->scp_lock);
478
479         return -1;
480 }
481
482 static void ptlrpc_at_timer(cfs_timer_cb_arg_t data)
483 {
484         struct ptlrpc_service_part *svcpt;
485
486         svcpt = cfs_from_timer(svcpt, data, scp_at_timer);
487
488         svcpt->scp_at_check = 1;
489         svcpt->scp_at_checktime = ktime_get();
490         wake_up(&svcpt->scp_waitq);
491 }
492
493 static void ptlrpc_server_nthreads_check(struct ptlrpc_service *svc,
494                                          struct ptlrpc_service_conf *conf)
495 {
496         struct ptlrpc_service_thr_conf *tc = &conf->psc_thr;
497         unsigned int init;
498         unsigned int total;
499         unsigned int nthrs;
500         int weight;
501
502         /*
503          * Common code for estimating & validating threads number.
504          * CPT affinity service could have percpt thread-pool instead
505          * of a global thread-pool, which means user might not always
506          * get the threads number they give it in conf::tc_nthrs_user
507          * even they did set. It's because we need to validate threads
508          * number for each CPT to guarantee each pool will have enough
509          * threads to keep the service healthy.
510          */
511         init = PTLRPC_NTHRS_INIT + (svc->srv_ops.so_hpreq_handler != NULL);
512         init = max_t(int, init, tc->tc_nthrs_init);
513
514         /*
515          * NB: please see comments in lustre_lnet.h for definition
516          * details of these members
517          */
518         LASSERT(tc->tc_nthrs_max != 0);
519
520         if (tc->tc_nthrs_user != 0) {
521                 /*
522                  * In case there is a reason to test a service with many
523                  * threads, we give a less strict check here, it can
524                  * be up to 8 * nthrs_max
525                  */
526                 total = min(tc->tc_nthrs_max * 8, tc->tc_nthrs_user);
527                 nthrs = total / svc->srv_ncpts;
528                 init  = max(init, nthrs);
529                 goto out;
530         }
531
532         total = tc->tc_nthrs_max;
533         if (tc->tc_nthrs_base == 0) {
534                 /*
535                  * don't care about base threads number per partition,
536                  * this is most for non-affinity service
537                  */
538                 nthrs = total / svc->srv_ncpts;
539                 goto out;
540         }
541
542         nthrs = tc->tc_nthrs_base;
543         if (svc->srv_ncpts == 1) {
544                 int     i;
545
546                 /*
547                  * NB: Increase the base number if it's single partition
548                  * and total number of cores/HTs is larger or equal to 4.
549                  * result will always < 2 * nthrs_base
550                  */
551                 weight = cfs_cpt_weight(svc->srv_cptable, CFS_CPT_ANY);
552                 for (i = 1; (weight >> (i + 1)) != 0 && /* >= 4 cores/HTs */
553                             (tc->tc_nthrs_base >> i) != 0; i++)
554                         nthrs += tc->tc_nthrs_base >> i;
555         }
556
557         if (tc->tc_thr_factor != 0) {
558                 int       factor = tc->tc_thr_factor;
559                 const int fade = 4;
560
561                 /*
562                  * User wants to increase number of threads with for
563                  * each CPU core/HT, most likely the factor is larger than
564                  * one thread/core because service threads are supposed to
565                  * be blocked by lock or wait for IO.
566                  */
567                 /*
568                  * Amdahl's law says that adding processors wouldn't give
569                  * a linear increasing of parallelism, so it's nonsense to
570                  * have too many threads no matter how many cores/HTs
571                  * there are.
572                  */
573                 preempt_disable();
574                 if (cpumask_weight
575                     (topology_sibling_cpumask(smp_processor_id())) > 1) {
576                         /* weight is # of HTs */
577                         /* depress thread factor for hyper-thread */
578                         factor = factor - (factor >> 1) + (factor >> 3);
579                 }
580                 preempt_enable();
581
582                 weight = cfs_cpt_weight(svc->srv_cptable, 0);
583
584                 for (; factor > 0 && weight > 0; factor--, weight -= fade)
585                         nthrs += min(weight, fade) * factor;
586         }
587
588         if (nthrs * svc->srv_ncpts > tc->tc_nthrs_max) {
589                 nthrs = max(tc->tc_nthrs_base,
590                             tc->tc_nthrs_max / svc->srv_ncpts);
591         }
592  out:
593         nthrs = max(nthrs, tc->tc_nthrs_init);
594         svc->srv_nthrs_cpt_limit = nthrs;
595         svc->srv_nthrs_cpt_init = init;
596
597         if (nthrs * svc->srv_ncpts > tc->tc_nthrs_max) {
598                 CDEBUG(D_OTHER,
599                        "%s: This service may have more threads (%d) than the given soft limit (%d)\n",
600                        svc->srv_name, nthrs * svc->srv_ncpts,
601                        tc->tc_nthrs_max);
602         }
603 }
604
605 /**
606  * Initialize percpt data for a service
607  */
608 static int ptlrpc_service_part_init(struct ptlrpc_service *svc,
609                                     struct ptlrpc_service_part *svcpt, int cpt)
610 {
611         struct ptlrpc_at_array *array;
612         int size;
613         int index;
614         int rc;
615
616         svcpt->scp_cpt = cpt;
617         INIT_LIST_HEAD(&svcpt->scp_threads);
618
619         /* rqbd and incoming request queue */
620         spin_lock_init(&svcpt->scp_lock);
621         mutex_init(&svcpt->scp_mutex);
622         INIT_LIST_HEAD(&svcpt->scp_rqbd_idle);
623         INIT_LIST_HEAD(&svcpt->scp_rqbd_posted);
624         INIT_LIST_HEAD(&svcpt->scp_req_incoming);
625         init_waitqueue_head(&svcpt->scp_waitq);
626         /* history request & rqbd list */
627         INIT_LIST_HEAD(&svcpt->scp_hist_reqs);
628         INIT_LIST_HEAD(&svcpt->scp_hist_rqbds);
629
630         /* acitve requests and hp requests */
631         spin_lock_init(&svcpt->scp_req_lock);
632
633         /* reply states */
634         spin_lock_init(&svcpt->scp_rep_lock);
635         INIT_LIST_HEAD(&svcpt->scp_rep_active);
636         INIT_LIST_HEAD(&svcpt->scp_rep_idle);
637         init_waitqueue_head(&svcpt->scp_rep_waitq);
638         atomic_set(&svcpt->scp_nreps_difficult, 0);
639
640         /* adaptive timeout */
641         spin_lock_init(&svcpt->scp_at_lock);
642         array = &svcpt->scp_at_array;
643
644         size = at_est2timeout(at_max);
645         array->paa_size     = size;
646         array->paa_count    = 0;
647         array->paa_deadline = -1;
648
649         /* allocate memory for scp_at_array (ptlrpc_at_array) */
650         OBD_CPT_ALLOC(array->paa_reqs_array,
651                       svc->srv_cptable, cpt, sizeof(struct list_head) * size);
652         if (array->paa_reqs_array == NULL)
653                 return -ENOMEM;
654
655         for (index = 0; index < size; index++)
656                 INIT_LIST_HEAD(&array->paa_reqs_array[index]);
657
658         OBD_CPT_ALLOC(array->paa_reqs_count,
659                       svc->srv_cptable, cpt, sizeof(__u32) * size);
660         if (array->paa_reqs_count == NULL)
661                 goto failed;
662
663         cfs_timer_setup(&svcpt->scp_at_timer, ptlrpc_at_timer,
664                         (unsigned long)svcpt, 0);
665
666         /*
667          * At SOW, service time should be quick; 10s seems generous. If client
668          * timeout is less than this, we'll be sending an early reply.
669          */
670         at_init(&svcpt->scp_at_estimate, 10, 0);
671
672         /* assign this before call ptlrpc_grow_req_bufs */
673         svcpt->scp_service = svc;
674         /* Now allocate the request buffers, but don't post them now */
675         rc = ptlrpc_grow_req_bufs(svcpt, 0);
676         /*
677          * We shouldn't be under memory pressure at startup, so
678          * fail if we can't allocate all our buffers at this time.
679          */
680         if (rc != 0)
681                 goto failed;
682
683         return 0;
684
685  failed:
686         if (array->paa_reqs_count != NULL) {
687                 OBD_FREE_PTR_ARRAY(array->paa_reqs_count, size);
688                 array->paa_reqs_count = NULL;
689         }
690
691         if (array->paa_reqs_array != NULL) {
692                 OBD_FREE_PTR_ARRAY(array->paa_reqs_array, array->paa_size);
693                 array->paa_reqs_array = NULL;
694         }
695
696         return -ENOMEM;
697 }
698
699 /**
700  * Initialize service on a given portal.
701  * This includes starting serving threads , allocating and posting rqbds and
702  * so on.
703  */
704 struct ptlrpc_service *ptlrpc_register_service(struct ptlrpc_service_conf *conf,
705                                                struct kset *parent,
706                                                struct dentry *debugfs_entry)
707 {
708         struct ptlrpc_service_cpt_conf *cconf = &conf->psc_cpt;
709         struct ptlrpc_service *service;
710         struct ptlrpc_service_part *svcpt;
711         struct cfs_cpt_table *cptable;
712         __u32 *cpts = NULL;
713         int ncpts;
714         int cpt;
715         int rc;
716         int i;
717
718         ENTRY;
719
720         LASSERT(conf->psc_buf.bc_nbufs > 0);
721         LASSERT(conf->psc_buf.bc_buf_size >=
722                 conf->psc_buf.bc_req_max_size + SPTLRPC_MAX_PAYLOAD);
723         LASSERT(conf->psc_thr.tc_ctx_tags != 0);
724
725         cptable = cconf->cc_cptable;
726         if (cptable == NULL)
727                 cptable = cfs_cpt_tab;
728
729         if (conf->psc_thr.tc_cpu_bind > 1) {
730                 CERROR("%s: Invalid cpu bind value %d, only 1 or 0 allowed\n",
731                        conf->psc_name, conf->psc_thr.tc_cpu_bind);
732                 RETURN(ERR_PTR(-EINVAL));
733         }
734
735         if (!cconf->cc_affinity) {
736                 ncpts = 1;
737         } else {
738                 ncpts = cfs_cpt_number(cptable);
739                 if (cconf->cc_pattern != NULL) {
740                         struct cfs_expr_list    *el;
741
742                         rc = cfs_expr_list_parse(cconf->cc_pattern,
743                                                  strlen(cconf->cc_pattern),
744                                                  0, ncpts - 1, &el);
745                         if (rc != 0) {
746                                 CERROR("%s: invalid CPT pattern string: %s",
747                                        conf->psc_name, cconf->cc_pattern);
748                                 RETURN(ERR_PTR(-EINVAL));
749                         }
750
751                         rc = cfs_expr_list_values(el, ncpts, &cpts);
752                         cfs_expr_list_free(el);
753                         if (rc <= 0) {
754                                 CERROR("%s: failed to parse CPT array %s: %d\n",
755                                        conf->psc_name, cconf->cc_pattern, rc);
756                                 if (cpts != NULL)
757                                         OBD_FREE_PTR_ARRAY(cpts, ncpts);
758                                 RETURN(ERR_PTR(rc < 0 ? rc : -EINVAL));
759                         }
760                         ncpts = rc;
761                 }
762         }
763
764         OBD_ALLOC(service, offsetof(struct ptlrpc_service, srv_parts[ncpts]));
765         if (service == NULL) {
766                 if (cpts != NULL)
767                         OBD_FREE_PTR_ARRAY(cpts, ncpts);
768                 RETURN(ERR_PTR(-ENOMEM));
769         }
770
771         service->srv_cptable            = cptable;
772         service->srv_cpts               = cpts;
773         service->srv_ncpts              = ncpts;
774         service->srv_cpt_bind           = conf->psc_thr.tc_cpu_bind;
775
776         service->srv_cpt_bits = 0; /* it's zero already, easy to read... */
777         while ((1 << service->srv_cpt_bits) < cfs_cpt_number(cptable))
778                 service->srv_cpt_bits++;
779
780         /* public members */
781         spin_lock_init(&service->srv_lock);
782         service->srv_name               = conf->psc_name;
783         service->srv_watchdog_factor    = conf->psc_watchdog_factor;
784         INIT_LIST_HEAD(&service->srv_list); /* for safty of cleanup */
785
786         /* buffer configuration */
787         service->srv_nbuf_per_group     = test_req_buffer_pressure ?
788                                           1 : conf->psc_buf.bc_nbufs;
789         /* do not limit max number of rqbds by default */
790         service->srv_nrqbds_max         = 0;
791
792         service->srv_max_req_size       = conf->psc_buf.bc_req_max_size +
793                                           SPTLRPC_MAX_PAYLOAD;
794         service->srv_buf_size           = conf->psc_buf.bc_buf_size;
795         service->srv_rep_portal         = conf->psc_buf.bc_rep_portal;
796         service->srv_req_portal         = conf->psc_buf.bc_req_portal;
797
798         /* With slab/alloc_pages buffer size will be rounded up to 2^n */
799         if (service->srv_buf_size & (service->srv_buf_size - 1)) {
800                 int round = size_roundup_power2(service->srv_buf_size);
801
802                 service->srv_buf_size = round;
803         }
804
805         /* Increase max reply size to next power of two */
806         service->srv_max_reply_size = 1;
807         while (service->srv_max_reply_size <
808                conf->psc_buf.bc_rep_max_size + SPTLRPC_MAX_PAYLOAD)
809                 service->srv_max_reply_size <<= 1;
810
811         service->srv_thread_name        = conf->psc_thr.tc_thr_name;
812         service->srv_ctx_tags           = conf->psc_thr.tc_ctx_tags;
813         service->srv_hpreq_ratio        = PTLRPC_SVC_HP_RATIO;
814         service->srv_ops                = conf->psc_ops;
815
816         for (i = 0; i < ncpts; i++) {
817                 if (!cconf->cc_affinity)
818                         cpt = CFS_CPT_ANY;
819                 else
820                         cpt = cpts != NULL ? cpts[i] : i;
821
822                 OBD_CPT_ALLOC(svcpt, cptable, cpt, sizeof(*svcpt));
823                 if (svcpt == NULL)
824                         GOTO(failed, rc = -ENOMEM);
825
826                 service->srv_parts[i] = svcpt;
827                 rc = ptlrpc_service_part_init(service, svcpt, cpt);
828                 if (rc != 0)
829                         GOTO(failed, rc);
830         }
831
832         ptlrpc_server_nthreads_check(service, conf);
833
834         rc = LNetSetLazyPortal(service->srv_req_portal);
835         LASSERT(rc == 0);
836
837         mutex_lock(&ptlrpc_all_services_mutex);
838         list_add(&service->srv_list, &ptlrpc_all_services);
839         mutex_unlock(&ptlrpc_all_services_mutex);
840
841         if (parent) {
842                 rc = ptlrpc_sysfs_register_service(parent, service);
843                 if (rc)
844                         GOTO(failed, rc);
845         }
846
847         if (debugfs_entry != NULL)
848                 ptlrpc_ldebugfs_register_service(debugfs_entry, service);
849
850         rc = ptlrpc_service_nrs_setup(service);
851         if (rc != 0)
852                 GOTO(failed, rc);
853
854         CDEBUG(D_NET, "%s: Started, listening on portal %d\n",
855                service->srv_name, service->srv_req_portal);
856
857         rc = ptlrpc_start_threads(service);
858         if (rc != 0) {
859                 CERROR("Failed to start threads for service %s: %d\n",
860                        service->srv_name, rc);
861                 GOTO(failed, rc);
862         }
863
864         RETURN(service);
865 failed:
866         ptlrpc_unregister_service(service);
867         RETURN(ERR_PTR(rc));
868 }
869 EXPORT_SYMBOL(ptlrpc_register_service);
870
871 /**
872  * to actually free the request, must be called without holding svc_lock.
873  * note it's caller's responsibility to unlink req->rq_list.
874  */
875 static void ptlrpc_server_free_request(struct ptlrpc_request *req)
876 {
877         LASSERT(atomic_read(&req->rq_refcount) == 0);
878         LASSERT(list_empty(&req->rq_timed_list));
879
880         /*
881          * DEBUG_REQ() assumes the reply state of a request with a valid
882          * ref will not be destroyed until that reference is dropped.
883          */
884         ptlrpc_req_drop_rs(req);
885
886         sptlrpc_svc_ctx_decref(req);
887
888         if (req != &req->rq_rqbd->rqbd_req) {
889                 /*
890                  * NB request buffers use an embedded
891                  * req if the incoming req unlinked the
892                  * MD; this isn't one of them!
893                  */
894                 ptlrpc_request_cache_free(req);
895         }
896 }
897
898 /**
899  * drop a reference count of the request. if it reaches 0, we either
900  * put it into history list, or free it immediately.
901  */
902 void ptlrpc_server_drop_request(struct ptlrpc_request *req)
903 {
904         struct ptlrpc_request_buffer_desc *rqbd = req->rq_rqbd;
905         struct ptlrpc_service_part        *svcpt = rqbd->rqbd_svcpt;
906         struct ptlrpc_service             *svc = svcpt->scp_service;
907         int                                refcount;
908
909         if (!atomic_dec_and_test(&req->rq_refcount))
910                 return;
911
912         if (req->rq_session.lc_state == LCS_ENTERED) {
913                 lu_context_exit(&req->rq_session);
914                 lu_context_fini(&req->rq_session);
915         }
916
917         if (req->rq_at_linked) {
918                 spin_lock(&svcpt->scp_at_lock);
919                 /*
920                  * recheck with lock, in case it's unlinked by
921                  * ptlrpc_at_check_timed()
922                  */
923                 if (likely(req->rq_at_linked))
924                         ptlrpc_at_remove_timed(req);
925                 spin_unlock(&svcpt->scp_at_lock);
926         }
927
928         LASSERT(list_empty(&req->rq_timed_list));
929
930         /* finalize request */
931         if (req->rq_export) {
932                 class_export_put(req->rq_export);
933                 req->rq_export = NULL;
934         }
935
936         spin_lock(&svcpt->scp_lock);
937
938         list_add(&req->rq_list, &rqbd->rqbd_reqs);
939
940         refcount = --(rqbd->rqbd_refcount);
941         if (refcount == 0) {
942                 /* request buffer is now idle: add to history */
943                 list_move_tail(&rqbd->rqbd_list, &svcpt->scp_hist_rqbds);
944                 svcpt->scp_hist_nrqbds++;
945
946                 /*
947                  * cull some history?
948                  * I expect only about 1 or 2 rqbds need to be recycled here
949                  */
950                 while (svcpt->scp_hist_nrqbds > svc->srv_hist_nrqbds_cpt_max) {
951                         rqbd = list_entry(svcpt->scp_hist_rqbds.next,
952                                           struct ptlrpc_request_buffer_desc,
953                                           rqbd_list);
954
955                         list_del(&rqbd->rqbd_list);
956                         svcpt->scp_hist_nrqbds--;
957
958                         /*
959                          * remove rqbd's reqs from svc's req history while
960                          * I've got the service lock
961                          */
962                         list_for_each_entry(req, &rqbd->rqbd_reqs, rq_list) {
963                                 /* Track the highest culled req seq */
964                                 if (req->rq_history_seq >
965                                     svcpt->scp_hist_seq_culled) {
966                                         svcpt->scp_hist_seq_culled =
967                                                 req->rq_history_seq;
968                                 }
969                                 list_del(&req->rq_history_list);
970                         }
971
972                         spin_unlock(&svcpt->scp_lock);
973
974                         while ((req = list_first_entry_or_null(
975                                         &rqbd->rqbd_reqs,
976                                         struct ptlrpc_request, rq_list))) {
977                                 list_del(&req->rq_list);
978                                 ptlrpc_server_free_request(req);
979                         }
980
981                         spin_lock(&svcpt->scp_lock);
982                         /*
983                          * now all reqs including the embedded req has been
984                          * disposed, schedule request buffer for re-use
985                          * or free it to drain some in excess.
986                          */
987                         LASSERT(atomic_read(&rqbd->rqbd_req.rq_refcount) == 0);
988                         if (svcpt->scp_nrqbds_posted >=
989                             svc->srv_nbuf_per_group ||
990                             (svc->srv_nrqbds_max != 0 &&
991                              svcpt->scp_nrqbds_total > svc->srv_nrqbds_max) ||
992                             test_req_buffer_pressure) {
993                                 /* like in ptlrpc_free_rqbd() */
994                                 svcpt->scp_nrqbds_total--;
995                                 OBD_FREE_LARGE(rqbd->rqbd_buffer,
996                                                svc->srv_buf_size);
997                                 OBD_FREE_PTR(rqbd);
998                         } else {
999                                 list_add_tail(&rqbd->rqbd_list,
1000                                               &svcpt->scp_rqbd_idle);
1001                         }
1002                 }
1003
1004                 spin_unlock(&svcpt->scp_lock);
1005         } else if (req->rq_reply_state && req->rq_reply_state->rs_prealloc) {
1006                 /* If we are low on memory, we are not interested in history */
1007                 list_del(&req->rq_list);
1008                 list_del_init(&req->rq_history_list);
1009
1010                 /* Track the highest culled req seq */
1011                 if (req->rq_history_seq > svcpt->scp_hist_seq_culled)
1012                         svcpt->scp_hist_seq_culled = req->rq_history_seq;
1013
1014                 spin_unlock(&svcpt->scp_lock);
1015
1016                 ptlrpc_server_free_request(req);
1017         } else {
1018                 spin_unlock(&svcpt->scp_lock);
1019         }
1020 }
1021
1022 static void ptlrpc_add_exp_list_nolock(struct ptlrpc_request *req,
1023                                        struct obd_export *export, bool hp)
1024 {
1025         __u16 tag = lustre_msg_get_tag(req->rq_reqmsg);
1026
1027         if (hp)
1028                 list_add(&req->rq_exp_list, &export->exp_hp_rpcs);
1029         else
1030                 list_add(&req->rq_exp_list, &export->exp_reg_rpcs);
1031         if (tag && export->exp_used_slots)
1032                 set_bit(tag - 1, export->exp_used_slots);
1033 }
1034
1035 static void ptlrpc_del_exp_list(struct ptlrpc_request *req)
1036 {
1037         __u16 tag = lustre_msg_get_tag(req->rq_reqmsg);
1038
1039         spin_lock(&req->rq_export->exp_rpc_lock);
1040         list_del_init(&req->rq_exp_list);
1041         if (tag && !req->rq_obsolete && req->rq_export->exp_used_slots)
1042                 clear_bit(tag - 1, req->rq_export->exp_used_slots);
1043         spin_unlock(&req->rq_export->exp_rpc_lock);
1044 }
1045
1046 /** Change request export and move hp request from old export to new */
1047 void ptlrpc_request_change_export(struct ptlrpc_request *req,
1048                                   struct obd_export *export)
1049 {
1050         if (req->rq_export != NULL) {
1051                 LASSERT(!list_empty(&req->rq_exp_list));
1052                 /* remove rq_exp_list from last export */
1053                 ptlrpc_del_exp_list(req);
1054                 /* export has one reference already, so it's safe to
1055                  * add req to export queue here and get another
1056                  * reference for request later
1057                  */
1058                 spin_lock(&export->exp_rpc_lock);
1059                 ptlrpc_add_exp_list_nolock(req, export, req->rq_ops != NULL);
1060                 spin_unlock(&export->exp_rpc_lock);
1061
1062                 class_export_rpc_dec(req->rq_export);
1063                 class_export_put(req->rq_export);
1064         }
1065
1066         /* request takes one export refcount */
1067         req->rq_export = class_export_get(export);
1068         class_export_rpc_inc(export);
1069 }
1070
1071 /**
1072  * to finish a request: stop sending more early replies, and release
1073  * the request.
1074  */
1075 static void ptlrpc_server_finish_request(struct ptlrpc_service_part *svcpt,
1076                                          struct ptlrpc_request *req)
1077 {
1078         ptlrpc_server_hpreq_fini(req);
1079
1080         ptlrpc_server_drop_request(req);
1081 }
1082
1083 /**
1084  * to finish an active request: stop sending more early replies, and release
1085  * the request. should be called after we finished handling the request.
1086  */
1087 static void ptlrpc_server_finish_active_request(
1088                                         struct ptlrpc_service_part *svcpt,
1089                                         struct ptlrpc_request *req)
1090 {
1091         spin_lock(&svcpt->scp_req_lock);
1092         ptlrpc_nrs_req_stop_nolock(req);
1093         svcpt->scp_nreqs_active--;
1094         if (req->rq_hp)
1095                 svcpt->scp_nhreqs_active--;
1096         spin_unlock(&svcpt->scp_req_lock);
1097
1098         ptlrpc_nrs_req_finalize(req);
1099
1100         if (req->rq_export != NULL)
1101                 class_export_rpc_dec(req->rq_export);
1102
1103         ptlrpc_server_finish_request(svcpt, req);
1104 }
1105
1106 /**
1107  * This function makes sure dead exports are evicted in a timely manner.
1108  * This function is only called when some export receives a message (i.e.,
1109  * the network is up.)
1110  */
1111 void ptlrpc_update_export_timer(struct obd_export *exp, time64_t extra_delay)
1112 {
1113         struct obd_export *oldest_exp;
1114         time64_t oldest_time, new_time;
1115
1116         ENTRY;
1117
1118         LASSERT(exp);
1119
1120         /*
1121          * Compensate for slow machines, etc, by faking our request time
1122          * into the future.  Although this can break the strict time-ordering
1123          * of the list, we can be really lazy here - we don't have to evict
1124          * at the exact right moment.  Eventually, all silent exports
1125          * will make it to the top of the list.
1126          */
1127
1128         /* Do not pay attention on 1sec or smaller renewals. */
1129         new_time = ktime_get_real_seconds() + extra_delay;
1130         if (exp->exp_last_request_time + 1 /*second */ >= new_time)
1131                 RETURN_EXIT;
1132
1133         exp->exp_last_request_time = new_time;
1134
1135         /*
1136          * exports may get disconnected from the chain even though the
1137          * export has references, so we must keep the spin lock while
1138          * manipulating the lists
1139          */
1140         spin_lock(&exp->exp_obd->obd_dev_lock);
1141
1142         if (list_empty(&exp->exp_obd_chain_timed)) {
1143                 /* this one is not timed */
1144                 spin_unlock(&exp->exp_obd->obd_dev_lock);
1145                 RETURN_EXIT;
1146         }
1147
1148         list_move_tail(&exp->exp_obd_chain_timed,
1149                        &exp->exp_obd->obd_exports_timed);
1150
1151         oldest_exp = list_entry(exp->exp_obd->obd_exports_timed.next,
1152                                 struct obd_export, exp_obd_chain_timed);
1153         oldest_time = oldest_exp->exp_last_request_time;
1154         spin_unlock(&exp->exp_obd->obd_dev_lock);
1155
1156         if (exp->exp_obd->obd_recovering) {
1157                 /* be nice to everyone during recovery */
1158                 EXIT;
1159                 return;
1160         }
1161
1162         /* Note - racing to start/reset the obd_eviction timer is safe */
1163         if (exp->exp_obd->obd_eviction_timer == 0) {
1164                 /* Check if the oldest entry is expired. */
1165                 if (ktime_get_real_seconds() >
1166                     oldest_time + PING_EVICT_TIMEOUT + extra_delay) {
1167                         /*
1168                          * We need a second timer, in case the net was down and
1169                          * it just came back. Since the pinger may skip every
1170                          * other PING_INTERVAL (see note in ptlrpc_pinger_main),
1171                          * we better wait for 3.
1172                          */
1173                         exp->exp_obd->obd_eviction_timer =
1174                                 ktime_get_real_seconds() + 3 * PING_INTERVAL;
1175                         CDEBUG(D_HA, "%s: Think about evicting %s from %lld\n",
1176                                exp->exp_obd->obd_name,
1177                                obd_export_nid2str(oldest_exp), oldest_time);
1178                 }
1179         } else {
1180                 if (ktime_get_real_seconds() >
1181                     (exp->exp_obd->obd_eviction_timer + extra_delay)) {
1182                         /*
1183                          * The evictor won't evict anyone who we've heard from
1184                          * recently, so we don't have to check before we start
1185                          * it.
1186                          */
1187                         if (!ping_evictor_wake(exp))
1188                                 exp->exp_obd->obd_eviction_timer = 0;
1189                 }
1190         }
1191
1192         EXIT;
1193 }
1194
1195 /**
1196  * Sanity check request \a req.
1197  * Return 0 if all is ok, error code otherwise.
1198  */
1199 static int ptlrpc_check_req(struct ptlrpc_request *req)
1200 {
1201         struct obd_device *obd = req->rq_export->exp_obd;
1202         int rc = 0;
1203
1204         if (unlikely(lustre_msg_get_conn_cnt(req->rq_reqmsg) <
1205                      req->rq_export->exp_conn_cnt)) {
1206                 DEBUG_REQ(D_RPCTRACE, req,
1207                           "DROPPING req from old connection %d < %d",
1208                           lustre_msg_get_conn_cnt(req->rq_reqmsg),
1209                           req->rq_export->exp_conn_cnt);
1210                 return -EEXIST;
1211         }
1212         if (unlikely(obd == NULL || obd->obd_fail)) {
1213                 /*
1214                  * Failing over, don't handle any more reqs,
1215                  * send error response instead.
1216                  */
1217                 CDEBUG(D_RPCTRACE, "Dropping req %p for failed obd %s\n",
1218                         req, (obd != NULL) ? obd->obd_name : "unknown");
1219                 rc = -ENODEV;
1220         } else if (lustre_msg_get_flags(req->rq_reqmsg) &
1221                    (MSG_REPLAY | MSG_REQ_REPLAY_DONE) &&
1222                    !obd->obd_recovering) {
1223                 DEBUG_REQ(D_ERROR, req,
1224                           "Invalid replay without recovery");
1225                 class_fail_export(req->rq_export);
1226                 rc = -ENODEV;
1227         } else if (lustre_msg_get_transno(req->rq_reqmsg) != 0 &&
1228                    !obd->obd_recovering) {
1229                 DEBUG_REQ(D_ERROR, req,
1230                           "Invalid req with transno %llu without recovery",
1231                           lustre_msg_get_transno(req->rq_reqmsg));
1232                 class_fail_export(req->rq_export);
1233                 rc = -ENODEV;
1234         }
1235
1236         if (unlikely(rc < 0)) {
1237                 req->rq_status = rc;
1238                 ptlrpc_error(req);
1239         }
1240         return rc;
1241 }
1242
1243 static void ptlrpc_at_set_timer(struct ptlrpc_service_part *svcpt)
1244 {
1245         struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1246         time64_t next;
1247
1248         if (array->paa_count == 0) {
1249                 del_timer(&svcpt->scp_at_timer);
1250                 return;
1251         }
1252
1253         /* Set timer for closest deadline */
1254         next = array->paa_deadline - ktime_get_real_seconds() -
1255                at_early_margin;
1256         if (next <= 0) {
1257                 ptlrpc_at_timer(cfs_timer_cb_arg(svcpt, scp_at_timer));
1258         } else {
1259                 mod_timer(&svcpt->scp_at_timer,
1260                           jiffies + nsecs_to_jiffies(next * NSEC_PER_SEC));
1261                 CDEBUG(D_INFO, "armed %s at %+llds\n",
1262                        svcpt->scp_service->srv_name, next);
1263         }
1264 }
1265
1266 /* Add rpc to early reply check list */
1267 static int ptlrpc_at_add_timed(struct ptlrpc_request *req)
1268 {
1269         struct ptlrpc_service_part *svcpt = req->rq_rqbd->rqbd_svcpt;
1270         struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1271         struct ptlrpc_request *rq = NULL;
1272         __u32 index;
1273
1274         if (AT_OFF)
1275                 return(0);
1276
1277         if (req->rq_no_reply)
1278                 return 0;
1279
1280         if ((lustre_msghdr_get_flags(req->rq_reqmsg) & MSGHDR_AT_SUPPORT) == 0)
1281                 return(-ENOSYS);
1282
1283         spin_lock(&svcpt->scp_at_lock);
1284         LASSERT(list_empty(&req->rq_timed_list));
1285
1286         div_u64_rem(req->rq_deadline, array->paa_size, &index);
1287         if (array->paa_reqs_count[index] > 0) {
1288                 /*
1289                  * latest rpcs will have the latest deadlines in the list,
1290                  * so search backward.
1291                  */
1292                 list_for_each_entry_reverse(rq, &array->paa_reqs_array[index],
1293                                             rq_timed_list) {
1294                         if (req->rq_deadline >= rq->rq_deadline) {
1295                                 list_add(&req->rq_timed_list,
1296                                          &rq->rq_timed_list);
1297                                 break;
1298                         }
1299                 }
1300         }
1301
1302         /* Add the request at the head of the list */
1303         if (list_empty(&req->rq_timed_list))
1304                 list_add(&req->rq_timed_list, &array->paa_reqs_array[index]);
1305
1306         spin_lock(&req->rq_lock);
1307         req->rq_at_linked = 1;
1308         spin_unlock(&req->rq_lock);
1309         req->rq_at_index = index;
1310         array->paa_reqs_count[index]++;
1311         array->paa_count++;
1312         if (array->paa_count == 1 || array->paa_deadline > req->rq_deadline) {
1313                 array->paa_deadline = req->rq_deadline;
1314                 ptlrpc_at_set_timer(svcpt);
1315         }
1316         spin_unlock(&svcpt->scp_at_lock);
1317
1318         return 0;
1319 }
1320
1321 static void ptlrpc_at_remove_timed(struct ptlrpc_request *req)
1322 {
1323         struct ptlrpc_at_array *array;
1324
1325         array = &req->rq_rqbd->rqbd_svcpt->scp_at_array;
1326
1327         /* NB: must call with hold svcpt::scp_at_lock */
1328         LASSERT(!list_empty(&req->rq_timed_list));
1329         list_del_init(&req->rq_timed_list);
1330
1331         spin_lock(&req->rq_lock);
1332         req->rq_at_linked = 0;
1333         spin_unlock(&req->rq_lock);
1334
1335         array->paa_reqs_count[req->rq_at_index]--;
1336         array->paa_count--;
1337 }
1338
1339 /*
1340  * Attempt to extend the request deadline by sending an early reply to the
1341  * client.
1342  */
1343 static int ptlrpc_at_send_early_reply(struct ptlrpc_request *req)
1344 {
1345         struct ptlrpc_service_part *svcpt = req->rq_rqbd->rqbd_svcpt;
1346         struct ptlrpc_request *reqcopy;
1347         struct lustre_msg *reqmsg;
1348         timeout_t olddl = req->rq_deadline - ktime_get_real_seconds();
1349         time64_t newdl;
1350         int rc;
1351
1352         ENTRY;
1353
1354         if (CFS_FAIL_CHECK(OBD_FAIL_TGT_REPLAY_RECONNECT)) {
1355                 /* don't send early reply */
1356                 RETURN(1);
1357         }
1358
1359         /*
1360          * deadline is when the client expects us to reply, margin is the
1361          * difference between clients' and servers' expectations
1362          */
1363         DEBUG_REQ(D_ADAPTTO, req,
1364                   "%ssending early reply (deadline %+ds, margin %+ds) for %d+%d",
1365                   AT_OFF ? "AT off - not " : "",
1366                   olddl, olddl - at_get(&svcpt->scp_at_estimate),
1367                   at_get(&svcpt->scp_at_estimate), at_extra);
1368
1369         if (AT_OFF)
1370                 RETURN(0);
1371
1372         if (olddl < 0) {
1373                 /* below message is checked in replay-ost-single.sh test_9 */
1374                 DEBUG_REQ(D_WARNING, req,
1375                           "Already past deadline (%+ds), not sending early reply. Consider increasing at_early_margin (%d)?",
1376                           olddl, at_early_margin);
1377
1378                 /* Return an error so we're not re-added to the timed list. */
1379                 RETURN(-ETIMEDOUT);
1380         }
1381
1382         if ((lustre_msghdr_get_flags(req->rq_reqmsg) &
1383              MSGHDR_AT_SUPPORT) == 0) {
1384                 DEBUG_REQ(D_INFO, req,
1385                           "Wanted to ask client for more time, but no AT support");
1386                 RETURN(-ENOSYS);
1387         }
1388
1389         if (req->rq_export &&
1390             lustre_msg_get_flags(req->rq_reqmsg) &
1391             (MSG_REPLAY | MSG_REQ_REPLAY_DONE | MSG_LOCK_REPLAY_DONE)) {
1392                 struct obd_device *obd_exp = req->rq_export->exp_obd;
1393
1394                 /*
1395                  * During recovery, we don't want to send too many early
1396                  * replies, but on the other hand we want to make sure the
1397                  * client has enough time to resend if the rpc is lost. So
1398                  * during the recovery period send at least 4 early replies,
1399                  * spacing them every at_extra if we can. at_estimate should
1400                  * always equal this fixed value during recovery.
1401                  */
1402
1403                 /*
1404                  * Don't account request processing time into AT history
1405                  * during recovery, it is not service time we need but
1406                  * includes also waiting time for recovering clients
1407                  */
1408                 newdl = min_t(time64_t, at_extra,
1409                               obd_exp->obd_recovery_timeout / 4) +
1410                         ktime_get_real_seconds();
1411         } else {
1412                 /*
1413                  * We want to extend the request deadline by at_extra seconds,
1414                  * so we set our service estimate to reflect how much time has
1415                  * passed since this request arrived plus an additional
1416                  * at_extra seconds. The client will calculate the new deadline
1417                  * based on this service estimate (plus some additional time to
1418                  * account for network latency). See ptlrpc_at_recv_early_reply
1419                  */
1420                 at_measured(&svcpt->scp_at_estimate, at_extra +
1421                             ktime_get_real_seconds() -
1422                             req->rq_arrival_time.tv_sec);
1423                 newdl = req->rq_arrival_time.tv_sec +
1424                         at_get(&svcpt->scp_at_estimate);
1425         }
1426
1427         /*
1428          * Check to see if we've actually increased the deadline -
1429          * we may be past adaptive_max
1430          */
1431         if (req->rq_deadline >= newdl) {
1432                 DEBUG_REQ(D_WARNING, req,
1433                           "Could not add any time (%d/%lld), not sending early reply",
1434                           olddl, newdl - ktime_get_real_seconds());
1435                 RETURN(-ETIMEDOUT);
1436         }
1437
1438         reqcopy = ptlrpc_request_cache_alloc(GFP_NOFS);
1439         if (reqcopy == NULL)
1440                 RETURN(-ENOMEM);
1441         OBD_ALLOC_LARGE(reqmsg, req->rq_reqlen);
1442         if (!reqmsg)
1443                 GOTO(out_free, rc = -ENOMEM);
1444
1445         *reqcopy = *req;
1446         reqcopy->rq_reply_state = NULL;
1447         reqcopy->rq_rep_swab_mask = 0;
1448         reqcopy->rq_pack_bulk = 0;
1449         reqcopy->rq_pack_udesc = 0;
1450         reqcopy->rq_packed_final = 0;
1451         sptlrpc_svc_ctx_addref(reqcopy);
1452         /* We only need the reqmsg for the magic */
1453         reqcopy->rq_reqmsg = reqmsg;
1454         memcpy(reqmsg, req->rq_reqmsg, req->rq_reqlen);
1455
1456         /*
1457          * tgt_brw_read() and tgt_brw_write() may have decided not to reply.
1458          * Without this check, we would fail the rq_no_reply assertion in
1459          * ptlrpc_send_reply().
1460          */
1461         if (reqcopy->rq_no_reply)
1462                 GOTO(out, rc = -ETIMEDOUT);
1463
1464         LASSERT(atomic_read(&req->rq_refcount));
1465         /* if it is last refcount then early reply isn't needed */
1466         if (atomic_read(&req->rq_refcount) == 1) {
1467                 DEBUG_REQ(D_ADAPTTO, reqcopy,
1468                           "Normal reply already sent, abort early reply");
1469                 GOTO(out, rc = -EINVAL);
1470         }
1471
1472         /* Connection ref */
1473         reqcopy->rq_export = class_conn2export(
1474                         lustre_msg_get_handle(reqcopy->rq_reqmsg));
1475         if (reqcopy->rq_export == NULL)
1476                 GOTO(out, rc = -ENODEV);
1477
1478         /* RPC ref */
1479         class_export_rpc_inc(reqcopy->rq_export);
1480         if (reqcopy->rq_export->exp_obd &&
1481             reqcopy->rq_export->exp_obd->obd_fail)
1482                 GOTO(out_put, rc = -ENODEV);
1483
1484         rc = lustre_pack_reply_flags(reqcopy, 1, NULL, NULL, LPRFL_EARLY_REPLY);
1485         if (rc)
1486                 GOTO(out_put, rc);
1487
1488         rc = ptlrpc_send_reply(reqcopy, PTLRPC_REPLY_EARLY);
1489
1490         if (!rc) {
1491                 /* Adjust our own deadline to what we told the client */
1492                 req->rq_deadline = newdl;
1493                 req->rq_early_count++; /* number sent, server side */
1494         } else {
1495                 DEBUG_REQ(D_ERROR, req, "Early reply send failed: rc = %d", rc);
1496         }
1497
1498         /*
1499          * Free the (early) reply state from lustre_pack_reply.
1500          * (ptlrpc_send_reply takes it's own rs ref, so this is safe here)
1501          */
1502         ptlrpc_req_drop_rs(reqcopy);
1503
1504 out_put:
1505         class_export_rpc_dec(reqcopy->rq_export);
1506         class_export_put(reqcopy->rq_export);
1507 out:
1508         sptlrpc_svc_ctx_decref(reqcopy);
1509         OBD_FREE_LARGE(reqmsg, req->rq_reqlen);
1510 out_free:
1511         ptlrpc_request_cache_free(reqcopy);
1512         RETURN(rc);
1513 }
1514
1515 /*
1516  * Send early replies to everybody expiring within at_early_margin
1517  * asking for at_extra time
1518  */
1519 static int ptlrpc_at_check_timed(struct ptlrpc_service_part *svcpt)
1520 {
1521         struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1522         struct ptlrpc_request *rq, *n;
1523         LIST_HEAD(work_list);
1524         __u32 index, count;
1525         time64_t deadline;
1526         time64_t now = ktime_get_real_seconds();
1527         s64 delay_ms;
1528         int first, counter = 0;
1529
1530         ENTRY;
1531         spin_lock(&svcpt->scp_at_lock);
1532         if (svcpt->scp_at_check == 0) {
1533                 spin_unlock(&svcpt->scp_at_lock);
1534                 RETURN(0);
1535         }
1536         delay_ms = ktime_ms_delta(ktime_get(), svcpt->scp_at_checktime);
1537         svcpt->scp_at_check = 0;
1538
1539         if (array->paa_count == 0) {
1540                 spin_unlock(&svcpt->scp_at_lock);
1541                 RETURN(0);
1542         }
1543
1544         /* The timer went off, but maybe the nearest rpc already completed. */
1545         first = array->paa_deadline - now;
1546         if (first > at_early_margin) {
1547                 /* We've still got plenty of time.  Reset the timer. */
1548                 ptlrpc_at_set_timer(svcpt);
1549                 spin_unlock(&svcpt->scp_at_lock);
1550                 RETURN(0);
1551         }
1552
1553         /*
1554          * We're close to a timeout, and we don't know how much longer the
1555          * server will take. Send early replies to everyone expiring soon.
1556          */
1557         deadline = -1;
1558         div_u64_rem(array->paa_deadline, array->paa_size, &index);
1559         count = array->paa_count;
1560         while (count > 0) {
1561                 count -= array->paa_reqs_count[index];
1562                 list_for_each_entry_safe(rq, n,
1563                                          &array->paa_reqs_array[index],
1564                                          rq_timed_list) {
1565                         if (rq->rq_deadline > now + at_early_margin) {
1566                                 /* update the earliest deadline */
1567                                 if (deadline == -1 ||
1568                                     rq->rq_deadline < deadline)
1569                                         deadline = rq->rq_deadline;
1570                                 break;
1571                         }
1572
1573                         /**
1574                          * ptlrpc_server_drop_request() may drop
1575                          * refcount to 0 already. Let's check this and
1576                          * don't add entry to work_list
1577                          */
1578                         if (likely(atomic_inc_not_zero(&rq->rq_refcount))) {
1579                                 ptlrpc_at_remove_timed(rq);
1580                                 list_add(&rq->rq_timed_list, &work_list);
1581                         } else {
1582                                 ptlrpc_at_remove_timed(rq);
1583                         }
1584
1585                         counter++;
1586                 }
1587
1588                 if (++index >= array->paa_size)
1589                         index = 0;
1590         }
1591         array->paa_deadline = deadline;
1592         /* we have a new earliest deadline, restart the timer */
1593         ptlrpc_at_set_timer(svcpt);
1594
1595         spin_unlock(&svcpt->scp_at_lock);
1596
1597         CDEBUG(D_ADAPTTO,
1598                "timeout in %+ds, asking for %d secs on %d early replies\n",
1599                first, at_extra, counter);
1600         if (first < 0) {
1601                 /*
1602                  * We're already past request deadlines before we even get a
1603                  * chance to send early replies
1604                  */
1605                 LCONSOLE_WARN("%s: This server is not able to keep up with request traffic (cpu-bound).\n",
1606                               svcpt->scp_service->srv_name);
1607                 CWARN("earlyQ=%d reqQ=%d recA=%d, svcEst=%d, delay=%lldms\n",
1608                       counter, svcpt->scp_nreqs_incoming,
1609                       svcpt->scp_nreqs_active,
1610                       at_get(&svcpt->scp_at_estimate), delay_ms);
1611         }
1612
1613         /*
1614          * we took additional refcount so entries can't be deleted from list, no
1615          * locking is needed
1616          */
1617         while (!list_empty(&work_list)) {
1618                 rq = list_entry(work_list.next, struct ptlrpc_request,
1619                                 rq_timed_list);
1620                 list_del_init(&rq->rq_timed_list);
1621
1622                 if (ptlrpc_at_send_early_reply(rq) == 0)
1623                         ptlrpc_at_add_timed(rq);
1624
1625                 ptlrpc_server_drop_request(rq);
1626         }
1627
1628         RETURN(1); /* return "did_something" for liblustre */
1629 }
1630
1631 /*
1632  * Check if we are already handling earlier incarnation of this request.
1633  * Called under &req->rq_export->exp_rpc_lock locked
1634  */
1635 static struct ptlrpc_request*
1636 ptlrpc_server_check_resend_in_progress(struct ptlrpc_request *req)
1637 {
1638         struct ptlrpc_request *tmp = NULL;
1639
1640         if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ||
1641             (atomic_read(&req->rq_export->exp_rpc_count) == 0))
1642                 return NULL;
1643
1644         /*
1645          * bulk request are aborted upon reconnect, don't try to
1646          * find a match
1647          */
1648         if (req->rq_bulk_write || req->rq_bulk_read)
1649                 return NULL;
1650
1651         /*
1652          * This list should not be longer than max_requests in
1653          * flights on the client, so it is not all that long.
1654          * Also we only hit this codepath in case of a resent
1655          * request which makes it even more rarely hit
1656          */
1657         list_for_each_entry(tmp, &req->rq_export->exp_reg_rpcs,
1658                                 rq_exp_list) {
1659                 /* Found duplicate one */
1660                 if (tmp->rq_xid == req->rq_xid)
1661                         goto found;
1662         }
1663         list_for_each_entry(tmp, &req->rq_export->exp_hp_rpcs,
1664                                 rq_exp_list) {
1665                 /* Found duplicate one */
1666                 if (tmp->rq_xid == req->rq_xid)
1667                         goto found;
1668         }
1669         return NULL;
1670
1671 found:
1672         DEBUG_REQ(D_HA, req, "Found duplicate req in processing");
1673         DEBUG_REQ(D_HA, tmp, "Request being processed");
1674         return tmp;
1675 }
1676
1677 #ifdef HAVE_SERVER_SUPPORT
1678 static void ptlrpc_server_mark_obsolete(struct ptlrpc_request *req)
1679 {
1680         req->rq_obsolete = 1;
1681 }
1682
1683 static void
1684 ptlrpc_server_mark_in_progress_obsolete(struct ptlrpc_request *req)
1685 {
1686         struct ptlrpc_request   *tmp = NULL;
1687         __u16                   tag;
1688
1689         if (!tgt_is_increasing_xid_client(req->rq_export) ||
1690             req->rq_export->exp_used_slots == NULL)
1691                 return;
1692
1693         tag = lustre_msg_get_tag(req->rq_reqmsg);
1694         if (tag == 0)
1695                 return;
1696
1697         if (!test_bit(tag - 1, req->rq_export->exp_used_slots))
1698                 return;
1699
1700         /* This list should not be longer than max_requests in
1701          * flights on the client, so it is not all that long.
1702          * Also we only hit this codepath in case of a resent
1703          * request which makes it even more rarely hit */
1704         list_for_each_entry(tmp, &req->rq_export->exp_reg_rpcs, rq_exp_list) {
1705                 if (tag == lustre_msg_get_tag(tmp->rq_reqmsg) &&
1706                     req->rq_xid > tmp->rq_xid)
1707                         ptlrpc_server_mark_obsolete(tmp);
1708
1709         }
1710         list_for_each_entry(tmp, &req->rq_export->exp_hp_rpcs, rq_exp_list) {
1711                 if (tag == lustre_msg_get_tag(tmp->rq_reqmsg) &&
1712                     req->rq_xid > tmp->rq_xid)
1713                         ptlrpc_server_mark_obsolete(tmp);
1714         }
1715 }
1716 #endif
1717
1718 /**
1719  * Check if a request should be assigned with a high priority.
1720  *
1721  * \retval      < 0: error occurred
1722  *                0: normal RPC request
1723  *               +1: high priority request
1724  */
1725 static int ptlrpc_server_hpreq_init(struct ptlrpc_service_part *svcpt,
1726                                     struct ptlrpc_request *req)
1727 {
1728         int rc = 0;
1729
1730         ENTRY;
1731         if (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL) {
1732                 rc = svcpt->scp_service->srv_ops.so_hpreq_handler(req);
1733                 if (rc < 0)
1734                         RETURN(rc);
1735
1736                 LASSERT(rc == 0);
1737         }
1738
1739         if (req->rq_export != NULL && req->rq_ops != NULL) {
1740                 /*
1741                  * Perform request specific check. We should do this
1742                  * check before the request is added into exp_hp_rpcs
1743                  * list otherwise it may hit swab race at LU-1044.
1744                  */
1745                 if (req->rq_ops->hpreq_check != NULL) {
1746                         rc = req->rq_ops->hpreq_check(req);
1747                         if (rc == -ESTALE) {
1748                                 req->rq_status = rc;
1749                                 ptlrpc_error(req);
1750                         }
1751                         /*
1752                          * can only return error,
1753                          * 0 for normal request,
1754                          * or 1 for high priority request
1755                          */
1756                         LASSERT(rc <= 1);
1757                 }
1758         }
1759
1760         RETURN(rc);
1761 }
1762
1763 /** Remove the request from the export list. */
1764 static void ptlrpc_server_hpreq_fini(struct ptlrpc_request *req)
1765 {
1766         ENTRY;
1767         if (req->rq_export) {
1768                 /*
1769                  * refresh lock timeout again so that client has more
1770                  * room to send lock cancel RPC.
1771                  */
1772                 if (req->rq_ops && req->rq_ops->hpreq_fini)
1773                         req->rq_ops->hpreq_fini(req);
1774
1775                 ptlrpc_del_exp_list(req);
1776         }
1777         EXIT;
1778 }
1779
1780 static int ptlrpc_hpreq_check(struct ptlrpc_request *req)
1781 {
1782         return 1;
1783 }
1784
1785 static struct ptlrpc_hpreq_ops ptlrpc_hpreq_common = {
1786         .hpreq_check       = ptlrpc_hpreq_check,
1787 };
1788
1789 /* Hi-Priority RPC check by RPC operation code. */
1790 int ptlrpc_hpreq_handler(struct ptlrpc_request *req)
1791 {
1792         int opc = lustre_msg_get_opc(req->rq_reqmsg);
1793
1794         /*
1795          * Check for export to let only reconnects for not yet evicted
1796          * export to become a HP rpc.
1797          */
1798         if ((req->rq_export != NULL) &&
1799             (opc == OBD_PING || opc == MDS_CONNECT || opc == OST_CONNECT))
1800                 req->rq_ops = &ptlrpc_hpreq_common;
1801
1802         return 0;
1803 }
1804 EXPORT_SYMBOL(ptlrpc_hpreq_handler);
1805
1806 static int ptlrpc_server_request_add(struct ptlrpc_service_part *svcpt,
1807                                      struct ptlrpc_request *req)
1808 {
1809         int rc;
1810         bool hp;
1811         struct ptlrpc_request *orig;
1812
1813         ENTRY;
1814
1815         rc = ptlrpc_server_hpreq_init(svcpt, req);
1816         if (rc < 0)
1817                 RETURN(rc);
1818
1819         hp = rc > 0;
1820         ptlrpc_nrs_req_initialize(svcpt, req, hp);
1821
1822         while (req->rq_export != NULL) {
1823                 struct obd_export *exp = req->rq_export;
1824
1825                 /*
1826                  * do search for duplicated xid and the adding to the list
1827                  * atomically
1828                  */
1829                 spin_lock_bh(&exp->exp_rpc_lock);
1830 #ifdef HAVE_SERVER_SUPPORT
1831                 ptlrpc_server_mark_in_progress_obsolete(req);
1832 #endif
1833                 orig = ptlrpc_server_check_resend_in_progress(req);
1834                 if (orig && OBD_FAIL_PRECHECK(OBD_FAIL_PTLRPC_RESEND_RACE)) {
1835                         spin_unlock_bh(&exp->exp_rpc_lock);
1836
1837                         OBD_RACE(OBD_FAIL_PTLRPC_RESEND_RACE);
1838                         msleep(4 * MSEC_PER_SEC);
1839                         continue;
1840                 }
1841
1842                 if (orig && likely(atomic_inc_not_zero(&orig->rq_refcount))) {
1843                         bool linked;
1844
1845                         spin_unlock_bh(&exp->exp_rpc_lock);
1846
1847                         /*
1848                          * When the client resend request and the server has
1849                          * the previous copy of it, we need to update deadlines,
1850                          * to be sure that the client and the server have equal
1851                          *  request deadlines.
1852                          */
1853
1854                         spin_lock(&orig->rq_rqbd->rqbd_svcpt->scp_at_lock);
1855                         linked = orig->rq_at_linked;
1856                         if (likely(linked))
1857                                 ptlrpc_at_remove_timed(orig);
1858                         spin_unlock(&orig->rq_rqbd->rqbd_svcpt->scp_at_lock);
1859                         orig->rq_deadline = req->rq_deadline;
1860                         if (likely(linked))
1861                                 ptlrpc_at_add_timed(orig);
1862                         ptlrpc_server_drop_request(orig);
1863                         ptlrpc_nrs_req_finalize(req);
1864
1865                         /* don't mark slot unused for resend in progress */
1866                         req->rq_obsolete = 1;
1867
1868                         RETURN(-EBUSY);
1869                 }
1870
1871                 ptlrpc_add_exp_list_nolock(req, exp, hp || req->rq_ops != NULL);
1872
1873                 spin_unlock_bh(&exp->exp_rpc_lock);
1874                 break;
1875         }
1876
1877         /*
1878          * the current thread is not the processing thread for this request
1879          * since that, but request is in exp_hp_list and can be find there.
1880          * Remove all relations between request and old thread.
1881          */
1882         req->rq_svc_thread->t_env->le_ses = NULL;
1883         req->rq_svc_thread = NULL;
1884         req->rq_session.lc_thread = NULL;
1885
1886         ptlrpc_nrs_req_add(svcpt, req, hp);
1887
1888         RETURN(0);
1889 }
1890
1891 /**
1892  * Allow to handle high priority request
1893  * User can call it w/o any lock but need to hold
1894  * ptlrpc_service_part::scp_req_lock to get reliable result
1895  */
1896 static bool ptlrpc_server_allow_high(struct ptlrpc_service_part *svcpt,
1897                                      bool force)
1898 {
1899         int running = svcpt->scp_nthrs_running;
1900
1901         if (!nrs_svcpt_has_hp(svcpt))
1902                 return false;
1903
1904         if (force)
1905                 return true;
1906
1907         if (ptlrpc_nrs_req_throttling_nolock(svcpt, true))
1908                 return false;
1909
1910         if (unlikely(svcpt->scp_service->srv_req_portal == MDS_REQUEST_PORTAL &&
1911                      CFS_FAIL_PRECHECK(OBD_FAIL_PTLRPC_CANCEL_RESEND))) {
1912                 /* leave just 1 thread for normal RPCs */
1913                 running = PTLRPC_NTHRS_INIT;
1914                 if (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL)
1915                         running += 1;
1916         }
1917
1918         if (svcpt->scp_nreqs_active >= running - 1)
1919                 return false;
1920
1921         if (svcpt->scp_nhreqs_active == 0)
1922                 return true;
1923
1924         return !ptlrpc_nrs_req_pending_nolock(svcpt, false) ||
1925                svcpt->scp_hreq_count < svcpt->scp_service->srv_hpreq_ratio;
1926 }
1927
1928 static bool ptlrpc_server_high_pending(struct ptlrpc_service_part *svcpt,
1929                                        bool force)
1930 {
1931         return ptlrpc_server_allow_high(svcpt, force) &&
1932                ptlrpc_nrs_req_pending_nolock(svcpt, true);
1933 }
1934
1935 /**
1936  * Only allow normal priority requests on a service that has a high-priority
1937  * queue if forced (i.e. cleanup), if there are other high priority requests
1938  * already being processed (i.e. those threads can service more high-priority
1939  * requests), or if there are enough idle threads that a later thread can do
1940  * a high priority request.
1941  * User can call it w/o any lock but need to hold
1942  * ptlrpc_service_part::scp_req_lock to get reliable result
1943  */
1944 static bool ptlrpc_server_allow_normal(struct ptlrpc_service_part *svcpt,
1945                                        bool force)
1946 {
1947         int running = svcpt->scp_nthrs_running;
1948
1949         if (unlikely(svcpt->scp_service->srv_req_portal == MDS_REQUEST_PORTAL &&
1950                      CFS_FAIL_PRECHECK(OBD_FAIL_PTLRPC_CANCEL_RESEND))) {
1951                 /* leave just 1 thread for normal RPCs */
1952                 running = PTLRPC_NTHRS_INIT;
1953                 if (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL)
1954                         running += 1;
1955         }
1956
1957         if (force)
1958                 return true;
1959
1960         if (ptlrpc_nrs_req_throttling_nolock(svcpt, false))
1961                 return false;
1962
1963         if (svcpt->scp_nreqs_active < running - 2)
1964                 return true;
1965
1966         if (svcpt->scp_nreqs_active >= running - 1)
1967                 return false;
1968
1969         return svcpt->scp_nhreqs_active > 0 || !nrs_svcpt_has_hp(svcpt);
1970 }
1971
1972 static bool ptlrpc_server_normal_pending(struct ptlrpc_service_part *svcpt,
1973                                          bool force)
1974 {
1975         return ptlrpc_server_allow_normal(svcpt, force) &&
1976                ptlrpc_nrs_req_pending_nolock(svcpt, false);
1977 }
1978
1979 /**
1980  * Returns true if there are requests available in incoming
1981  * request queue for processing and it is allowed to fetch them.
1982  * User can call it w/o any lock but need to hold ptlrpc_service::scp_req_lock
1983  * to get reliable result
1984  * \see ptlrpc_server_allow_normal
1985  * \see ptlrpc_server_allow high
1986  */
1987 static inline
1988 bool ptlrpc_server_request_pending(struct ptlrpc_service_part *svcpt,
1989                                    bool force)
1990 {
1991         return ptlrpc_server_high_pending(svcpt, force) ||
1992                ptlrpc_server_normal_pending(svcpt, force);
1993 }
1994
1995 /**
1996  * Fetch a request for processing from queue of unprocessed requests.
1997  * Favors high-priority requests.
1998  * Returns a pointer to fetched request.
1999  */
2000 static struct ptlrpc_request *
2001 ptlrpc_server_request_get(struct ptlrpc_service_part *svcpt, bool force)
2002 {
2003         struct ptlrpc_request *req = NULL;
2004
2005         ENTRY;
2006
2007         spin_lock(&svcpt->scp_req_lock);
2008
2009         if (ptlrpc_server_high_pending(svcpt, force)) {
2010                 req = ptlrpc_nrs_req_get_nolock(svcpt, true, force);
2011                 if (req != NULL) {
2012                         svcpt->scp_hreq_count++;
2013                         goto got_request;
2014                 }
2015         }
2016
2017         if (ptlrpc_server_normal_pending(svcpt, force)) {
2018                 req = ptlrpc_nrs_req_get_nolock(svcpt, false, force);
2019                 if (req != NULL) {
2020                         svcpt->scp_hreq_count = 0;
2021                         goto got_request;
2022                 }
2023         }
2024
2025         spin_unlock(&svcpt->scp_req_lock);
2026         RETURN(NULL);
2027
2028 got_request:
2029         svcpt->scp_nreqs_active++;
2030         if (req->rq_hp)
2031                 svcpt->scp_nhreqs_active++;
2032
2033         spin_unlock(&svcpt->scp_req_lock);
2034
2035         if (likely(req->rq_export))
2036                 class_export_rpc_inc(req->rq_export);
2037
2038         RETURN(req);
2039 }
2040
2041 /**
2042  * Handle freshly incoming reqs, add to timed early reply list,
2043  * pass on to regular request queue.
2044  * All incoming requests pass through here before getting into
2045  * ptlrpc_server_handle_req later on.
2046  */
2047 static int ptlrpc_server_handle_req_in(struct ptlrpc_service_part *svcpt,
2048                                        struct ptlrpc_thread *thread)
2049 {
2050         struct ptlrpc_service *svc = svcpt->scp_service;
2051         struct ptlrpc_request *req;
2052         __u32 deadline;
2053         int rc;
2054
2055         ENTRY;
2056
2057         spin_lock(&svcpt->scp_lock);
2058         if (list_empty(&svcpt->scp_req_incoming)) {
2059                 spin_unlock(&svcpt->scp_lock);
2060                 RETURN(0);
2061         }
2062
2063         req = list_entry(svcpt->scp_req_incoming.next,
2064                              struct ptlrpc_request, rq_list);
2065         list_del_init(&req->rq_list);
2066         svcpt->scp_nreqs_incoming--;
2067         /*
2068          * Consider this still a "queued" request as far as stats are
2069          * concerned
2070          */
2071         spin_unlock(&svcpt->scp_lock);
2072
2073         /* go through security check/transform */
2074         rc = sptlrpc_svc_unwrap_request(req);
2075         switch (rc) {
2076         case SECSVC_OK:
2077                 break;
2078         case SECSVC_COMPLETE:
2079                 target_send_reply(req, 0, OBD_FAIL_MDS_ALL_REPLY_NET);
2080                 goto err_req;
2081         case SECSVC_DROP:
2082                 goto err_req;
2083         default:
2084                 LBUG();
2085         }
2086
2087         /*
2088          * for null-flavored rpc, msg has been unpacked by sptlrpc, although
2089          * redo it wouldn't be harmful.
2090          */
2091         if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
2092                 rc = ptlrpc_unpack_req_msg(req, req->rq_reqlen);
2093                 if (rc != 0) {
2094                         CERROR("error unpacking request: ptl %d from %s x%llu\n",
2095                                svc->srv_req_portal, libcfs_id2str(req->rq_peer),
2096                                req->rq_xid);
2097                         goto err_req;
2098                 }
2099         }
2100
2101         rc = lustre_unpack_req_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
2102         if (rc) {
2103                 CERROR("error unpacking ptlrpc body: ptl %d from %s x %llu\n",
2104                        svc->srv_req_portal, libcfs_id2str(req->rq_peer),
2105                        req->rq_xid);
2106                 goto err_req;
2107         }
2108
2109         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_DROP_REQ_OPC) &&
2110             lustre_msg_get_opc(req->rq_reqmsg) == cfs_fail_val) {
2111                 CERROR("drop incoming rpc opc %u, x%llu\n",
2112                        cfs_fail_val, req->rq_xid);
2113                 goto err_req;
2114         }
2115
2116         rc = -EINVAL;
2117         if (lustre_msg_get_type(req->rq_reqmsg) != PTL_RPC_MSG_REQUEST) {
2118                 CERROR("wrong packet type received (type=%u) from %s\n",
2119                        lustre_msg_get_type(req->rq_reqmsg),
2120                        libcfs_id2str(req->rq_peer));
2121                 goto err_req;
2122         }
2123
2124         switch (lustre_msg_get_opc(req->rq_reqmsg)) {
2125         case MDS_WRITEPAGE:
2126         case OST_WRITE:
2127         case OUT_UPDATE:
2128                 req->rq_bulk_write = 1;
2129                 break;
2130         case MDS_READPAGE:
2131         case OST_READ:
2132         case MGS_CONFIG_READ:
2133                 req->rq_bulk_read = 1;
2134                 break;
2135         }
2136
2137         CDEBUG(D_RPCTRACE, "got req x%llu\n", req->rq_xid);
2138
2139         req->rq_export = class_conn2export(
2140                 lustre_msg_get_handle(req->rq_reqmsg));
2141         if (req->rq_export) {
2142                 rc = ptlrpc_check_req(req);
2143                 if (rc == 0) {
2144                         rc = sptlrpc_target_export_check(req->rq_export, req);
2145                         if (rc)
2146                                 DEBUG_REQ(D_ERROR, req,
2147                                           "DROPPING req with illegal security flavor");
2148                 }
2149
2150                 if (rc)
2151                         goto err_req;
2152                 ptlrpc_update_export_timer(req->rq_export, 0);
2153         }
2154
2155         /* req_in handling should/must be fast */
2156         if (ktime_get_real_seconds() - req->rq_arrival_time.tv_sec > 5)
2157                 DEBUG_REQ(D_WARNING, req, "Slow req_in handling %llds",
2158                           ktime_get_real_seconds() -
2159                           req->rq_arrival_time.tv_sec);
2160
2161         /* Set rpc server deadline and add it to the timed list */
2162         deadline = (lustre_msghdr_get_flags(req->rq_reqmsg) &
2163                     MSGHDR_AT_SUPPORT) ?
2164                     /* The max time the client expects us to take */
2165                     lustre_msg_get_timeout(req->rq_reqmsg) : obd_timeout;
2166
2167         req->rq_deadline = req->rq_arrival_time.tv_sec + deadline;
2168         if (unlikely(deadline == 0)) {
2169                 DEBUG_REQ(D_ERROR, req, "Dropping request with 0 timeout");
2170                 goto err_req;
2171         }
2172
2173         /* Skip early reply */
2174         if (OBD_FAIL_PRECHECK(OBD_FAIL_MDS_RESEND))
2175                 req->rq_deadline += obd_timeout;
2176
2177         req->rq_svc_thread = thread;
2178         if (thread != NULL) {
2179                 /*
2180                  * initialize request session, it is needed for request
2181                  * processing by target
2182                  */
2183                 rc = lu_context_init(&req->rq_session, LCT_SERVER_SESSION |
2184                                                        LCT_NOREF);
2185                 if (rc) {
2186                         CERROR("%s: failure to initialize session: rc = %d\n",
2187                                thread->t_name, rc);
2188                         goto err_req;
2189                 }
2190                 req->rq_session.lc_thread = thread;
2191                 lu_context_enter(&req->rq_session);
2192                 thread->t_env->le_ses = &req->rq_session;
2193         }
2194
2195         ptlrpc_at_add_timed(req);
2196
2197         /* Move it over to the request processing queue */
2198         rc = ptlrpc_server_request_add(svcpt, req);
2199         if (rc)
2200                 GOTO(err_req, rc);
2201
2202         wake_up(&svcpt->scp_waitq);
2203         RETURN(1);
2204
2205 err_req:
2206         ptlrpc_server_finish_request(svcpt, req);
2207
2208         RETURN(1);
2209 }
2210
2211 /**
2212  * Main incoming request handling logic.
2213  * Calls handler function from service to do actual processing.
2214  */
2215 static int ptlrpc_server_handle_request(struct ptlrpc_service_part *svcpt,
2216                                         struct ptlrpc_thread *thread)
2217 {
2218         struct ptlrpc_service *svc = svcpt->scp_service;
2219         struct ptlrpc_request *request;
2220         ktime_t work_start;
2221         ktime_t work_end;
2222         ktime_t arrived;
2223         s64 timediff_usecs;
2224         s64 arrived_usecs;
2225         int fail_opc = 0;
2226
2227         ENTRY;
2228
2229         request = ptlrpc_server_request_get(svcpt, false);
2230         if (request == NULL)
2231                 RETURN(0);
2232
2233         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_HPREQ_NOTIMEOUT))
2234                 fail_opc = OBD_FAIL_PTLRPC_HPREQ_NOTIMEOUT;
2235         else if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_HPREQ_TIMEOUT))
2236                 fail_opc = OBD_FAIL_PTLRPC_HPREQ_TIMEOUT;
2237
2238         if (unlikely(fail_opc)) {
2239                 if (request->rq_export && request->rq_ops)
2240                         OBD_FAIL_TIMEOUT(fail_opc, 4);
2241         }
2242
2243         ptlrpc_rqphase_move(request, RQ_PHASE_INTERPRET);
2244
2245         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_DUMP_LOG))
2246                 libcfs_debug_dumplog();
2247
2248         work_start = ktime_get_real();
2249         arrived = timespec64_to_ktime(request->rq_arrival_time);
2250         timediff_usecs = ktime_us_delta(work_start, arrived);
2251         if (likely(svc->srv_stats != NULL)) {
2252                 lprocfs_counter_add(svc->srv_stats, PTLRPC_REQWAIT_CNTR,
2253                                     timediff_usecs);
2254                 lprocfs_counter_add(svc->srv_stats, PTLRPC_REQQDEPTH_CNTR,
2255                                     svcpt->scp_nreqs_incoming);
2256                 lprocfs_counter_add(svc->srv_stats, PTLRPC_REQACTIVE_CNTR,
2257                                     svcpt->scp_nreqs_active);
2258                 lprocfs_counter_add(svc->srv_stats, PTLRPC_TIMEOUT,
2259                                     at_get(&svcpt->scp_at_estimate));
2260         }
2261
2262         if (likely(request->rq_export)) {
2263                 if (unlikely(ptlrpc_check_req(request)))
2264                         goto put_conn;
2265                 ptlrpc_update_export_timer(request->rq_export,
2266                                            div_u64(timediff_usecs,
2267                                                    USEC_PER_SEC / 2));
2268         }
2269
2270         /*
2271          * Discard requests queued for longer than the deadline.
2272          * The deadline is increased if we send an early reply.
2273          */
2274         if (ktime_get_real_seconds() > request->rq_deadline) {
2275                 DEBUG_REQ(D_ERROR, request,
2276                           "Dropping timed-out request from %s: deadline %lld/%llds ago",
2277                           libcfs_id2str(request->rq_peer),
2278                           request->rq_deadline -
2279                           request->rq_arrival_time.tv_sec,
2280                           ktime_get_real_seconds() - request->rq_deadline);
2281                 goto put_conn;
2282         }
2283
2284         CDEBUG(D_RPCTRACE,
2285                "Handling RPC req@%p pname:cluuid+ref:pid:xid:nid:opc:job %s:%s+%d:%d:x%llu:%s:%d:%s\n",
2286                request, current->comm,
2287                (request->rq_export ?
2288                 (char *)request->rq_export->exp_client_uuid.uuid : "0"),
2289                (request->rq_export ?
2290                 refcount_read(&request->rq_export->exp_handle.h_ref) : -99),
2291                lustre_msg_get_status(request->rq_reqmsg), request->rq_xid,
2292                libcfs_id2str(request->rq_peer),
2293                lustre_msg_get_opc(request->rq_reqmsg),
2294                lustre_msg_get_jobid(request->rq_reqmsg) ?: "");
2295
2296         if (lustre_msg_get_opc(request->rq_reqmsg) != OBD_PING)
2297                 CFS_FAIL_TIMEOUT_MS(OBD_FAIL_PTLRPC_PAUSE_REQ, cfs_fail_val);
2298
2299         CDEBUG(D_NET, "got req %llu\n", request->rq_xid);
2300
2301         /* re-assign request and sesson thread to the current one */
2302         request->rq_svc_thread = thread;
2303         if (thread != NULL) {
2304                 LASSERT(request->rq_session.lc_thread == NULL);
2305                 request->rq_session.lc_thread = thread;
2306                 thread->t_env->le_ses = &request->rq_session;
2307         }
2308         svc->srv_ops.so_req_handler(request);
2309
2310         ptlrpc_rqphase_move(request, RQ_PHASE_COMPLETE);
2311
2312 put_conn:
2313         if (unlikely(ktime_get_real_seconds() > request->rq_deadline)) {
2314                 DEBUG_REQ(D_WARNING, request,
2315                           "Request took longer than estimated (%lld/%llds); client may timeout",
2316                           request->rq_deadline -
2317                           request->rq_arrival_time.tv_sec,
2318                           ktime_get_real_seconds() - request->rq_deadline);
2319         }
2320
2321         work_end = ktime_get_real();
2322         timediff_usecs = ktime_us_delta(work_end, work_start);
2323         arrived_usecs = ktime_us_delta(work_end, arrived);
2324         CDEBUG(D_RPCTRACE,
2325                "Handled RPC req@%p pname:cluuid+ref:pid:xid:nid:opc:job %s:%s+%d:%d:x%llu:%s:%d:%s Request processed in %lldus (%lldus total) trans %llu rc %d/%d\n",
2326                request, current->comm,
2327                (request->rq_export ?
2328                (char *)request->rq_export->exp_client_uuid.uuid : "0"),
2329                (request->rq_export ?
2330                 refcount_read(&request->rq_export->exp_handle.h_ref) : -99),
2331                lustre_msg_get_status(request->rq_reqmsg),
2332                request->rq_xid,
2333                libcfs_id2str(request->rq_peer),
2334                lustre_msg_get_opc(request->rq_reqmsg),
2335                lustre_msg_get_jobid(request->rq_reqmsg) ?: "",
2336                timediff_usecs,
2337                arrived_usecs,
2338                (request->rq_repmsg ?
2339                lustre_msg_get_transno(request->rq_repmsg) :
2340                request->rq_transno),
2341                request->rq_status,
2342                (request->rq_repmsg ?
2343                lustre_msg_get_status(request->rq_repmsg) : -999));
2344         if (likely(svc->srv_stats != NULL && request->rq_reqmsg != NULL)) {
2345                 __u32 op = lustre_msg_get_opc(request->rq_reqmsg);
2346                 int opc = opcode_offset(op);
2347
2348                 if (opc > 0 && !(op == LDLM_ENQUEUE || op == MDS_REINT)) {
2349                         LASSERT(opc < LUSTRE_MAX_OPCODES);
2350                         lprocfs_counter_add(svc->srv_stats,
2351                                             opc + EXTRA_MAX_OPCODES,
2352                                             timediff_usecs);
2353                 }
2354         }
2355         if (unlikely(request->rq_early_count)) {
2356                 DEBUG_REQ(D_ADAPTTO, request,
2357                           "sent %d early replies before finishing in %llds",
2358                           request->rq_early_count,
2359                           div_u64(arrived_usecs, USEC_PER_SEC));
2360         }
2361
2362         ptlrpc_server_finish_active_request(svcpt, request);
2363
2364         RETURN(1);
2365 }
2366
2367 /**
2368  * An internal function to process a single reply state object.
2369  */
2370 static int ptlrpc_handle_rs(struct ptlrpc_reply_state *rs)
2371 {
2372         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
2373         struct ptlrpc_service *svc = svcpt->scp_service;
2374         struct obd_export *exp;
2375         int nlocks;
2376         int been_handled;
2377
2378         ENTRY;
2379
2380         exp = rs->rs_export;
2381
2382         LASSERT(rs->rs_difficult);
2383         LASSERT(rs->rs_scheduled);
2384         LASSERT(list_empty(&rs->rs_list));
2385
2386         /*
2387          * The disk commit callback holds exp_uncommitted_replies_lock while it
2388          * iterates over newly committed replies, removing them from
2389          * exp_uncommitted_replies.  It then drops this lock and schedules the
2390          * replies it found for handling here.
2391          *
2392          * We can avoid contention for exp_uncommitted_replies_lock between the
2393          * HRT threads and further commit callbacks by checking rs_committed
2394          * which is set in the commit callback while it holds both
2395          * rs_lock and exp_uncommitted_reples.
2396          *
2397          * If we see rs_committed clear, the commit callback _may_ not have
2398          * handled this reply yet and we race with it to grab
2399          * exp_uncommitted_replies_lock before removing the reply from
2400          * exp_uncommitted_replies.  Note that if we lose the race and the
2401          * reply has already been removed, list_del_init() is a noop.
2402          *
2403          * If we see rs_committed set, we know the commit callback is handling,
2404          * or has handled this reply since store reordering might allow us to
2405          * see rs_committed set out of sequence.  But since this is done
2406          * holding rs_lock, we can be sure it has all completed once we hold
2407          * rs_lock, which we do right next.
2408          */
2409         if (!rs->rs_committed) {
2410                 /*
2411                  * if rs was commited, no need to convert locks, don't check
2412                  * rs_committed here because rs may never be added into
2413                  * exp_uncommitted_replies and this flag never be set, see
2414                  * target_send_reply()
2415                  */
2416                 if (rs->rs_convert_lock &&
2417                     rs->rs_transno > exp->exp_last_committed) {
2418                         struct ldlm_lock *lock;
2419                         struct ldlm_lock *ack_locks[RS_MAX_LOCKS] = { NULL };
2420
2421                         spin_lock(&rs->rs_lock);
2422                         if (rs->rs_convert_lock &&
2423                             rs->rs_transno > exp->exp_last_committed) {
2424                                 nlocks = rs->rs_nlocks;
2425                                 while (nlocks-- > 0) {
2426                                         /*
2427                                          * NB don't assume rs is always handled
2428                                          * by the same service thread (see
2429                                          * ptlrpc_hr_select, so REP-ACK hr may
2430                                          * race with trans commit, while the
2431                                          * latter will release locks, get locks
2432                                          * here early to convert to COS mode
2433                                          * safely.
2434                                          */
2435                                         lock = ldlm_handle2lock(
2436                                                         &rs->rs_locks[nlocks]);
2437                                         LASSERT(lock);
2438                                         ack_locks[nlocks] = lock;
2439                                         rs->rs_modes[nlocks] = LCK_COS;
2440                                 }
2441                                 nlocks = rs->rs_nlocks;
2442                                 rs->rs_convert_lock = 0;
2443                                 /*
2444                                  * clear rs_scheduled so that commit callback
2445                                  * can schedule again
2446                                  */
2447                                 rs->rs_scheduled = 0;
2448                                 spin_unlock(&rs->rs_lock);
2449
2450                                 while (nlocks-- > 0) {
2451                                         lock = ack_locks[nlocks];
2452                                         ldlm_lock_mode_downgrade(lock, LCK_COS);
2453                                         LDLM_LOCK_PUT(lock);
2454                                 }
2455                                 RETURN(0);
2456                         }
2457                         spin_unlock(&rs->rs_lock);
2458                 }
2459
2460                 spin_lock(&exp->exp_uncommitted_replies_lock);
2461                 list_del_init(&rs->rs_obd_list);
2462                 spin_unlock(&exp->exp_uncommitted_replies_lock);
2463         }
2464
2465         spin_lock(&exp->exp_lock);
2466         /* Noop if removed already */
2467         list_del_init(&rs->rs_exp_list);
2468         spin_unlock(&exp->exp_lock);
2469
2470         spin_lock(&rs->rs_lock);
2471
2472         been_handled = rs->rs_handled;
2473         rs->rs_handled = 1;
2474
2475         nlocks = rs->rs_nlocks; /* atomic "steal", but */
2476         rs->rs_nlocks = 0; /* locks still on rs_locks! */
2477
2478         if (nlocks == 0 && !been_handled) {
2479                 /*
2480                  * If we see this, we should already have seen the warning
2481                  * in mds_steal_ack_locks()
2482                  */
2483                 CDEBUG(D_HA,
2484                        "All locks stolen from rs %p x%lld.t%lld o%d NID %s\n",
2485                        rs, rs->rs_xid, rs->rs_transno, rs->rs_opc,
2486                        libcfs_nid2str(exp->exp_connection->c_peer.nid));
2487         }
2488
2489         if ((!been_handled && rs->rs_on_net) || nlocks > 0) {
2490                 spin_unlock(&rs->rs_lock);
2491
2492                 if (!been_handled && rs->rs_on_net) {
2493                         LNetMDUnlink(rs->rs_md_h);
2494                         /* Ignore return code; we're racing with completion */
2495                 }
2496
2497                 while (nlocks-- > 0)
2498                         ldlm_lock_decref(&rs->rs_locks[nlocks],
2499                                          rs->rs_modes[nlocks]);
2500
2501                 spin_lock(&rs->rs_lock);
2502         }
2503
2504         rs->rs_scheduled = 0;
2505         rs->rs_convert_lock = 0;
2506
2507         if (!rs->rs_on_net) {
2508                 /* Off the net */
2509                 spin_unlock(&rs->rs_lock);
2510
2511                 class_export_put(exp);
2512                 rs->rs_export = NULL;
2513                 ptlrpc_rs_decref(rs);
2514                 if (atomic_dec_and_test(&svcpt->scp_nreps_difficult) &&
2515                     svc->srv_is_stopping)
2516                         wake_up_all(&svcpt->scp_waitq);
2517                 RETURN(1);
2518         }
2519
2520         /* still on the net; callback will schedule */
2521         spin_unlock(&rs->rs_lock);
2522         RETURN(1);
2523 }
2524
2525
2526 static void ptlrpc_check_rqbd_pool(struct ptlrpc_service_part *svcpt)
2527 {
2528         int avail = svcpt->scp_nrqbds_posted;
2529         int low_water = test_req_buffer_pressure ? 0 :
2530                         svcpt->scp_service->srv_nbuf_per_group / 2;
2531
2532         /* NB I'm not locking; just looking. */
2533
2534         /*
2535          * CAVEAT EMPTOR: We might be allocating buffers here because we've
2536          * allowed the request history to grow out of control.  We could put a
2537          * sanity check on that here and cull some history if we need the
2538          * space.
2539          */
2540
2541         if (avail <= low_water)
2542                 ptlrpc_grow_req_bufs(svcpt, 1);
2543
2544         if (svcpt->scp_service->srv_stats) {
2545                 lprocfs_counter_add(svcpt->scp_service->srv_stats,
2546                                     PTLRPC_REQBUF_AVAIL_CNTR, avail);
2547         }
2548 }
2549
2550 static inline int ptlrpc_threads_enough(struct ptlrpc_service_part *svcpt)
2551 {
2552         return svcpt->scp_nreqs_active <
2553                svcpt->scp_nthrs_running - 1 -
2554                (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL);
2555 }
2556
2557 /**
2558  * allowed to create more threads
2559  * user can call it w/o any lock but need to hold
2560  * ptlrpc_service_part::scp_lock to get reliable result
2561  */
2562 static inline int ptlrpc_threads_increasable(struct ptlrpc_service_part *svcpt)
2563 {
2564         return svcpt->scp_nthrs_running +
2565                svcpt->scp_nthrs_starting <
2566                svcpt->scp_service->srv_nthrs_cpt_limit;
2567 }
2568
2569 /**
2570  * too many requests and allowed to create more threads
2571  */
2572 static inline int ptlrpc_threads_need_create(struct ptlrpc_service_part *svcpt)
2573 {
2574         return !ptlrpc_threads_enough(svcpt) &&
2575                 ptlrpc_threads_increasable(svcpt);
2576 }
2577
2578 static inline int ptlrpc_thread_stopping(struct ptlrpc_thread *thread)
2579 {
2580         return thread_is_stopping(thread) ||
2581                thread->t_svcpt->scp_service->srv_is_stopping;
2582 }
2583
2584 /* stop the highest numbered thread if there are too many threads running */
2585 static inline bool ptlrpc_thread_should_stop(struct ptlrpc_thread *thread)
2586 {
2587         struct ptlrpc_service_part *svcpt = thread->t_svcpt;
2588
2589         return thread->t_id >= svcpt->scp_service->srv_nthrs_cpt_limit &&
2590                 thread->t_id == svcpt->scp_thr_nextid - 1;
2591 }
2592
2593 static void ptlrpc_stop_thread(struct ptlrpc_thread *thread)
2594 {
2595         CDEBUG(D_INFO, "Stopping thread %s #%u\n",
2596                thread->t_svcpt->scp_service->srv_thread_name, thread->t_id);
2597         thread_add_flags(thread, SVC_STOPPING);
2598 }
2599
2600 static inline void ptlrpc_thread_stop(struct ptlrpc_thread *thread)
2601 {
2602         struct ptlrpc_service_part *svcpt = thread->t_svcpt;
2603
2604         spin_lock(&svcpt->scp_lock);
2605         if (ptlrpc_thread_should_stop(thread)) {
2606                 ptlrpc_stop_thread(thread);
2607                 svcpt->scp_thr_nextid--;
2608         }
2609         spin_unlock(&svcpt->scp_lock);
2610 }
2611
2612 static inline int ptlrpc_rqbd_pending(struct ptlrpc_service_part *svcpt)
2613 {
2614         return !list_empty(&svcpt->scp_rqbd_idle) &&
2615                svcpt->scp_rqbd_timeout == 0;
2616 }
2617
2618 static inline int
2619 ptlrpc_at_check(struct ptlrpc_service_part *svcpt)
2620 {
2621         return svcpt->scp_at_check;
2622 }
2623
2624 /*
2625  * If a thread runs too long or spends to much time on a single request,
2626  * we want to know about it, so we set up a delayed work item as a watchdog.
2627  * If it fires, we display a stack trace of the delayed thread,
2628  * providing we aren't rate-limited
2629  *
2630  * Watchdog stack traces are limited to 3 per 'libcfs_watchdog_ratelimit'
2631  * seconds
2632  */
2633 static struct ratelimit_state watchdog_limit;
2634
2635 static void ptlrpc_watchdog_fire(struct work_struct *w)
2636 {
2637         struct ptlrpc_thread *thread = container_of(w, struct ptlrpc_thread,
2638                                                     t_watchdog.work);
2639         u64 ms_lapse = ktime_ms_delta(ktime_get(), thread->t_touched);
2640         u32 ms_frac = do_div(ms_lapse, MSEC_PER_SEC);
2641
2642         /* ___ratelimit() returns true if the action is NOT ratelimited */
2643         if (__ratelimit(&watchdog_limit)) {
2644                 /* below message is checked in sanity-quota.sh test_6,18 */
2645                 LCONSOLE_WARN("%s: service thread pid %u was inactive for %llu.%03u seconds. The thread might be hung, or it might only be slow and will resume later. Dumping the stack trace for debugging purposes:\n",
2646                               thread->t_task->comm, thread->t_task->pid,
2647                               ms_lapse, ms_frac);
2648
2649                 libcfs_debug_dumpstack(thread->t_task);
2650         } else {
2651                 /* below message is checked in sanity-quota.sh test_6,18 */
2652                 LCONSOLE_WARN("%s: service thread pid %u was inactive for %llu.%03u seconds. Watchdog stack traces are limited to 3 per %u seconds, skipping this one.\n",
2653                               thread->t_task->comm, thread->t_task->pid,
2654                               ms_lapse, ms_frac, libcfs_watchdog_ratelimit);
2655         }
2656 }
2657
2658 void ptlrpc_watchdog_init(struct delayed_work *work, timeout_t timeout)
2659 {
2660         INIT_DELAYED_WORK(work, ptlrpc_watchdog_fire);
2661         schedule_delayed_work(work, cfs_time_seconds(timeout));
2662 }
2663
2664 void ptlrpc_watchdog_disable(struct delayed_work *work)
2665 {
2666         cancel_delayed_work_sync(work);
2667 }
2668
2669 void ptlrpc_watchdog_touch(struct delayed_work *work, timeout_t timeout)
2670 {
2671         struct ptlrpc_thread *thread = container_of(&work->work,
2672                                                     struct ptlrpc_thread,
2673                                                     t_watchdog.work);
2674         thread->t_touched = ktime_get();
2675         mod_delayed_work(system_wq, work, cfs_time_seconds(timeout));
2676 }
2677
2678 /**
2679  * requests wait on preprocessing
2680  * user can call it w/o any lock but need to hold
2681  * ptlrpc_service_part::scp_lock to get reliable result
2682  */
2683 static inline int
2684 ptlrpc_server_request_incoming(struct ptlrpc_service_part *svcpt)
2685 {
2686         return !list_empty(&svcpt->scp_req_incoming);
2687 }
2688
2689 static __attribute__((__noinline__)) int
2690 ptlrpc_wait_event(struct ptlrpc_service_part *svcpt,
2691                   struct ptlrpc_thread *thread)
2692 {
2693         ptlrpc_watchdog_disable(&thread->t_watchdog);
2694
2695         cond_resched();
2696
2697         if (svcpt->scp_rqbd_timeout == 0)
2698                 /* Don't exit while there are replies to be handled */
2699                 wait_event_idle_exclusive_lifo(
2700                         svcpt->scp_waitq,
2701                         ptlrpc_thread_stopping(thread) ||
2702                         ptlrpc_server_request_incoming(svcpt) ||
2703                         ptlrpc_server_request_pending(svcpt, false) ||
2704                         ptlrpc_rqbd_pending(svcpt) ||
2705                         ptlrpc_at_check(svcpt));
2706         else if (wait_event_idle_exclusive_lifo_timeout(
2707                          svcpt->scp_waitq,
2708                          ptlrpc_thread_stopping(thread) ||
2709                          ptlrpc_server_request_incoming(svcpt) ||
2710                          ptlrpc_server_request_pending(svcpt, false) ||
2711                          ptlrpc_rqbd_pending(svcpt) ||
2712                          ptlrpc_at_check(svcpt),
2713                          svcpt->scp_rqbd_timeout) == 0)
2714                 svcpt->scp_rqbd_timeout = 0;
2715
2716         if (ptlrpc_thread_stopping(thread))
2717                 return -EINTR;
2718
2719         ptlrpc_watchdog_touch(&thread->t_watchdog,
2720                               ptlrpc_server_get_timeout(svcpt));
2721         return 0;
2722 }
2723
2724 /**
2725  * Main thread body for service threads.
2726  * Waits in a loop waiting for new requests to process to appear.
2727  * Every time an incoming requests is added to its queue, a waitq
2728  * is woken up and one of the threads will handle it.
2729  */
2730 static int ptlrpc_main(void *arg)
2731 {
2732         struct ptlrpc_thread *thread = (struct ptlrpc_thread *)arg;
2733         struct ptlrpc_service_part *svcpt = thread->t_svcpt;
2734         struct ptlrpc_service *svc = svcpt->scp_service;
2735         struct ptlrpc_reply_state *rs;
2736         struct group_info *ginfo = NULL;
2737         struct lu_env *env;
2738         int counter = 0, rc = 0;
2739
2740         ENTRY;
2741
2742         thread->t_task = current;
2743         thread->t_pid = current->pid;
2744
2745         if (svc->srv_cpt_bind) {
2746                 rc = cfs_cpt_bind(svc->srv_cptable, svcpt->scp_cpt);
2747                 if (rc != 0) {
2748                         CWARN("%s: failed to bind %s on CPT %d\n",
2749                               svc->srv_name, thread->t_name, svcpt->scp_cpt);
2750                 }
2751         }
2752
2753         ginfo = groups_alloc(0);
2754         if (!ginfo)
2755                 GOTO(out, rc = -ENOMEM);
2756
2757         set_current_groups(ginfo);
2758         put_group_info(ginfo);
2759
2760         if (svc->srv_ops.so_thr_init != NULL) {
2761                 rc = svc->srv_ops.so_thr_init(thread);
2762                 if (rc)
2763                         GOTO(out, rc);
2764         }
2765
2766         OBD_ALLOC_PTR(env);
2767         if (env == NULL)
2768                 GOTO(out_srv_fini, rc = -ENOMEM);
2769         rc = lu_env_add(env);
2770         if (rc)
2771                 GOTO(out_env, rc);
2772
2773         rc = lu_context_init(&env->le_ctx,
2774                              svc->srv_ctx_tags|LCT_REMEMBER|LCT_NOREF);
2775         if (rc)
2776                 GOTO(out_env_remove, rc);
2777
2778         thread->t_env = env;
2779         env->le_ctx.lc_thread = thread;
2780         env->le_ctx.lc_cookie = 0x6;
2781
2782         while (!list_empty(&svcpt->scp_rqbd_idle)) {
2783                 rc = ptlrpc_server_post_idle_rqbds(svcpt);
2784                 if (rc >= 0)
2785                         continue;
2786
2787                 CERROR("Failed to post rqbd for %s on CPT %d: %d\n",
2788                         svc->srv_name, svcpt->scp_cpt, rc);
2789                 GOTO(out_ctx_fini, rc);
2790         }
2791
2792         /* Alloc reply state structure for this one */
2793         OBD_ALLOC_LARGE(rs, svc->srv_max_reply_size);
2794         if (!rs)
2795                 GOTO(out_ctx_fini, rc = -ENOMEM);
2796
2797         spin_lock(&svcpt->scp_lock);
2798
2799         LASSERT(thread_is_starting(thread));
2800         thread_clear_flags(thread, SVC_STARTING);
2801
2802         LASSERT(svcpt->scp_nthrs_starting == 1);
2803         svcpt->scp_nthrs_starting--;
2804
2805         /*
2806          * SVC_STOPPING may already be set here if someone else is trying
2807          * to stop the service while this new thread has been dynamically
2808          * forked. We still set SVC_RUNNING to let our creator know that
2809          * we are now running, however we will exit as soon as possible
2810          */
2811         thread_add_flags(thread, SVC_RUNNING);
2812         svcpt->scp_nthrs_running++;
2813         spin_unlock(&svcpt->scp_lock);
2814
2815         /* wake up our creator in case he's still waiting. */
2816         wake_up(&thread->t_ctl_waitq);
2817
2818         thread->t_touched = ktime_get();
2819         ptlrpc_watchdog_init(&thread->t_watchdog,
2820                          ptlrpc_server_get_timeout(svcpt));
2821
2822         spin_lock(&svcpt->scp_rep_lock);
2823         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
2824         wake_up(&svcpt->scp_rep_waitq);
2825         spin_unlock(&svcpt->scp_rep_lock);
2826
2827         CDEBUG(D_NET, "service thread %d (#%d) started\n", thread->t_id,
2828                svcpt->scp_nthrs_running);
2829
2830         /* XXX maintain a list of all managed devices: insert here */
2831         while (!ptlrpc_thread_stopping(thread)) {
2832                 if (ptlrpc_wait_event(svcpt, thread))
2833                         break;
2834
2835                 ptlrpc_check_rqbd_pool(svcpt);
2836
2837                 if (ptlrpc_threads_need_create(svcpt)) {
2838                         /* Ignore return code - we tried... */
2839                         ptlrpc_start_thread(svcpt, 0);
2840                 }
2841
2842                 /* reset le_ses to initial state */
2843                 env->le_ses = NULL;
2844                 /* Refill the context before execution to make sure
2845                  * all thread keys are allocated */
2846                 lu_env_refill(env);
2847                 /* Process all incoming reqs before handling any */
2848                 if (ptlrpc_server_request_incoming(svcpt)) {
2849                         lu_context_enter(&env->le_ctx);
2850                         ptlrpc_server_handle_req_in(svcpt, thread);
2851                         lu_context_exit(&env->le_ctx);
2852
2853                         /* but limit ourselves in case of flood */
2854                         if (counter++ < 100)
2855                                 continue;
2856                         counter = 0;
2857                 }
2858
2859                 if (ptlrpc_at_check(svcpt))
2860                         ptlrpc_at_check_timed(svcpt);
2861
2862                 if (ptlrpc_server_request_pending(svcpt, false)) {
2863                         lu_context_enter(&env->le_ctx);
2864                         ptlrpc_server_handle_request(svcpt, thread);
2865                         lu_context_exit(&env->le_ctx);
2866                 }
2867
2868                 if (ptlrpc_rqbd_pending(svcpt) &&
2869                     ptlrpc_server_post_idle_rqbds(svcpt) < 0) {
2870                         /*
2871                          * I just failed to repost request buffers.
2872                          * Wait for a timeout (unless something else
2873                          * happens) before I try again
2874                          */
2875                         svcpt->scp_rqbd_timeout = cfs_time_seconds(1) / 10;
2876                         CDEBUG(D_RPCTRACE, "Posted buffers: %d\n",
2877                                svcpt->scp_nrqbds_posted);
2878                 }
2879                 /*
2880                  * If the number of threads has been tuned downward and this
2881                  * thread should be stopped, then stop in reverse order so the
2882                  * the threads always have contiguous thread index values.
2883                  */
2884                 if (unlikely(ptlrpc_thread_should_stop(thread)))
2885                         ptlrpc_thread_stop(thread);
2886         }
2887
2888         ptlrpc_watchdog_disable(&thread->t_watchdog);
2889
2890 out_ctx_fini:
2891         lu_context_fini(&env->le_ctx);
2892 out_env_remove:
2893         lu_env_remove(env);
2894 out_env:
2895         OBD_FREE_PTR(env);
2896 out_srv_fini:
2897         /* deconstruct service thread state created by ptlrpc_start_thread() */
2898         if (svc->srv_ops.so_thr_done != NULL)
2899                 svc->srv_ops.so_thr_done(thread);
2900 out:
2901         CDEBUG(D_RPCTRACE, "%s: service thread [%p:%u] %d exiting: rc = %d\n",
2902                thread->t_name, thread, thread->t_pid, thread->t_id, rc);
2903         spin_lock(&svcpt->scp_lock);
2904         if (thread_test_and_clear_flags(thread, SVC_STARTING))
2905                 svcpt->scp_nthrs_starting--;
2906
2907         if (thread_test_and_clear_flags(thread, SVC_RUNNING)) {
2908                 /* must know immediately */
2909                 svcpt->scp_nthrs_running--;
2910         }
2911
2912         thread->t_id = rc;
2913         thread_add_flags(thread, SVC_STOPPED);
2914
2915         wake_up(&thread->t_ctl_waitq);
2916         spin_unlock(&svcpt->scp_lock);
2917
2918         return rc;
2919 }
2920
2921 static int hrt_dont_sleep(struct ptlrpc_hr_thread *hrt,
2922                           struct list_head *replies)
2923 {
2924         int result;
2925
2926         spin_lock(&hrt->hrt_lock);
2927
2928         list_splice_init(&hrt->hrt_queue, replies);
2929         result = ptlrpc_hr.hr_stopping || !list_empty(replies);
2930
2931         spin_unlock(&hrt->hrt_lock);
2932         return result;
2933 }
2934
2935 /**
2936  * Main body of "handle reply" function.
2937  * It processes acked reply states
2938  */
2939 static int ptlrpc_hr_main(void *arg)
2940 {
2941         struct ptlrpc_hr_thread *hrt = (struct ptlrpc_hr_thread *)arg;
2942         struct ptlrpc_hr_partition *hrp = hrt->hrt_partition;
2943         LIST_HEAD(replies);
2944         struct lu_env *env;
2945         int rc;
2946
2947         OBD_ALLOC_PTR(env);
2948         if (env == NULL)
2949                 RETURN(-ENOMEM);
2950
2951         rc = cfs_cpt_bind(ptlrpc_hr.hr_cpt_table, hrp->hrp_cpt);
2952         if (rc != 0) {
2953                 char threadname[20];
2954
2955                 snprintf(threadname, sizeof(threadname), "ptlrpc_hr%02d_%03d",
2956                          hrp->hrp_cpt, hrt->hrt_id);
2957                 CWARN("Failed to bind %s on CPT %d of CPT table %p: rc = %d\n",
2958                       threadname, hrp->hrp_cpt, ptlrpc_hr.hr_cpt_table, rc);
2959         }
2960
2961         rc = lu_context_init(&env->le_ctx, LCT_MD_THREAD | LCT_DT_THREAD |
2962                              LCT_REMEMBER | LCT_NOREF);
2963         if (rc)
2964                 GOTO(out_env, rc);
2965
2966         rc = lu_env_add(env);
2967         if (rc)
2968                 GOTO(out_ctx_fini, rc);
2969
2970         atomic_inc(&hrp->hrp_nstarted);
2971         wake_up(&ptlrpc_hr.hr_waitq);
2972
2973         while (!ptlrpc_hr.hr_stopping) {
2974                 wait_event_idle(hrt->hrt_waitq, hrt_dont_sleep(hrt, &replies));
2975
2976                 while (!list_empty(&replies)) {
2977                         struct ptlrpc_reply_state *rs;
2978
2979                         rs = list_entry(replies.prev,
2980                                         struct ptlrpc_reply_state,
2981                                         rs_list);
2982                         list_del_init(&rs->rs_list);
2983                         /* refill keys if needed */
2984                         lu_env_refill(env);
2985                         lu_context_enter(&env->le_ctx);
2986                         ptlrpc_handle_rs(rs);
2987                         lu_context_exit(&env->le_ctx);
2988                 }
2989         }
2990
2991         atomic_inc(&hrp->hrp_nstopped);
2992         wake_up(&ptlrpc_hr.hr_waitq);
2993
2994         lu_env_remove(env);
2995 out_ctx_fini:
2996         lu_context_fini(&env->le_ctx);
2997 out_env:
2998         OBD_FREE_PTR(env);
2999         return 0;
3000 }
3001
3002 static void ptlrpc_stop_hr_threads(void)
3003 {
3004         struct ptlrpc_hr_partition *hrp;
3005         int i;
3006         int j;
3007
3008         ptlrpc_hr.hr_stopping = 1;
3009
3010         cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
3011                 if (hrp->hrp_thrs == NULL)
3012                         continue; /* uninitialized */
3013                 for (j = 0; j < hrp->hrp_nthrs; j++)
3014                         wake_up_all(&hrp->hrp_thrs[j].hrt_waitq);
3015         }
3016
3017         cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
3018                 if (hrp->hrp_thrs == NULL)
3019                         continue; /* uninitialized */
3020                 wait_event(ptlrpc_hr.hr_waitq,
3021                                atomic_read(&hrp->hrp_nstopped) ==
3022                                atomic_read(&hrp->hrp_nstarted));
3023         }
3024 }
3025
3026 static int ptlrpc_start_hr_threads(void)
3027 {
3028         struct ptlrpc_hr_partition *hrp;
3029         int i;
3030         int j;
3031
3032         ENTRY;
3033
3034         cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
3035                 int     rc = 0;
3036
3037                 for (j = 0; j < hrp->hrp_nthrs; j++) {
3038                         struct ptlrpc_hr_thread *hrt = &hrp->hrp_thrs[j];
3039                         struct task_struct *task;
3040
3041                         task = kthread_run(ptlrpc_hr_main,
3042                                            &hrp->hrp_thrs[j],
3043                                            "ptlrpc_hr%02d_%03d",
3044                                            hrp->hrp_cpt,
3045                                            hrt->hrt_id);
3046                         if (IS_ERR(task)) {
3047                                 rc = PTR_ERR(task);
3048                                 break;
3049                         }
3050                 }
3051
3052                 wait_event(ptlrpc_hr.hr_waitq,
3053                            atomic_read(&hrp->hrp_nstarted) == j);
3054
3055                 if (rc < 0) {
3056                         CERROR("cannot start reply handler thread %d:%d: rc = %d\n",
3057                                i, j, rc);
3058                         ptlrpc_stop_hr_threads();
3059                         RETURN(rc);
3060                 }
3061         }
3062
3063         RETURN(0);
3064 }
3065
3066 static void ptlrpc_svcpt_stop_threads(struct ptlrpc_service_part *svcpt)
3067 {
3068         struct ptlrpc_thread *thread;
3069         LIST_HEAD(zombie);
3070
3071         ENTRY;
3072
3073         CDEBUG(D_INFO, "Stopping threads for service %s\n",
3074                svcpt->scp_service->srv_name);
3075
3076         spin_lock(&svcpt->scp_lock);
3077         /* let the thread know that we would like it to stop asap */
3078         list_for_each_entry(thread, &svcpt->scp_threads, t_link)
3079                 ptlrpc_stop_thread(thread);
3080
3081         wake_up_all(&svcpt->scp_waitq);
3082
3083         while (!list_empty(&svcpt->scp_threads)) {
3084                 thread = list_entry(svcpt->scp_threads.next,
3085                                         struct ptlrpc_thread, t_link);
3086                 if (thread_is_stopped(thread)) {
3087                         list_move(&thread->t_link, &zombie);
3088                         continue;
3089                 }
3090                 spin_unlock(&svcpt->scp_lock);
3091
3092                 CDEBUG(D_INFO, "waiting for stopping-thread %s #%u\n",
3093                        svcpt->scp_service->srv_thread_name, thread->t_id);
3094                 wait_event_idle(thread->t_ctl_waitq,
3095                                 thread_is_stopped(thread));
3096
3097                 spin_lock(&svcpt->scp_lock);
3098         }
3099
3100         spin_unlock(&svcpt->scp_lock);
3101
3102         while (!list_empty(&zombie)) {
3103                 thread = list_entry(zombie.next,
3104                                         struct ptlrpc_thread, t_link);
3105                 list_del(&thread->t_link);
3106                 OBD_FREE_PTR(thread);
3107         }
3108         EXIT;
3109 }
3110
3111 /**
3112  * Stops all threads of a particular service \a svc
3113  */
3114 void ptlrpc_stop_all_threads(struct ptlrpc_service *svc)
3115 {
3116         struct ptlrpc_service_part *svcpt;
3117         int i;
3118
3119         ENTRY;
3120
3121         ptlrpc_service_for_each_part(svcpt, i, svc) {
3122                 if (svcpt->scp_service != NULL)
3123                         ptlrpc_svcpt_stop_threads(svcpt);
3124         }
3125
3126         EXIT;
3127 }
3128
3129 int ptlrpc_start_threads(struct ptlrpc_service *svc)
3130 {
3131         int rc = 0;
3132         int i;
3133         int j;
3134
3135         ENTRY;
3136
3137         /* We require 2 threads min, see note in ptlrpc_server_handle_request */
3138         LASSERT(svc->srv_nthrs_cpt_init >= PTLRPC_NTHRS_INIT);
3139
3140         for (i = 0; i < svc->srv_ncpts; i++) {
3141                 for (j = 0; j < svc->srv_nthrs_cpt_init; j++) {
3142                         rc = ptlrpc_start_thread(svc->srv_parts[i], 1);
3143                         if (rc == 0)
3144                                 continue;
3145
3146                         if (rc != -EMFILE)
3147                                 goto failed;
3148                         /* We have enough threads, don't start more. b=15759 */
3149                         break;
3150                 }
3151         }
3152
3153         RETURN(0);
3154  failed:
3155         CERROR("cannot start %s thread #%d_%d: rc %d\n",
3156                svc->srv_thread_name, i, j, rc);
3157         ptlrpc_stop_all_threads(svc);
3158         RETURN(rc);
3159 }
3160
3161 int ptlrpc_start_thread(struct ptlrpc_service_part *svcpt, int wait)
3162 {
3163         struct ptlrpc_thread *thread;
3164         struct ptlrpc_service *svc;
3165         struct task_struct *task;
3166         int rc;
3167
3168         ENTRY;
3169
3170         LASSERT(svcpt != NULL);
3171
3172         svc = svcpt->scp_service;
3173
3174         CDEBUG(D_RPCTRACE, "%s[%d] started %d min %d max %d\n",
3175                svc->srv_name, svcpt->scp_cpt, svcpt->scp_nthrs_running,
3176                svc->srv_nthrs_cpt_init, svc->srv_nthrs_cpt_limit);
3177
3178  again:
3179         if (unlikely(svc->srv_is_stopping))
3180                 RETURN(-ESRCH);
3181
3182         if (!ptlrpc_threads_increasable(svcpt) ||
3183             (OBD_FAIL_CHECK(OBD_FAIL_TGT_TOOMANY_THREADS) &&
3184              svcpt->scp_nthrs_running == svc->srv_nthrs_cpt_init - 1))
3185                 RETURN(-EMFILE);
3186
3187         OBD_CPT_ALLOC_PTR(thread, svc->srv_cptable, svcpt->scp_cpt);
3188         if (thread == NULL)
3189                 RETURN(-ENOMEM);
3190         init_waitqueue_head(&thread->t_ctl_waitq);
3191
3192         spin_lock(&svcpt->scp_lock);
3193         if (!ptlrpc_threads_increasable(svcpt)) {
3194                 spin_unlock(&svcpt->scp_lock);
3195                 OBD_FREE_PTR(thread);
3196                 RETURN(-EMFILE);
3197         }
3198
3199         if (svcpt->scp_nthrs_starting != 0) {
3200                 /*
3201                  * serialize starting because some modules (obdfilter)
3202                  * might require unique and contiguous t_id
3203                  */
3204                 LASSERT(svcpt->scp_nthrs_starting == 1);
3205                 spin_unlock(&svcpt->scp_lock);
3206                 OBD_FREE_PTR(thread);
3207                 if (wait) {
3208                         CDEBUG(D_INFO, "Waiting for creating thread %s #%d\n",
3209                                svc->srv_thread_name, svcpt->scp_thr_nextid);
3210                         schedule();
3211                         goto again;
3212                 }
3213
3214                 CDEBUG(D_INFO, "Creating thread %s #%d race, retry later\n",
3215                        svc->srv_thread_name, svcpt->scp_thr_nextid);
3216                 RETURN(-EAGAIN);
3217         }
3218
3219         svcpt->scp_nthrs_starting++;
3220         thread->t_id = svcpt->scp_thr_nextid++;
3221         thread_add_flags(thread, SVC_STARTING);
3222         thread->t_svcpt = svcpt;
3223
3224         list_add(&thread->t_link, &svcpt->scp_threads);
3225         spin_unlock(&svcpt->scp_lock);
3226
3227         if (svcpt->scp_cpt >= 0) {
3228                 snprintf(thread->t_name, PTLRPC_THR_NAME_LEN, "%s%02d_%03d",
3229                          svc->srv_thread_name, svcpt->scp_cpt, thread->t_id);
3230         } else {
3231                 snprintf(thread->t_name, PTLRPC_THR_NAME_LEN, "%s_%04d",
3232                          svc->srv_thread_name, thread->t_id);
3233         }
3234
3235         CDEBUG(D_RPCTRACE, "starting thread '%s'\n", thread->t_name);
3236         task = kthread_run(ptlrpc_main, thread, "%s", thread->t_name);
3237         if (IS_ERR(task)) {
3238                 rc = PTR_ERR(task);
3239                 CERROR("cannot start thread '%s': rc = %d\n",
3240                        thread->t_name, rc);
3241                 spin_lock(&svcpt->scp_lock);
3242                 --svcpt->scp_nthrs_starting;
3243                 if (thread_is_stopping(thread)) {
3244                         /*
3245                          * this ptlrpc_thread is being hanled
3246                          * by ptlrpc_svcpt_stop_threads now
3247                          */
3248                         thread_add_flags(thread, SVC_STOPPED);
3249                         wake_up(&thread->t_ctl_waitq);
3250                         spin_unlock(&svcpt->scp_lock);
3251                 } else {
3252                         list_del(&thread->t_link);
3253                         spin_unlock(&svcpt->scp_lock);
3254                         OBD_FREE_PTR(thread);
3255                 }
3256                 RETURN(rc);
3257         }
3258
3259         if (!wait)
3260                 RETURN(0);
3261
3262         wait_event_idle(thread->t_ctl_waitq,
3263                         thread_is_running(thread) || thread_is_stopped(thread));
3264
3265         rc = thread_is_stopped(thread) ? thread->t_id : 0;
3266         RETURN(rc);
3267 }
3268
3269 int ptlrpc_hr_init(void)
3270 {
3271         struct ptlrpc_hr_partition *hrp;
3272         struct ptlrpc_hr_thread *hrt;
3273         int rc;
3274         int cpt;
3275         int i;
3276         int weight;
3277
3278         ENTRY;
3279
3280         memset(&ptlrpc_hr, 0, sizeof(ptlrpc_hr));
3281         ptlrpc_hr.hr_cpt_table = cfs_cpt_tab;
3282
3283         ptlrpc_hr.hr_partitions = cfs_percpt_alloc(ptlrpc_hr.hr_cpt_table,
3284                                                    sizeof(*hrp));
3285         if (ptlrpc_hr.hr_partitions == NULL)
3286                 RETURN(-ENOMEM);
3287
3288         ratelimit_state_init(&watchdog_limit,
3289                              cfs_time_seconds(libcfs_watchdog_ratelimit), 3);
3290
3291         init_waitqueue_head(&ptlrpc_hr.hr_waitq);
3292
3293         preempt_disable();
3294         weight = cpumask_weight(topology_sibling_cpumask(smp_processor_id()));
3295         preempt_enable();
3296
3297         cfs_percpt_for_each(hrp, cpt, ptlrpc_hr.hr_partitions) {
3298                 hrp->hrp_cpt = cpt;
3299
3300                 atomic_set(&hrp->hrp_nstarted, 0);
3301                 atomic_set(&hrp->hrp_nstopped, 0);
3302
3303                 hrp->hrp_nthrs = cfs_cpt_weight(ptlrpc_hr.hr_cpt_table, cpt);
3304                 hrp->hrp_nthrs /= weight;
3305                 if (hrp->hrp_nthrs == 0)
3306                         hrp->hrp_nthrs = 1;
3307
3308                 OBD_CPT_ALLOC(hrp->hrp_thrs, ptlrpc_hr.hr_cpt_table, cpt,
3309                               hrp->hrp_nthrs * sizeof(*hrt));
3310                 if (hrp->hrp_thrs == NULL)
3311                         GOTO(out, rc = -ENOMEM);
3312
3313                 for (i = 0; i < hrp->hrp_nthrs; i++) {
3314                         hrt = &hrp->hrp_thrs[i];
3315
3316                         hrt->hrt_id = i;
3317                         hrt->hrt_partition = hrp;
3318                         init_waitqueue_head(&hrt->hrt_waitq);
3319                         spin_lock_init(&hrt->hrt_lock);
3320                         INIT_LIST_HEAD(&hrt->hrt_queue);
3321                 }
3322         }
3323
3324         rc = ptlrpc_start_hr_threads();
3325 out:
3326         if (rc != 0)
3327                 ptlrpc_hr_fini();
3328         RETURN(rc);
3329 }
3330
3331 void ptlrpc_hr_fini(void)
3332 {
3333         struct ptlrpc_hr_partition *hrp;
3334         int cpt;
3335
3336         if (ptlrpc_hr.hr_partitions == NULL)
3337                 return;
3338
3339         ptlrpc_stop_hr_threads();
3340
3341         cfs_percpt_for_each(hrp, cpt, ptlrpc_hr.hr_partitions) {
3342                 if (hrp->hrp_thrs)
3343                         OBD_FREE_PTR_ARRAY(hrp->hrp_thrs, hrp->hrp_nthrs);
3344         }
3345
3346         cfs_percpt_free(ptlrpc_hr.hr_partitions);
3347         ptlrpc_hr.hr_partitions = NULL;
3348 }
3349
3350
3351 /**
3352  * Wait until all already scheduled replies are processed.
3353  */
3354 static void ptlrpc_wait_replies(struct ptlrpc_service_part *svcpt)
3355 {
3356         while (1) {
3357                 if (wait_event_idle_timeout(
3358                         svcpt->scp_waitq,
3359                         atomic_read(&svcpt->scp_nreps_difficult) == 0,
3360                         cfs_time_seconds(10)) > 0)
3361                         break;
3362                 CWARN("Unexpectedly long timeout %s %p\n",
3363                       svcpt->scp_service->srv_name, svcpt->scp_service);
3364         }
3365 }
3366
3367 static void
3368 ptlrpc_service_del_atimer(struct ptlrpc_service *svc)
3369 {
3370         struct ptlrpc_service_part *svcpt;
3371         int i;
3372
3373         /* early disarm AT timer... */
3374         ptlrpc_service_for_each_part(svcpt, i, svc) {
3375                 if (svcpt->scp_service != NULL)
3376                         del_timer(&svcpt->scp_at_timer);
3377         }
3378 }
3379
3380 static void
3381 ptlrpc_service_unlink_rqbd(struct ptlrpc_service *svc)
3382 {
3383         struct ptlrpc_service_part *svcpt;
3384         struct ptlrpc_request_buffer_desc *rqbd;
3385         int rc;
3386         int i;
3387
3388         /*
3389          * All history will be culled when the next request buffer is
3390          * freed in ptlrpc_service_purge_all()
3391          */
3392         svc->srv_hist_nrqbds_cpt_max = 0;
3393
3394         rc = LNetClearLazyPortal(svc->srv_req_portal);
3395         LASSERT(rc == 0);
3396
3397         ptlrpc_service_for_each_part(svcpt, i, svc) {
3398                 if (svcpt->scp_service == NULL)
3399                         break;
3400
3401                 /*
3402                  * Unlink all the request buffers.  This forces a 'final'
3403                  * event with its 'unlink' flag set for each posted rqbd
3404                  */
3405                 list_for_each_entry(rqbd, &svcpt->scp_rqbd_posted,
3406                                         rqbd_list) {
3407                         rc = LNetMDUnlink(rqbd->rqbd_md_h);
3408                         LASSERT(rc == 0 || rc == -ENOENT);
3409                 }
3410         }
3411
3412         ptlrpc_service_for_each_part(svcpt, i, svc) {
3413                 if (svcpt->scp_service == NULL)
3414                         break;
3415
3416                 /*
3417                  * Wait for the network to release any buffers
3418                  * it's currently filling
3419                  */
3420                 spin_lock(&svcpt->scp_lock);
3421                 while (svcpt->scp_nrqbds_posted != 0) {
3422                         int seconds = PTLRPC_REQ_LONG_UNLINK;
3423
3424                         spin_unlock(&svcpt->scp_lock);
3425                         /*
3426                          * Network access will complete in finite time but
3427                          * the HUGE timeout lets us CWARN for visibility
3428                          * of sluggish NALs
3429                          */
3430                         while (seconds > 0 &&
3431                                wait_event_idle_timeout(
3432                                        svcpt->scp_waitq,
3433                                        svcpt->scp_nrqbds_posted == 0,
3434                                        cfs_time_seconds(1)) == 0)
3435                                 seconds -= 1;
3436                         if (seconds == 0) {
3437                                 CWARN("Service %s waiting for request buffers\n",
3438                                       svcpt->scp_service->srv_name);
3439                         }
3440                         spin_lock(&svcpt->scp_lock);
3441                 }
3442                 spin_unlock(&svcpt->scp_lock);
3443         }
3444 }
3445
3446 static void
3447 ptlrpc_service_purge_all(struct ptlrpc_service *svc)
3448 {
3449         struct ptlrpc_service_part *svcpt;
3450         struct ptlrpc_request_buffer_desc *rqbd;
3451         struct ptlrpc_request *req;
3452         struct ptlrpc_reply_state *rs;
3453         int i;
3454
3455         ptlrpc_service_for_each_part(svcpt, i, svc) {
3456                 if (svcpt->scp_service == NULL)
3457                         break;
3458
3459                 spin_lock(&svcpt->scp_rep_lock);
3460                 while (!list_empty(&svcpt->scp_rep_active)) {
3461                         rs = list_entry(svcpt->scp_rep_active.next,
3462                                             struct ptlrpc_reply_state, rs_list);
3463                         spin_lock(&rs->rs_lock);
3464                         ptlrpc_schedule_difficult_reply(rs);
3465                         spin_unlock(&rs->rs_lock);
3466                 }
3467                 spin_unlock(&svcpt->scp_rep_lock);
3468
3469                 /*
3470                  * purge the request queue.  NB No new replies (rqbds
3471                  * all unlinked) and no service threads, so I'm the only
3472                  * thread noodling the request queue now
3473                  */
3474                 while (!list_empty(&svcpt->scp_req_incoming)) {
3475                         req = list_entry(svcpt->scp_req_incoming.next,
3476                                              struct ptlrpc_request, rq_list);
3477
3478                         list_del(&req->rq_list);
3479                         svcpt->scp_nreqs_incoming--;
3480                         ptlrpc_server_finish_request(svcpt, req);
3481                 }
3482
3483                 while (ptlrpc_server_request_pending(svcpt, true)) {
3484                         req = ptlrpc_server_request_get(svcpt, true);
3485                         ptlrpc_server_finish_active_request(svcpt, req);
3486                 }
3487
3488                 LASSERT(list_empty(&svcpt->scp_rqbd_posted));
3489                 LASSERT(svcpt->scp_nreqs_incoming == 0);
3490                 LASSERT(svcpt->scp_nreqs_active == 0);
3491                 /*
3492                  * history should have been culled by
3493                  * ptlrpc_server_finish_request
3494                  */
3495                 LASSERT(svcpt->scp_hist_nrqbds == 0);
3496
3497                 /*
3498                  * Now free all the request buffers since nothing
3499                  * references them any more...
3500                  */
3501
3502                 while (!list_empty(&svcpt->scp_rqbd_idle)) {
3503                         rqbd = list_entry(svcpt->scp_rqbd_idle.next,
3504                                               struct ptlrpc_request_buffer_desc,
3505                                               rqbd_list);
3506                         ptlrpc_free_rqbd(rqbd);
3507                 }
3508                 ptlrpc_wait_replies(svcpt);
3509
3510                 while (!list_empty(&svcpt->scp_rep_idle)) {
3511                         rs = list_entry(svcpt->scp_rep_idle.next,
3512                                             struct ptlrpc_reply_state,
3513                                             rs_list);
3514                         list_del(&rs->rs_list);
3515                         OBD_FREE_LARGE(rs, svc->srv_max_reply_size);
3516                 }
3517         }
3518 }
3519
3520 static void
3521 ptlrpc_service_free(struct ptlrpc_service *svc)
3522 {
3523         struct ptlrpc_service_part      *svcpt;
3524         struct ptlrpc_at_array          *array;
3525         int                             i;
3526
3527         ptlrpc_service_for_each_part(svcpt, i, svc) {
3528                 if (svcpt->scp_service == NULL)
3529                         break;
3530
3531                 /* In case somebody rearmed this in the meantime */
3532                 del_timer(&svcpt->scp_at_timer);
3533                 array = &svcpt->scp_at_array;
3534
3535                 if (array->paa_reqs_array != NULL) {
3536                         OBD_FREE_PTR_ARRAY(array->paa_reqs_array,
3537                                            array->paa_size);
3538                         array->paa_reqs_array = NULL;
3539                 }
3540
3541                 if (array->paa_reqs_count != NULL) {
3542                         OBD_FREE_PTR_ARRAY(array->paa_reqs_count,
3543                                            array->paa_size);
3544                         array->paa_reqs_count = NULL;
3545                 }
3546         }
3547
3548         ptlrpc_service_for_each_part(svcpt, i, svc)
3549                 OBD_FREE_PTR(svcpt);
3550
3551         if (svc->srv_cpts != NULL)
3552                 cfs_expr_list_values_free(svc->srv_cpts, svc->srv_ncpts);
3553
3554         OBD_FREE(svc, offsetof(struct ptlrpc_service,
3555                                srv_parts[svc->srv_ncpts]));
3556 }
3557
3558 int ptlrpc_unregister_service(struct ptlrpc_service *service)
3559 {
3560         ENTRY;
3561
3562         CDEBUG(D_NET, "%s: tearing down\n", service->srv_name);
3563
3564         service->srv_is_stopping = 1;
3565
3566         mutex_lock(&ptlrpc_all_services_mutex);
3567         list_del_init(&service->srv_list);
3568         mutex_unlock(&ptlrpc_all_services_mutex);
3569
3570         ptlrpc_service_del_atimer(service);
3571         ptlrpc_stop_all_threads(service);
3572
3573         ptlrpc_service_unlink_rqbd(service);
3574         ptlrpc_service_purge_all(service);
3575         ptlrpc_service_nrs_cleanup(service);
3576
3577         ptlrpc_lprocfs_unregister_service(service);
3578         ptlrpc_sysfs_unregister_service(service);
3579
3580         ptlrpc_service_free(service);
3581
3582         RETURN(0);
3583 }
3584 EXPORT_SYMBOL(ptlrpc_unregister_service);
3585
3586 /**
3587  * Returns 0 if the service is healthy.
3588  *
3589  * Right now, it just checks to make sure that requests aren't languishing
3590  * in the queue.  We'll use this health check to govern whether a node needs
3591  * to be shot, so it's intentionally non-aggressive.
3592  */
3593 static int ptlrpc_svcpt_health_check(struct ptlrpc_service_part *svcpt)
3594 {
3595         struct ptlrpc_request *request = NULL;
3596         struct timespec64 right_now;
3597         struct timespec64 timediff;
3598
3599         ktime_get_real_ts64(&right_now);
3600
3601         spin_lock(&svcpt->scp_req_lock);
3602         /* How long has the next entry been waiting? */
3603         if (ptlrpc_server_high_pending(svcpt, true))
3604                 request = ptlrpc_nrs_req_peek_nolock(svcpt, true);
3605         else if (ptlrpc_server_normal_pending(svcpt, true))
3606                 request = ptlrpc_nrs_req_peek_nolock(svcpt, false);
3607
3608         if (request == NULL) {
3609                 spin_unlock(&svcpt->scp_req_lock);
3610                 return 0;
3611         }
3612
3613         timediff = timespec64_sub(right_now, request->rq_arrival_time);
3614         spin_unlock(&svcpt->scp_req_lock);
3615
3616         if ((timediff.tv_sec) >
3617             (AT_OFF ? obd_timeout * 3 / 2 : at_max)) {
3618                 CERROR("%s: unhealthy - request has been waiting %llds\n",
3619                        svcpt->scp_service->srv_name, (s64)timediff.tv_sec);
3620                 return -1;
3621         }
3622
3623         return 0;
3624 }
3625
3626 int
3627 ptlrpc_service_health_check(struct ptlrpc_service *svc)
3628 {
3629         struct ptlrpc_service_part      *svcpt;
3630         int                             i;
3631
3632         if (svc == NULL)
3633                 return 0;
3634
3635         ptlrpc_service_for_each_part(svcpt, i, svc) {
3636                 int rc = ptlrpc_svcpt_health_check(svcpt);
3637
3638                 if (rc != 0)
3639                         return rc;
3640         }
3641         return 0;
3642 }
3643 EXPORT_SYMBOL(ptlrpc_service_health_check);