Whamcloud - gitweb
12ff1717e92e43a85f781bcb3289ce7c25f1e864
[fs/lustre-release.git] / lustre / ptlrpc / sec_bulk.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright  2008 Sun Microsystems, Inc. All rights reserved
30  * Use is subject to license terms.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/sec_bulk.c
37  *
38  * Author: Eric Mei <ericm@clusterfs.com>
39  */
40
41 #ifndef EXPORT_SYMTAB
42 #define EXPORT_SYMTAB
43 #endif
44 #define DEBUG_SUBSYSTEM S_SEC
45
46 #include <libcfs/libcfs.h>
47 #ifndef __KERNEL__
48 #include <liblustre.h>
49 #include <libcfs/list.h>
50 #else
51 #include <linux/crypto.h>
52 #endif
53
54 #include <obd.h>
55 #include <obd_cksum.h>
56 #include <obd_class.h>
57 #include <obd_support.h>
58 #include <lustre_net.h>
59 #include <lustre_import.h>
60 #include <lustre_dlm.h>
61 #include <lustre_sec.h>
62
63 #include "ptlrpc_internal.h"
64
65 /****************************************
66  * bulk encryption page pools           *
67  ****************************************/
68
69 #ifdef __KERNEL__
70
71 #define PTRS_PER_PAGE   (CFS_PAGE_SIZE / sizeof(void *))
72 #define PAGES_PER_POOL  (PTRS_PER_PAGE)
73
74 #define IDLE_IDX_MAX            (100)
75 #define IDLE_IDX_WEIGHT         (3)
76
77 #define CACHE_QUIESCENT_PERIOD  (20)
78
79 static struct ptlrpc_enc_page_pool {
80         /*
81          * constants
82          */
83         unsigned long    epp_max_pages;   /* maximum pages can hold, const */
84         unsigned int     epp_max_pools;   /* number of pools, const */
85
86         /*
87          * wait queue in case of not enough free pages.
88          */
89         cfs_waitq_t      epp_waitq;       /* waiting threads */
90         unsigned int     epp_waitqlen;    /* wait queue length */
91         unsigned long    epp_pages_short; /* # of pages wanted of in-q users */
92         unsigned int     epp_growing:1;   /* during adding pages */
93
94         /*
95          * indicating how idle the pools are, from 0 to MAX_IDLE_IDX
96          * this is counted based on each time when getting pages from
97          * the pools, not based on time. which means in case that system
98          * is idled for a while but the idle_idx might still be low if no
99          * activities happened in the pools.
100          */
101         unsigned long    epp_idle_idx;
102
103         /* last shrink time due to mem tight */
104         long             epp_last_shrink;
105         long             epp_last_access;
106
107         /*
108          * in-pool pages bookkeeping
109          */
110         spinlock_t       epp_lock;        /* protect following fields */
111         unsigned long    epp_total_pages; /* total pages in pools */
112         unsigned long    epp_free_pages;  /* current pages available */
113
114         /*
115          * statistics
116          */
117         unsigned long    epp_st_max_pages;      /* # of pages ever reached */
118         unsigned int     epp_st_grows;          /* # of grows */
119         unsigned int     epp_st_grow_fails;     /* # of add pages failures */
120         unsigned int     epp_st_shrinks;        /* # of shrinks */
121         unsigned long    epp_st_access;         /* # of access */
122         unsigned long    epp_st_missings;       /* # of cache missing */
123         unsigned long    epp_st_lowfree;        /* lowest free pages reached */
124         unsigned int     epp_st_max_wqlen;      /* highest waitqueue length */
125         cfs_time_t       epp_st_max_wait;       /* in jeffies */
126         /*
127          * pointers to pools
128          */
129         cfs_page_t    ***epp_pools;
130 } page_pools;
131
132 /*
133  * memory shrinker
134  */
135 const int pools_shrinker_seeks = DEFAULT_SEEKS;
136 static struct shrinker *pools_shrinker = NULL;
137
138
139 /*
140  * /proc/fs/lustre/sptlrpc/encrypt_page_pools
141  */
142 int sptlrpc_proc_read_enc_pool(char *page, char **start, off_t off, int count,
143                                int *eof, void *data)
144 {
145         int     rc;
146
147         spin_lock(&page_pools.epp_lock);
148
149         rc = snprintf(page, count,
150                       "physical pages:          %lu\n"
151                       "pages per pool:          %lu\n"
152                       "max pages:               %lu\n"
153                       "max pools:               %u\n"
154                       "total pages:             %lu\n"
155                       "total free:              %lu\n"
156                       "idle index:              %lu/100\n"
157                       "last shrink:             %lds\n"
158                       "last access:             %lds\n"
159                       "max pages reached:       %lu\n"
160                       "grows:                   %u\n"
161                       "grows failure:           %u\n"
162                       "shrinks:                 %u\n"
163                       "cache access:            %lu\n"
164                       "cache missing:           %lu\n"
165                       "low free mark:           %lu\n"
166                       "max waitqueue depth:     %u\n"
167                       "max wait time:           "CFS_TIME_T"/%u\n"
168                       ,
169                       num_physpages,
170                       PAGES_PER_POOL,
171                       page_pools.epp_max_pages,
172                       page_pools.epp_max_pools,
173                       page_pools.epp_total_pages,
174                       page_pools.epp_free_pages,
175                       page_pools.epp_idle_idx,
176                       cfs_time_current_sec() - page_pools.epp_last_shrink,
177                       cfs_time_current_sec() - page_pools.epp_last_access,
178                       page_pools.epp_st_max_pages,
179                       page_pools.epp_st_grows,
180                       page_pools.epp_st_grow_fails,
181                       page_pools.epp_st_shrinks,
182                       page_pools.epp_st_access,
183                       page_pools.epp_st_missings,
184                       page_pools.epp_st_lowfree,
185                       page_pools.epp_st_max_wqlen,
186                       page_pools.epp_st_max_wait, HZ
187                      );
188
189         spin_unlock(&page_pools.epp_lock);
190         return rc;
191 }
192
193 static void enc_pools_release_free_pages(long npages)
194 {
195         int     p_idx, g_idx;
196         int     p_idx_max1, p_idx_max2;
197
198         LASSERT(npages > 0);
199         LASSERT(npages <= page_pools.epp_free_pages);
200         LASSERT(page_pools.epp_free_pages <= page_pools.epp_total_pages);
201
202         /* max pool index before the release */
203         p_idx_max2 = (page_pools.epp_total_pages - 1) / PAGES_PER_POOL;
204
205         page_pools.epp_free_pages -= npages;
206         page_pools.epp_total_pages -= npages;
207
208         /* max pool index after the release */
209         p_idx_max1 = page_pools.epp_total_pages == 0 ? 0 :
210                      ((page_pools.epp_total_pages - 1) / PAGES_PER_POOL);
211
212         p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
213         g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
214         LASSERT(page_pools.epp_pools[p_idx]);
215
216         while (npages--) {
217                 LASSERT(page_pools.epp_pools[p_idx]);
218                 LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL);
219
220                 cfs_free_page(page_pools.epp_pools[p_idx][g_idx]);
221                 page_pools.epp_pools[p_idx][g_idx] = NULL;
222
223                 if (++g_idx == PAGES_PER_POOL) {
224                         p_idx++;
225                         g_idx = 0;
226                 }
227         };
228
229         /* free unused pools */
230         while (p_idx_max1 < p_idx_max2) {
231                 LASSERT(page_pools.epp_pools[p_idx_max2]);
232                 OBD_FREE(page_pools.epp_pools[p_idx_max2], CFS_PAGE_SIZE);
233                 page_pools.epp_pools[p_idx_max2] = NULL;
234                 p_idx_max2--;
235         }
236 }
237
238 /*
239  * could be called frequently for query (@nr_to_scan == 0)
240  */
241 static int enc_pools_shrink(int nr_to_scan, unsigned int gfp_mask)
242 {
243         unsigned long   ret;
244
245         spin_lock(&page_pools.epp_lock);
246
247         if (nr_to_scan > page_pools.epp_free_pages)
248                 nr_to_scan = page_pools.epp_free_pages;
249
250         if (nr_to_scan > 0) {
251                 enc_pools_release_free_pages(nr_to_scan);
252                 CDEBUG(D_SEC, "released %d pages, %ld left\n",
253                        nr_to_scan, page_pools.epp_free_pages);
254
255                 page_pools.epp_st_shrinks++;
256                 page_pools.epp_last_shrink = cfs_time_current_sec();
257         }
258
259         /*
260          * try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool
261          */
262         if (page_pools.epp_free_pages <= PTLRPC_MAX_BRW_PAGES) {
263                 ret = 0;
264                 goto out_unlock;
265         }
266
267         /*
268          * if no pool access for a long time, we consider it's fully idle
269          */
270         if (cfs_time_current_sec() - page_pools.epp_last_access >
271             CACHE_QUIESCENT_PERIOD)
272                 page_pools.epp_idle_idx = IDLE_IDX_MAX;
273
274         LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX);
275         ret = (page_pools.epp_free_pages * page_pools.epp_idle_idx /
276                IDLE_IDX_MAX);
277         if (page_pools.epp_free_pages - ret < PTLRPC_MAX_BRW_PAGES)
278                 ret = page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES;
279
280 out_unlock:
281         spin_unlock(&page_pools.epp_lock);
282         return ret;
283 }
284
285 static inline
286 int npages_to_npools(unsigned long npages)
287 {
288         return (int) ((npages + PAGES_PER_POOL - 1) / PAGES_PER_POOL);
289 }
290
291 /*
292  * return how many pages cleaned up.
293  */
294 static unsigned long enc_pools_cleanup(cfs_page_t ***pools, int npools)
295 {
296         unsigned long cleaned = 0;
297         int           i, j;
298
299         for (i = 0; i < npools; i++) {
300                 if (pools[i]) {
301                         for (j = 0; j < PAGES_PER_POOL; j++) {
302                                 if (pools[i][j]) {
303                                         cfs_free_page(pools[i][j]);
304                                         cleaned++;
305                                 }
306                         }
307                         OBD_FREE(pools[i], CFS_PAGE_SIZE);
308                         pools[i] = NULL;
309                 }
310         }
311
312         return cleaned;
313 }
314
315 /*
316  * merge @npools pointed by @pools which contains @npages new pages
317  * into current pools.
318  *
319  * we have options to avoid most memory copy with some tricks. but we choose
320  * the simplest way to avoid complexity. It's not frequently called.
321  */
322 static void enc_pools_insert(cfs_page_t ***pools, int npools, int npages)
323 {
324         int     freeslot;
325         int     op_idx, np_idx, og_idx, ng_idx;
326         int     cur_npools, end_npools;
327
328         LASSERT(npages > 0);
329         LASSERT(page_pools.epp_total_pages+npages <= page_pools.epp_max_pages);
330         LASSERT(npages_to_npools(npages) == npools);
331
332         spin_lock(&page_pools.epp_lock);
333
334         /*
335          * (1) fill all the free slots of current pools.
336          */
337         /* free slots are those left by rent pages, and the extra ones with
338          * index >= total_pages, locate at the tail of last pool. */
339         freeslot = page_pools.epp_total_pages % PAGES_PER_POOL;
340         if (freeslot != 0)
341                 freeslot = PAGES_PER_POOL - freeslot;
342         freeslot += page_pools.epp_total_pages - page_pools.epp_free_pages;
343
344         op_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
345         og_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
346         np_idx = npools - 1;
347         ng_idx = (npages - 1) % PAGES_PER_POOL;
348
349         while (freeslot) {
350                 LASSERT(page_pools.epp_pools[op_idx][og_idx] == NULL);
351                 LASSERT(pools[np_idx][ng_idx] != NULL);
352
353                 page_pools.epp_pools[op_idx][og_idx] = pools[np_idx][ng_idx];
354                 pools[np_idx][ng_idx] = NULL;
355
356                 freeslot--;
357
358                 if (++og_idx == PAGES_PER_POOL) {
359                         op_idx++;
360                         og_idx = 0;
361                 }
362                 if (--ng_idx < 0) {
363                         if (np_idx == 0)
364                                 break;
365                         np_idx--;
366                         ng_idx = PAGES_PER_POOL - 1;
367                 }
368         }
369
370         /*
371          * (2) add pools if needed.
372          */
373         cur_npools = (page_pools.epp_total_pages + PAGES_PER_POOL - 1) /
374                      PAGES_PER_POOL;
375         end_npools = (page_pools.epp_total_pages + npages + PAGES_PER_POOL -1) /
376                      PAGES_PER_POOL;
377         LASSERT(end_npools <= page_pools.epp_max_pools);
378
379         np_idx = 0;
380         while (cur_npools < end_npools) {
381                 LASSERT(page_pools.epp_pools[cur_npools] == NULL);
382                 LASSERT(np_idx < npools);
383                 LASSERT(pools[np_idx] != NULL);
384
385                 page_pools.epp_pools[cur_npools++] = pools[np_idx];
386                 pools[np_idx++] = NULL;
387         }
388
389         page_pools.epp_total_pages += npages;
390         page_pools.epp_free_pages += npages;
391         page_pools.epp_st_lowfree = page_pools.epp_free_pages;
392
393         if (page_pools.epp_total_pages > page_pools.epp_st_max_pages)
394                 page_pools.epp_st_max_pages = page_pools.epp_total_pages;
395
396         CDEBUG(D_SEC, "add %d pages to total %lu\n", npages,
397                page_pools.epp_total_pages);
398
399         spin_unlock(&page_pools.epp_lock);
400 }
401
402 static int enc_pools_add_pages(int npages)
403 {
404         static DECLARE_MUTEX(sem_add_pages);
405         cfs_page_t   ***pools;
406         int             npools, alloced = 0;
407         int             i, j, rc = -ENOMEM;
408
409         if (npages < PTLRPC_MAX_BRW_PAGES)
410                 npages = PTLRPC_MAX_BRW_PAGES;
411
412         down(&sem_add_pages);
413
414         if (npages + page_pools.epp_total_pages > page_pools.epp_max_pages)
415                 npages = page_pools.epp_max_pages - page_pools.epp_total_pages;
416         LASSERT(npages > 0);
417
418         page_pools.epp_st_grows++;
419
420         npools = npages_to_npools(npages);
421         OBD_ALLOC(pools, npools * sizeof(*pools));
422         if (pools == NULL)
423                 goto out;
424
425         for (i = 0; i < npools; i++) {
426                 OBD_ALLOC(pools[i], CFS_PAGE_SIZE);
427                 if (pools[i] == NULL)
428                         goto out_pools;
429
430                 for (j = 0; j < PAGES_PER_POOL && alloced < npages; j++) {
431                         pools[i][j] = cfs_alloc_page(CFS_ALLOC_IO |
432                                                      CFS_ALLOC_HIGH);
433                         if (pools[i][j] == NULL)
434                                 goto out_pools;
435
436                         alloced++;
437                 }
438         }
439
440         enc_pools_insert(pools, npools, npages);
441         CDEBUG(D_SEC, "added %d pages into pools\n", npages);
442         rc = 0;
443
444 out_pools:
445         enc_pools_cleanup(pools, npools);
446         OBD_FREE(pools, npools * sizeof(*pools));
447 out:
448         if (rc) {
449                 page_pools.epp_st_grow_fails++;
450                 CERROR("Failed to allocate %d enc pages\n", npages);
451         }
452
453         up(&sem_add_pages);
454         return rc;
455 }
456
457 static inline void enc_pools_wakeup(void)
458 {
459         if (unlikely(page_pools.epp_waitqlen)) {
460                 LASSERT(page_pools.epp_waitqlen > 0);
461                 LASSERT(cfs_waitq_active(&page_pools.epp_waitq));
462                 cfs_waitq_broadcast(&page_pools.epp_waitq);
463         }
464 }
465
466 static int enc_pools_should_grow(int page_needed, long now)
467 {
468         /* don't grow if someone else is growing the pools right now,
469          * or the pools has reached its full capacity
470          */
471         if (page_pools.epp_growing ||
472             page_pools.epp_total_pages == page_pools.epp_max_pages)
473                 return 0;
474
475         /* if total pages is not enough, we need to grow */
476         if (page_pools.epp_total_pages < page_needed)
477                 return 1;
478
479         /* if we just did a shrink due to memory tight, we'd better
480          * wait a while to grow again.
481          */
482         if (now - page_pools.epp_last_shrink < 2)
483                 return 0;
484
485         /*
486          * here we perhaps need consider other factors like wait queue
487          * length, idle index, etc. ?
488          */
489
490         /* grow the pools in any other cases */
491         return 1;
492 }
493
494 /*
495  * we allocate the requested pages atomically.
496  */
497 int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc)
498 {
499         cfs_waitlink_t  waitlink;
500         unsigned long   this_idle = -1;
501         cfs_time_t      tick = 0;
502         long            now;
503         int             p_idx, g_idx;
504         int             i;
505
506         LASSERT(desc->bd_max_iov > 0);
507         LASSERT(desc->bd_max_iov <= page_pools.epp_max_pages);
508
509         /* resent bulk, enc pages might have been allocated previously */
510         if (desc->bd_enc_pages != NULL)
511                 return 0;
512
513         OBD_ALLOC(desc->bd_enc_pages,
514                   desc->bd_max_iov * sizeof(*desc->bd_enc_pages));
515         if (desc->bd_enc_pages == NULL)
516                 return -ENOMEM;
517
518         spin_lock(&page_pools.epp_lock);
519
520         page_pools.epp_st_access++;
521 again:
522         if (unlikely(page_pools.epp_free_pages < desc->bd_max_iov)) {
523                 if (tick == 0)
524                         tick = cfs_time_current();
525
526                 now = cfs_time_current_sec();
527
528                 page_pools.epp_st_missings++;
529                 page_pools.epp_pages_short += desc->bd_max_iov;
530
531                 if (enc_pools_should_grow(desc->bd_max_iov, now)) {
532                         page_pools.epp_growing = 1;
533
534                         spin_unlock(&page_pools.epp_lock);
535                         enc_pools_add_pages(page_pools.epp_pages_short / 2);
536                         spin_lock(&page_pools.epp_lock);
537
538                         page_pools.epp_growing = 0;
539                 } else {
540                         if (++page_pools.epp_waitqlen >
541                             page_pools.epp_st_max_wqlen)
542                                 page_pools.epp_st_max_wqlen =
543                                                 page_pools.epp_waitqlen;
544
545                         set_current_state(CFS_TASK_UNINT);
546                         cfs_waitlink_init(&waitlink);
547                         cfs_waitq_add(&page_pools.epp_waitq, &waitlink);
548
549                         spin_unlock(&page_pools.epp_lock);
550                         cfs_waitq_wait(&waitlink, CFS_TASK_UNINT);
551                         cfs_waitq_del(&page_pools.epp_waitq, &waitlink);
552                         spin_lock(&page_pools.epp_lock);
553
554                         LASSERT(page_pools.epp_waitqlen > 0);
555                         page_pools.epp_waitqlen--;
556                 }
557
558                 LASSERT(page_pools.epp_pages_short >= desc->bd_max_iov);
559                 page_pools.epp_pages_short -= desc->bd_max_iov;
560
561                 this_idle = 0;
562                 goto again;
563         }
564
565         /* record max wait time */
566         if (unlikely(tick != 0)) {
567                 tick = cfs_time_current() - tick;
568                 if (tick > page_pools.epp_st_max_wait)
569                         page_pools.epp_st_max_wait = tick;
570         }
571
572         /* proceed with rest of allocation */
573         page_pools.epp_free_pages -= desc->bd_max_iov;
574
575         p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
576         g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
577
578         for (i = 0; i < desc->bd_max_iov; i++) {
579                 LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL);
580                 desc->bd_enc_pages[i] = page_pools.epp_pools[p_idx][g_idx];
581                 page_pools.epp_pools[p_idx][g_idx] = NULL;
582
583                 if (++g_idx == PAGES_PER_POOL) {
584                         p_idx++;
585                         g_idx = 0;
586                 }
587         }
588
589         if (page_pools.epp_free_pages < page_pools.epp_st_lowfree)
590                 page_pools.epp_st_lowfree = page_pools.epp_free_pages;
591
592         /*
593          * new idle index = (old * weight + new) / (weight + 1)
594          */
595         if (this_idle == -1) {
596                 this_idle = page_pools.epp_free_pages * IDLE_IDX_MAX /
597                             page_pools.epp_total_pages;
598         }
599         page_pools.epp_idle_idx = (page_pools.epp_idle_idx * IDLE_IDX_WEIGHT +
600                                    this_idle) /
601                                   (IDLE_IDX_WEIGHT + 1);
602
603         page_pools.epp_last_access = cfs_time_current_sec();
604
605         spin_unlock(&page_pools.epp_lock);
606         return 0;
607 }
608 EXPORT_SYMBOL(sptlrpc_enc_pool_get_pages);
609
610 void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc)
611 {
612         int     p_idx, g_idx;
613         int     i;
614
615         if (desc->bd_enc_pages == NULL)
616                 return;
617         if (desc->bd_max_iov == 0)
618                 return;
619
620         spin_lock(&page_pools.epp_lock);
621
622         p_idx = page_pools.epp_free_pages / PAGES_PER_POOL;
623         g_idx = page_pools.epp_free_pages % PAGES_PER_POOL;
624
625         LASSERT(page_pools.epp_free_pages + desc->bd_max_iov <=
626                 page_pools.epp_total_pages);
627         LASSERT(page_pools.epp_pools[p_idx]);
628
629         for (i = 0; i < desc->bd_max_iov; i++) {
630                 LASSERT(desc->bd_enc_pages[i] != NULL);
631                 LASSERT(g_idx != 0 || page_pools.epp_pools[p_idx]);
632                 LASSERT(page_pools.epp_pools[p_idx][g_idx] == NULL);
633
634                 page_pools.epp_pools[p_idx][g_idx] = desc->bd_enc_pages[i];
635
636                 if (++g_idx == PAGES_PER_POOL) {
637                         p_idx++;
638                         g_idx = 0;
639                 }
640         }
641
642         page_pools.epp_free_pages += desc->bd_max_iov;
643
644         enc_pools_wakeup();
645
646         spin_unlock(&page_pools.epp_lock);
647
648         OBD_FREE(desc->bd_enc_pages,
649                  desc->bd_max_iov * sizeof(*desc->bd_enc_pages));
650         desc->bd_enc_pages = NULL;
651 }
652 EXPORT_SYMBOL(sptlrpc_enc_pool_put_pages);
653
654 /*
655  * we don't do much stuff for add_user/del_user anymore, except adding some
656  * initial pages in add_user() if current pools are empty, rest would be
657  * handled by the pools's self-adaption.
658  */
659 int sptlrpc_enc_pool_add_user(void)
660 {
661         int     need_grow = 0;
662
663         spin_lock(&page_pools.epp_lock);
664         if (page_pools.epp_growing == 0 && page_pools.epp_total_pages == 0) {
665                 page_pools.epp_growing = 1;
666                 need_grow = 1;
667         }
668         spin_unlock(&page_pools.epp_lock);
669
670         if (need_grow) {
671                 enc_pools_add_pages(PTLRPC_MAX_BRW_PAGES);
672
673                 spin_lock(&page_pools.epp_lock);
674                 page_pools.epp_growing = 0;
675                 enc_pools_wakeup();
676                 spin_unlock(&page_pools.epp_lock);
677         }
678         return 0;
679 }
680 EXPORT_SYMBOL(sptlrpc_enc_pool_add_user);
681
682 int sptlrpc_enc_pool_del_user(void)
683 {
684         return 0;
685 }
686 EXPORT_SYMBOL(sptlrpc_enc_pool_del_user);
687
688 static inline void enc_pools_alloc(void)
689 {
690         LASSERT(page_pools.epp_max_pools);
691         /*
692          * on system with huge memory but small page size, this might lead to
693          * high-order allocation. but it's not common, and we suppose memory
694          * be not too much fragmented at module loading time.
695          */
696         OBD_ALLOC(page_pools.epp_pools,
697                   page_pools.epp_max_pools * sizeof(*page_pools.epp_pools));
698 }
699
700 static inline void enc_pools_free(void)
701 {
702         LASSERT(page_pools.epp_max_pools);
703         LASSERT(page_pools.epp_pools);
704
705         OBD_FREE(page_pools.epp_pools,
706                  page_pools.epp_max_pools * sizeof(*page_pools.epp_pools));
707 }
708
709 int sptlrpc_enc_pool_init(void)
710 {
711         /*
712          * maximum capacity is 1/8 of total physical memory.
713          * is the 1/8 a good number?
714          */
715         page_pools.epp_max_pages = num_physpages / 8;
716         page_pools.epp_max_pools = npages_to_npools(page_pools.epp_max_pages);
717
718         cfs_waitq_init(&page_pools.epp_waitq);
719         page_pools.epp_waitqlen = 0;
720         page_pools.epp_pages_short = 0;
721
722         page_pools.epp_growing = 0;
723
724         page_pools.epp_idle_idx = 0;
725         page_pools.epp_last_shrink = cfs_time_current_sec();
726         page_pools.epp_last_access = cfs_time_current_sec();
727
728         spin_lock_init(&page_pools.epp_lock);
729         page_pools.epp_total_pages = 0;
730         page_pools.epp_free_pages = 0;
731
732         page_pools.epp_st_max_pages = 0;
733         page_pools.epp_st_grows = 0;
734         page_pools.epp_st_grow_fails = 0;
735         page_pools.epp_st_shrinks = 0;
736         page_pools.epp_st_access = 0;
737         page_pools.epp_st_missings = 0;
738         page_pools.epp_st_lowfree = 0;
739         page_pools.epp_st_max_wqlen = 0;
740         page_pools.epp_st_max_wait = 0;
741
742         enc_pools_alloc();
743         if (page_pools.epp_pools == NULL)
744                 return -ENOMEM;
745
746         pools_shrinker = set_shrinker(pools_shrinker_seeks, enc_pools_shrink);
747         if (pools_shrinker == NULL) {
748                 enc_pools_free();
749                 return -ENOMEM;
750         }
751
752         return 0;
753 }
754
755 void sptlrpc_enc_pool_fini(void)
756 {
757         unsigned long cleaned, npools;
758
759         LASSERT(pools_shrinker);
760         LASSERT(page_pools.epp_pools);
761         LASSERT(page_pools.epp_total_pages == page_pools.epp_free_pages);
762
763         remove_shrinker(pools_shrinker);
764
765         npools = npages_to_npools(page_pools.epp_total_pages);
766         cleaned = enc_pools_cleanup(page_pools.epp_pools, npools);
767         LASSERT(cleaned == page_pools.epp_total_pages);
768
769         enc_pools_free();
770
771         if (page_pools.epp_st_access > 0) {
772                 CWARN("max pages %lu, grows %u, grow fails %u, shrinks %u, "
773                       "access %lu, missing %lu, max qlen %u, max wait "
774                       CFS_TIME_T"/%d\n",
775                       page_pools.epp_st_max_pages, page_pools.epp_st_grows,
776                       page_pools.epp_st_grow_fails,
777                       page_pools.epp_st_shrinks, page_pools.epp_st_access,
778                       page_pools.epp_st_missings, page_pools.epp_st_max_wqlen,
779                       page_pools.epp_st_max_wait, HZ);
780         }
781 }
782
783 #else /* !__KERNEL__ */
784
785 int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc)
786 {
787         return 0;
788 }
789
790 void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc)
791 {
792 }
793
794 int sptlrpc_enc_pool_init(void)
795 {
796         return 0;
797 }
798
799 void sptlrpc_enc_pool_fini(void)
800 {
801 }
802 #endif
803
804 /****************************************
805  * Helpers to assist policy modules to  *
806  * implement checksum funcationality    *
807  ****************************************/
808
809 static struct sptlrpc_hash_type hash_types[] = {
810         [BULK_HASH_ALG_NULL]    = { "null",     "null",         0 },
811         [BULK_HASH_ALG_ADLER32] = { "adler32",  "adler32",      4 },
812         [BULK_HASH_ALG_CRC32]   = { "crc32",    "crc32",        4 },
813         [BULK_HASH_ALG_MD5]     = { "md5",      "md5",          16 },
814         [BULK_HASH_ALG_SHA1]    = { "sha1",     "sha1",         20 },
815         [BULK_HASH_ALG_SHA256]  = { "sha256",   "sha256",       32 },
816         [BULK_HASH_ALG_SHA384]  = { "sha384",   "sha384",       48 },
817         [BULK_HASH_ALG_SHA512]  = { "sha512",   "sha512",       64 },
818         [BULK_HASH_ALG_WP256]   = { "wp256",    "wp256",        32 },
819         [BULK_HASH_ALG_WP384]   = { "wp384",    "wp384",        48 },
820         [BULK_HASH_ALG_WP512]   = { "wp512",    "wp512",        64 },
821 };
822
823 const struct sptlrpc_hash_type *sptlrpc_get_hash_type(__u8 hash_alg)
824 {
825         struct sptlrpc_hash_type *ht;
826
827         if (hash_alg < BULK_HASH_ALG_MAX) {
828                 ht = &hash_types[hash_alg];
829                 if (ht->sht_tfm_name)
830                         return ht;
831         }
832         return NULL;
833 }
834 EXPORT_SYMBOL(sptlrpc_get_hash_type);
835
836 const char * sptlrpc_get_hash_name(__u8 hash_alg)
837 {
838         const struct sptlrpc_hash_type *ht;
839
840         ht = sptlrpc_get_hash_type(hash_alg);
841         if (ht)
842                 return ht->sht_name;
843         else
844                 return "unknown";
845 }
846 EXPORT_SYMBOL(sptlrpc_get_hash_name);
847
848 int bulk_sec_desc_size(__u8 hash_alg, int request, int read)
849 {
850         int size = sizeof(struct ptlrpc_bulk_sec_desc);
851
852         LASSERT(hash_alg < BULK_HASH_ALG_MAX);
853
854         /* read request don't need extra data */
855         if (!(read && request))
856                 size += hash_types[hash_alg].sht_size;
857
858         return size;
859 }
860 EXPORT_SYMBOL(bulk_sec_desc_size);
861
862 int bulk_sec_desc_unpack(struct lustre_msg *msg, int offset)
863 {
864         struct ptlrpc_bulk_sec_desc *bsd;
865         int    size = msg->lm_buflens[offset];
866
867         bsd = lustre_msg_buf(msg, offset, sizeof(*bsd));
868         if (bsd == NULL) {
869                 CERROR("Invalid bulk sec desc: size %d\n", size);
870                 return -EINVAL;
871         }
872
873         /* nothing to swab */
874
875         if (unlikely(bsd->bsd_version != 0)) {
876                 CERROR("Unexpected version %u\n", bsd->bsd_version);
877                 return -EPROTO;
878         }
879
880         if (unlikely(bsd->bsd_flags != 0)) {
881                 CERROR("Unexpected flags %x\n", bsd->bsd_flags);
882                 return -EPROTO;
883         }
884
885         if (unlikely(!sptlrpc_get_hash_type(bsd->bsd_hash_alg))) {
886                 CERROR("Unsupported checksum algorithm %u\n",
887                        bsd->bsd_hash_alg);
888                 return -EINVAL;
889         }
890
891         if (unlikely(!sptlrpc_get_ciph_type(bsd->bsd_ciph_alg))) {
892                 CERROR("Unsupported cipher algorithm %u\n",
893                        bsd->bsd_ciph_alg);
894                 return -EINVAL;
895         }
896
897         if (unlikely(size > sizeof(*bsd)) &&
898             size < sizeof(*bsd) + hash_types[bsd->bsd_hash_alg].sht_size) {
899                 CERROR("Mal-formed checksum data: csum alg %u, size %d\n",
900                        bsd->bsd_hash_alg, size);
901                 return -EINVAL;
902         }
903
904         return 0;
905 }
906 EXPORT_SYMBOL(bulk_sec_desc_unpack);
907
908 #ifdef __KERNEL__
909
910 #ifdef HAVE_ADLER
911 static int do_bulk_checksum_adler32(struct ptlrpc_bulk_desc *desc, void *buf)
912 {
913         struct page    *page;
914         int             off;
915         char           *ptr;
916         __u32           adler32 = 1;
917         int             len, i;
918
919         for (i = 0; i < desc->bd_iov_count; i++) {
920                 page = desc->bd_iov[i].kiov_page;
921                 off = desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK;
922                 ptr = cfs_kmap(page) + off;
923                 len = desc->bd_iov[i].kiov_len;
924
925                 adler32 = adler32(adler32, ptr, len);
926
927                 cfs_kunmap(page);
928         }
929
930         adler32 = cpu_to_le32(adler32);
931         memcpy(buf, &adler32, sizeof(adler32));
932         return 0;
933 }
934 #endif
935
936 static int do_bulk_checksum_crc32(struct ptlrpc_bulk_desc *desc, void *buf)
937 {
938         struct page    *page;
939         int             off;
940         char           *ptr;
941         __u32           crc32 = ~0;
942         int             len, i;
943
944         for (i = 0; i < desc->bd_iov_count; i++) {
945                 page = desc->bd_iov[i].kiov_page;
946                 off = desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK;
947                 ptr = cfs_kmap(page) + off;
948                 len = desc->bd_iov[i].kiov_len;
949
950                 crc32 = crc32_le(crc32, ptr, len);
951
952                 cfs_kunmap(page);
953         }
954
955         crc32 = cpu_to_le32(crc32);
956         memcpy(buf, &crc32, sizeof(crc32));
957         return 0;
958 }
959
960 static int do_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u32 alg, void *buf)
961 {
962         struct hash_desc    hdesc;
963         struct scatterlist *sl;
964         int i, rc = 0, bytes = 0;
965
966         LASSERT(alg > BULK_HASH_ALG_NULL &&
967                 alg < BULK_HASH_ALG_MAX);
968
969         switch (alg) {
970         case BULK_HASH_ALG_ADLER32:
971 #ifdef HAVE_ADLER
972                 return do_bulk_checksum_adler32(desc, buf);
973 #else
974                 CERROR("Adler32 not supported\n");
975                 return -EINVAL;
976 #endif
977         case BULK_HASH_ALG_CRC32:
978                 return do_bulk_checksum_crc32(desc, buf);
979         }
980
981         hdesc.tfm = ll_crypto_alloc_hash(hash_types[alg].sht_tfm_name, 0, 0);
982         if (hdesc.tfm == NULL) {
983                 CERROR("Unable to allocate TFM %s\n", hash_types[alg].sht_name);
984                 return -ENOMEM;
985         }
986         hdesc.flags = 0;
987
988         OBD_ALLOC(sl, sizeof(*sl) * desc->bd_iov_count);
989         if (sl == NULL) {
990                 rc = -ENOMEM;
991                 goto out_tfm;
992         }
993
994         for (i = 0; i < desc->bd_iov_count; i++) {
995                 sl[i].page = desc->bd_iov[i].kiov_page;
996                 sl[i].offset = desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK;
997                 sl[i].length = desc->bd_iov[i].kiov_len;
998                 bytes += desc->bd_iov[i].kiov_len;
999         }
1000
1001         ll_crypto_hash_init(&hdesc);
1002         ll_crypto_hash_update(&hdesc, sl, bytes);
1003         ll_crypto_hash_final(&hdesc, buf);
1004
1005         OBD_FREE(sl, sizeof(*sl) * desc->bd_iov_count);
1006
1007 out_tfm:
1008         ll_crypto_free_hash(hdesc.tfm);
1009         return rc;
1010 }
1011
1012 #else /* !__KERNEL__ */
1013
1014 static int do_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u32 alg, void *buf)
1015 {
1016         __u32   csum32;
1017         int     i;
1018
1019         LASSERT(alg == BULK_HASH_ALG_ADLER32 || alg == BULK_HASH_ALG_CRC32);
1020
1021         if (alg == BULK_HASH_ALG_ADLER32)
1022                 csum32 = 1;
1023         else
1024                 csum32 = ~0;
1025
1026         for (i = 0; i < desc->bd_iov_count; i++) {
1027                 unsigned char *ptr = desc->bd_iov[i].iov_base;
1028                 int len = desc->bd_iov[i].iov_len;
1029
1030                 switch (alg) {
1031                 case BULK_HASH_ALG_ADLER32:
1032 #ifdef HAVE_ADLER
1033                         csum32 = adler32(csum32, ptr, len);
1034 #else
1035                         CERROR("Adler32 not supported\n");
1036                         return -EINVAL;
1037 #endif
1038                         break;
1039                 case BULK_HASH_ALG_CRC32:
1040                         csum32 = crc32_le(csum32, ptr, len);
1041                         break;
1042                 }
1043         }
1044
1045         csum32 = cpu_to_le32(csum32);
1046         memcpy(buf, &csum32, sizeof(csum32));
1047         return 0;
1048 }
1049
1050 #endif /* __KERNEL__ */
1051
1052 /*
1053  * perform algorithm @alg checksum on @desc, store result in @buf.
1054  * if anything goes wrong, leave 'alg' be BULK_HASH_ALG_NULL.
1055  */
1056 static
1057 int generate_bulk_csum(struct ptlrpc_bulk_desc *desc, __u32 alg,
1058                        struct ptlrpc_bulk_sec_desc *bsd, int bsdsize)
1059 {
1060         int rc;
1061
1062         LASSERT(bsd);
1063         LASSERT(alg < BULK_HASH_ALG_MAX);
1064
1065         bsd->bsd_hash_alg = BULK_HASH_ALG_NULL;
1066
1067         if (alg == BULK_HASH_ALG_NULL)
1068                 return 0;
1069
1070         LASSERT(bsdsize >= sizeof(*bsd) + hash_types[alg].sht_size);
1071
1072         rc = do_bulk_checksum(desc, alg, bsd->bsd_csum);
1073         if (rc == 0)
1074                 bsd->bsd_hash_alg = alg;
1075
1076         return rc;
1077 }
1078
1079 static
1080 int verify_bulk_csum(struct ptlrpc_bulk_desc *desc, int read,
1081                      struct ptlrpc_bulk_sec_desc *bsdv, int bsdvsize,
1082                      struct ptlrpc_bulk_sec_desc *bsdr, int bsdrsize)
1083 {
1084         char *csum_p;
1085         char *buf = NULL;
1086         int   csum_size, rc = 0;
1087
1088         LASSERT(bsdv);
1089         LASSERT(bsdv->bsd_hash_alg < BULK_HASH_ALG_MAX);
1090
1091         if (bsdr)
1092                 bsdr->bsd_hash_alg = BULK_HASH_ALG_NULL;
1093
1094         if (bsdv->bsd_hash_alg == BULK_HASH_ALG_NULL)
1095                 return 0;
1096
1097         /* for all supported algorithms */
1098         csum_size = hash_types[bsdv->bsd_hash_alg].sht_size;
1099
1100         if (bsdvsize < sizeof(*bsdv) + csum_size) {
1101                 CERROR("verifier size %d too small, require %d\n",
1102                        bsdvsize, (int) sizeof(*bsdv) + csum_size);
1103                 return -EINVAL;
1104         }
1105
1106         if (bsdr) {
1107                 LASSERT(bsdrsize >= sizeof(*bsdr) + csum_size);
1108                 csum_p = (char *) bsdr->bsd_csum;
1109         } else {
1110                 OBD_ALLOC(buf, csum_size);
1111                 if (buf == NULL)
1112                         return -EINVAL;
1113                 csum_p = buf;
1114         }
1115
1116         rc = do_bulk_checksum(desc, bsdv->bsd_hash_alg, csum_p);
1117
1118         if (memcmp(bsdv->bsd_csum, csum_p, csum_size)) {
1119                 CERROR("BAD %s CHECKSUM (%s), data mutated during "
1120                        "transfer!\n", read ? "READ" : "WRITE",
1121                        hash_types[bsdv->bsd_hash_alg].sht_name);
1122                 rc = -EINVAL;
1123         } else {
1124                 CDEBUG(D_SEC, "bulk %s checksum (%s) verified\n",
1125                       read ? "read" : "write",
1126                       hash_types[bsdv->bsd_hash_alg].sht_name);
1127         }
1128
1129         if (bsdr) {
1130                 bsdr->bsd_hash_alg = bsdv->bsd_hash_alg;
1131                 memcpy(bsdr->bsd_csum, csum_p, csum_size);
1132         } else {
1133                 LASSERT(buf);
1134                 OBD_FREE(buf, csum_size);
1135         }
1136
1137         return rc;
1138 }
1139
1140 int bulk_csum_cli_request(struct ptlrpc_bulk_desc *desc, int read,
1141                           __u32 alg, struct lustre_msg *rmsg, int roff)
1142 {
1143         struct ptlrpc_bulk_sec_desc *bsdr;
1144         int    rsize, rc = 0;
1145
1146         rsize = rmsg->lm_buflens[roff];
1147         bsdr = lustre_msg_buf(rmsg, roff, sizeof(*bsdr));
1148
1149         LASSERT(bsdr);
1150         LASSERT(rsize >= sizeof(*bsdr));
1151         LASSERT(alg < BULK_HASH_ALG_MAX);
1152
1153         if (read) {
1154                 bsdr->bsd_hash_alg = alg;
1155         } else {
1156                 rc = generate_bulk_csum(desc, alg, bsdr, rsize);
1157                 if (rc)
1158                         CERROR("bulk write: client failed to compute "
1159                                "checksum: %d\n", rc);
1160
1161                 /* For sending we only compute the wrong checksum instead
1162                  * of corrupting the data so it is still correct on a redo */
1163                 if (rc == 0 && OBD_FAIL_CHECK(OBD_FAIL_OSC_CHECKSUM_SEND) &&
1164                     bsdr->bsd_hash_alg != BULK_HASH_ALG_NULL)
1165                         bsdr->bsd_csum[0] ^= 0x1;
1166         }
1167
1168         return rc;
1169 }
1170 EXPORT_SYMBOL(bulk_csum_cli_request);
1171
1172 int bulk_csum_cli_reply(struct ptlrpc_bulk_desc *desc, int read,
1173                         struct lustre_msg *rmsg, int roff,
1174                         struct lustre_msg *vmsg, int voff)
1175 {
1176         struct ptlrpc_bulk_sec_desc *bsdv, *bsdr;
1177         int    rsize, vsize;
1178
1179         rsize = rmsg->lm_buflens[roff];
1180         vsize = vmsg->lm_buflens[voff];
1181         bsdr = lustre_msg_buf(rmsg, roff, 0);
1182         bsdv = lustre_msg_buf(vmsg, voff, 0);
1183
1184         if (bsdv == NULL || vsize < sizeof(*bsdv)) {
1185                 CERROR("Invalid checksum verifier from server: size %d\n",
1186                        vsize);
1187                 return -EINVAL;
1188         }
1189
1190         LASSERT(bsdr);
1191         LASSERT(rsize >= sizeof(*bsdr));
1192         LASSERT(vsize >= sizeof(*bsdv));
1193
1194         if (bsdr->bsd_hash_alg != bsdv->bsd_hash_alg) {
1195                 CERROR("bulk %s: checksum algorithm mismatch: client request "
1196                        "%s but server reply with %s. try to use the new one "
1197                        "for checksum verification\n",
1198                        read ? "read" : "write",
1199                        hash_types[bsdr->bsd_hash_alg].sht_name,
1200                        hash_types[bsdv->bsd_hash_alg].sht_name);
1201         }
1202
1203         if (read)
1204                 return verify_bulk_csum(desc, 1, bsdv, vsize, NULL, 0);
1205         else {
1206                 char *cli, *srv, *new = NULL;
1207                 int csum_size = hash_types[bsdr->bsd_hash_alg].sht_size;
1208
1209                 LASSERT(bsdr->bsd_hash_alg < BULK_HASH_ALG_MAX);
1210                 if (bsdr->bsd_hash_alg == BULK_HASH_ALG_NULL)
1211                         return 0;
1212
1213                 if (vsize < sizeof(*bsdv) + csum_size) {
1214                         CERROR("verifier size %d too small, require %d\n",
1215                                vsize, (int) sizeof(*bsdv) + csum_size);
1216                         return -EINVAL;
1217                 }
1218
1219                 cli = (char *) (bsdr + 1);
1220                 srv = (char *) (bsdv + 1);
1221
1222                 if (!memcmp(cli, srv, csum_size)) {
1223                         /* checksum confirmed */
1224                         CDEBUG(D_SEC, "bulk write checksum (%s) confirmed\n",
1225                                hash_types[bsdr->bsd_hash_alg].sht_name);
1226                         return 0;
1227                 }
1228
1229                 /* checksum mismatch, re-compute a new one and compare with
1230                  * others, give out proper warnings. */
1231                 OBD_ALLOC(new, csum_size);
1232                 if (new == NULL)
1233                         return -ENOMEM;
1234
1235                 do_bulk_checksum(desc, bsdr->bsd_hash_alg, new);
1236
1237                 if (!memcmp(new, srv, csum_size)) {
1238                         CERROR("BAD WRITE CHECKSUM (%s): pages were mutated "
1239                                "on the client after we checksummed them\n",
1240                                hash_types[bsdr->bsd_hash_alg].sht_name);
1241                 } else if (!memcmp(new, cli, csum_size)) {
1242                         CERROR("BAD WRITE CHECKSUM (%s): pages were mutated "
1243                                "in transit\n",
1244                                hash_types[bsdr->bsd_hash_alg].sht_name);
1245                 } else {
1246                         CERROR("BAD WRITE CHECKSUM (%s): pages were mutated "
1247                                "in transit, and the current page contents "
1248                                "don't match the originals and what the server "
1249                                "received\n",
1250                                hash_types[bsdr->bsd_hash_alg].sht_name);
1251                 }
1252                 OBD_FREE(new, csum_size);
1253
1254                 return -EINVAL;
1255         }
1256 }
1257 EXPORT_SYMBOL(bulk_csum_cli_reply);
1258
1259 #ifdef __KERNEL__
1260 static void corrupt_bulk_data(struct ptlrpc_bulk_desc *desc)
1261 {
1262         char           *ptr;
1263         unsigned int    off, i;
1264
1265         for (i = 0; i < desc->bd_iov_count; i++) {
1266                 if (desc->bd_iov[i].kiov_len == 0)
1267                         continue;
1268
1269                 ptr = cfs_kmap(desc->bd_iov[i].kiov_page);
1270                 off = desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK;
1271                 ptr[off] ^= 0x1;
1272                 cfs_kunmap(desc->bd_iov[i].kiov_page);
1273                 return;
1274         }
1275 }
1276 #else
1277 static void corrupt_bulk_data(struct ptlrpc_bulk_desc *desc)
1278 {
1279 }
1280 #endif /* __KERNEL__ */
1281
1282 int bulk_csum_svc(struct ptlrpc_bulk_desc *desc, int read,
1283                   struct ptlrpc_bulk_sec_desc *bsdv, int vsize,
1284                   struct ptlrpc_bulk_sec_desc *bsdr, int rsize)
1285 {
1286         int    rc;
1287
1288         LASSERT(vsize >= sizeof(*bsdv));
1289         LASSERT(rsize >= sizeof(*bsdr));
1290         LASSERT(bsdv && bsdr);
1291
1292         if (read) {
1293                 rc = generate_bulk_csum(desc, bsdv->bsd_hash_alg, bsdr, rsize);
1294                 if (rc)
1295                         CERROR("bulk read: server failed to generate %s "
1296                                "checksum: %d\n",
1297                                hash_types[bsdv->bsd_hash_alg].sht_name, rc);
1298
1299                 /* corrupt the data after we compute the checksum, to
1300                  * simulate an OST->client data error */
1301                 if (rc == 0 && OBD_FAIL_CHECK(OBD_FAIL_OSC_CHECKSUM_RECEIVE))
1302                         corrupt_bulk_data(desc);
1303         } else {
1304                 rc = verify_bulk_csum(desc, 0, bsdv, vsize, bsdr, rsize);
1305         }
1306
1307         return rc;
1308 }
1309 EXPORT_SYMBOL(bulk_csum_svc);
1310
1311 /****************************************
1312  * Helpers to assist policy modules to  *
1313  * implement encryption funcationality  *
1314  ****************************************/
1315
1316 /* FIXME */
1317 #ifndef __KERNEL__
1318 #define CRYPTO_TFM_MODE_ECB     (0)
1319 #define CRYPTO_TFM_MODE_CBC     (1)
1320 #endif
1321
1322 static struct sptlrpc_ciph_type cipher_types[] = {
1323         [BULK_CIPH_ALG_NULL]    = {
1324                 "null",         "null",       0,                   0,  0
1325         },
1326         [BULK_CIPH_ALG_ARC4]    = {
1327                 "arc4",         "ecb(arc4)",       0, 0,  16
1328         },
1329         [BULK_CIPH_ALG_AES128]  = {
1330                 "aes128",       "cbc(aes)",        0, 16, 16
1331         },
1332         [BULK_CIPH_ALG_AES192]  = {
1333                 "aes192",       "cbc(aes)",        0, 16, 24
1334         },
1335         [BULK_CIPH_ALG_AES256]  = {
1336                 "aes256",       "cbc(aes)",        0, 16, 32
1337         },
1338         [BULK_CIPH_ALG_CAST128] = {
1339                 "cast128",      "cbc(cast5)",      0, 8,  16
1340         },
1341         [BULK_CIPH_ALG_CAST256] = {
1342                 "cast256",      "cbc(cast6)",      0, 16, 32
1343         },
1344         [BULK_CIPH_ALG_TWOFISH128] = {
1345                 "twofish128",   "cbc(twofish)",    0, 16, 16
1346         },
1347         [BULK_CIPH_ALG_TWOFISH256] = {
1348                 "twofish256",   "cbc(twofish)",    0, 16, 32
1349         },
1350 };
1351
1352 const struct sptlrpc_ciph_type *sptlrpc_get_ciph_type(__u8 ciph_alg)
1353 {
1354         struct sptlrpc_ciph_type *ct;
1355
1356         if (ciph_alg < BULK_CIPH_ALG_MAX) {
1357                 ct = &cipher_types[ciph_alg];
1358                 if (ct->sct_tfm_name)
1359                         return ct;
1360         }
1361         return NULL;
1362 }
1363 EXPORT_SYMBOL(sptlrpc_get_ciph_type);
1364
1365 const char *sptlrpc_get_ciph_name(__u8 ciph_alg)
1366 {
1367         const struct sptlrpc_ciph_type *ct;
1368
1369         ct = sptlrpc_get_ciph_type(ciph_alg);
1370         if (ct)
1371                 return ct->sct_name;
1372         else
1373                 return "unknown";
1374 }
1375 EXPORT_SYMBOL(sptlrpc_get_ciph_name);