Whamcloud - gitweb
LU-9679 ptlrpc: list_for_each improvements.
[fs/lustre-release.git] / lustre / ptlrpc / ptlrpcd.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/ptlrpc/ptlrpcd.c
33  */
34
35 /** \defgroup ptlrpcd PortalRPC daemon
36  *
37  * ptlrpcd is a special thread with its own set where other user might add
38  * requests when they don't want to wait for their completion.
39  * PtlRPCD will take care of sending such requests and then processing their
40  * replies and calling completion callbacks as necessary.
41  * The callbacks are called directly from ptlrpcd context.
42  * It is important to never significantly block (esp. on RPCs!) within such
43  * completion handler or a deadlock might occur where ptlrpcd enters some
44  * callback that attempts to send another RPC and wait for it to return,
45  * during which time ptlrpcd is completely blocked, so e.g. if import
46  * fails, recovery cannot progress because connection requests are also
47  * sent by ptlrpcd.
48  *
49  * @{
50  */
51
52 #define DEBUG_SUBSYSTEM S_RPC
53
54 #include <linux/kthread.h>
55 #include <libcfs/libcfs.h>
56 #include <lustre_net.h>
57 #include <lustre_lib.h>
58 #include <lustre_ha.h>
59 #include <obd_class.h>   /* for obd_zombie */
60 #include <obd_support.h> /* for OBD_FAIL_CHECK */
61 #include <cl_object.h> /* cl_env_{get,put}() */
62 #include <lprocfs_status.h>
63
64 #include "ptlrpc_internal.h"
65
66 /* One of these per CPT. */
67 struct ptlrpcd {
68         int                     pd_size;
69         int                     pd_index;
70         int                     pd_cpt;
71         int                     pd_cursor;
72         int                     pd_nthreads;
73         int                     pd_groupsize;
74         struct ptlrpcd_ctl      pd_threads[0];
75 };
76
77 /*
78  * max_ptlrpcds is obsolete, but retained to ensure that the kernel
79  * module will load on a system where it has been tuned.
80  * A value other than 0 implies it was tuned, in which case the value
81  * is used to derive a setting for ptlrpcd_per_cpt_max.
82  */
83 static int max_ptlrpcds;
84 module_param(max_ptlrpcds, int, 0644);
85 MODULE_PARM_DESC(max_ptlrpcds,
86                  "Max ptlrpcd thread count to be started (obsolete).");
87
88 /*
89  * ptlrpcd_bind_policy is obsolete, but retained to ensure that
90  * the kernel module will load on a system where it has been tuned.
91  * A value other than 0 implies it was tuned, in which case the value
92  * is used to derive a setting for ptlrpcd_partner_group_size.
93  */
94 static int ptlrpcd_bind_policy;
95 module_param(ptlrpcd_bind_policy, int, 0644);
96 MODULE_PARM_DESC(ptlrpcd_bind_policy,
97                  "Ptlrpcd threads binding mode (obsolete).");
98
99 /*
100  * ptlrpcd_per_cpt_max: The maximum number of ptlrpcd threads to run
101  * in a CPT.
102  */
103 static int ptlrpcd_per_cpt_max;
104 module_param(ptlrpcd_per_cpt_max, int, 0644);
105 MODULE_PARM_DESC(ptlrpcd_per_cpt_max,
106                  "Max ptlrpcd thread count to be started per CPT.");
107
108 /*
109  * ptlrpcd_partner_group_size: The desired number of threads in each
110  * ptlrpcd partner thread group. Default is 2, corresponding to the
111  * old PDB_POLICY_PAIR. A negative value makes all ptlrpcd threads in
112  * a CPT partners of each other.
113  */
114 static int ptlrpcd_partner_group_size;
115 module_param(ptlrpcd_partner_group_size, int, 0644);
116 MODULE_PARM_DESC(ptlrpcd_partner_group_size,
117                  "Number of ptlrpcd threads in a partner group.");
118
119 /*
120  * ptlrpcd_cpts: A CPT string describing the CPU partitions that
121  * ptlrpcd threads should run on. Used to make ptlrpcd threads run on
122  * a subset of all CPTs.
123  *
124  * ptlrpcd_cpts=2
125  * ptlrpcd_cpts=[2]
126  *   run ptlrpcd threads only on CPT 2.
127  *
128  * ptlrpcd_cpts=0-3
129  * ptlrpcd_cpts=[0-3]
130  *   run ptlrpcd threads on CPTs 0, 1, 2, and 3.
131  *
132  * ptlrpcd_cpts=[0-3,5,7]
133  *   run ptlrpcd threads on CPTS 0, 1, 2, 3, 5, and 7.
134  */
135 static char *ptlrpcd_cpts;
136 module_param(ptlrpcd_cpts, charp, 0644);
137 MODULE_PARM_DESC(ptlrpcd_cpts,
138                  "CPU partitions ptlrpcd threads should run in");
139
140 /* ptlrpcds_cpt_idx maps cpt numbers to an index in the ptlrpcds array. */
141 static int              *ptlrpcds_cpt_idx;
142
143 /* ptlrpcds_num is the number of entries in the ptlrpcds array. */
144 static int              ptlrpcds_num;
145 static struct ptlrpcd   **ptlrpcds;
146
147 /*
148  * In addition to the regular thread pool above, there is a single
149  * global recovery thread. Recovery isn't critical for performance,
150  * and doesn't block, but must always be able to proceed, and it is
151  * possible that all normal ptlrpcd threads are blocked. Hence the
152  * need for a dedicated thread.
153  */
154 static struct ptlrpcd_ctl ptlrpcd_rcv;
155
156 struct mutex ptlrpcd_mutex;
157 static int ptlrpcd_users = 0;
158
159 void ptlrpcd_wake(struct ptlrpc_request *req)
160 {
161         struct ptlrpc_request_set *set = req->rq_set;
162
163         LASSERT(set != NULL);
164         wake_up(&set->set_waitq);
165 }
166 EXPORT_SYMBOL(ptlrpcd_wake);
167
168 static struct ptlrpcd_ctl *
169 ptlrpcd_select_pc(struct ptlrpc_request *req)
170 {
171         struct ptlrpcd  *pd;
172         int             cpt;
173         int             idx;
174
175         if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
176                 return &ptlrpcd_rcv;
177
178         cpt = cfs_cpt_current(cfs_cpt_tab, 1);
179         if (ptlrpcds_cpt_idx == NULL)
180                 idx = cpt;
181         else
182                 idx = ptlrpcds_cpt_idx[cpt];
183         pd = ptlrpcds[idx];
184
185         /* We do not care whether it is strict load balance. */
186         idx = pd->pd_cursor;
187         if (++idx == pd->pd_nthreads)
188                 idx = 0;
189         pd->pd_cursor = idx;
190
191         return &pd->pd_threads[idx];
192 }
193
194 /**
195  * Move all request from an existing request set to the ptlrpcd queue.
196  * All requests from the set must be in phase RQ_PHASE_NEW.
197  */
198 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
199 {
200         struct list_head *tmp, *pos;
201         struct ptlrpcd_ctl *pc;
202         struct ptlrpc_request_set *new;
203         int count, i;
204
205         pc = ptlrpcd_select_pc(NULL);
206         new = pc->pc_set;
207
208         list_for_each_safe(pos, tmp, &set->set_requests) {
209                 struct ptlrpc_request *req =
210                         list_entry(pos, struct ptlrpc_request,
211                                    rq_set_chain);
212
213                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
214                 req->rq_set = new;
215                 req->rq_queued_time = ktime_get_seconds();
216         }
217
218         spin_lock(&new->set_new_req_lock);
219         list_splice_init(&set->set_requests, &new->set_new_requests);
220         i = atomic_read(&set->set_remaining);
221         count = atomic_add_return(i, &new->set_new_count);
222         atomic_set(&set->set_remaining, 0);
223         spin_unlock(&new->set_new_req_lock);
224         if (count == i) {
225                 wake_up(&new->set_waitq);
226
227                 /*
228                  * XXX: It maybe unnecessary to wakeup all the partners. But to
229                  *      guarantee the async RPC can be processed ASAP, we have
230                  *      no other better choice. It maybe fixed in future.
231                  */
232                 for (i = 0; i < pc->pc_npartners; i++)
233                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
234         }
235 }
236
237 /**
238  * Return transferred RPCs count.
239  */
240 static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
241                                struct ptlrpc_request_set *src)
242 {
243         struct ptlrpc_request *req, *tmp;
244         int rc = 0;
245
246         spin_lock(&src->set_new_req_lock);
247         if (likely(!list_empty(&src->set_new_requests))) {
248                 list_for_each_entry_safe(req, tmp, &src->set_new_requests,
249                                          rq_set_chain)
250                         req->rq_set = des;
251
252                 list_splice_init(&src->set_new_requests,
253                                  &des->set_requests);
254                 rc = atomic_read(&src->set_new_count);
255                 atomic_add(rc, &des->set_remaining);
256                 atomic_set(&src->set_new_count, 0);
257         }
258         spin_unlock(&src->set_new_req_lock);
259         return rc;
260 }
261
262 /**
263  * Requests that are added to the ptlrpcd queue are sent via
264  * ptlrpcd_check->ptlrpc_check_set().
265  */
266 void ptlrpcd_add_req(struct ptlrpc_request *req)
267 {
268         struct ptlrpcd_ctl *pc;
269
270         if (req->rq_reqmsg)
271                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
272
273         spin_lock(&req->rq_lock);
274         if (req->rq_invalid_rqset) {
275                 req->rq_invalid_rqset = 0;
276                 spin_unlock(&req->rq_lock);
277                 if (wait_event_idle_timeout(req->rq_set_waitq,
278                                             req->rq_set == NULL,
279                                             cfs_time_seconds(5)) == 0)
280                         l_wait_event_abortable(req->rq_set_waitq,
281                                                req->rq_set == NULL);
282         } else if (req->rq_set) {
283                 /*
284                  * If we have a vaid "rq_set", just reuse it to avoid double
285                  * linked.
286                  */
287                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
288                 LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
289
290                 /* ptlrpc_check_set will decrease the count */
291                 atomic_inc(&req->rq_set->set_remaining);
292                 spin_unlock(&req->rq_lock);
293                 wake_up(&req->rq_set->set_waitq);
294                 return;
295         } else {
296                 spin_unlock(&req->rq_lock);
297         }
298
299         pc = ptlrpcd_select_pc(req);
300
301         DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s+%d]",
302                   req, pc->pc_name, pc->pc_index);
303
304         ptlrpc_set_add_new_req(pc, req);
305 }
306 EXPORT_SYMBOL(ptlrpcd_add_req);
307
308 static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
309 {
310         atomic_inc(&set->set_refcount);
311 }
312
313 /**
314  * Check if there is more work to do on ptlrpcd set.
315  * Returns 1 if yes.
316  */
317 static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
318 {
319         struct ptlrpc_request *req, *tmp;
320         struct ptlrpc_request_set *set = pc->pc_set;
321         int rc = 0;
322         int rc2;
323
324         ENTRY;
325
326         if (atomic_read(&set->set_new_count)) {
327                 spin_lock(&set->set_new_req_lock);
328                 if (likely(!list_empty(&set->set_new_requests))) {
329                         list_splice_init(&set->set_new_requests,
330                                              &set->set_requests);
331                         atomic_add(atomic_read(&set->set_new_count),
332                                    &set->set_remaining);
333                         atomic_set(&set->set_new_count, 0);
334                         /*
335                          * Need to calculate its timeout.
336                          */
337                         rc = 1;
338                 }
339                 spin_unlock(&set->set_new_req_lock);
340         }
341
342         /*
343          * We should call lu_env_refill() before handling new requests to make
344          * sure that env key the requests depending on really exists.
345          */
346         rc2 = lu_env_refill(env);
347         if (rc2 != 0) {
348                 /*
349                  * XXX This is very awkward situation, because
350                  * execution can neither continue (request
351                  * interpreters assume that env is set up), nor repeat
352                  * the loop (as this potentially results in a tight
353                  * loop of -ENOMEM's).
354                  *
355                  * Fortunately, refill only ever does something when
356                  * new modules are loaded, i.e., early during boot up.
357                  */
358                 CERROR("Failure to refill session: %d\n", rc2);
359                 RETURN(rc);
360         }
361
362         if (atomic_read(&set->set_remaining))
363                 rc |= ptlrpc_check_set(env, set);
364
365         /*
366          * NB: ptlrpc_check_set has already moved complted request at the
367          * head of seq::set_requests
368          */
369         list_for_each_entry_safe(req, tmp, &set->set_requests, rq_set_chain) {
370                 if (req->rq_phase != RQ_PHASE_COMPLETE)
371                         break;
372
373                 list_del_init(&req->rq_set_chain);
374                 req->rq_set = NULL;
375                 ptlrpc_req_finished(req);
376         }
377
378         if (rc == 0) {
379                 /*
380                  * If new requests have been added, make sure to wake up.
381                  */
382                 rc = atomic_read(&set->set_new_count);
383
384                 /*
385                  * If we have nothing to do, check whether we can take some
386                  * work from our partner threads.
387                  */
388                 if (rc == 0 && pc->pc_npartners > 0) {
389                         struct ptlrpcd_ctl *partner;
390                         struct ptlrpc_request_set *ps;
391                         int first = pc->pc_cursor;
392
393                         do {
394                                 partner = pc->pc_partners[pc->pc_cursor++];
395                                 if (pc->pc_cursor >= pc->pc_npartners)
396                                         pc->pc_cursor = 0;
397                                 if (partner == NULL)
398                                         continue;
399
400                                 spin_lock(&partner->pc_lock);
401                                 ps = partner->pc_set;
402                                 if (ps == NULL) {
403                                         spin_unlock(&partner->pc_lock);
404                                         continue;
405                                 }
406
407                                 ptlrpc_reqset_get(ps);
408                                 spin_unlock(&partner->pc_lock);
409
410                                 if (atomic_read(&ps->set_new_count)) {
411                                         rc = ptlrpcd_steal_rqset(set, ps);
412                                         if (rc > 0)
413                                                 CDEBUG(D_RPCTRACE,
414                                                        "transfer %d async RPCs [%d->%d]\n",
415                                                        rc, partner->pc_index,
416                                                        pc->pc_index);
417                                 }
418                                 ptlrpc_reqset_put(ps);
419                         } while (rc == 0 && pc->pc_cursor != first);
420                 }
421         }
422
423         RETURN(rc || test_bit(LIOD_STOP, &pc->pc_flags));
424 }
425
426 /**
427  * Main ptlrpcd thread.
428  * ptlrpc's code paths like to execute in process context, so we have this
429  * thread which spins on a set which contains the rpcs and sends them.
430  */
431 static int ptlrpcd(void *arg)
432 {
433         struct ptlrpcd_ctl              *pc = arg;
434         struct ptlrpc_request_set       *set;
435         struct lu_context               ses = { 0 };
436         struct lu_env                   env = { .le_ses = &ses };
437         int                             rc = 0;
438         int                             exit = 0;
439
440         ENTRY;
441         if (cfs_cpt_bind(cfs_cpt_tab, pc->pc_cpt) != 0)
442                 CWARN("Failed to bind %s on CPT %d\n", pc->pc_name, pc->pc_cpt);
443
444         /*
445          * Allocate the request set after the thread has been bound
446          * above. This is safe because no requests will be queued
447          * until all ptlrpcd threads have confirmed that they have
448          * successfully started.
449          */
450         set = ptlrpc_prep_set();
451         if (set == NULL)
452                 GOTO(failed, rc = -ENOMEM);
453         spin_lock(&pc->pc_lock);
454         pc->pc_set = set;
455         spin_unlock(&pc->pc_lock);
456
457         /* Both client and server (MDT/OST) may use the environment. */
458         rc = lu_context_init(&env.le_ctx, LCT_MD_THREAD |
459                                           LCT_DT_THREAD |
460                                           LCT_CL_THREAD |
461                                           LCT_REMEMBER  |
462                                           LCT_NOREF);
463         if (rc != 0)
464                 GOTO(failed, rc);
465         rc = lu_context_init(env.le_ses, LCT_SESSION  |
466                                          LCT_REMEMBER |
467                                          LCT_NOREF);
468         if (rc != 0) {
469                 lu_context_fini(&env.le_ctx);
470                 GOTO(failed, rc);
471         }
472
473         complete(&pc->pc_starting);
474
475         /*
476          * This mainloop strongly resembles ptlrpc_set_wait() except that our
477          * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
478          * there are requests in the set. New requests come in on the set's
479          * new_req_list and ptlrpcd_check() moves them into the set.
480          */
481         do {
482                 time64_t timeout;
483
484                 timeout = ptlrpc_set_next_timeout(set);
485
486                 lu_context_enter(&env.le_ctx);
487                 lu_context_enter(env.le_ses);
488                 if (timeout == 0)
489                         wait_event_idle(set->set_waitq,
490                                         ptlrpcd_check(&env, pc));
491                 else if (wait_event_idle_timeout(set->set_waitq,
492                                                  ptlrpcd_check(&env, pc),
493                                                  cfs_time_seconds(timeout))
494                          == 0)
495                         ptlrpc_expired_set(set);
496                 lu_context_exit(&env.le_ctx);
497                 lu_context_exit(env.le_ses);
498
499                 /*
500                  * Abort inflight rpcs for forced stop case.
501                  */
502                 if (test_bit(LIOD_STOP, &pc->pc_flags)) {
503                         if (test_bit(LIOD_FORCE, &pc->pc_flags))
504                                 ptlrpc_abort_set(set);
505                         exit++;
506                 }
507
508                 /*
509                  * Let's make one more loop to make sure that ptlrpcd_check()
510                  * copied all raced new rpcs into the set so we can kill them.
511                  */
512         } while (exit < 2);
513
514         /*
515          * Wait for inflight requests to drain.
516          */
517         if (!list_empty(&set->set_requests))
518                 ptlrpc_set_wait(&env, set);
519         lu_context_fini(&env.le_ctx);
520         lu_context_fini(env.le_ses);
521
522         complete(&pc->pc_finishing);
523
524         return 0;
525
526 failed:
527         pc->pc_error = rc;
528         complete(&pc->pc_starting);
529         RETURN(rc);
530 }
531
532 static void ptlrpcd_ctl_init(struct ptlrpcd_ctl *pc, int index, int cpt)
533 {
534         ENTRY;
535
536         pc->pc_index = index;
537         pc->pc_cpt = cpt;
538         init_completion(&pc->pc_starting);
539         init_completion(&pc->pc_finishing);
540         spin_lock_init(&pc->pc_lock);
541
542         if (index < 0) {
543                 /* Recovery thread. */
544                 snprintf(pc->pc_name, sizeof(pc->pc_name), "ptlrpcd_rcv");
545         } else {
546                 /* Regular thread. */
547                 snprintf(pc->pc_name, sizeof(pc->pc_name),
548                          "ptlrpcd_%02d_%02d", cpt, index);
549         }
550
551         EXIT;
552 }
553
554 /* XXX: We want multiple CPU cores to share the async RPC load. So we
555  *      start many ptlrpcd threads. We also want to reduce the ptlrpcd
556  *      overhead caused by data transfer cross-CPU cores. So we bind
557  *      all ptlrpcd threads to a CPT, in the expectation that CPTs
558  *      will be defined in a way that matches these boundaries. Within
559  *      a CPT a ptlrpcd thread can be scheduled on any available core.
560  *
561  *      Each ptlrpcd thread has its own request queue. This can cause
562  *      response delay if the thread is already busy. To help with
563  *      this we define partner threads: these are other threads bound
564  *      to the same CPT which will check for work in each other's
565  *      request queues if they have no work to do.
566  *
567  *      The desired number of partner threads can be tuned by setting
568  *      ptlrpcd_partner_group_size. The default is to create pairs of
569  *      partner threads.
570  */
571 static int ptlrpcd_partners(struct ptlrpcd *pd, int index)
572 {
573         struct ptlrpcd_ctl      *pc;
574         struct ptlrpcd_ctl      **ppc;
575         int                     first;
576         int                     i;
577         int                     rc = 0;
578
579         ENTRY;
580
581         LASSERT(index >= 0 && index < pd->pd_nthreads);
582         pc = &pd->pd_threads[index];
583         pc->pc_npartners = pd->pd_groupsize - 1;
584
585         if (pc->pc_npartners <= 0)
586                 GOTO(out, rc);
587
588         OBD_CPT_ALLOC(pc->pc_partners, cfs_cpt_tab, pc->pc_cpt,
589                       sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
590         if (pc->pc_partners == NULL) {
591                 pc->pc_npartners = 0;
592                 GOTO(out, rc = -ENOMEM);
593         }
594
595         first = index - index % pd->pd_groupsize;
596         ppc = pc->pc_partners;
597         for (i = first; i < first + pd->pd_groupsize; i++) {
598                 if (i != index)
599                         *ppc++ = &pd->pd_threads[i];
600         }
601 out:
602         RETURN(rc);
603 }
604
605 int ptlrpcd_start(struct ptlrpcd_ctl *pc)
606 {
607         struct task_struct      *task;
608         int                     rc = 0;
609
610         ENTRY;
611
612         /*
613          * Do not allow starting a second thread for one pc.
614          */
615         if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
616                 CWARN("Starting second thread (%s) for same pc %p\n",
617                       pc->pc_name, pc);
618                 RETURN(0);
619         }
620
621         task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
622         if (IS_ERR(task))
623                 GOTO(out_set, rc = PTR_ERR(task));
624
625         wait_for_completion(&pc->pc_starting);
626         rc = pc->pc_error;
627         if (rc != 0)
628                 GOTO(out_set, rc);
629
630         RETURN(0);
631
632 out_set:
633         if (pc->pc_set != NULL) {
634                 struct ptlrpc_request_set *set = pc->pc_set;
635
636                 spin_lock(&pc->pc_lock);
637                 pc->pc_set = NULL;
638                 spin_unlock(&pc->pc_lock);
639                 ptlrpc_set_destroy(set);
640         }
641         clear_bit(LIOD_START, &pc->pc_flags);
642         RETURN(rc);
643 }
644
645 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
646 {
647         ENTRY;
648
649         if (!test_bit(LIOD_START, &pc->pc_flags)) {
650                 CWARN("Thread for pc %p was not started\n", pc);
651                 goto out;
652         }
653
654         set_bit(LIOD_STOP, &pc->pc_flags);
655         if (force)
656                 set_bit(LIOD_FORCE, &pc->pc_flags);
657         wake_up(&pc->pc_set->set_waitq);
658
659 out:
660         EXIT;
661 }
662
663 void ptlrpcd_free(struct ptlrpcd_ctl *pc)
664 {
665         struct ptlrpc_request_set *set = pc->pc_set;
666
667         ENTRY;
668
669         if (!test_bit(LIOD_START, &pc->pc_flags)) {
670                 CWARN("Thread for pc %p was not started\n", pc);
671                 goto out;
672         }
673
674         wait_for_completion(&pc->pc_finishing);
675
676         spin_lock(&pc->pc_lock);
677         pc->pc_set = NULL;
678         spin_unlock(&pc->pc_lock);
679         ptlrpc_set_destroy(set);
680
681         clear_bit(LIOD_START, &pc->pc_flags);
682         clear_bit(LIOD_STOP, &pc->pc_flags);
683         clear_bit(LIOD_FORCE, &pc->pc_flags);
684
685 out:
686         if (pc->pc_npartners > 0) {
687                 LASSERT(pc->pc_partners != NULL);
688
689                 OBD_FREE_PTR_ARRAY(pc->pc_partners, pc->pc_npartners);
690                 pc->pc_partners = NULL;
691         }
692         pc->pc_npartners = 0;
693         pc->pc_error = 0;
694         EXIT;
695 }
696
697 static void ptlrpcd_fini(void)
698 {
699         int     i;
700         int     j;
701         int     ncpts;
702
703         ENTRY;
704
705         if (ptlrpcds != NULL) {
706                 for (i = 0; i < ptlrpcds_num; i++) {
707                         if (ptlrpcds[i] == NULL)
708                                 break;
709                         for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
710                                 ptlrpcd_stop(&ptlrpcds[i]->pd_threads[j], 0);
711                         for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
712                                 ptlrpcd_free(&ptlrpcds[i]->pd_threads[j]);
713                         OBD_FREE(ptlrpcds[i], ptlrpcds[i]->pd_size);
714                         ptlrpcds[i] = NULL;
715                 }
716                 OBD_FREE_PTR_ARRAY(ptlrpcds, ptlrpcds_num);
717         }
718         ptlrpcds_num = 0;
719
720         ptlrpcd_stop(&ptlrpcd_rcv, 0);
721         ptlrpcd_free(&ptlrpcd_rcv);
722
723         if (ptlrpcds_cpt_idx != NULL) {
724                 ncpts = cfs_cpt_number(cfs_cpt_tab);
725                 OBD_FREE_PTR_ARRAY(ptlrpcds_cpt_idx, ncpts);
726                 ptlrpcds_cpt_idx = NULL;
727         }
728
729         EXIT;
730 }
731
732 static int ptlrpcd_init(void)
733 {
734         int                     nthreads;
735         int                     groupsize;
736         int                     size;
737         int                     i;
738         int                     j;
739         int                     rc = 0;
740         struct cfs_cpt_table    *cptable;
741         __u32                   *cpts = NULL;
742         int                     ncpts;
743         int                     cpt;
744         struct ptlrpcd          *pd;
745
746         ENTRY;
747
748         /*
749          * Determine the CPTs that ptlrpcd threads will run on.
750          */
751         cptable = cfs_cpt_tab;
752         ncpts = cfs_cpt_number(cptable);
753         if (ptlrpcd_cpts != NULL) {
754                 struct cfs_expr_list *el;
755
756                 size = ncpts * sizeof(ptlrpcds_cpt_idx[0]);
757                 OBD_ALLOC(ptlrpcds_cpt_idx, size);
758                 if (ptlrpcds_cpt_idx == NULL)
759                         GOTO(out, rc = -ENOMEM);
760
761                 rc = cfs_expr_list_parse(ptlrpcd_cpts,
762                                          strlen(ptlrpcd_cpts),
763                                          0, ncpts - 1, &el);
764                 if (rc != 0) {
765                         CERROR("%s: invalid CPT pattern string: %s",
766                                "ptlrpcd_cpts", ptlrpcd_cpts);
767                         GOTO(out, rc = -EINVAL);
768                 }
769
770                 rc = cfs_expr_list_values(el, ncpts, &cpts);
771                 cfs_expr_list_free(el);
772                 if (rc <= 0) {
773                         CERROR("%s: failed to parse CPT array %s: %d\n",
774                                "ptlrpcd_cpts", ptlrpcd_cpts, rc);
775                         if (rc == 0)
776                                 rc = -EINVAL;
777                         GOTO(out, rc);
778                 }
779
780                 /*
781                  * Create the cpt-to-index map. When there is no match
782                  * in the cpt table, pick a cpt at random. This could
783                  * be changed to take the topology of the system into
784                  * account.
785                  */
786                 for (cpt = 0; cpt < ncpts; cpt++) {
787                         for (i = 0; i < rc; i++)
788                                 if (cpts[i] == cpt)
789                                         break;
790                         if (i >= rc)
791                                 i = cpt % rc;
792                         ptlrpcds_cpt_idx[cpt] = i;
793                 }
794
795                 cfs_expr_list_values_free(cpts, rc);
796                 ncpts = rc;
797         }
798         ptlrpcds_num = ncpts;
799
800         size = ncpts * sizeof(ptlrpcds[0]);
801         OBD_ALLOC(ptlrpcds, size);
802         if (ptlrpcds == NULL)
803                 GOTO(out, rc = -ENOMEM);
804
805         /*
806          * The max_ptlrpcds parameter is obsolete, but do something
807          * sane if it has been tuned, and complain if
808          * ptlrpcd_per_cpt_max has also been tuned.
809          */
810         if (max_ptlrpcds != 0) {
811                 CWARN("max_ptlrpcds is obsolete.\n");
812                 if (ptlrpcd_per_cpt_max == 0) {
813                         ptlrpcd_per_cpt_max = max_ptlrpcds / ncpts;
814                         /* Round up if there is a remainder. */
815                         if (max_ptlrpcds % ncpts != 0)
816                                 ptlrpcd_per_cpt_max++;
817                         CWARN("Setting ptlrpcd_per_cpt_max = %d\n",
818                               ptlrpcd_per_cpt_max);
819                 } else {
820                         CWARN("ptlrpd_per_cpt_max is also set!\n");
821                 }
822         }
823
824         /*
825          * The ptlrpcd_bind_policy parameter is obsolete, but do
826          * something sane if it has been tuned, and complain if
827          * ptlrpcd_partner_group_size is also tuned.
828          */
829         if (ptlrpcd_bind_policy != 0) {
830                 CWARN("ptlrpcd_bind_policy is obsolete.\n");
831                 if (ptlrpcd_partner_group_size == 0) {
832                         switch (ptlrpcd_bind_policy) {
833                         case 1: /* PDB_POLICY_NONE */
834                         case 2: /* PDB_POLICY_FULL */
835                                 ptlrpcd_partner_group_size = 1;
836                                 break;
837                         case 3: /* PDB_POLICY_PAIR */
838                                 ptlrpcd_partner_group_size = 2;
839                                 break;
840                         case 4: /* PDB_POLICY_NEIGHBOR */
841 #ifdef CONFIG_NUMA
842                                 ptlrpcd_partner_group_size = -1; /* CPT */
843 #else
844                                 ptlrpcd_partner_group_size = 3; /* Triplets */
845 #endif
846                                 break;
847                         default: /* Illegal value, use the default. */
848                                 ptlrpcd_partner_group_size = 2;
849                                 break;
850                         }
851                         CWARN("Setting ptlrpcd_partner_group_size = %d\n",
852                               ptlrpcd_partner_group_size);
853                 } else {
854                         CWARN("ptlrpcd_partner_group_size is also set!\n");
855                 }
856         }
857
858         if (ptlrpcd_partner_group_size == 0)
859                 ptlrpcd_partner_group_size = 2;
860         else if (ptlrpcd_partner_group_size < 0)
861                 ptlrpcd_partner_group_size = -1;
862         else if (ptlrpcd_per_cpt_max > 0 &&
863                  ptlrpcd_partner_group_size > ptlrpcd_per_cpt_max)
864                 ptlrpcd_partner_group_size = ptlrpcd_per_cpt_max;
865
866         /*
867          * Start the recovery thread first.
868          */
869         set_bit(LIOD_RECOVERY, &ptlrpcd_rcv.pc_flags);
870         ptlrpcd_ctl_init(&ptlrpcd_rcv, -1, CFS_CPT_ANY);
871         rc = ptlrpcd_start(&ptlrpcd_rcv);
872         if (rc < 0)
873                 GOTO(out, rc);
874
875         for (i = 0; i < ncpts; i++) {
876                 if (cpts == NULL)
877                         cpt = i;
878                 else
879                         cpt = cpts[i];
880
881                 nthreads = cfs_cpt_weight(cptable, cpt);
882                 if (ptlrpcd_per_cpt_max > 0 && ptlrpcd_per_cpt_max < nthreads)
883                         nthreads = ptlrpcd_per_cpt_max;
884                 if (nthreads < 2)
885                         nthreads = 2;
886
887                 if (ptlrpcd_partner_group_size <= 0) {
888                         groupsize = nthreads;
889                 } else if (nthreads <= ptlrpcd_partner_group_size) {
890                         groupsize = nthreads;
891                 } else {
892                         groupsize = ptlrpcd_partner_group_size;
893                         if (nthreads % groupsize != 0)
894                                 nthreads += groupsize - (nthreads % groupsize);
895                 }
896
897                 size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
898                 OBD_CPT_ALLOC(pd, cptable, cpt, size);
899
900                 if (!pd)
901                         GOTO(out, rc = -ENOMEM);
902                 pd->pd_size      = size;
903                 pd->pd_index     = i;
904                 pd->pd_cpt       = cpt;
905                 pd->pd_cursor    = 0;
906                 pd->pd_nthreads  = nthreads;
907                 pd->pd_groupsize = groupsize;
908                 ptlrpcds[i] = pd;
909
910                 /*
911                  * The ptlrpcd threads in a partner group can access
912                  * each other's struct ptlrpcd_ctl, so these must be
913                  * initialized before any thead is started.
914                  */
915                 for (j = 0; j < nthreads; j++) {
916                         ptlrpcd_ctl_init(&pd->pd_threads[j], j, cpt);
917                         rc = ptlrpcd_partners(pd, j);
918                         if (rc < 0)
919                                 GOTO(out, rc);
920                 }
921
922                 /* XXX: We start nthreads ptlrpc daemons on this cpt.
923                  *      Each of them can process any non-recovery
924                  *      async RPC to improve overall async RPC
925                  *      efficiency.
926                  *
927                  *      But there are some issues with async I/O RPCs
928                  *      and async non-I/O RPCs processed in the same
929                  *      set under some cases. The ptlrpcd may be
930                  *      blocked by some async I/O RPC(s), then will
931                  *      cause other async non-I/O RPC(s) can not be
932                  *      processed in time.
933                  *
934                  *      Maybe we should distinguish blocked async RPCs
935                  *      from non-blocked async RPCs, and process them
936                  *      in different ptlrpcd sets to avoid unnecessary
937                  *      dependency. But how to distribute async RPCs
938                  *      load among all the ptlrpc daemons becomes
939                  *      another trouble.
940                  */
941                 for (j = 0; j < nthreads; j++) {
942                         rc = ptlrpcd_start(&pd->pd_threads[j]);
943                         if (rc < 0)
944                                 GOTO(out, rc);
945                 }
946         }
947 out:
948         if (rc != 0)
949                 ptlrpcd_fini();
950
951         RETURN(rc);
952 }
953
954 int ptlrpcd_addref(void)
955 {
956         int rc = 0;
957
958         ENTRY;
959
960         mutex_lock(&ptlrpcd_mutex);
961         if (++ptlrpcd_users == 1) {
962                 rc = ptlrpcd_init();
963                 if (rc < 0)
964                         ptlrpcd_users--;
965         }
966         mutex_unlock(&ptlrpcd_mutex);
967         RETURN(rc);
968 }
969 EXPORT_SYMBOL(ptlrpcd_addref);
970
971 void ptlrpcd_decref(void)
972 {
973         mutex_lock(&ptlrpcd_mutex);
974         if (--ptlrpcd_users == 0)
975                 ptlrpcd_fini();
976         mutex_unlock(&ptlrpcd_mutex);
977 }
978 EXPORT_SYMBOL(ptlrpcd_decref);
979 /** @} ptlrpcd */