Whamcloud - gitweb
LU-6142 lustre: ptlrpc: don't use list_for_each_entry_safe unnecessarily.
[fs/lustre-release.git] / lustre / ptlrpc / ptlrpcd.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/ptlrpc/ptlrpcd.c
33  */
34
35 /** \defgroup ptlrpcd PortalRPC daemon
36  *
37  * ptlrpcd is a special thread with its own set where other user might add
38  * requests when they don't want to wait for their completion.
39  * PtlRPCD will take care of sending such requests and then processing their
40  * replies and calling completion callbacks as necessary.
41  * The callbacks are called directly from ptlrpcd context.
42  * It is important to never significantly block (esp. on RPCs!) within such
43  * completion handler or a deadlock might occur where ptlrpcd enters some
44  * callback that attempts to send another RPC and wait for it to return,
45  * during which time ptlrpcd is completely blocked, so e.g. if import
46  * fails, recovery cannot progress because connection requests are also
47  * sent by ptlrpcd.
48  *
49  * @{
50  */
51
52 #define DEBUG_SUBSYSTEM S_RPC
53
54 #include <linux/kthread.h>
55 #include <libcfs/libcfs.h>
56 #include <lustre_net.h>
57 #include <lustre_lib.h>
58 #include <lustre_ha.h>
59 #include <obd_class.h>   /* for obd_zombie */
60 #include <obd_support.h> /* for OBD_FAIL_CHECK */
61 #include <cl_object.h> /* cl_env_{get,put}() */
62 #include <lprocfs_status.h>
63
64 #include "ptlrpc_internal.h"
65
66 /* One of these per CPT. */
67 struct ptlrpcd {
68         int                     pd_size;
69         int                     pd_index;
70         int                     pd_cpt;
71         int                     pd_cursor;
72         int                     pd_nthreads;
73         int                     pd_groupsize;
74         struct ptlrpcd_ctl      pd_threads[0];
75 };
76
77 /*
78  * max_ptlrpcds is obsolete, but retained to ensure that the kernel
79  * module will load on a system where it has been tuned.
80  * A value other than 0 implies it was tuned, in which case the value
81  * is used to derive a setting for ptlrpcd_per_cpt_max.
82  */
83 static int max_ptlrpcds;
84 module_param(max_ptlrpcds, int, 0644);
85 MODULE_PARM_DESC(max_ptlrpcds,
86                  "Max ptlrpcd thread count to be started (obsolete).");
87
88 /*
89  * ptlrpcd_bind_policy is obsolete, but retained to ensure that
90  * the kernel module will load on a system where it has been tuned.
91  * A value other than 0 implies it was tuned, in which case the value
92  * is used to derive a setting for ptlrpcd_partner_group_size.
93  */
94 static int ptlrpcd_bind_policy;
95 module_param(ptlrpcd_bind_policy, int, 0644);
96 MODULE_PARM_DESC(ptlrpcd_bind_policy,
97                  "Ptlrpcd threads binding mode (obsolete).");
98
99 /*
100  * ptlrpcd_per_cpt_max: The maximum number of ptlrpcd threads to run
101  * in a CPT.
102  */
103 static int ptlrpcd_per_cpt_max;
104 module_param(ptlrpcd_per_cpt_max, int, 0644);
105 MODULE_PARM_DESC(ptlrpcd_per_cpt_max,
106                  "Max ptlrpcd thread count to be started per CPT.");
107
108 /*
109  * ptlrpcd_partner_group_size: The desired number of threads in each
110  * ptlrpcd partner thread group. Default is 2, corresponding to the
111  * old PDB_POLICY_PAIR. A negative value makes all ptlrpcd threads in
112  * a CPT partners of each other.
113  */
114 static int ptlrpcd_partner_group_size;
115 module_param(ptlrpcd_partner_group_size, int, 0644);
116 MODULE_PARM_DESC(ptlrpcd_partner_group_size,
117                  "Number of ptlrpcd threads in a partner group.");
118
119 /*
120  * ptlrpcd_cpts: A CPT string describing the CPU partitions that
121  * ptlrpcd threads should run on. Used to make ptlrpcd threads run on
122  * a subset of all CPTs.
123  *
124  * ptlrpcd_cpts=2
125  * ptlrpcd_cpts=[2]
126  *   run ptlrpcd threads only on CPT 2.
127  *
128  * ptlrpcd_cpts=0-3
129  * ptlrpcd_cpts=[0-3]
130  *   run ptlrpcd threads on CPTs 0, 1, 2, and 3.
131  *
132  * ptlrpcd_cpts=[0-3,5,7]
133  *   run ptlrpcd threads on CPTS 0, 1, 2, 3, 5, and 7.
134  */
135 static char *ptlrpcd_cpts;
136 module_param(ptlrpcd_cpts, charp, 0644);
137 MODULE_PARM_DESC(ptlrpcd_cpts,
138                  "CPU partitions ptlrpcd threads should run in");
139
140 /* ptlrpcds_cpt_idx maps cpt numbers to an index in the ptlrpcds array. */
141 static int              *ptlrpcds_cpt_idx;
142
143 /* ptlrpcds_num is the number of entries in the ptlrpcds array. */
144 static int              ptlrpcds_num;
145 static struct ptlrpcd   **ptlrpcds;
146
147 /*
148  * In addition to the regular thread pool above, there is a single
149  * global recovery thread. Recovery isn't critical for performance,
150  * and doesn't block, but must always be able to proceed, and it is
151  * possible that all normal ptlrpcd threads are blocked. Hence the
152  * need for a dedicated thread.
153  */
154 static struct ptlrpcd_ctl ptlrpcd_rcv;
155
156 struct mutex ptlrpcd_mutex;
157 static int ptlrpcd_users = 0;
158
159 void ptlrpcd_wake(struct ptlrpc_request *req)
160 {
161         struct ptlrpc_request_set *set = req->rq_set;
162
163         LASSERT(set != NULL);
164         wake_up(&set->set_waitq);
165 }
166 EXPORT_SYMBOL(ptlrpcd_wake);
167
168 static struct ptlrpcd_ctl *
169 ptlrpcd_select_pc(struct ptlrpc_request *req)
170 {
171         struct ptlrpcd  *pd;
172         int             cpt;
173         int             idx;
174
175         if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
176                 return &ptlrpcd_rcv;
177
178         cpt = cfs_cpt_current(cfs_cpt_tab, 1);
179         if (ptlrpcds_cpt_idx == NULL)
180                 idx = cpt;
181         else
182                 idx = ptlrpcds_cpt_idx[cpt];
183         pd = ptlrpcds[idx];
184
185         /* We do not care whether it is strict load balance. */
186         idx = pd->pd_cursor;
187         if (++idx == pd->pd_nthreads)
188                 idx = 0;
189         pd->pd_cursor = idx;
190
191         return &pd->pd_threads[idx];
192 }
193
194 /**
195  * Move all request from an existing request set to the ptlrpcd queue.
196  * All requests from the set must be in phase RQ_PHASE_NEW.
197  */
198 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
199 {
200         struct list_head *tmp, *pos;
201         struct ptlrpcd_ctl *pc;
202         struct ptlrpc_request_set *new;
203         int count, i;
204
205         pc = ptlrpcd_select_pc(NULL);
206         new = pc->pc_set;
207
208         list_for_each_safe(pos, tmp, &set->set_requests) {
209                 struct ptlrpc_request *req =
210                         list_entry(pos, struct ptlrpc_request,
211                                    rq_set_chain);
212
213                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
214                 req->rq_set = new;
215                 req->rq_queued_time = ktime_get_seconds();
216         }
217
218         spin_lock(&new->set_new_req_lock);
219         list_splice_init(&set->set_requests, &new->set_new_requests);
220         i = atomic_read(&set->set_remaining);
221         count = atomic_add_return(i, &new->set_new_count);
222         atomic_set(&set->set_remaining, 0);
223         spin_unlock(&new->set_new_req_lock);
224         if (count == i) {
225                 wake_up(&new->set_waitq);
226
227                 /*
228                  * XXX: It maybe unnecessary to wakeup all the partners. But to
229                  *      guarantee the async RPC can be processed ASAP, we have
230                  *      no other better choice. It maybe fixed in future.
231                  */
232                 for (i = 0; i < pc->pc_npartners; i++)
233                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
234         }
235 }
236
237 /**
238  * Return transferred RPCs count.
239  */
240 static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
241                                struct ptlrpc_request_set *src)
242 {
243         struct ptlrpc_request *req;
244         int rc = 0;
245
246         spin_lock(&src->set_new_req_lock);
247         if (likely(!list_empty(&src->set_new_requests))) {
248                 list_for_each_entry(req, &src->set_new_requests, rq_set_chain)
249                         req->rq_set = des;
250
251                 list_splice_init(&src->set_new_requests,
252                                  &des->set_requests);
253                 rc = atomic_read(&src->set_new_count);
254                 atomic_add(rc, &des->set_remaining);
255                 atomic_set(&src->set_new_count, 0);
256         }
257         spin_unlock(&src->set_new_req_lock);
258         return rc;
259 }
260
261 /**
262  * Requests that are added to the ptlrpcd queue are sent via
263  * ptlrpcd_check->ptlrpc_check_set().
264  */
265 void ptlrpcd_add_req(struct ptlrpc_request *req)
266 {
267         struct ptlrpcd_ctl *pc;
268
269         if (req->rq_reqmsg)
270                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
271
272         spin_lock(&req->rq_lock);
273         if (req->rq_invalid_rqset) {
274                 req->rq_invalid_rqset = 0;
275                 spin_unlock(&req->rq_lock);
276                 if (wait_event_idle_timeout(req->rq_set_waitq,
277                                             req->rq_set == NULL,
278                                             cfs_time_seconds(5)) == 0)
279                         l_wait_event_abortable(req->rq_set_waitq,
280                                                req->rq_set == NULL);
281         } else if (req->rq_set) {
282                 /*
283                  * If we have a vaid "rq_set", just reuse it to avoid double
284                  * linked.
285                  */
286                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
287                 LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
288
289                 /* ptlrpc_check_set will decrease the count */
290                 atomic_inc(&req->rq_set->set_remaining);
291                 spin_unlock(&req->rq_lock);
292                 wake_up(&req->rq_set->set_waitq);
293                 return;
294         } else {
295                 spin_unlock(&req->rq_lock);
296         }
297
298         pc = ptlrpcd_select_pc(req);
299
300         DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s+%d]",
301                   req, pc->pc_name, pc->pc_index);
302
303         ptlrpc_set_add_new_req(pc, req);
304 }
305 EXPORT_SYMBOL(ptlrpcd_add_req);
306
307 static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
308 {
309         atomic_inc(&set->set_refcount);
310 }
311
312 /**
313  * Check if there is more work to do on ptlrpcd set.
314  * Returns 1 if yes.
315  */
316 static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
317 {
318         struct ptlrpc_request *req, *tmp;
319         struct ptlrpc_request_set *set = pc->pc_set;
320         int rc = 0;
321         int rc2;
322
323         ENTRY;
324
325         if (atomic_read(&set->set_new_count)) {
326                 spin_lock(&set->set_new_req_lock);
327                 if (likely(!list_empty(&set->set_new_requests))) {
328                         list_splice_init(&set->set_new_requests,
329                                              &set->set_requests);
330                         atomic_add(atomic_read(&set->set_new_count),
331                                    &set->set_remaining);
332                         atomic_set(&set->set_new_count, 0);
333                         /*
334                          * Need to calculate its timeout.
335                          */
336                         rc = 1;
337                 }
338                 spin_unlock(&set->set_new_req_lock);
339         }
340
341         /*
342          * We should call lu_env_refill() before handling new requests to make
343          * sure that env key the requests depending on really exists.
344          */
345         rc2 = lu_env_refill(env);
346         if (rc2 != 0) {
347                 /*
348                  * XXX This is very awkward situation, because
349                  * execution can neither continue (request
350                  * interpreters assume that env is set up), nor repeat
351                  * the loop (as this potentially results in a tight
352                  * loop of -ENOMEM's).
353                  *
354                  * Fortunately, refill only ever does something when
355                  * new modules are loaded, i.e., early during boot up.
356                  */
357                 CERROR("Failure to refill session: %d\n", rc2);
358                 RETURN(rc);
359         }
360
361         if (atomic_read(&set->set_remaining))
362                 rc |= ptlrpc_check_set(env, set);
363
364         /*
365          * NB: ptlrpc_check_set has already moved complted request at the
366          * head of seq::set_requests
367          */
368         list_for_each_entry_safe(req, tmp, &set->set_requests, rq_set_chain) {
369                 if (req->rq_phase != RQ_PHASE_COMPLETE)
370                         break;
371
372                 list_del_init(&req->rq_set_chain);
373                 req->rq_set = NULL;
374                 ptlrpc_req_finished(req);
375         }
376
377         if (rc == 0) {
378                 /*
379                  * If new requests have been added, make sure to wake up.
380                  */
381                 rc = atomic_read(&set->set_new_count);
382
383                 /*
384                  * If we have nothing to do, check whether we can take some
385                  * work from our partner threads.
386                  */
387                 if (rc == 0 && pc->pc_npartners > 0) {
388                         struct ptlrpcd_ctl *partner;
389                         struct ptlrpc_request_set *ps;
390                         int first = pc->pc_cursor;
391
392                         do {
393                                 partner = pc->pc_partners[pc->pc_cursor++];
394                                 if (pc->pc_cursor >= pc->pc_npartners)
395                                         pc->pc_cursor = 0;
396                                 if (partner == NULL)
397                                         continue;
398
399                                 spin_lock(&partner->pc_lock);
400                                 ps = partner->pc_set;
401                                 if (ps == NULL) {
402                                         spin_unlock(&partner->pc_lock);
403                                         continue;
404                                 }
405
406                                 ptlrpc_reqset_get(ps);
407                                 spin_unlock(&partner->pc_lock);
408
409                                 if (atomic_read(&ps->set_new_count)) {
410                                         rc = ptlrpcd_steal_rqset(set, ps);
411                                         if (rc > 0)
412                                                 CDEBUG(D_RPCTRACE,
413                                                        "transfer %d async RPCs [%d->%d]\n",
414                                                        rc, partner->pc_index,
415                                                        pc->pc_index);
416                                 }
417                                 ptlrpc_reqset_put(ps);
418                         } while (rc == 0 && pc->pc_cursor != first);
419                 }
420         }
421
422         RETURN(rc || test_bit(LIOD_STOP, &pc->pc_flags));
423 }
424
425 /**
426  * Main ptlrpcd thread.
427  * ptlrpc's code paths like to execute in process context, so we have this
428  * thread which spins on a set which contains the rpcs and sends them.
429  */
430 static int ptlrpcd(void *arg)
431 {
432         struct ptlrpcd_ctl              *pc = arg;
433         struct ptlrpc_request_set       *set;
434         struct lu_context               ses = { 0 };
435         struct lu_env                   env = { .le_ses = &ses };
436         int                             rc = 0;
437         int                             exit = 0;
438
439         ENTRY;
440         if (cfs_cpt_bind(cfs_cpt_tab, pc->pc_cpt) != 0)
441                 CWARN("Failed to bind %s on CPT %d\n", pc->pc_name, pc->pc_cpt);
442
443         /*
444          * Allocate the request set after the thread has been bound
445          * above. This is safe because no requests will be queued
446          * until all ptlrpcd threads have confirmed that they have
447          * successfully started.
448          */
449         set = ptlrpc_prep_set();
450         if (set == NULL)
451                 GOTO(failed, rc = -ENOMEM);
452         spin_lock(&pc->pc_lock);
453         pc->pc_set = set;
454         spin_unlock(&pc->pc_lock);
455
456         /* Both client and server (MDT/OST) may use the environment. */
457         rc = lu_context_init(&env.le_ctx, LCT_MD_THREAD |
458                                           LCT_DT_THREAD |
459                                           LCT_CL_THREAD |
460                                           LCT_REMEMBER  |
461                                           LCT_NOREF);
462         if (rc != 0)
463                 GOTO(failed, rc);
464         rc = lu_context_init(env.le_ses, LCT_SESSION  |
465                                          LCT_REMEMBER |
466                                          LCT_NOREF);
467         if (rc != 0) {
468                 lu_context_fini(&env.le_ctx);
469                 GOTO(failed, rc);
470         }
471
472         complete(&pc->pc_starting);
473
474         /*
475          * This mainloop strongly resembles ptlrpc_set_wait() except that our
476          * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
477          * there are requests in the set. New requests come in on the set's
478          * new_req_list and ptlrpcd_check() moves them into the set.
479          */
480         do {
481                 time64_t timeout;
482
483                 timeout = ptlrpc_set_next_timeout(set);
484
485                 lu_context_enter(&env.le_ctx);
486                 lu_context_enter(env.le_ses);
487                 if (timeout == 0)
488                         wait_event_idle(set->set_waitq,
489                                         ptlrpcd_check(&env, pc));
490                 else if (wait_event_idle_timeout(set->set_waitq,
491                                                  ptlrpcd_check(&env, pc),
492                                                  cfs_time_seconds(timeout))
493                          == 0)
494                         ptlrpc_expired_set(set);
495                 lu_context_exit(&env.le_ctx);
496                 lu_context_exit(env.le_ses);
497
498                 /*
499                  * Abort inflight rpcs for forced stop case.
500                  */
501                 if (test_bit(LIOD_STOP, &pc->pc_flags)) {
502                         if (test_bit(LIOD_FORCE, &pc->pc_flags))
503                                 ptlrpc_abort_set(set);
504                         exit++;
505                 }
506
507                 /*
508                  * Let's make one more loop to make sure that ptlrpcd_check()
509                  * copied all raced new rpcs into the set so we can kill them.
510                  */
511         } while (exit < 2);
512
513         /*
514          * Wait for inflight requests to drain.
515          */
516         if (!list_empty(&set->set_requests))
517                 ptlrpc_set_wait(&env, set);
518         lu_context_fini(&env.le_ctx);
519         lu_context_fini(env.le_ses);
520
521         complete(&pc->pc_finishing);
522
523         return 0;
524
525 failed:
526         pc->pc_error = rc;
527         complete(&pc->pc_starting);
528         RETURN(rc);
529 }
530
531 static void ptlrpcd_ctl_init(struct ptlrpcd_ctl *pc, int index, int cpt)
532 {
533         ENTRY;
534
535         pc->pc_index = index;
536         pc->pc_cpt = cpt;
537         init_completion(&pc->pc_starting);
538         init_completion(&pc->pc_finishing);
539         spin_lock_init(&pc->pc_lock);
540
541         if (index < 0) {
542                 /* Recovery thread. */
543                 snprintf(pc->pc_name, sizeof(pc->pc_name), "ptlrpcd_rcv");
544         } else {
545                 /* Regular thread. */
546                 snprintf(pc->pc_name, sizeof(pc->pc_name),
547                          "ptlrpcd_%02d_%02d", cpt, index);
548         }
549
550         EXIT;
551 }
552
553 /* XXX: We want multiple CPU cores to share the async RPC load. So we
554  *      start many ptlrpcd threads. We also want to reduce the ptlrpcd
555  *      overhead caused by data transfer cross-CPU cores. So we bind
556  *      all ptlrpcd threads to a CPT, in the expectation that CPTs
557  *      will be defined in a way that matches these boundaries. Within
558  *      a CPT a ptlrpcd thread can be scheduled on any available core.
559  *
560  *      Each ptlrpcd thread has its own request queue. This can cause
561  *      response delay if the thread is already busy. To help with
562  *      this we define partner threads: these are other threads bound
563  *      to the same CPT which will check for work in each other's
564  *      request queues if they have no work to do.
565  *
566  *      The desired number of partner threads can be tuned by setting
567  *      ptlrpcd_partner_group_size. The default is to create pairs of
568  *      partner threads.
569  */
570 static int ptlrpcd_partners(struct ptlrpcd *pd, int index)
571 {
572         struct ptlrpcd_ctl      *pc;
573         struct ptlrpcd_ctl      **ppc;
574         int                     first;
575         int                     i;
576         int                     rc = 0;
577
578         ENTRY;
579
580         LASSERT(index >= 0 && index < pd->pd_nthreads);
581         pc = &pd->pd_threads[index];
582         pc->pc_npartners = pd->pd_groupsize - 1;
583
584         if (pc->pc_npartners <= 0)
585                 GOTO(out, rc);
586
587         OBD_CPT_ALLOC(pc->pc_partners, cfs_cpt_tab, pc->pc_cpt,
588                       sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
589         if (pc->pc_partners == NULL) {
590                 pc->pc_npartners = 0;
591                 GOTO(out, rc = -ENOMEM);
592         }
593
594         first = index - index % pd->pd_groupsize;
595         ppc = pc->pc_partners;
596         for (i = first; i < first + pd->pd_groupsize; i++) {
597                 if (i != index)
598                         *ppc++ = &pd->pd_threads[i];
599         }
600 out:
601         RETURN(rc);
602 }
603
604 int ptlrpcd_start(struct ptlrpcd_ctl *pc)
605 {
606         struct task_struct      *task;
607         int                     rc = 0;
608
609         ENTRY;
610
611         /*
612          * Do not allow starting a second thread for one pc.
613          */
614         if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
615                 CWARN("Starting second thread (%s) for same pc %p\n",
616                       pc->pc_name, pc);
617                 RETURN(0);
618         }
619
620         task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
621         if (IS_ERR(task))
622                 GOTO(out_set, rc = PTR_ERR(task));
623
624         wait_for_completion(&pc->pc_starting);
625         rc = pc->pc_error;
626         if (rc != 0)
627                 GOTO(out_set, rc);
628
629         RETURN(0);
630
631 out_set:
632         if (pc->pc_set != NULL) {
633                 struct ptlrpc_request_set *set = pc->pc_set;
634
635                 spin_lock(&pc->pc_lock);
636                 pc->pc_set = NULL;
637                 spin_unlock(&pc->pc_lock);
638                 ptlrpc_set_destroy(set);
639         }
640         clear_bit(LIOD_START, &pc->pc_flags);
641         RETURN(rc);
642 }
643
644 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
645 {
646         ENTRY;
647
648         if (!test_bit(LIOD_START, &pc->pc_flags)) {
649                 CWARN("Thread for pc %p was not started\n", pc);
650                 goto out;
651         }
652
653         set_bit(LIOD_STOP, &pc->pc_flags);
654         if (force)
655                 set_bit(LIOD_FORCE, &pc->pc_flags);
656         wake_up(&pc->pc_set->set_waitq);
657
658 out:
659         EXIT;
660 }
661
662 void ptlrpcd_free(struct ptlrpcd_ctl *pc)
663 {
664         struct ptlrpc_request_set *set = pc->pc_set;
665
666         ENTRY;
667
668         if (!test_bit(LIOD_START, &pc->pc_flags)) {
669                 CWARN("Thread for pc %p was not started\n", pc);
670                 goto out;
671         }
672
673         wait_for_completion(&pc->pc_finishing);
674
675         spin_lock(&pc->pc_lock);
676         pc->pc_set = NULL;
677         spin_unlock(&pc->pc_lock);
678         ptlrpc_set_destroy(set);
679
680         clear_bit(LIOD_START, &pc->pc_flags);
681         clear_bit(LIOD_STOP, &pc->pc_flags);
682         clear_bit(LIOD_FORCE, &pc->pc_flags);
683
684 out:
685         if (pc->pc_npartners > 0) {
686                 LASSERT(pc->pc_partners != NULL);
687
688                 OBD_FREE_PTR_ARRAY(pc->pc_partners, pc->pc_npartners);
689                 pc->pc_partners = NULL;
690         }
691         pc->pc_npartners = 0;
692         pc->pc_error = 0;
693         EXIT;
694 }
695
696 static void ptlrpcd_fini(void)
697 {
698         int     i;
699         int     j;
700         int     ncpts;
701
702         ENTRY;
703
704         if (ptlrpcds != NULL) {
705                 for (i = 0; i < ptlrpcds_num; i++) {
706                         if (ptlrpcds[i] == NULL)
707                                 break;
708                         for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
709                                 ptlrpcd_stop(&ptlrpcds[i]->pd_threads[j], 0);
710                         for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
711                                 ptlrpcd_free(&ptlrpcds[i]->pd_threads[j]);
712                         OBD_FREE(ptlrpcds[i], ptlrpcds[i]->pd_size);
713                         ptlrpcds[i] = NULL;
714                 }
715                 OBD_FREE_PTR_ARRAY(ptlrpcds, ptlrpcds_num);
716         }
717         ptlrpcds_num = 0;
718
719         ptlrpcd_stop(&ptlrpcd_rcv, 0);
720         ptlrpcd_free(&ptlrpcd_rcv);
721
722         if (ptlrpcds_cpt_idx != NULL) {
723                 ncpts = cfs_cpt_number(cfs_cpt_tab);
724                 OBD_FREE_PTR_ARRAY(ptlrpcds_cpt_idx, ncpts);
725                 ptlrpcds_cpt_idx = NULL;
726         }
727
728         EXIT;
729 }
730
731 static int ptlrpcd_init(void)
732 {
733         int                     nthreads;
734         int                     groupsize;
735         int                     size;
736         int                     i;
737         int                     j;
738         int                     rc = 0;
739         struct cfs_cpt_table    *cptable;
740         __u32                   *cpts = NULL;
741         int                     ncpts;
742         int                     cpt;
743         struct ptlrpcd          *pd;
744
745         ENTRY;
746
747         /*
748          * Determine the CPTs that ptlrpcd threads will run on.
749          */
750         cptable = cfs_cpt_tab;
751         ncpts = cfs_cpt_number(cptable);
752         if (ptlrpcd_cpts != NULL) {
753                 struct cfs_expr_list *el;
754
755                 size = ncpts * sizeof(ptlrpcds_cpt_idx[0]);
756                 OBD_ALLOC(ptlrpcds_cpt_idx, size);
757                 if (ptlrpcds_cpt_idx == NULL)
758                         GOTO(out, rc = -ENOMEM);
759
760                 rc = cfs_expr_list_parse(ptlrpcd_cpts,
761                                          strlen(ptlrpcd_cpts),
762                                          0, ncpts - 1, &el);
763                 if (rc != 0) {
764                         CERROR("%s: invalid CPT pattern string: %s",
765                                "ptlrpcd_cpts", ptlrpcd_cpts);
766                         GOTO(out, rc = -EINVAL);
767                 }
768
769                 rc = cfs_expr_list_values(el, ncpts, &cpts);
770                 cfs_expr_list_free(el);
771                 if (rc <= 0) {
772                         CERROR("%s: failed to parse CPT array %s: %d\n",
773                                "ptlrpcd_cpts", ptlrpcd_cpts, rc);
774                         if (rc == 0)
775                                 rc = -EINVAL;
776                         GOTO(out, rc);
777                 }
778
779                 /*
780                  * Create the cpt-to-index map. When there is no match
781                  * in the cpt table, pick a cpt at random. This could
782                  * be changed to take the topology of the system into
783                  * account.
784                  */
785                 for (cpt = 0; cpt < ncpts; cpt++) {
786                         for (i = 0; i < rc; i++)
787                                 if (cpts[i] == cpt)
788                                         break;
789                         if (i >= rc)
790                                 i = cpt % rc;
791                         ptlrpcds_cpt_idx[cpt] = i;
792                 }
793
794                 cfs_expr_list_values_free(cpts, rc);
795                 ncpts = rc;
796         }
797         ptlrpcds_num = ncpts;
798
799         size = ncpts * sizeof(ptlrpcds[0]);
800         OBD_ALLOC(ptlrpcds, size);
801         if (ptlrpcds == NULL)
802                 GOTO(out, rc = -ENOMEM);
803
804         /*
805          * The max_ptlrpcds parameter is obsolete, but do something
806          * sane if it has been tuned, and complain if
807          * ptlrpcd_per_cpt_max has also been tuned.
808          */
809         if (max_ptlrpcds != 0) {
810                 CWARN("max_ptlrpcds is obsolete.\n");
811                 if (ptlrpcd_per_cpt_max == 0) {
812                         ptlrpcd_per_cpt_max = max_ptlrpcds / ncpts;
813                         /* Round up if there is a remainder. */
814                         if (max_ptlrpcds % ncpts != 0)
815                                 ptlrpcd_per_cpt_max++;
816                         CWARN("Setting ptlrpcd_per_cpt_max = %d\n",
817                               ptlrpcd_per_cpt_max);
818                 } else {
819                         CWARN("ptlrpd_per_cpt_max is also set!\n");
820                 }
821         }
822
823         /*
824          * The ptlrpcd_bind_policy parameter is obsolete, but do
825          * something sane if it has been tuned, and complain if
826          * ptlrpcd_partner_group_size is also tuned.
827          */
828         if (ptlrpcd_bind_policy != 0) {
829                 CWARN("ptlrpcd_bind_policy is obsolete.\n");
830                 if (ptlrpcd_partner_group_size == 0) {
831                         switch (ptlrpcd_bind_policy) {
832                         case 1: /* PDB_POLICY_NONE */
833                         case 2: /* PDB_POLICY_FULL */
834                                 ptlrpcd_partner_group_size = 1;
835                                 break;
836                         case 3: /* PDB_POLICY_PAIR */
837                                 ptlrpcd_partner_group_size = 2;
838                                 break;
839                         case 4: /* PDB_POLICY_NEIGHBOR */
840 #ifdef CONFIG_NUMA
841                                 ptlrpcd_partner_group_size = -1; /* CPT */
842 #else
843                                 ptlrpcd_partner_group_size = 3; /* Triplets */
844 #endif
845                                 break;
846                         default: /* Illegal value, use the default. */
847                                 ptlrpcd_partner_group_size = 2;
848                                 break;
849                         }
850                         CWARN("Setting ptlrpcd_partner_group_size = %d\n",
851                               ptlrpcd_partner_group_size);
852                 } else {
853                         CWARN("ptlrpcd_partner_group_size is also set!\n");
854                 }
855         }
856
857         if (ptlrpcd_partner_group_size == 0)
858                 ptlrpcd_partner_group_size = 2;
859         else if (ptlrpcd_partner_group_size < 0)
860                 ptlrpcd_partner_group_size = -1;
861         else if (ptlrpcd_per_cpt_max > 0 &&
862                  ptlrpcd_partner_group_size > ptlrpcd_per_cpt_max)
863                 ptlrpcd_partner_group_size = ptlrpcd_per_cpt_max;
864
865         /*
866          * Start the recovery thread first.
867          */
868         set_bit(LIOD_RECOVERY, &ptlrpcd_rcv.pc_flags);
869         ptlrpcd_ctl_init(&ptlrpcd_rcv, -1, CFS_CPT_ANY);
870         rc = ptlrpcd_start(&ptlrpcd_rcv);
871         if (rc < 0)
872                 GOTO(out, rc);
873
874         for (i = 0; i < ncpts; i++) {
875                 if (cpts == NULL)
876                         cpt = i;
877                 else
878                         cpt = cpts[i];
879
880                 nthreads = cfs_cpt_weight(cptable, cpt);
881                 if (ptlrpcd_per_cpt_max > 0 && ptlrpcd_per_cpt_max < nthreads)
882                         nthreads = ptlrpcd_per_cpt_max;
883                 if (nthreads < 2)
884                         nthreads = 2;
885
886                 if (ptlrpcd_partner_group_size <= 0) {
887                         groupsize = nthreads;
888                 } else if (nthreads <= ptlrpcd_partner_group_size) {
889                         groupsize = nthreads;
890                 } else {
891                         groupsize = ptlrpcd_partner_group_size;
892                         if (nthreads % groupsize != 0)
893                                 nthreads += groupsize - (nthreads % groupsize);
894                 }
895
896                 size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
897                 OBD_CPT_ALLOC(pd, cptable, cpt, size);
898
899                 if (!pd)
900                         GOTO(out, rc = -ENOMEM);
901                 pd->pd_size      = size;
902                 pd->pd_index     = i;
903                 pd->pd_cpt       = cpt;
904                 pd->pd_cursor    = 0;
905                 pd->pd_nthreads  = nthreads;
906                 pd->pd_groupsize = groupsize;
907                 ptlrpcds[i] = pd;
908
909                 /*
910                  * The ptlrpcd threads in a partner group can access
911                  * each other's struct ptlrpcd_ctl, so these must be
912                  * initialized before any thead is started.
913                  */
914                 for (j = 0; j < nthreads; j++) {
915                         ptlrpcd_ctl_init(&pd->pd_threads[j], j, cpt);
916                         rc = ptlrpcd_partners(pd, j);
917                         if (rc < 0)
918                                 GOTO(out, rc);
919                 }
920
921                 /* XXX: We start nthreads ptlrpc daemons on this cpt.
922                  *      Each of them can process any non-recovery
923                  *      async RPC to improve overall async RPC
924                  *      efficiency.
925                  *
926                  *      But there are some issues with async I/O RPCs
927                  *      and async non-I/O RPCs processed in the same
928                  *      set under some cases. The ptlrpcd may be
929                  *      blocked by some async I/O RPC(s), then will
930                  *      cause other async non-I/O RPC(s) can not be
931                  *      processed in time.
932                  *
933                  *      Maybe we should distinguish blocked async RPCs
934                  *      from non-blocked async RPCs, and process them
935                  *      in different ptlrpcd sets to avoid unnecessary
936                  *      dependency. But how to distribute async RPCs
937                  *      load among all the ptlrpc daemons becomes
938                  *      another trouble.
939                  */
940                 for (j = 0; j < nthreads; j++) {
941                         rc = ptlrpcd_start(&pd->pd_threads[j]);
942                         if (rc < 0)
943                                 GOTO(out, rc);
944                 }
945         }
946 out:
947         if (rc != 0)
948                 ptlrpcd_fini();
949
950         RETURN(rc);
951 }
952
953 int ptlrpcd_addref(void)
954 {
955         int rc = 0;
956
957         ENTRY;
958
959         mutex_lock(&ptlrpcd_mutex);
960         if (++ptlrpcd_users == 1) {
961                 rc = ptlrpcd_init();
962                 if (rc < 0)
963                         ptlrpcd_users--;
964         }
965         mutex_unlock(&ptlrpcd_mutex);
966         RETURN(rc);
967 }
968 EXPORT_SYMBOL(ptlrpcd_addref);
969
970 void ptlrpcd_decref(void)
971 {
972         mutex_lock(&ptlrpcd_mutex);
973         if (--ptlrpcd_users == 0)
974                 ptlrpcd_fini();
975         mutex_unlock(&ptlrpcd_mutex);
976 }
977 EXPORT_SYMBOL(ptlrpcd_decref);
978 /** @} ptlrpcd */