Whamcloud - gitweb
LU-16056 libcfs: restore umask handling in kernel threads
[fs/lustre-release.git] / lustre / ptlrpc / ptlrpcd.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  *
31  * lustre/ptlrpc/ptlrpcd.c
32  */
33
34 /** \defgroup ptlrpcd PortalRPC daemon
35  *
36  * ptlrpcd is a special thread with its own set where other user might add
37  * requests when they don't want to wait for their completion.
38  * PtlRPCD will take care of sending such requests and then processing their
39  * replies and calling completion callbacks as necessary.
40  * The callbacks are called directly from ptlrpcd context.
41  * It is important to never significantly block (esp. on RPCs!) within such
42  * completion handler or a deadlock might occur where ptlrpcd enters some
43  * callback that attempts to send another RPC and wait for it to return,
44  * during which time ptlrpcd is completely blocked, so e.g. if import
45  * fails, recovery cannot progress because connection requests are also
46  * sent by ptlrpcd.
47  *
48  * @{
49  */
50
51 #define DEBUG_SUBSYSTEM S_RPC
52
53 #include <linux/fs_struct.h>
54 #include <linux/kthread.h>
55 #include <libcfs/libcfs.h>
56 #include <lustre_net.h>
57 #include <lustre_lib.h>
58 #include <lustre_ha.h>
59 #include <obd_class.h>   /* for obd_zombie */
60 #include <obd_support.h> /* for OBD_FAIL_CHECK */
61 #include <cl_object.h> /* cl_env_{get,put}() */
62 #include <lprocfs_status.h>
63
64 #include "ptlrpc_internal.h"
65
66 /* One of these per CPT. */
67 struct ptlrpcd {
68         int                     pd_size;
69         int                     pd_index;
70         int                     pd_cpt;
71         int                     pd_cursor;
72         int                     pd_nthreads;
73         int                     pd_groupsize;
74         struct ptlrpcd_ctl      pd_threads[0];
75 };
76
77 /*
78  * max_ptlrpcds is obsolete, but retained to ensure that the kernel
79  * module will load on a system where it has been tuned.
80  * A value other than 0 implies it was tuned, in which case the value
81  * is used to derive a setting for ptlrpcd_per_cpt_max.
82  */
83 static int max_ptlrpcds;
84 module_param(max_ptlrpcds, int, 0644);
85 MODULE_PARM_DESC(max_ptlrpcds,
86                  "Max ptlrpcd thread count to be started (obsolete).");
87
88 /*
89  * ptlrpcd_bind_policy is obsolete, but retained to ensure that
90  * the kernel module will load on a system where it has been tuned.
91  * A value other than 0 implies it was tuned, in which case the value
92  * is used to derive a setting for ptlrpcd_partner_group_size.
93  */
94 static int ptlrpcd_bind_policy;
95 module_param(ptlrpcd_bind_policy, int, 0644);
96 MODULE_PARM_DESC(ptlrpcd_bind_policy,
97                  "Ptlrpcd threads binding mode (obsolete).");
98
99 /*
100  * ptlrpcd_per_cpt_max: The maximum number of ptlrpcd threads to run
101  * in a CPT.
102  */
103 static int ptlrpcd_per_cpt_max;
104 module_param(ptlrpcd_per_cpt_max, int, 0644);
105 MODULE_PARM_DESC(ptlrpcd_per_cpt_max,
106                  "Max ptlrpcd thread count to be started per CPT.");
107
108 /*
109  * ptlrpcd_partner_group_size: The desired number of threads in each
110  * ptlrpcd partner thread group. Default is 2, corresponding to the
111  * old PDB_POLICY_PAIR. A negative value makes all ptlrpcd threads in
112  * a CPT partners of each other.
113  */
114 static int ptlrpcd_partner_group_size;
115 module_param(ptlrpcd_partner_group_size, int, 0644);
116 MODULE_PARM_DESC(ptlrpcd_partner_group_size,
117                  "Number of ptlrpcd threads in a partner group.");
118
119 /*
120  * ptlrpcd_cpts: A CPT string describing the CPU partitions that
121  * ptlrpcd threads should run on. Used to make ptlrpcd threads run on
122  * a subset of all CPTs.
123  *
124  * ptlrpcd_cpts=2
125  * ptlrpcd_cpts=[2]
126  *   run ptlrpcd threads only on CPT 2.
127  *
128  * ptlrpcd_cpts=0-3
129  * ptlrpcd_cpts=[0-3]
130  *   run ptlrpcd threads on CPTs 0, 1, 2, and 3.
131  *
132  * ptlrpcd_cpts=[0-3,5,7]
133  *   run ptlrpcd threads on CPTS 0, 1, 2, 3, 5, and 7.
134  */
135 static char *ptlrpcd_cpts;
136 module_param(ptlrpcd_cpts, charp, 0644);
137 MODULE_PARM_DESC(ptlrpcd_cpts,
138                  "CPU partitions ptlrpcd threads should run in");
139
140 /* ptlrpcds_cpt_idx maps cpt numbers to an index in the ptlrpcds array. */
141 static int              *ptlrpcds_cpt_idx;
142
143 /* ptlrpcds_num is the number of entries in the ptlrpcds array. */
144 static int              ptlrpcds_num;
145 static struct ptlrpcd   **ptlrpcds;
146
147 /*
148  * In addition to the regular thread pool above, there is a single
149  * global recovery thread. Recovery isn't critical for performance,
150  * and doesn't block, but must always be able to proceed, and it is
151  * possible that all normal ptlrpcd threads are blocked. Hence the
152  * need for a dedicated thread.
153  */
154 static struct ptlrpcd_ctl ptlrpcd_rcv;
155
156 struct mutex ptlrpcd_mutex;
157 static int ptlrpcd_users = 0;
158
159 void ptlrpcd_wake(struct ptlrpc_request *req)
160 {
161         struct ptlrpc_request_set *set = req->rq_set;
162
163         LASSERT(set != NULL);
164         wake_up(&set->set_waitq);
165 }
166 EXPORT_SYMBOL(ptlrpcd_wake);
167
168 static struct ptlrpcd_ctl *
169 ptlrpcd_select_pc(struct ptlrpc_request *req)
170 {
171         struct ptlrpcd  *pd;
172         int             cpt;
173         int             idx;
174
175         if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
176                 return &ptlrpcd_rcv;
177
178         cpt = cfs_cpt_current(cfs_cpt_tab, 1);
179         if (ptlrpcds_cpt_idx == NULL)
180                 idx = cpt;
181         else
182                 idx = ptlrpcds_cpt_idx[cpt];
183         pd = ptlrpcds[idx];
184
185         /* We do not care whether it is strict load balance. */
186         idx = pd->pd_cursor;
187         if (++idx == pd->pd_nthreads)
188                 idx = 0;
189         pd->pd_cursor = idx;
190
191         return &pd->pd_threads[idx];
192 }
193
194 /**
195  * Move all request from an existing request set to the ptlrpcd queue.
196  * All requests from the set must be in phase RQ_PHASE_NEW.
197  */
198 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
199 {
200         struct list_head *tmp, *pos;
201         struct ptlrpcd_ctl *pc;
202         struct ptlrpc_request_set *new;
203         int count, i;
204
205         pc = ptlrpcd_select_pc(NULL);
206         new = pc->pc_set;
207
208         list_for_each_safe(pos, tmp, &set->set_requests) {
209                 struct ptlrpc_request *req =
210                         list_entry(pos, struct ptlrpc_request,
211                                    rq_set_chain);
212
213                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
214                 req->rq_set = new;
215                 req->rq_queued_time = ktime_get_seconds();
216         }
217
218         spin_lock(&new->set_new_req_lock);
219         list_splice_init(&set->set_requests, &new->set_new_requests);
220         i = atomic_read(&set->set_remaining);
221         count = atomic_add_return(i, &new->set_new_count);
222         atomic_set(&set->set_remaining, 0);
223         spin_unlock(&new->set_new_req_lock);
224         if (count == i) {
225                 wake_up(&new->set_waitq);
226
227                 /*
228                  * XXX: It maybe unnecessary to wakeup all the partners. But to
229                  *      guarantee the async RPC can be processed ASAP, we have
230                  *      no other better choice. It maybe fixed in future.
231                  */
232                 for (i = 0; i < pc->pc_npartners; i++)
233                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
234         }
235 }
236
237 /**
238  * Return transferred RPCs count.
239  */
240 static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
241                                struct ptlrpc_request_set *src)
242 {
243         struct ptlrpc_request *req;
244         int rc = 0;
245
246         spin_lock(&src->set_new_req_lock);
247         if (likely(!list_empty(&src->set_new_requests))) {
248                 list_for_each_entry(req, &src->set_new_requests, rq_set_chain)
249                         req->rq_set = des;
250
251                 list_splice_init(&src->set_new_requests,
252                                  &des->set_requests);
253                 rc = atomic_read(&src->set_new_count);
254                 atomic_add(rc, &des->set_remaining);
255                 atomic_set(&src->set_new_count, 0);
256         }
257         spin_unlock(&src->set_new_req_lock);
258         return rc;
259 }
260
261 /**
262  * Requests that are added to the ptlrpcd queue are sent via
263  * ptlrpcd_check->ptlrpc_check_set().
264  */
265 void ptlrpcd_add_req(struct ptlrpc_request *req)
266 {
267         struct ptlrpcd_ctl *pc;
268
269         if (req->rq_reqmsg)
270                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
271
272         spin_lock(&req->rq_lock);
273         if (req->rq_invalid_rqset) {
274                 req->rq_invalid_rqset = 0;
275                 spin_unlock(&req->rq_lock);
276                 if (wait_event_idle_timeout(req->rq_set_waitq,
277                                             req->rq_set == NULL,
278                                             cfs_time_seconds(5)) == 0)
279                         l_wait_event_abortable(req->rq_set_waitq,
280                                                req->rq_set == NULL);
281         } else if (req->rq_set) {
282                 /*
283                  * If we have a vaid "rq_set", just reuse it to avoid double
284                  * linked.
285                  */
286                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
287                 LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
288
289                 /* ptlrpc_check_set will decrease the count */
290                 atomic_inc(&req->rq_set->set_remaining);
291                 spin_unlock(&req->rq_lock);
292                 wake_up(&req->rq_set->set_waitq);
293                 return;
294         } else {
295                 spin_unlock(&req->rq_lock);
296         }
297
298         pc = ptlrpcd_select_pc(req);
299
300         DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s+%d]",
301                   req, pc->pc_name, pc->pc_index);
302
303         ptlrpc_set_add_new_req(pc, req);
304 }
305 EXPORT_SYMBOL(ptlrpcd_add_req);
306
307 static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
308 {
309         atomic_inc(&set->set_refcount);
310 }
311
312 /**
313  * Check if there is more work to do on ptlrpcd set.
314  * Returns 1 if yes.
315  */
316 static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
317 {
318         struct ptlrpc_request *req, *tmp;
319         struct ptlrpc_request_set *set = pc->pc_set;
320         int rc = 0;
321         int rc2;
322
323         ENTRY;
324
325         if (atomic_read(&set->set_new_count)) {
326                 spin_lock(&set->set_new_req_lock);
327                 if (likely(!list_empty(&set->set_new_requests))) {
328                         list_splice_init(&set->set_new_requests,
329                                              &set->set_requests);
330                         atomic_add(atomic_read(&set->set_new_count),
331                                    &set->set_remaining);
332                         atomic_set(&set->set_new_count, 0);
333                         /*
334                          * Need to calculate its timeout.
335                          */
336                         rc = 1;
337                 }
338                 spin_unlock(&set->set_new_req_lock);
339         }
340
341         /*
342          * We should call lu_env_refill() before handling new requests to make
343          * sure that env key the requests depending on really exists.
344          */
345         rc2 = lu_env_refill(env);
346         if (rc2 != 0) {
347                 /*
348                  * XXX This is very awkward situation, because
349                  * execution can neither continue (request
350                  * interpreters assume that env is set up), nor repeat
351                  * the loop (as this potentially results in a tight
352                  * loop of -ENOMEM's).
353                  *
354                  * Fortunately, refill only ever does something when
355                  * new modules are loaded, i.e., early during boot up.
356                  */
357                 CERROR("Failure to refill session: %d\n", rc2);
358                 RETURN(rc);
359         }
360
361         if (atomic_read(&set->set_remaining))
362                 rc |= ptlrpc_check_set(env, set);
363
364         /*
365          * NB: ptlrpc_check_set has already moved complted request at the
366          * head of seq::set_requests
367          */
368         list_for_each_entry_safe(req, tmp, &set->set_requests, rq_set_chain) {
369                 if (req->rq_phase != RQ_PHASE_COMPLETE)
370                         break;
371
372                 list_del_init(&req->rq_set_chain);
373                 req->rq_set = NULL;
374                 ptlrpc_req_finished(req);
375         }
376
377         if (rc == 0) {
378                 /*
379                  * If new requests have been added, make sure to wake up.
380                  */
381                 rc = atomic_read(&set->set_new_count);
382
383                 /*
384                  * If we have nothing to do, check whether we can take some
385                  * work from our partner threads.
386                  */
387                 if (rc == 0 && pc->pc_npartners > 0) {
388                         struct ptlrpcd_ctl *partner;
389                         struct ptlrpc_request_set *ps;
390                         int first = pc->pc_cursor;
391
392                         do {
393                                 partner = pc->pc_partners[pc->pc_cursor++];
394                                 if (pc->pc_cursor >= pc->pc_npartners)
395                                         pc->pc_cursor = 0;
396                                 if (partner == NULL)
397                                         continue;
398
399                                 spin_lock(&partner->pc_lock);
400                                 ps = partner->pc_set;
401                                 if (ps == NULL) {
402                                         spin_unlock(&partner->pc_lock);
403                                         continue;
404                                 }
405
406                                 ptlrpc_reqset_get(ps);
407                                 spin_unlock(&partner->pc_lock);
408
409                                 if (atomic_read(&ps->set_new_count)) {
410                                         rc = ptlrpcd_steal_rqset(set, ps);
411                                         if (rc > 0)
412                                                 CDEBUG(D_RPCTRACE,
413                                                        "transfer %d async RPCs [%d->%d]\n",
414                                                        rc, partner->pc_index,
415                                                        pc->pc_index);
416                                 }
417                                 ptlrpc_reqset_put(ps);
418                         } while (rc == 0 && pc->pc_cursor != first);
419                 }
420         }
421
422         RETURN(rc || test_bit(LIOD_STOP, &pc->pc_flags));
423 }
424
425 /**
426  * Main ptlrpcd thread.
427  * ptlrpc's code paths like to execute in process context, so we have this
428  * thread which spins on a set which contains the rpcs and sends them.
429  */
430 static int ptlrpcd(void *arg)
431 {
432         struct ptlrpcd_ctl              *pc = arg;
433         struct ptlrpc_request_set       *set;
434         struct lu_context               ses = { 0 };
435         struct lu_env                   env = { .le_ses = &ses };
436         int                             rc = 0;
437         int                             exit = 0;
438
439         ENTRY;
440         unshare_fs_struct();
441         if (cfs_cpt_bind(cfs_cpt_tab, pc->pc_cpt) != 0)
442                 CWARN("Failed to bind %s on CPT %d\n", pc->pc_name, pc->pc_cpt);
443
444         /*
445          * Allocate the request set after the thread has been bound
446          * above. This is safe because no requests will be queued
447          * until all ptlrpcd threads have confirmed that they have
448          * successfully started.
449          */
450         set = ptlrpc_prep_set();
451         if (set == NULL)
452                 GOTO(failed, rc = -ENOMEM);
453         spin_lock(&pc->pc_lock);
454         pc->pc_set = set;
455         spin_unlock(&pc->pc_lock);
456
457         /* Both client and server (MDT/OST) may use the environment. */
458         rc = lu_context_init(&env.le_ctx, LCT_MD_THREAD |
459                                           LCT_DT_THREAD |
460                                           LCT_CL_THREAD |
461                                           LCT_REMEMBER  |
462                                           LCT_NOREF);
463         if (rc != 0)
464                 GOTO(failed, rc);
465         rc = lu_context_init(env.le_ses, LCT_SESSION  |
466                                          LCT_REMEMBER |
467                                          LCT_NOREF);
468         if (rc != 0) {
469                 lu_context_fini(&env.le_ctx);
470                 GOTO(failed, rc);
471         }
472
473         complete(&pc->pc_starting);
474
475         /*
476          * This mainloop strongly resembles ptlrpc_set_wait() except that our
477          * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
478          * there are requests in the set. New requests come in on the set's
479          * new_req_list and ptlrpcd_check() moves them into the set.
480          */
481         do {
482                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
483                 time64_t timeout;
484
485                 timeout = cfs_time_seconds(ptlrpc_set_next_timeout(set));
486
487                 lu_context_enter(&env.le_ctx);
488                 lu_context_enter(env.le_ses);
489
490                 add_wait_queue(&set->set_waitq, &wait);
491                 while (!ptlrpcd_check(&env, pc)) {
492                         int ret;
493
494                         if (timeout == 0)
495                                 ret = wait_woken(&wait, TASK_IDLE,
496                                                  MAX_SCHEDULE_TIMEOUT);
497                         else {
498                                 ret = wait_woken(&wait, TASK_IDLE, timeout);
499                                 if (ret > 0)
500                                         timeout = ret;
501                         }
502                         if (ret != 0)
503                                 continue;
504                         /* Timed out */
505                         ptlrpc_expired_set(set);
506                         break;
507                 }
508                 remove_wait_queue(&set->set_waitq, &wait);
509
510                 lu_context_exit(&env.le_ctx);
511                 lu_context_exit(env.le_ses);
512
513                 /*
514                  * Abort inflight rpcs for forced stop case.
515                  */
516                 if (test_bit(LIOD_STOP, &pc->pc_flags)) {
517                         if (test_bit(LIOD_FORCE, &pc->pc_flags))
518                                 ptlrpc_abort_set(set);
519                         exit++;
520                 }
521
522                 /*
523                  * Let's make one more loop to make sure that ptlrpcd_check()
524                  * copied all raced new rpcs into the set so we can kill them.
525                  */
526         } while (exit < 2);
527
528         /*
529          * Wait for inflight requests to drain.
530          */
531         if (!list_empty(&set->set_requests))
532                 ptlrpc_set_wait(&env, set);
533         lu_context_fini(&env.le_ctx);
534         lu_context_fini(env.le_ses);
535
536         complete(&pc->pc_finishing);
537
538         return 0;
539
540 failed:
541         pc->pc_error = rc;
542         complete(&pc->pc_starting);
543         RETURN(rc);
544 }
545
546 static void ptlrpcd_ctl_init(struct ptlrpcd_ctl *pc, int index, int cpt)
547 {
548         ENTRY;
549
550         pc->pc_index = index;
551         pc->pc_cpt = cpt;
552         init_completion(&pc->pc_starting);
553         init_completion(&pc->pc_finishing);
554         spin_lock_init(&pc->pc_lock);
555
556         if (index < 0) {
557                 /* Recovery thread. */
558                 snprintf(pc->pc_name, sizeof(pc->pc_name), "ptlrpcd_rcv");
559         } else {
560                 /* Regular thread. */
561                 snprintf(pc->pc_name, sizeof(pc->pc_name),
562                          "ptlrpcd_%02d_%02d", cpt, index);
563         }
564
565         EXIT;
566 }
567
568 /* XXX: We want multiple CPU cores to share the async RPC load. So we
569  *      start many ptlrpcd threads. We also want to reduce the ptlrpcd
570  *      overhead caused by data transfer cross-CPU cores. So we bind
571  *      all ptlrpcd threads to a CPT, in the expectation that CPTs
572  *      will be defined in a way that matches these boundaries. Within
573  *      a CPT a ptlrpcd thread can be scheduled on any available core.
574  *
575  *      Each ptlrpcd thread has its own request queue. This can cause
576  *      response delay if the thread is already busy. To help with
577  *      this we define partner threads: these are other threads bound
578  *      to the same CPT which will check for work in each other's
579  *      request queues if they have no work to do.
580  *
581  *      The desired number of partner threads can be tuned by setting
582  *      ptlrpcd_partner_group_size. The default is to create pairs of
583  *      partner threads.
584  */
585 static int ptlrpcd_partners(struct ptlrpcd *pd, int index)
586 {
587         struct ptlrpcd_ctl      *pc;
588         struct ptlrpcd_ctl      **ppc;
589         int                     first;
590         int                     i;
591         int                     rc = 0;
592
593         ENTRY;
594
595         LASSERT(index >= 0 && index < pd->pd_nthreads);
596         pc = &pd->pd_threads[index];
597         pc->pc_npartners = pd->pd_groupsize - 1;
598
599         if (pc->pc_npartners <= 0)
600                 GOTO(out, rc);
601
602         OBD_CPT_ALLOC(pc->pc_partners, cfs_cpt_tab, pc->pc_cpt,
603                       sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
604         if (pc->pc_partners == NULL) {
605                 pc->pc_npartners = 0;
606                 GOTO(out, rc = -ENOMEM);
607         }
608
609         first = index - index % pd->pd_groupsize;
610         ppc = pc->pc_partners;
611         for (i = first; i < first + pd->pd_groupsize; i++) {
612                 if (i != index)
613                         *ppc++ = &pd->pd_threads[i];
614         }
615 out:
616         RETURN(rc);
617 }
618
619 int ptlrpcd_start(struct ptlrpcd_ctl *pc)
620 {
621         struct task_struct      *task;
622         int                     rc = 0;
623
624         ENTRY;
625
626         /*
627          * Do not allow starting a second thread for one pc.
628          */
629         if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
630                 CWARN("Starting second thread (%s) for same pc %p\n",
631                       pc->pc_name, pc);
632                 RETURN(0);
633         }
634
635         task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
636         if (IS_ERR(task))
637                 GOTO(out_set, rc = PTR_ERR(task));
638
639         wait_for_completion(&pc->pc_starting);
640         rc = pc->pc_error;
641         if (rc != 0)
642                 GOTO(out_set, rc);
643
644         RETURN(0);
645
646 out_set:
647         if (pc->pc_set != NULL) {
648                 struct ptlrpc_request_set *set = pc->pc_set;
649
650                 spin_lock(&pc->pc_lock);
651                 pc->pc_set = NULL;
652                 spin_unlock(&pc->pc_lock);
653                 ptlrpc_set_destroy(set);
654         }
655         clear_bit(LIOD_START, &pc->pc_flags);
656         RETURN(rc);
657 }
658
659 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
660 {
661         ENTRY;
662
663         if (!test_bit(LIOD_START, &pc->pc_flags)) {
664                 CWARN("Thread for pc %p was not started\n", pc);
665                 goto out;
666         }
667
668         set_bit(LIOD_STOP, &pc->pc_flags);
669         if (force)
670                 set_bit(LIOD_FORCE, &pc->pc_flags);
671         wake_up(&pc->pc_set->set_waitq);
672
673 out:
674         EXIT;
675 }
676
677 void ptlrpcd_free(struct ptlrpcd_ctl *pc)
678 {
679         struct ptlrpc_request_set *set = pc->pc_set;
680
681         ENTRY;
682
683         if (!test_bit(LIOD_START, &pc->pc_flags)) {
684                 CWARN("Thread for pc %p was not started\n", pc);
685                 goto out;
686         }
687
688         wait_for_completion(&pc->pc_finishing);
689
690         spin_lock(&pc->pc_lock);
691         pc->pc_set = NULL;
692         spin_unlock(&pc->pc_lock);
693         ptlrpc_set_destroy(set);
694
695         clear_bit(LIOD_START, &pc->pc_flags);
696         clear_bit(LIOD_STOP, &pc->pc_flags);
697         clear_bit(LIOD_FORCE, &pc->pc_flags);
698
699 out:
700         if (pc->pc_npartners > 0) {
701                 LASSERT(pc->pc_partners != NULL);
702
703                 OBD_FREE_PTR_ARRAY(pc->pc_partners, pc->pc_npartners);
704                 pc->pc_partners = NULL;
705         }
706         pc->pc_npartners = 0;
707         pc->pc_error = 0;
708         EXIT;
709 }
710
711 static void ptlrpcd_fini(void)
712 {
713         int     i;
714         int     j;
715         int     ncpts;
716
717         ENTRY;
718
719         if (ptlrpcds != NULL) {
720                 for (i = 0; i < ptlrpcds_num; i++) {
721                         if (ptlrpcds[i] == NULL)
722                                 break;
723                         for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
724                                 ptlrpcd_stop(&ptlrpcds[i]->pd_threads[j], 0);
725                         for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
726                                 ptlrpcd_free(&ptlrpcds[i]->pd_threads[j]);
727                         OBD_FREE(ptlrpcds[i], ptlrpcds[i]->pd_size);
728                         ptlrpcds[i] = NULL;
729                 }
730                 OBD_FREE_PTR_ARRAY(ptlrpcds, ptlrpcds_num);
731         }
732         ptlrpcds_num = 0;
733
734         ptlrpcd_stop(&ptlrpcd_rcv, 0);
735         ptlrpcd_free(&ptlrpcd_rcv);
736
737         if (ptlrpcds_cpt_idx != NULL) {
738                 ncpts = cfs_cpt_number(cfs_cpt_tab);
739                 OBD_FREE_PTR_ARRAY(ptlrpcds_cpt_idx, ncpts);
740                 ptlrpcds_cpt_idx = NULL;
741         }
742
743         EXIT;
744 }
745
746 static int ptlrpcd_init(void)
747 {
748         int                     nthreads;
749         int                     groupsize;
750         int                     size;
751         int                     i;
752         int                     j;
753         int                     rc = 0;
754         struct cfs_cpt_table    *cptable;
755         __u32                   *cpts = NULL;
756         int                     ncpts;
757         int                     cpt;
758         struct ptlrpcd          *pd;
759
760         ENTRY;
761
762         /*
763          * Determine the CPTs that ptlrpcd threads will run on.
764          */
765         cptable = cfs_cpt_tab;
766         ncpts = cfs_cpt_number(cptable);
767         if (ptlrpcd_cpts != NULL) {
768                 struct cfs_expr_list *el;
769
770                 size = ncpts * sizeof(ptlrpcds_cpt_idx[0]);
771                 OBD_ALLOC(ptlrpcds_cpt_idx, size);
772                 if (ptlrpcds_cpt_idx == NULL)
773                         GOTO(out, rc = -ENOMEM);
774
775                 rc = cfs_expr_list_parse(ptlrpcd_cpts,
776                                          strlen(ptlrpcd_cpts),
777                                          0, ncpts - 1, &el);
778                 if (rc != 0) {
779                         CERROR("%s: invalid CPT pattern string: %s",
780                                "ptlrpcd_cpts", ptlrpcd_cpts);
781                         GOTO(out, rc = -EINVAL);
782                 }
783
784                 rc = cfs_expr_list_values(el, ncpts, &cpts);
785                 cfs_expr_list_free(el);
786                 if (rc <= 0) {
787                         CERROR("%s: failed to parse CPT array %s: %d\n",
788                                "ptlrpcd_cpts", ptlrpcd_cpts, rc);
789                         if (rc == 0)
790                                 rc = -EINVAL;
791                         GOTO(out, rc);
792                 }
793
794                 /*
795                  * Create the cpt-to-index map. When there is no match
796                  * in the cpt table, pick a cpt at random. This could
797                  * be changed to take the topology of the system into
798                  * account.
799                  */
800                 for (cpt = 0; cpt < ncpts; cpt++) {
801                         for (i = 0; i < rc; i++)
802                                 if (cpts[i] == cpt)
803                                         break;
804                         if (i >= rc)
805                                 i = cpt % rc;
806                         ptlrpcds_cpt_idx[cpt] = i;
807                 }
808
809                 cfs_expr_list_values_free(cpts, rc);
810                 ncpts = rc;
811         }
812         ptlrpcds_num = ncpts;
813
814         size = ncpts * sizeof(ptlrpcds[0]);
815         OBD_ALLOC(ptlrpcds, size);
816         if (ptlrpcds == NULL)
817                 GOTO(out, rc = -ENOMEM);
818
819         /*
820          * The max_ptlrpcds parameter is obsolete, but do something
821          * sane if it has been tuned, and complain if
822          * ptlrpcd_per_cpt_max has also been tuned.
823          */
824         if (max_ptlrpcds != 0) {
825                 CWARN("max_ptlrpcds is obsolete.\n");
826                 if (ptlrpcd_per_cpt_max == 0) {
827                         ptlrpcd_per_cpt_max = max_ptlrpcds / ncpts;
828                         /* Round up if there is a remainder. */
829                         if (max_ptlrpcds % ncpts != 0)
830                                 ptlrpcd_per_cpt_max++;
831                         CWARN("Setting ptlrpcd_per_cpt_max = %d\n",
832                               ptlrpcd_per_cpt_max);
833                 } else {
834                         CWARN("ptlrpd_per_cpt_max is also set!\n");
835                 }
836         }
837
838         /*
839          * The ptlrpcd_bind_policy parameter is obsolete, but do
840          * something sane if it has been tuned, and complain if
841          * ptlrpcd_partner_group_size is also tuned.
842          */
843         if (ptlrpcd_bind_policy != 0) {
844                 CWARN("ptlrpcd_bind_policy is obsolete.\n");
845                 if (ptlrpcd_partner_group_size == 0) {
846                         switch (ptlrpcd_bind_policy) {
847                         case 1: /* PDB_POLICY_NONE */
848                         case 2: /* PDB_POLICY_FULL */
849                                 ptlrpcd_partner_group_size = 1;
850                                 break;
851                         case 3: /* PDB_POLICY_PAIR */
852                                 ptlrpcd_partner_group_size = 2;
853                                 break;
854                         case 4: /* PDB_POLICY_NEIGHBOR */
855 #ifdef CONFIG_NUMA
856                                 ptlrpcd_partner_group_size = -1; /* CPT */
857 #else
858                                 ptlrpcd_partner_group_size = 3; /* Triplets */
859 #endif
860                                 break;
861                         default: /* Illegal value, use the default. */
862                                 ptlrpcd_partner_group_size = 2;
863                                 break;
864                         }
865                         CWARN("Setting ptlrpcd_partner_group_size = %d\n",
866                               ptlrpcd_partner_group_size);
867                 } else {
868                         CWARN("ptlrpcd_partner_group_size is also set!\n");
869                 }
870         }
871
872         if (ptlrpcd_partner_group_size == 0)
873                 ptlrpcd_partner_group_size = 2;
874         else if (ptlrpcd_partner_group_size < 0)
875                 ptlrpcd_partner_group_size = -1;
876         else if (ptlrpcd_per_cpt_max > 0 &&
877                  ptlrpcd_partner_group_size > ptlrpcd_per_cpt_max)
878                 ptlrpcd_partner_group_size = ptlrpcd_per_cpt_max;
879
880         /*
881          * Start the recovery thread first.
882          */
883         set_bit(LIOD_RECOVERY, &ptlrpcd_rcv.pc_flags);
884         ptlrpcd_ctl_init(&ptlrpcd_rcv, -1, CFS_CPT_ANY);
885         rc = ptlrpcd_start(&ptlrpcd_rcv);
886         if (rc < 0)
887                 GOTO(out, rc);
888
889         for (i = 0; i < ncpts; i++) {
890                 if (cpts == NULL)
891                         cpt = i;
892                 else
893                         cpt = cpts[i];
894
895                 nthreads = cfs_cpt_weight(cptable, cpt);
896                 if (ptlrpcd_per_cpt_max > 0 && ptlrpcd_per_cpt_max < nthreads)
897                         nthreads = ptlrpcd_per_cpt_max;
898                 if (nthreads < 2)
899                         nthreads = 2;
900
901                 if (ptlrpcd_partner_group_size <= 0) {
902                         groupsize = nthreads;
903                 } else if (nthreads <= ptlrpcd_partner_group_size) {
904                         groupsize = nthreads;
905                 } else {
906                         groupsize = ptlrpcd_partner_group_size;
907                         if (nthreads % groupsize != 0)
908                                 nthreads += groupsize - (nthreads % groupsize);
909                 }
910
911                 size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
912                 OBD_CPT_ALLOC(pd, cptable, cpt, size);
913
914                 if (!pd)
915                         GOTO(out, rc = -ENOMEM);
916                 pd->pd_size      = size;
917                 pd->pd_index     = i;
918                 pd->pd_cpt       = cpt;
919                 pd->pd_cursor    = 0;
920                 pd->pd_nthreads  = nthreads;
921                 pd->pd_groupsize = groupsize;
922                 ptlrpcds[i] = pd;
923
924                 /*
925                  * The ptlrpcd threads in a partner group can access
926                  * each other's struct ptlrpcd_ctl, so these must be
927                  * initialized before any thead is started.
928                  */
929                 for (j = 0; j < nthreads; j++) {
930                         ptlrpcd_ctl_init(&pd->pd_threads[j], j, cpt);
931                         rc = ptlrpcd_partners(pd, j);
932                         if (rc < 0)
933                                 GOTO(out, rc);
934                 }
935
936                 /* XXX: We start nthreads ptlrpc daemons on this cpt.
937                  *      Each of them can process any non-recovery
938                  *      async RPC to improve overall async RPC
939                  *      efficiency.
940                  *
941                  *      But there are some issues with async I/O RPCs
942                  *      and async non-I/O RPCs processed in the same
943                  *      set under some cases. The ptlrpcd may be
944                  *      blocked by some async I/O RPC(s), then will
945                  *      cause other async non-I/O RPC(s) can not be
946                  *      processed in time.
947                  *
948                  *      Maybe we should distinguish blocked async RPCs
949                  *      from non-blocked async RPCs, and process them
950                  *      in different ptlrpcd sets to avoid unnecessary
951                  *      dependency. But how to distribute async RPCs
952                  *      load among all the ptlrpc daemons becomes
953                  *      another trouble.
954                  */
955                 for (j = 0; j < nthreads; j++) {
956                         rc = ptlrpcd_start(&pd->pd_threads[j]);
957                         if (rc < 0)
958                                 GOTO(out, rc);
959                 }
960         }
961 out:
962         if (rc != 0)
963                 ptlrpcd_fini();
964
965         RETURN(rc);
966 }
967
968 int ptlrpcd_addref(void)
969 {
970         int rc = 0;
971
972         ENTRY;
973
974         mutex_lock(&ptlrpcd_mutex);
975         if (++ptlrpcd_users == 1) {
976                 rc = ptlrpcd_init();
977                 if (rc < 0)
978                         ptlrpcd_users--;
979         }
980         mutex_unlock(&ptlrpcd_mutex);
981         RETURN(rc);
982 }
983 EXPORT_SYMBOL(ptlrpcd_addref);
984
985 void ptlrpcd_decref(void)
986 {
987         mutex_lock(&ptlrpcd_mutex);
988         if (--ptlrpcd_users == 0)
989                 ptlrpcd_fini();
990         mutex_unlock(&ptlrpcd_mutex);
991 }
992 EXPORT_SYMBOL(ptlrpcd_decref);
993 /** @} ptlrpcd */