Whamcloud - gitweb
LU-12362 ptlrpc: use wait_woken() in ptlrpcd()
[fs/lustre-release.git] / lustre / ptlrpc / ptlrpcd.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  *
31  * lustre/ptlrpc/ptlrpcd.c
32  */
33
34 /** \defgroup ptlrpcd PortalRPC daemon
35  *
36  * ptlrpcd is a special thread with its own set where other user might add
37  * requests when they don't want to wait for their completion.
38  * PtlRPCD will take care of sending such requests and then processing their
39  * replies and calling completion callbacks as necessary.
40  * The callbacks are called directly from ptlrpcd context.
41  * It is important to never significantly block (esp. on RPCs!) within such
42  * completion handler or a deadlock might occur where ptlrpcd enters some
43  * callback that attempts to send another RPC and wait for it to return,
44  * during which time ptlrpcd is completely blocked, so e.g. if import
45  * fails, recovery cannot progress because connection requests are also
46  * sent by ptlrpcd.
47  *
48  * @{
49  */
50
51 #define DEBUG_SUBSYSTEM S_RPC
52
53 #include <linux/kthread.h>
54 #include <libcfs/libcfs.h>
55 #include <lustre_net.h>
56 #include <lustre_lib.h>
57 #include <lustre_ha.h>
58 #include <obd_class.h>   /* for obd_zombie */
59 #include <obd_support.h> /* for OBD_FAIL_CHECK */
60 #include <cl_object.h> /* cl_env_{get,put}() */
61 #include <lprocfs_status.h>
62
63 #include "ptlrpc_internal.h"
64
65 /* One of these per CPT. */
66 struct ptlrpcd {
67         int                     pd_size;
68         int                     pd_index;
69         int                     pd_cpt;
70         int                     pd_cursor;
71         int                     pd_nthreads;
72         int                     pd_groupsize;
73         struct ptlrpcd_ctl      pd_threads[0];
74 };
75
76 /*
77  * max_ptlrpcds is obsolete, but retained to ensure that the kernel
78  * module will load on a system where it has been tuned.
79  * A value other than 0 implies it was tuned, in which case the value
80  * is used to derive a setting for ptlrpcd_per_cpt_max.
81  */
82 static int max_ptlrpcds;
83 module_param(max_ptlrpcds, int, 0644);
84 MODULE_PARM_DESC(max_ptlrpcds,
85                  "Max ptlrpcd thread count to be started (obsolete).");
86
87 /*
88  * ptlrpcd_bind_policy is obsolete, but retained to ensure that
89  * the kernel module will load on a system where it has been tuned.
90  * A value other than 0 implies it was tuned, in which case the value
91  * is used to derive a setting for ptlrpcd_partner_group_size.
92  */
93 static int ptlrpcd_bind_policy;
94 module_param(ptlrpcd_bind_policy, int, 0644);
95 MODULE_PARM_DESC(ptlrpcd_bind_policy,
96                  "Ptlrpcd threads binding mode (obsolete).");
97
98 /*
99  * ptlrpcd_per_cpt_max: The maximum number of ptlrpcd threads to run
100  * in a CPT.
101  */
102 static int ptlrpcd_per_cpt_max;
103 module_param(ptlrpcd_per_cpt_max, int, 0644);
104 MODULE_PARM_DESC(ptlrpcd_per_cpt_max,
105                  "Max ptlrpcd thread count to be started per CPT.");
106
107 /*
108  * ptlrpcd_partner_group_size: The desired number of threads in each
109  * ptlrpcd partner thread group. Default is 2, corresponding to the
110  * old PDB_POLICY_PAIR. A negative value makes all ptlrpcd threads in
111  * a CPT partners of each other.
112  */
113 static int ptlrpcd_partner_group_size;
114 module_param(ptlrpcd_partner_group_size, int, 0644);
115 MODULE_PARM_DESC(ptlrpcd_partner_group_size,
116                  "Number of ptlrpcd threads in a partner group.");
117
118 /*
119  * ptlrpcd_cpts: A CPT string describing the CPU partitions that
120  * ptlrpcd threads should run on. Used to make ptlrpcd threads run on
121  * a subset of all CPTs.
122  *
123  * ptlrpcd_cpts=2
124  * ptlrpcd_cpts=[2]
125  *   run ptlrpcd threads only on CPT 2.
126  *
127  * ptlrpcd_cpts=0-3
128  * ptlrpcd_cpts=[0-3]
129  *   run ptlrpcd threads on CPTs 0, 1, 2, and 3.
130  *
131  * ptlrpcd_cpts=[0-3,5,7]
132  *   run ptlrpcd threads on CPTS 0, 1, 2, 3, 5, and 7.
133  */
134 static char *ptlrpcd_cpts;
135 module_param(ptlrpcd_cpts, charp, 0644);
136 MODULE_PARM_DESC(ptlrpcd_cpts,
137                  "CPU partitions ptlrpcd threads should run in");
138
139 /* ptlrpcds_cpt_idx maps cpt numbers to an index in the ptlrpcds array. */
140 static int              *ptlrpcds_cpt_idx;
141
142 /* ptlrpcds_num is the number of entries in the ptlrpcds array. */
143 static int              ptlrpcds_num;
144 static struct ptlrpcd   **ptlrpcds;
145
146 /*
147  * In addition to the regular thread pool above, there is a single
148  * global recovery thread. Recovery isn't critical for performance,
149  * and doesn't block, but must always be able to proceed, and it is
150  * possible that all normal ptlrpcd threads are blocked. Hence the
151  * need for a dedicated thread.
152  */
153 static struct ptlrpcd_ctl ptlrpcd_rcv;
154
155 struct mutex ptlrpcd_mutex;
156 static int ptlrpcd_users = 0;
157
158 void ptlrpcd_wake(struct ptlrpc_request *req)
159 {
160         struct ptlrpc_request_set *set = req->rq_set;
161
162         LASSERT(set != NULL);
163         wake_up(&set->set_waitq);
164 }
165 EXPORT_SYMBOL(ptlrpcd_wake);
166
167 static struct ptlrpcd_ctl *
168 ptlrpcd_select_pc(struct ptlrpc_request *req)
169 {
170         struct ptlrpcd  *pd;
171         int             cpt;
172         int             idx;
173
174         if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL)
175                 return &ptlrpcd_rcv;
176
177         cpt = cfs_cpt_current(cfs_cpt_tab, 1);
178         if (ptlrpcds_cpt_idx == NULL)
179                 idx = cpt;
180         else
181                 idx = ptlrpcds_cpt_idx[cpt];
182         pd = ptlrpcds[idx];
183
184         /* We do not care whether it is strict load balance. */
185         idx = pd->pd_cursor;
186         if (++idx == pd->pd_nthreads)
187                 idx = 0;
188         pd->pd_cursor = idx;
189
190         return &pd->pd_threads[idx];
191 }
192
193 /**
194  * Move all request from an existing request set to the ptlrpcd queue.
195  * All requests from the set must be in phase RQ_PHASE_NEW.
196  */
197 void ptlrpcd_add_rqset(struct ptlrpc_request_set *set)
198 {
199         struct list_head *tmp, *pos;
200         struct ptlrpcd_ctl *pc;
201         struct ptlrpc_request_set *new;
202         int count, i;
203
204         pc = ptlrpcd_select_pc(NULL);
205         new = pc->pc_set;
206
207         list_for_each_safe(pos, tmp, &set->set_requests) {
208                 struct ptlrpc_request *req =
209                         list_entry(pos, struct ptlrpc_request,
210                                    rq_set_chain);
211
212                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
213                 req->rq_set = new;
214                 req->rq_queued_time = ktime_get_seconds();
215         }
216
217         spin_lock(&new->set_new_req_lock);
218         list_splice_init(&set->set_requests, &new->set_new_requests);
219         i = atomic_read(&set->set_remaining);
220         count = atomic_add_return(i, &new->set_new_count);
221         atomic_set(&set->set_remaining, 0);
222         spin_unlock(&new->set_new_req_lock);
223         if (count == i) {
224                 wake_up(&new->set_waitq);
225
226                 /*
227                  * XXX: It maybe unnecessary to wakeup all the partners. But to
228                  *      guarantee the async RPC can be processed ASAP, we have
229                  *      no other better choice. It maybe fixed in future.
230                  */
231                 for (i = 0; i < pc->pc_npartners; i++)
232                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
233         }
234 }
235
236 /**
237  * Return transferred RPCs count.
238  */
239 static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des,
240                                struct ptlrpc_request_set *src)
241 {
242         struct ptlrpc_request *req;
243         int rc = 0;
244
245         spin_lock(&src->set_new_req_lock);
246         if (likely(!list_empty(&src->set_new_requests))) {
247                 list_for_each_entry(req, &src->set_new_requests, rq_set_chain)
248                         req->rq_set = des;
249
250                 list_splice_init(&src->set_new_requests,
251                                  &des->set_requests);
252                 rc = atomic_read(&src->set_new_count);
253                 atomic_add(rc, &des->set_remaining);
254                 atomic_set(&src->set_new_count, 0);
255         }
256         spin_unlock(&src->set_new_req_lock);
257         return rc;
258 }
259
260 /**
261  * Requests that are added to the ptlrpcd queue are sent via
262  * ptlrpcd_check->ptlrpc_check_set().
263  */
264 void ptlrpcd_add_req(struct ptlrpc_request *req)
265 {
266         struct ptlrpcd_ctl *pc;
267
268         if (req->rq_reqmsg)
269                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
270
271         spin_lock(&req->rq_lock);
272         if (req->rq_invalid_rqset) {
273                 req->rq_invalid_rqset = 0;
274                 spin_unlock(&req->rq_lock);
275                 if (wait_event_idle_timeout(req->rq_set_waitq,
276                                             req->rq_set == NULL,
277                                             cfs_time_seconds(5)) == 0)
278                         l_wait_event_abortable(req->rq_set_waitq,
279                                                req->rq_set == NULL);
280         } else if (req->rq_set) {
281                 /*
282                  * If we have a vaid "rq_set", just reuse it to avoid double
283                  * linked.
284                  */
285                 LASSERT(req->rq_phase == RQ_PHASE_NEW);
286                 LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY);
287
288                 /* ptlrpc_check_set will decrease the count */
289                 atomic_inc(&req->rq_set->set_remaining);
290                 spin_unlock(&req->rq_lock);
291                 wake_up(&req->rq_set->set_waitq);
292                 return;
293         } else {
294                 spin_unlock(&req->rq_lock);
295         }
296
297         pc = ptlrpcd_select_pc(req);
298
299         DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s+%d]",
300                   req, pc->pc_name, pc->pc_index);
301
302         ptlrpc_set_add_new_req(pc, req);
303 }
304 EXPORT_SYMBOL(ptlrpcd_add_req);
305
306 static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set)
307 {
308         atomic_inc(&set->set_refcount);
309 }
310
311 /**
312  * Check if there is more work to do on ptlrpcd set.
313  * Returns 1 if yes.
314  */
315 static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc)
316 {
317         struct ptlrpc_request *req, *tmp;
318         struct ptlrpc_request_set *set = pc->pc_set;
319         int rc = 0;
320         int rc2;
321
322         ENTRY;
323
324         if (atomic_read(&set->set_new_count)) {
325                 spin_lock(&set->set_new_req_lock);
326                 if (likely(!list_empty(&set->set_new_requests))) {
327                         list_splice_init(&set->set_new_requests,
328                                              &set->set_requests);
329                         atomic_add(atomic_read(&set->set_new_count),
330                                    &set->set_remaining);
331                         atomic_set(&set->set_new_count, 0);
332                         /*
333                          * Need to calculate its timeout.
334                          */
335                         rc = 1;
336                 }
337                 spin_unlock(&set->set_new_req_lock);
338         }
339
340         /*
341          * We should call lu_env_refill() before handling new requests to make
342          * sure that env key the requests depending on really exists.
343          */
344         rc2 = lu_env_refill(env);
345         if (rc2 != 0) {
346                 /*
347                  * XXX This is very awkward situation, because
348                  * execution can neither continue (request
349                  * interpreters assume that env is set up), nor repeat
350                  * the loop (as this potentially results in a tight
351                  * loop of -ENOMEM's).
352                  *
353                  * Fortunately, refill only ever does something when
354                  * new modules are loaded, i.e., early during boot up.
355                  */
356                 CERROR("Failure to refill session: %d\n", rc2);
357                 RETURN(rc);
358         }
359
360         if (atomic_read(&set->set_remaining))
361                 rc |= ptlrpc_check_set(env, set);
362
363         /*
364          * NB: ptlrpc_check_set has already moved complted request at the
365          * head of seq::set_requests
366          */
367         list_for_each_entry_safe(req, tmp, &set->set_requests, rq_set_chain) {
368                 if (req->rq_phase != RQ_PHASE_COMPLETE)
369                         break;
370
371                 list_del_init(&req->rq_set_chain);
372                 req->rq_set = NULL;
373                 ptlrpc_req_finished(req);
374         }
375
376         if (rc == 0) {
377                 /*
378                  * If new requests have been added, make sure to wake up.
379                  */
380                 rc = atomic_read(&set->set_new_count);
381
382                 /*
383                  * If we have nothing to do, check whether we can take some
384                  * work from our partner threads.
385                  */
386                 if (rc == 0 && pc->pc_npartners > 0) {
387                         struct ptlrpcd_ctl *partner;
388                         struct ptlrpc_request_set *ps;
389                         int first = pc->pc_cursor;
390
391                         do {
392                                 partner = pc->pc_partners[pc->pc_cursor++];
393                                 if (pc->pc_cursor >= pc->pc_npartners)
394                                         pc->pc_cursor = 0;
395                                 if (partner == NULL)
396                                         continue;
397
398                                 spin_lock(&partner->pc_lock);
399                                 ps = partner->pc_set;
400                                 if (ps == NULL) {
401                                         spin_unlock(&partner->pc_lock);
402                                         continue;
403                                 }
404
405                                 ptlrpc_reqset_get(ps);
406                                 spin_unlock(&partner->pc_lock);
407
408                                 if (atomic_read(&ps->set_new_count)) {
409                                         rc = ptlrpcd_steal_rqset(set, ps);
410                                         if (rc > 0)
411                                                 CDEBUG(D_RPCTRACE,
412                                                        "transfer %d async RPCs [%d->%d]\n",
413                                                        rc, partner->pc_index,
414                                                        pc->pc_index);
415                                 }
416                                 ptlrpc_reqset_put(ps);
417                         } while (rc == 0 && pc->pc_cursor != first);
418                 }
419         }
420
421         RETURN(rc || test_bit(LIOD_STOP, &pc->pc_flags));
422 }
423
424 /**
425  * Main ptlrpcd thread.
426  * ptlrpc's code paths like to execute in process context, so we have this
427  * thread which spins on a set which contains the rpcs and sends them.
428  */
429 static int ptlrpcd(void *arg)
430 {
431         struct ptlrpcd_ctl              *pc = arg;
432         struct ptlrpc_request_set       *set;
433         struct lu_context               ses = { 0 };
434         struct lu_env                   env = { .le_ses = &ses };
435         int                             rc = 0;
436         int                             exit = 0;
437
438         ENTRY;
439         if (cfs_cpt_bind(cfs_cpt_tab, pc->pc_cpt) != 0)
440                 CWARN("Failed to bind %s on CPT %d\n", pc->pc_name, pc->pc_cpt);
441
442         /*
443          * Allocate the request set after the thread has been bound
444          * above. This is safe because no requests will be queued
445          * until all ptlrpcd threads have confirmed that they have
446          * successfully started.
447          */
448         set = ptlrpc_prep_set();
449         if (set == NULL)
450                 GOTO(failed, rc = -ENOMEM);
451         spin_lock(&pc->pc_lock);
452         pc->pc_set = set;
453         spin_unlock(&pc->pc_lock);
454
455         /* Both client and server (MDT/OST) may use the environment. */
456         rc = lu_context_init(&env.le_ctx, LCT_MD_THREAD |
457                                           LCT_DT_THREAD |
458                                           LCT_CL_THREAD |
459                                           LCT_REMEMBER  |
460                                           LCT_NOREF);
461         if (rc != 0)
462                 GOTO(failed, rc);
463         rc = lu_context_init(env.le_ses, LCT_SESSION  |
464                                          LCT_REMEMBER |
465                                          LCT_NOREF);
466         if (rc != 0) {
467                 lu_context_fini(&env.le_ctx);
468                 GOTO(failed, rc);
469         }
470
471         complete(&pc->pc_starting);
472
473         /*
474          * This mainloop strongly resembles ptlrpc_set_wait() except that our
475          * set never completes.  ptlrpcd_check() calls ptlrpc_check_set() when
476          * there are requests in the set. New requests come in on the set's
477          * new_req_list and ptlrpcd_check() moves them into the set.
478          */
479         do {
480                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
481                 time64_t timeout;
482
483                 timeout = ptlrpc_set_next_timeout(set);
484
485                 lu_context_enter(&env.le_ctx);
486                 lu_context_enter(env.le_ses);
487
488                 add_wait_queue(&set->set_waitq, &wait);
489                 while (!ptlrpcd_check(&env, pc)) {
490                         int ret;
491
492                         if (timeout == 0)
493                                 ret = wait_woken(&wait, TASK_IDLE,
494                                                  MAX_SCHEDULE_TIMEOUT);
495                         else
496                                 ret = wait_woken(&wait, TASK_IDLE,
497                                                  cfs_time_seconds(timeout));
498                         if (ret != 0)
499                                 continue;
500                         /* Timed out */
501                         ptlrpc_expired_set(set);
502                         break;
503                 }
504                 remove_wait_queue(&set->set_waitq, &wait);
505
506                 lu_context_exit(&env.le_ctx);
507                 lu_context_exit(env.le_ses);
508
509                 /*
510                  * Abort inflight rpcs for forced stop case.
511                  */
512                 if (test_bit(LIOD_STOP, &pc->pc_flags)) {
513                         if (test_bit(LIOD_FORCE, &pc->pc_flags))
514                                 ptlrpc_abort_set(set);
515                         exit++;
516                 }
517
518                 /*
519                  * Let's make one more loop to make sure that ptlrpcd_check()
520                  * copied all raced new rpcs into the set so we can kill them.
521                  */
522         } while (exit < 2);
523
524         /*
525          * Wait for inflight requests to drain.
526          */
527         if (!list_empty(&set->set_requests))
528                 ptlrpc_set_wait(&env, set);
529         lu_context_fini(&env.le_ctx);
530         lu_context_fini(env.le_ses);
531
532         complete(&pc->pc_finishing);
533
534         return 0;
535
536 failed:
537         pc->pc_error = rc;
538         complete(&pc->pc_starting);
539         RETURN(rc);
540 }
541
542 static void ptlrpcd_ctl_init(struct ptlrpcd_ctl *pc, int index, int cpt)
543 {
544         ENTRY;
545
546         pc->pc_index = index;
547         pc->pc_cpt = cpt;
548         init_completion(&pc->pc_starting);
549         init_completion(&pc->pc_finishing);
550         spin_lock_init(&pc->pc_lock);
551
552         if (index < 0) {
553                 /* Recovery thread. */
554                 snprintf(pc->pc_name, sizeof(pc->pc_name), "ptlrpcd_rcv");
555         } else {
556                 /* Regular thread. */
557                 snprintf(pc->pc_name, sizeof(pc->pc_name),
558                          "ptlrpcd_%02d_%02d", cpt, index);
559         }
560
561         EXIT;
562 }
563
564 /* XXX: We want multiple CPU cores to share the async RPC load. So we
565  *      start many ptlrpcd threads. We also want to reduce the ptlrpcd
566  *      overhead caused by data transfer cross-CPU cores. So we bind
567  *      all ptlrpcd threads to a CPT, in the expectation that CPTs
568  *      will be defined in a way that matches these boundaries. Within
569  *      a CPT a ptlrpcd thread can be scheduled on any available core.
570  *
571  *      Each ptlrpcd thread has its own request queue. This can cause
572  *      response delay if the thread is already busy. To help with
573  *      this we define partner threads: these are other threads bound
574  *      to the same CPT which will check for work in each other's
575  *      request queues if they have no work to do.
576  *
577  *      The desired number of partner threads can be tuned by setting
578  *      ptlrpcd_partner_group_size. The default is to create pairs of
579  *      partner threads.
580  */
581 static int ptlrpcd_partners(struct ptlrpcd *pd, int index)
582 {
583         struct ptlrpcd_ctl      *pc;
584         struct ptlrpcd_ctl      **ppc;
585         int                     first;
586         int                     i;
587         int                     rc = 0;
588
589         ENTRY;
590
591         LASSERT(index >= 0 && index < pd->pd_nthreads);
592         pc = &pd->pd_threads[index];
593         pc->pc_npartners = pd->pd_groupsize - 1;
594
595         if (pc->pc_npartners <= 0)
596                 GOTO(out, rc);
597
598         OBD_CPT_ALLOC(pc->pc_partners, cfs_cpt_tab, pc->pc_cpt,
599                       sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners);
600         if (pc->pc_partners == NULL) {
601                 pc->pc_npartners = 0;
602                 GOTO(out, rc = -ENOMEM);
603         }
604
605         first = index - index % pd->pd_groupsize;
606         ppc = pc->pc_partners;
607         for (i = first; i < first + pd->pd_groupsize; i++) {
608                 if (i != index)
609                         *ppc++ = &pd->pd_threads[i];
610         }
611 out:
612         RETURN(rc);
613 }
614
615 int ptlrpcd_start(struct ptlrpcd_ctl *pc)
616 {
617         struct task_struct      *task;
618         int                     rc = 0;
619
620         ENTRY;
621
622         /*
623          * Do not allow starting a second thread for one pc.
624          */
625         if (test_and_set_bit(LIOD_START, &pc->pc_flags)) {
626                 CWARN("Starting second thread (%s) for same pc %p\n",
627                       pc->pc_name, pc);
628                 RETURN(0);
629         }
630
631         task = kthread_run(ptlrpcd, pc, "%s", pc->pc_name);
632         if (IS_ERR(task))
633                 GOTO(out_set, rc = PTR_ERR(task));
634
635         wait_for_completion(&pc->pc_starting);
636         rc = pc->pc_error;
637         if (rc != 0)
638                 GOTO(out_set, rc);
639
640         RETURN(0);
641
642 out_set:
643         if (pc->pc_set != NULL) {
644                 struct ptlrpc_request_set *set = pc->pc_set;
645
646                 spin_lock(&pc->pc_lock);
647                 pc->pc_set = NULL;
648                 spin_unlock(&pc->pc_lock);
649                 ptlrpc_set_destroy(set);
650         }
651         clear_bit(LIOD_START, &pc->pc_flags);
652         RETURN(rc);
653 }
654
655 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force)
656 {
657         ENTRY;
658
659         if (!test_bit(LIOD_START, &pc->pc_flags)) {
660                 CWARN("Thread for pc %p was not started\n", pc);
661                 goto out;
662         }
663
664         set_bit(LIOD_STOP, &pc->pc_flags);
665         if (force)
666                 set_bit(LIOD_FORCE, &pc->pc_flags);
667         wake_up(&pc->pc_set->set_waitq);
668
669 out:
670         EXIT;
671 }
672
673 void ptlrpcd_free(struct ptlrpcd_ctl *pc)
674 {
675         struct ptlrpc_request_set *set = pc->pc_set;
676
677         ENTRY;
678
679         if (!test_bit(LIOD_START, &pc->pc_flags)) {
680                 CWARN("Thread for pc %p was not started\n", pc);
681                 goto out;
682         }
683
684         wait_for_completion(&pc->pc_finishing);
685
686         spin_lock(&pc->pc_lock);
687         pc->pc_set = NULL;
688         spin_unlock(&pc->pc_lock);
689         ptlrpc_set_destroy(set);
690
691         clear_bit(LIOD_START, &pc->pc_flags);
692         clear_bit(LIOD_STOP, &pc->pc_flags);
693         clear_bit(LIOD_FORCE, &pc->pc_flags);
694
695 out:
696         if (pc->pc_npartners > 0) {
697                 LASSERT(pc->pc_partners != NULL);
698
699                 OBD_FREE_PTR_ARRAY(pc->pc_partners, pc->pc_npartners);
700                 pc->pc_partners = NULL;
701         }
702         pc->pc_npartners = 0;
703         pc->pc_error = 0;
704         EXIT;
705 }
706
707 static void ptlrpcd_fini(void)
708 {
709         int     i;
710         int     j;
711         int     ncpts;
712
713         ENTRY;
714
715         if (ptlrpcds != NULL) {
716                 for (i = 0; i < ptlrpcds_num; i++) {
717                         if (ptlrpcds[i] == NULL)
718                                 break;
719                         for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
720                                 ptlrpcd_stop(&ptlrpcds[i]->pd_threads[j], 0);
721                         for (j = 0; j < ptlrpcds[i]->pd_nthreads; j++)
722                                 ptlrpcd_free(&ptlrpcds[i]->pd_threads[j]);
723                         OBD_FREE(ptlrpcds[i], ptlrpcds[i]->pd_size);
724                         ptlrpcds[i] = NULL;
725                 }
726                 OBD_FREE_PTR_ARRAY(ptlrpcds, ptlrpcds_num);
727         }
728         ptlrpcds_num = 0;
729
730         ptlrpcd_stop(&ptlrpcd_rcv, 0);
731         ptlrpcd_free(&ptlrpcd_rcv);
732
733         if (ptlrpcds_cpt_idx != NULL) {
734                 ncpts = cfs_cpt_number(cfs_cpt_tab);
735                 OBD_FREE_PTR_ARRAY(ptlrpcds_cpt_idx, ncpts);
736                 ptlrpcds_cpt_idx = NULL;
737         }
738
739         EXIT;
740 }
741
742 static int ptlrpcd_init(void)
743 {
744         int                     nthreads;
745         int                     groupsize;
746         int                     size;
747         int                     i;
748         int                     j;
749         int                     rc = 0;
750         struct cfs_cpt_table    *cptable;
751         __u32                   *cpts = NULL;
752         int                     ncpts;
753         int                     cpt;
754         struct ptlrpcd          *pd;
755
756         ENTRY;
757
758         /*
759          * Determine the CPTs that ptlrpcd threads will run on.
760          */
761         cptable = cfs_cpt_tab;
762         ncpts = cfs_cpt_number(cptable);
763         if (ptlrpcd_cpts != NULL) {
764                 struct cfs_expr_list *el;
765
766                 size = ncpts * sizeof(ptlrpcds_cpt_idx[0]);
767                 OBD_ALLOC(ptlrpcds_cpt_idx, size);
768                 if (ptlrpcds_cpt_idx == NULL)
769                         GOTO(out, rc = -ENOMEM);
770
771                 rc = cfs_expr_list_parse(ptlrpcd_cpts,
772                                          strlen(ptlrpcd_cpts),
773                                          0, ncpts - 1, &el);
774                 if (rc != 0) {
775                         CERROR("%s: invalid CPT pattern string: %s",
776                                "ptlrpcd_cpts", ptlrpcd_cpts);
777                         GOTO(out, rc = -EINVAL);
778                 }
779
780                 rc = cfs_expr_list_values(el, ncpts, &cpts);
781                 cfs_expr_list_free(el);
782                 if (rc <= 0) {
783                         CERROR("%s: failed to parse CPT array %s: %d\n",
784                                "ptlrpcd_cpts", ptlrpcd_cpts, rc);
785                         if (rc == 0)
786                                 rc = -EINVAL;
787                         GOTO(out, rc);
788                 }
789
790                 /*
791                  * Create the cpt-to-index map. When there is no match
792                  * in the cpt table, pick a cpt at random. This could
793                  * be changed to take the topology of the system into
794                  * account.
795                  */
796                 for (cpt = 0; cpt < ncpts; cpt++) {
797                         for (i = 0; i < rc; i++)
798                                 if (cpts[i] == cpt)
799                                         break;
800                         if (i >= rc)
801                                 i = cpt % rc;
802                         ptlrpcds_cpt_idx[cpt] = i;
803                 }
804
805                 cfs_expr_list_values_free(cpts, rc);
806                 ncpts = rc;
807         }
808         ptlrpcds_num = ncpts;
809
810         size = ncpts * sizeof(ptlrpcds[0]);
811         OBD_ALLOC(ptlrpcds, size);
812         if (ptlrpcds == NULL)
813                 GOTO(out, rc = -ENOMEM);
814
815         /*
816          * The max_ptlrpcds parameter is obsolete, but do something
817          * sane if it has been tuned, and complain if
818          * ptlrpcd_per_cpt_max has also been tuned.
819          */
820         if (max_ptlrpcds != 0) {
821                 CWARN("max_ptlrpcds is obsolete.\n");
822                 if (ptlrpcd_per_cpt_max == 0) {
823                         ptlrpcd_per_cpt_max = max_ptlrpcds / ncpts;
824                         /* Round up if there is a remainder. */
825                         if (max_ptlrpcds % ncpts != 0)
826                                 ptlrpcd_per_cpt_max++;
827                         CWARN("Setting ptlrpcd_per_cpt_max = %d\n",
828                               ptlrpcd_per_cpt_max);
829                 } else {
830                         CWARN("ptlrpd_per_cpt_max is also set!\n");
831                 }
832         }
833
834         /*
835          * The ptlrpcd_bind_policy parameter is obsolete, but do
836          * something sane if it has been tuned, and complain if
837          * ptlrpcd_partner_group_size is also tuned.
838          */
839         if (ptlrpcd_bind_policy != 0) {
840                 CWARN("ptlrpcd_bind_policy is obsolete.\n");
841                 if (ptlrpcd_partner_group_size == 0) {
842                         switch (ptlrpcd_bind_policy) {
843                         case 1: /* PDB_POLICY_NONE */
844                         case 2: /* PDB_POLICY_FULL */
845                                 ptlrpcd_partner_group_size = 1;
846                                 break;
847                         case 3: /* PDB_POLICY_PAIR */
848                                 ptlrpcd_partner_group_size = 2;
849                                 break;
850                         case 4: /* PDB_POLICY_NEIGHBOR */
851 #ifdef CONFIG_NUMA
852                                 ptlrpcd_partner_group_size = -1; /* CPT */
853 #else
854                                 ptlrpcd_partner_group_size = 3; /* Triplets */
855 #endif
856                                 break;
857                         default: /* Illegal value, use the default. */
858                                 ptlrpcd_partner_group_size = 2;
859                                 break;
860                         }
861                         CWARN("Setting ptlrpcd_partner_group_size = %d\n",
862                               ptlrpcd_partner_group_size);
863                 } else {
864                         CWARN("ptlrpcd_partner_group_size is also set!\n");
865                 }
866         }
867
868         if (ptlrpcd_partner_group_size == 0)
869                 ptlrpcd_partner_group_size = 2;
870         else if (ptlrpcd_partner_group_size < 0)
871                 ptlrpcd_partner_group_size = -1;
872         else if (ptlrpcd_per_cpt_max > 0 &&
873                  ptlrpcd_partner_group_size > ptlrpcd_per_cpt_max)
874                 ptlrpcd_partner_group_size = ptlrpcd_per_cpt_max;
875
876         /*
877          * Start the recovery thread first.
878          */
879         set_bit(LIOD_RECOVERY, &ptlrpcd_rcv.pc_flags);
880         ptlrpcd_ctl_init(&ptlrpcd_rcv, -1, CFS_CPT_ANY);
881         rc = ptlrpcd_start(&ptlrpcd_rcv);
882         if (rc < 0)
883                 GOTO(out, rc);
884
885         for (i = 0; i < ncpts; i++) {
886                 if (cpts == NULL)
887                         cpt = i;
888                 else
889                         cpt = cpts[i];
890
891                 nthreads = cfs_cpt_weight(cptable, cpt);
892                 if (ptlrpcd_per_cpt_max > 0 && ptlrpcd_per_cpt_max < nthreads)
893                         nthreads = ptlrpcd_per_cpt_max;
894                 if (nthreads < 2)
895                         nthreads = 2;
896
897                 if (ptlrpcd_partner_group_size <= 0) {
898                         groupsize = nthreads;
899                 } else if (nthreads <= ptlrpcd_partner_group_size) {
900                         groupsize = nthreads;
901                 } else {
902                         groupsize = ptlrpcd_partner_group_size;
903                         if (nthreads % groupsize != 0)
904                                 nthreads += groupsize - (nthreads % groupsize);
905                 }
906
907                 size = offsetof(struct ptlrpcd, pd_threads[nthreads]);
908                 OBD_CPT_ALLOC(pd, cptable, cpt, size);
909
910                 if (!pd)
911                         GOTO(out, rc = -ENOMEM);
912                 pd->pd_size      = size;
913                 pd->pd_index     = i;
914                 pd->pd_cpt       = cpt;
915                 pd->pd_cursor    = 0;
916                 pd->pd_nthreads  = nthreads;
917                 pd->pd_groupsize = groupsize;
918                 ptlrpcds[i] = pd;
919
920                 /*
921                  * The ptlrpcd threads in a partner group can access
922                  * each other's struct ptlrpcd_ctl, so these must be
923                  * initialized before any thead is started.
924                  */
925                 for (j = 0; j < nthreads; j++) {
926                         ptlrpcd_ctl_init(&pd->pd_threads[j], j, cpt);
927                         rc = ptlrpcd_partners(pd, j);
928                         if (rc < 0)
929                                 GOTO(out, rc);
930                 }
931
932                 /* XXX: We start nthreads ptlrpc daemons on this cpt.
933                  *      Each of them can process any non-recovery
934                  *      async RPC to improve overall async RPC
935                  *      efficiency.
936                  *
937                  *      But there are some issues with async I/O RPCs
938                  *      and async non-I/O RPCs processed in the same
939                  *      set under some cases. The ptlrpcd may be
940                  *      blocked by some async I/O RPC(s), then will
941                  *      cause other async non-I/O RPC(s) can not be
942                  *      processed in time.
943                  *
944                  *      Maybe we should distinguish blocked async RPCs
945                  *      from non-blocked async RPCs, and process them
946                  *      in different ptlrpcd sets to avoid unnecessary
947                  *      dependency. But how to distribute async RPCs
948                  *      load among all the ptlrpc daemons becomes
949                  *      another trouble.
950                  */
951                 for (j = 0; j < nthreads; j++) {
952                         rc = ptlrpcd_start(&pd->pd_threads[j]);
953                         if (rc < 0)
954                                 GOTO(out, rc);
955                 }
956         }
957 out:
958         if (rc != 0)
959                 ptlrpcd_fini();
960
961         RETURN(rc);
962 }
963
964 int ptlrpcd_addref(void)
965 {
966         int rc = 0;
967
968         ENTRY;
969
970         mutex_lock(&ptlrpcd_mutex);
971         if (++ptlrpcd_users == 1) {
972                 rc = ptlrpcd_init();
973                 if (rc < 0)
974                         ptlrpcd_users--;
975         }
976         mutex_unlock(&ptlrpcd_mutex);
977         RETURN(rc);
978 }
979 EXPORT_SYMBOL(ptlrpcd_addref);
980
981 void ptlrpcd_decref(void)
982 {
983         mutex_lock(&ptlrpcd_mutex);
984         if (--ptlrpcd_users == 0)
985                 ptlrpcd_fini();
986         mutex_unlock(&ptlrpcd_mutex);
987 }
988 EXPORT_SYMBOL(ptlrpcd_decref);
989 /** @} ptlrpcd */