Whamcloud - gitweb
f59e47be53785dcdd3a768f4a4589ae98c8be10a
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/ptlrpc/pack_generic.c
33  *
34  * (Un)packing of OST requests
35  *
36  * Author: Peter J. Braam <braam@clusterfs.com>
37  * Author: Phil Schwan <phil@clusterfs.com>
38  * Author: Eric Barton <eeb@clusterfs.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_RPC
42
43 #include <libcfs/libcfs.h>
44
45 #include <llog_swab.h>
46 #include <lustre_net.h>
47 #include <lustre_swab.h>
48 #include <obd_cksum.h>
49 #include <obd_class.h>
50 #include <obd_support.h>
51 #include <obj_update.h>
52
53 #include "ptlrpc_internal.h"
54
55 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
56 {
57         return cfs_size_round(offsetof(struct lustre_msg_v2,
58                                        lm_buflens[count]));
59 }
60
61 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
62 {
63         LASSERT(count > 0);
64
65         switch (magic) {
66         case LUSTRE_MSG_MAGIC_V2:
67                 return lustre_msg_hdr_size_v2(count);
68         default:
69                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
70                 return 0;
71         }
72 }
73
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
75                             __u32 index)
76 {
77         if (inout)
78                 lustre_set_req_swabbed(req, index);
79         else
80                 lustre_set_rep_swabbed(req, index);
81 }
82
83 bool ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
84                           __u32 index)
85 {
86         if (inout)
87                 return (ptlrpc_req_need_swab(req) &&
88                         !lustre_req_swabbed(req, index));
89
90         return (ptlrpc_rep_need_swab(req) && !lustre_rep_swabbed(req, index));
91 }
92
93 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
94                                               enum lustre_msg_version version)
95 {
96         enum lustre_msg_version ver = lustre_msg_get_version(msg);
97
98         return (ver & LUSTRE_VERSION_MASK) != version;
99 }
100
101 int lustre_msg_check_version(struct lustre_msg *msg,
102                              enum lustre_msg_version version)
103 {
104 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
105         switch (msg->lm_magic) {
106         case LUSTRE_MSG_MAGIC_V1:
107                 CERROR("msg v1 not supported - please upgrade you system\n");
108                 return -EINVAL;
109         case LUSTRE_MSG_MAGIC_V2:
110                 return lustre_msg_check_version_v2(msg, version);
111         default:
112                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
113                 return -EPROTO;
114         }
115 #undef LUSTRE_MSG_MAGIC_V1
116 }
117
118 /* early reply size */
119 __u32 lustre_msg_early_size()
120 {
121         __u32 pblen = sizeof(struct ptlrpc_body);
122
123         return lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
124 }
125 EXPORT_SYMBOL(lustre_msg_early_size);
126
127 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
128 {
129         __u32 size;
130         int i;
131
132         LASSERT(count > 0);
133         size = lustre_msg_hdr_size_v2(count);
134         for (i = 0; i < count; i++)
135                 size += cfs_size_round(lengths[i]);
136
137         return size;
138 }
139 EXPORT_SYMBOL(lustre_msg_size_v2);
140
141 /* This returns the size of the buffer that is required to hold a lustre_msg
142  * with the given sub-buffer lengths.
143  * NOTE: this should only be used for NEW requests, and should always be
144  *       in the form of a v2 request.  If this is a connection to a v1
145  *       target then the first buffer will be stripped because the ptlrpc
146  *       data is part of the lustre_msg_v1 header. b=14043 */
147 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
148 {
149         __u32 size[] = { sizeof(struct ptlrpc_body) };
150
151         if (!lens) {
152                 LASSERT(count == 1);
153                 lens = size;
154         }
155
156         LASSERT(count > 0);
157         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
158
159         switch (magic) {
160         case LUSTRE_MSG_MAGIC_V2:
161                 return lustre_msg_size_v2(count, lens);
162         default:
163                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
164                 return 0;
165         }
166 }
167
168 /* This is used to determine the size of a buffer that was already packed
169  * and will correctly handle the different message formats. */
170 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
171 {
172         switch (msg->lm_magic) {
173         case LUSTRE_MSG_MAGIC_V2:
174                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
175         default:
176                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
177                 return 0;
178         }
179 }
180 EXPORT_SYMBOL(lustre_packed_msg_size);
181
182 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
183                         char **bufs)
184 {
185         char *ptr;
186         int i;
187
188         LASSERT(count > 0);
189
190         msg->lm_bufcount = count;
191         /* XXX: lm_secflvr uninitialized here */
192         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
193
194         for (i = 0; i < count; i++)
195                 msg->lm_buflens[i] = lens[i];
196
197         if (bufs == NULL)
198                 return;
199
200         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
201         for (i = 0; i < count; i++) {
202                 char *tmp = bufs[i];
203
204                 if (tmp)
205                         memcpy(ptr, tmp, lens[i]);
206                 ptr += cfs_size_round(lens[i]);
207         }
208 }
209 EXPORT_SYMBOL(lustre_init_msg_v2);
210
211 static int lustre_pack_request_v2(struct ptlrpc_request *req,
212                                   int count, __u32 *lens, char **bufs)
213 {
214         int reqlen, rc;
215
216         reqlen = lustre_msg_size_v2(count, lens);
217
218         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
219         if (rc)
220                 return rc;
221
222         req->rq_reqlen = reqlen;
223
224         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
225         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
226         return 0;
227 }
228
229 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
230                         __u32 *lens, char **bufs)
231 {
232         __u32 size[] = { sizeof(struct ptlrpc_body) };
233
234         if (!lens) {
235                 LASSERT(count == 1);
236                 lens = size;
237         }
238
239         LASSERT(count > 0);
240         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
241
242         /* only use new format, we don't need to be compatible with 1.4 */
243         magic = LUSTRE_MSG_MAGIC_V2;
244
245         switch (magic) {
246         case LUSTRE_MSG_MAGIC_V2:
247                 return lustre_pack_request_v2(req, count, lens, bufs);
248         default:
249                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
250                 return -EINVAL;
251         }
252 }
253
254 #if RS_DEBUG
255 struct list_head ptlrpc_rs_debug_lru =
256         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
257 spinlock_t ptlrpc_rs_debug_lock;
258
259 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
260 do {                                                                    \
261         spin_lock(&ptlrpc_rs_debug_lock);                               \
262         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
263         spin_unlock(&ptlrpc_rs_debug_lock);                             \
264 } while (0)
265
266 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
267 do {                                                                    \
268         spin_lock(&ptlrpc_rs_debug_lock);                               \
269         list_del(&(rs)->rs_debug_list);                         \
270         spin_unlock(&ptlrpc_rs_debug_lock);                             \
271 } while (0)
272 #else
273 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
274 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
275 #endif
276
277 struct ptlrpc_reply_state *
278 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
279 {
280         struct ptlrpc_reply_state *rs = NULL;
281
282         spin_lock(&svcpt->scp_rep_lock);
283
284         /* See if we have anything in a pool, and wait if nothing */
285         while (list_empty(&svcpt->scp_rep_idle)) {
286                 struct l_wait_info      lwi;
287                 int                     rc;
288
289                 spin_unlock(&svcpt->scp_rep_lock);
290                 /* If we cannot get anything for some long time, we better
291                  * bail out instead of waiting infinitely */
292                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
293                 rc = l_wait_event(svcpt->scp_rep_waitq,
294                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
295                 if (rc != 0)
296                         goto out;
297                 spin_lock(&svcpt->scp_rep_lock);
298         }
299
300         rs = list_entry(svcpt->scp_rep_idle.next,
301                             struct ptlrpc_reply_state, rs_list);
302         list_del(&rs->rs_list);
303
304         spin_unlock(&svcpt->scp_rep_lock);
305
306         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
307         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
308         rs->rs_svcpt = svcpt;
309         rs->rs_prealloc = 1;
310 out:
311         return rs;
312 }
313
314 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
315 {
316         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
317
318         spin_lock(&svcpt->scp_rep_lock);
319         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
320         spin_unlock(&svcpt->scp_rep_lock);
321         wake_up(&svcpt->scp_rep_waitq);
322 }
323
324 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
325                          __u32 *lens, char **bufs, int flags)
326 {
327         struct ptlrpc_reply_state *rs;
328         int                        msg_len, rc;
329         ENTRY;
330
331         LASSERT(req->rq_reply_state == NULL);
332         LASSERT(count > 0);
333
334         if ((flags & LPRFL_EARLY_REPLY) == 0) {
335                 spin_lock(&req->rq_lock);
336                 req->rq_packed_final = 1;
337                 spin_unlock(&req->rq_lock);
338         }
339
340         msg_len = lustre_msg_size_v2(count, lens);
341         rc = sptlrpc_svc_alloc_rs(req, msg_len);
342         if (rc)
343                 RETURN(rc);
344
345         rs = req->rq_reply_state;
346         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
347         rs->rs_cb_id.cbid_fn = reply_out_callback;
348         rs->rs_cb_id.cbid_arg = rs;
349         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
350         INIT_LIST_HEAD(&rs->rs_exp_list);
351         INIT_LIST_HEAD(&rs->rs_obd_list);
352         INIT_LIST_HEAD(&rs->rs_list);
353         spin_lock_init(&rs->rs_lock);
354
355         req->rq_replen = msg_len;
356         req->rq_reply_state = rs;
357         req->rq_repmsg = rs->rs_msg;
358
359         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
360         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
361
362         PTLRPC_RS_DEBUG_LRU_ADD(rs);
363
364         RETURN(0);
365 }
366 EXPORT_SYMBOL(lustre_pack_reply_v2);
367
368 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
369                             char **bufs, int flags)
370 {
371         int rc = 0;
372         __u32 size[] = { sizeof(struct ptlrpc_body) };
373
374         if (!lens) {
375                 LASSERT(count == 1);
376                 lens = size;
377         }
378
379         LASSERT(count > 0);
380         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
381
382         switch (req->rq_reqmsg->lm_magic) {
383         case LUSTRE_MSG_MAGIC_V2:
384                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
385                 break;
386         default:
387                 LASSERTF(0, "incorrect message magic: %08x\n",
388                          req->rq_reqmsg->lm_magic);
389                 rc = -EINVAL;
390         }
391         if (rc != 0)
392                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
393                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
394         return rc;
395 }
396
397 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
398                       char **bufs)
399 {
400         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
401 }
402 EXPORT_SYMBOL(lustre_pack_reply);
403
404 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
405 {
406         __u32 i, offset, buflen, bufcount;
407
408         LASSERT(m != NULL);
409         LASSERT(m->lm_bufcount > 0);
410
411         bufcount = m->lm_bufcount;
412         if (unlikely(n >= bufcount)) {
413                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
414                        m, n, bufcount);
415                 return NULL;
416         }
417
418         buflen = m->lm_buflens[n];
419         if (unlikely(buflen < min_size)) {
420                 CERROR("msg %p buffer[%d] size %d too small "
421                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
422                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
423                 return NULL;
424         }
425
426         offset = lustre_msg_hdr_size_v2(bufcount);
427         for (i = 0; i < n; i++)
428                 offset += cfs_size_round(m->lm_buflens[i]);
429
430         return (char *)m + offset;
431 }
432
433 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
434 {
435         switch (m->lm_magic) {
436         case LUSTRE_MSG_MAGIC_V2:
437                 return lustre_msg_buf_v2(m, n, min_size);
438         default:
439                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
440                          m->lm_magic, m);
441                 return NULL;
442         }
443 }
444 EXPORT_SYMBOL(lustre_msg_buf);
445
446 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
447                                 unsigned int newlen, int move_data)
448 {
449         char   *tail = NULL, *newpos;
450         int     tail_len = 0, n;
451
452         LASSERT(msg);
453         LASSERT(msg->lm_bufcount > segment);
454         LASSERT(msg->lm_buflens[segment] >= newlen);
455
456         if (msg->lm_buflens[segment] == newlen)
457                 goto out;
458
459         if (move_data && msg->lm_bufcount > segment + 1) {
460                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
461                 for (n = segment + 1; n < msg->lm_bufcount; n++)
462                         tail_len += cfs_size_round(msg->lm_buflens[n]);
463         }
464
465         msg->lm_buflens[segment] = newlen;
466
467         if (tail && tail_len) {
468                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
469                 LASSERT(newpos <= tail);
470                 if (newpos != tail)
471                         memmove(newpos, tail, tail_len);
472         }
473 out:
474         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
475 }
476
477 /*
478  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
479  * we also move data forward from @segment + 1.
480  *
481  * if @newlen == 0, we remove the segment completely, but we still keep the
482  * totally bufcount the same to save possible data moving. this will leave a
483  * unused segment with size 0 at the tail, but that's ok.
484  *
485  * return new msg size after shrinking.
486  *
487  * CAUTION:
488  * + if any buffers higher than @segment has been filled in, must call shrink
489  *   with non-zero @move_data.
490  * + caller should NOT keep pointers to msg buffers which higher than @segment
491  *   after call shrink.
492  */
493 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
494                       unsigned int newlen, int move_data)
495 {
496         switch (msg->lm_magic) {
497         case LUSTRE_MSG_MAGIC_V2:
498                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
499         default:
500                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
501         }
502 }
503 EXPORT_SYMBOL(lustre_shrink_msg);
504
505 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
506 {
507         PTLRPC_RS_DEBUG_LRU_DEL(rs);
508
509         LASSERT(atomic_read(&rs->rs_refcount) == 0);
510         LASSERT(!rs->rs_difficult || rs->rs_handled);
511         LASSERT(!rs->rs_on_net);
512         LASSERT(!rs->rs_scheduled);
513         LASSERT(rs->rs_export == NULL);
514         LASSERT(rs->rs_nlocks == 0);
515         LASSERT(list_empty(&rs->rs_exp_list));
516         LASSERT(list_empty(&rs->rs_obd_list));
517
518         sptlrpc_svc_free_rs(rs);
519 }
520
521 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
522 {
523         int swabbed, required_len, i, buflen;
524
525         /* Now we know the sender speaks my language. */
526         required_len = lustre_msg_hdr_size_v2(0);
527         if (len < required_len) {
528                 /* can't even look inside the message */
529                 CERROR("message length %d too small for lustre_msg\n", len);
530                 return -EINVAL;
531         }
532
533         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
534
535         if (swabbed) {
536                 __swab32s(&m->lm_magic);
537                 __swab32s(&m->lm_bufcount);
538                 __swab32s(&m->lm_secflvr);
539                 __swab32s(&m->lm_repsize);
540                 __swab32s(&m->lm_cksum);
541                 __swab32s(&m->lm_flags);
542                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
543                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
544         }
545
546         if (m->lm_bufcount == 0 || m->lm_bufcount > PTLRPC_MAX_BUFCOUNT) {
547                 CERROR("message bufcount %d is not valid\n", m->lm_bufcount);
548                 return -EINVAL;
549         }
550         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
551         if (len < required_len) {
552                 /* didn't receive all the buffer lengths */
553                 CERROR("message length %d too small for %d buflens\n",
554                        len, m->lm_bufcount);
555                 return -EINVAL;
556         }
557
558         for (i = 0; i < m->lm_bufcount; i++) {
559                 if (swabbed)
560                         __swab32s(&m->lm_buflens[i]);
561                 buflen = cfs_size_round(m->lm_buflens[i]);
562                 if (buflen < 0 || buflen > PTLRPC_MAX_BUFLEN) {
563                         CERROR("buffer %d length %d is not valid\n", i, buflen);
564                         return -EINVAL;
565                 }
566                 required_len += buflen;
567         }
568         if (len < required_len || required_len > PTLRPC_MAX_BUFLEN) {
569                 CERROR("len: %d, required_len %d, bufcount: %d\n",
570                        len, required_len, m->lm_bufcount);
571                 for (i = 0; i < m->lm_bufcount; i++)
572                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
573                 return -EINVAL;
574         }
575
576         return swabbed;
577 }
578
579 int __lustre_unpack_msg(struct lustre_msg *m, int len)
580 {
581         int required_len, rc;
582         ENTRY;
583
584         /* We can provide a slightly better error log, if we check the
585          * message magic and version first.  In the future, struct
586          * lustre_msg may grow, and we'd like to log a version mismatch,
587          * rather than a short message.
588          *
589          */
590         required_len = offsetof(struct lustre_msg, lm_magic) +
591                        sizeof(m->lm_magic);
592         if (len < required_len) {
593                 /* can't even look inside the message */
594                 CERROR("message length %d too small for magic/version check\n",
595                        len);
596                 RETURN(-EINVAL);
597         }
598
599         rc = lustre_unpack_msg_v2(m, len);
600
601         RETURN(rc);
602 }
603 EXPORT_SYMBOL(__lustre_unpack_msg);
604
605 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
606 {
607         int rc;
608         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
609         if (rc == 1) {
610                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
611                 rc = 0;
612         }
613         return rc;
614 }
615
616 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
617 {
618         int rc;
619         rc = __lustre_unpack_msg(req->rq_repmsg, len);
620         if (rc == 1) {
621                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
622                 rc = 0;
623         }
624         return rc;
625 }
626
627 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
628                                                const int inout, int offset)
629 {
630         struct ptlrpc_body *pb;
631         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
632
633         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
634         if (!pb) {
635                 CERROR("error unpacking ptlrpc body\n");
636                 return -EFAULT;
637         }
638         if (ptlrpc_buf_need_swab(req, inout, offset)) {
639                 lustre_swab_ptlrpc_body(pb);
640                 ptlrpc_buf_set_swabbed(req, inout, offset);
641         }
642
643         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
644                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
645                  return -EINVAL;
646         }
647
648         if (!inout)
649                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
650
651         return 0;
652 }
653
654 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
655 {
656         switch (req->rq_reqmsg->lm_magic) {
657         case LUSTRE_MSG_MAGIC_V2:
658                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
659         default:
660                 CERROR("bad lustre msg magic: %08x\n",
661                        req->rq_reqmsg->lm_magic);
662                 return -EINVAL;
663         }
664 }
665
666 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
667 {
668         switch (req->rq_repmsg->lm_magic) {
669         case LUSTRE_MSG_MAGIC_V2:
670                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
671         default:
672                 CERROR("bad lustre msg magic: %08x\n",
673                        req->rq_repmsg->lm_magic);
674                 return -EINVAL;
675         }
676 }
677
678 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
679 {
680         if (n >= m->lm_bufcount)
681                 return 0;
682
683         return m->lm_buflens[n];
684 }
685
686 /**
687  * lustre_msg_buflen - return the length of buffer \a n in message \a m
688  * \param m lustre_msg (request or reply) to look at
689  * \param n message index (base 0)
690  *
691  * returns zero for non-existent message indices
692  */
693 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
694 {
695         switch (m->lm_magic) {
696         case LUSTRE_MSG_MAGIC_V2:
697                 return lustre_msg_buflen_v2(m, n);
698         default:
699                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
700                 return 0;
701         }
702 }
703 EXPORT_SYMBOL(lustre_msg_buflen);
704
705 static inline void
706 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
707 {
708         if (n >= m->lm_bufcount)
709                 LBUG();
710
711         m->lm_buflens[n] = len;
712 }
713
714 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
715 {
716         switch (m->lm_magic) {
717         case LUSTRE_MSG_MAGIC_V2:
718                 lustre_msg_set_buflen_v2(m, n, len);
719                 return;
720         default:
721                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
722         }
723 }
724
725 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
726  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
727 __u32 lustre_msg_bufcount(struct lustre_msg *m)
728 {
729         switch (m->lm_magic) {
730         case LUSTRE_MSG_MAGIC_V2:
731                 return m->lm_bufcount;
732         default:
733                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
734                 return 0;
735         }
736 }
737
738 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
739 {
740         /* max_len == 0 means the string should fill the buffer */
741         char *str;
742         __u32 slen, blen;
743
744         switch (m->lm_magic) {
745         case LUSTRE_MSG_MAGIC_V2:
746                 str = lustre_msg_buf_v2(m, index, 0);
747                 blen = lustre_msg_buflen_v2(m, index);
748                 break;
749         default:
750                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
751         }
752
753         if (str == NULL) {
754                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
755                 return NULL;
756         }
757
758         slen = strnlen(str, blen);
759
760         if (slen == blen) {                     /* not NULL terminated */
761                 CERROR("can't unpack non-NULL terminated string in "
762                         "msg %p buffer[%d] len %d\n", m, index, blen);
763                 return NULL;
764         }
765
766         if (max_len == 0) {
767                 if (slen != blen - 1) {
768                         CERROR("can't unpack short string in msg %p "
769                                "buffer[%d] len %d: strlen %d\n",
770                                m, index, blen, slen);
771                         return NULL;
772                 }
773         } else if (slen > max_len) {
774                 CERROR("can't unpack oversized string in msg %p "
775                        "buffer[%d] len %d strlen %d: max %d expected\n",
776                        m, index, blen, slen, max_len);
777                 return NULL;
778         }
779
780         return str;
781 }
782
783 /* Wrap up the normal fixed length cases */
784 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
785                                       __u32 min_size, void *swabber)
786 {
787         void *ptr = NULL;
788
789         LASSERT(msg != NULL);
790         switch (msg->lm_magic) {
791         case LUSTRE_MSG_MAGIC_V2:
792                 ptr = lustre_msg_buf_v2(msg, index, min_size);
793                 break;
794         default:
795                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
796         }
797
798         if (ptr != NULL && swabber != NULL)
799                 ((void (*)(void *))swabber)(ptr);
800
801         return ptr;
802 }
803
804 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
805 {
806         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
807                                  sizeof(struct ptlrpc_body_v2));
808 }
809
810 enum lustre_msghdr lustre_msghdr_get_flags(struct lustre_msg *msg)
811 {
812         switch (msg->lm_magic) {
813         case LUSTRE_MSG_MAGIC_V2:
814                 /* already in host endian */
815                 return msg->lm_flags;
816         default:
817                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
818                 return 0;
819         }
820 }
821 EXPORT_SYMBOL(lustre_msghdr_get_flags);
822
823 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
824 {
825         switch (msg->lm_magic) {
826         case LUSTRE_MSG_MAGIC_V2:
827                 msg->lm_flags = flags;
828                 return;
829         default:
830                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
831         }
832 }
833
834 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
835 {
836         switch (msg->lm_magic) {
837         case LUSTRE_MSG_MAGIC_V2: {
838                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
839                 if (pb != NULL)
840                         return pb->pb_flags;
841
842                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
843         }
844         /* fallthrough */
845         default:
846                 /* flags might be printed in debug code while message
847                  * uninitialized */
848                 return 0;
849         }
850 }
851 EXPORT_SYMBOL(lustre_msg_get_flags);
852
853 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
854 {
855         switch (msg->lm_magic) {
856         case LUSTRE_MSG_MAGIC_V2: {
857                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
858                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
859                 pb->pb_flags |= flags;
860                 return;
861         }
862         default:
863                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
864         }
865 }
866 EXPORT_SYMBOL(lustre_msg_add_flags);
867
868 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
869 {
870         switch (msg->lm_magic) {
871         case LUSTRE_MSG_MAGIC_V2: {
872                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
873                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
874                 pb->pb_flags = flags;
875                 return;
876         }
877         default:
878                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
879         }
880 }
881
882 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
883 {
884         switch (msg->lm_magic) {
885         case LUSTRE_MSG_MAGIC_V2: {
886                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
887                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
888                 pb->pb_flags &= ~flags;
889
890                 return;
891         }
892         default:
893                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
894         }
895 }
896 EXPORT_SYMBOL(lustre_msg_clear_flags);
897
898 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
899 {
900         switch (msg->lm_magic) {
901         case LUSTRE_MSG_MAGIC_V2: {
902                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
903                 if (pb != NULL)
904                         return pb->pb_op_flags;
905
906                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
907         }
908         /* fallthrough */
909         default:
910                 return 0;
911         }
912 }
913
914 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
915 {
916         switch (msg->lm_magic) {
917         case LUSTRE_MSG_MAGIC_V2: {
918                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
919                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
920                 pb->pb_op_flags |= flags;
921                 return;
922         }
923         default:
924                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
925         }
926 }
927 EXPORT_SYMBOL(lustre_msg_add_op_flags);
928
929 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
930 {
931         switch (msg->lm_magic) {
932         case LUSTRE_MSG_MAGIC_V2: {
933                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
934                 if (pb == NULL) {
935                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
936                         return NULL;
937                 }
938                 return &pb->pb_handle;
939         }
940         default:
941                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
942                 return NULL;
943         }
944 }
945
946 __u32 lustre_msg_get_type(struct lustre_msg *msg)
947 {
948         switch (msg->lm_magic) {
949         case LUSTRE_MSG_MAGIC_V2: {
950                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
951                 if (pb == NULL) {
952                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
953                         return PTL_RPC_MSG_ERR;
954                 }
955                 return pb->pb_type;
956         }
957         default:
958                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
959                 return PTL_RPC_MSG_ERR;
960         }
961 }
962 EXPORT_SYMBOL(lustre_msg_get_type);
963
964 enum lustre_msg_version lustre_msg_get_version(struct lustre_msg *msg)
965 {
966         switch (msg->lm_magic) {
967         case LUSTRE_MSG_MAGIC_V2: {
968                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
969                 if (pb == NULL) {
970                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
971                         return 0;
972                 }
973                 return pb->pb_version;
974         }
975         default:
976                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
977                 return 0;
978         }
979 }
980
981 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
982 {
983         switch (msg->lm_magic) {
984         case LUSTRE_MSG_MAGIC_V2: {
985                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
986                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
987                 pb->pb_version |= version;
988                 return;
989         }
990         default:
991                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
992         }
993 }
994
995 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
996 {
997         switch (msg->lm_magic) {
998         case LUSTRE_MSG_MAGIC_V2: {
999                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1000                 if (pb == NULL) {
1001                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1002                         return 0;
1003                 }
1004                 return pb->pb_opc;
1005         }
1006         default:
1007                 CERROR("incorrect message magic: %08x (msg:%p)\n",
1008                        msg->lm_magic, msg);
1009                 return 0;
1010         }
1011 }
1012 EXPORT_SYMBOL(lustre_msg_get_opc);
1013
1014 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1015 {
1016         switch (msg->lm_magic) {
1017         case LUSTRE_MSG_MAGIC_V2: {
1018                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1019                 if (pb == NULL) {
1020                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1021                         return 0;
1022                 }
1023                 return pb->pb_last_xid;
1024         }
1025         default:
1026                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1027                 return 0;
1028         }
1029 }
1030 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1031
1032 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1033 {
1034         switch (msg->lm_magic) {
1035         case LUSTRE_MSG_MAGIC_V2: {
1036                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1037                 if (!pb) {
1038                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1039                         return 0;
1040                 }
1041                 return pb->pb_tag;
1042         }
1043         default:
1044                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1045                 return 0;
1046         }
1047 }
1048 EXPORT_SYMBOL(lustre_msg_get_tag);
1049
1050 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1051 {
1052         switch (msg->lm_magic) {
1053         case LUSTRE_MSG_MAGIC_V2: {
1054                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1055                 if (pb == NULL) {
1056                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1057                         return 0;
1058                 }
1059                 return pb->pb_last_committed;
1060         }
1061         default:
1062                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1063                 return 0;
1064         }
1065 }
1066 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1067
1068 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1069 {
1070         switch (msg->lm_magic) {
1071         case LUSTRE_MSG_MAGIC_V2: {
1072                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1073                 if (pb == NULL) {
1074                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1075                         return NULL;
1076                 }
1077                 return pb->pb_pre_versions;
1078         }
1079         default:
1080                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1081                 return NULL;
1082         }
1083 }
1084 EXPORT_SYMBOL(lustre_msg_get_versions);
1085
1086 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1087 {
1088         switch (msg->lm_magic) {
1089         case LUSTRE_MSG_MAGIC_V2: {
1090                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1091                 if (pb == NULL) {
1092                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1093                         return 0;
1094                 }
1095                 return pb->pb_transno;
1096         }
1097         default:
1098                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1099                 return 0;
1100         }
1101 }
1102 EXPORT_SYMBOL(lustre_msg_get_transno);
1103
1104 int lustre_msg_get_status(struct lustre_msg *msg)
1105 {
1106         switch (msg->lm_magic) {
1107         case LUSTRE_MSG_MAGIC_V2: {
1108                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1109                 if (pb != NULL)
1110                         return pb->pb_status;
1111                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1112         }
1113         /* fallthrough */
1114         default:
1115                 /* status might be printed in debug code while message
1116                 * uninitialized */
1117                 return -EINVAL;
1118         }
1119 }
1120 EXPORT_SYMBOL(lustre_msg_get_status);
1121
1122 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1123 {
1124         switch (msg->lm_magic) {
1125         case LUSTRE_MSG_MAGIC_V2: {
1126                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1127                 if (pb == NULL) {
1128                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1129                         return -EINVAL;
1130                 }
1131                 return pb->pb_slv;
1132         }
1133         default:
1134                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1135                 return -EINVAL;
1136         }
1137 }
1138
1139
1140 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1141 {
1142         switch (msg->lm_magic) {
1143         case LUSTRE_MSG_MAGIC_V2: {
1144                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1145                 if (pb == NULL) {
1146                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1147                         return;
1148                 }
1149                 pb->pb_slv = slv;
1150                 return;
1151         }
1152         default:
1153                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1154                 return;
1155         }
1156 }
1157
1158 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1159 {
1160         switch (msg->lm_magic) {
1161         case LUSTRE_MSG_MAGIC_V2: {
1162                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1163                 if (pb == NULL) {
1164                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1165                         return -EINVAL;
1166                 }
1167                 return pb->pb_limit;
1168         }
1169         default:
1170                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1171                 return -EINVAL;
1172         }
1173 }
1174
1175
1176 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1177 {
1178         switch (msg->lm_magic) {
1179         case LUSTRE_MSG_MAGIC_V2: {
1180                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1181                 if (pb == NULL) {
1182                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1183                         return;
1184                 }
1185                 pb->pb_limit = limit;
1186                 return;
1187         }
1188         default:
1189                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1190                 return;
1191         }
1192 }
1193
1194 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1195 {
1196         switch (msg->lm_magic) {
1197         case LUSTRE_MSG_MAGIC_V2: {
1198                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1199                 if (pb == NULL) {
1200                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1201                         return 0;
1202                 }
1203                 return pb->pb_conn_cnt;
1204         }
1205         default:
1206                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1207                 return 0;
1208         }
1209 }
1210 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1211
1212 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1213 {
1214         switch (msg->lm_magic) {
1215         case LUSTRE_MSG_MAGIC_V2:
1216                 return msg->lm_magic;
1217         default:
1218                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1219                 return 0;
1220         }
1221 }
1222
1223 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1224 {
1225         switch (msg->lm_magic) {
1226         case LUSTRE_MSG_MAGIC_V2: {
1227                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1228                 if (pb == NULL) {
1229                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1230                         return 0;
1231                 }
1232                 return pb->pb_timeout;
1233         }
1234         default:
1235                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1236                 return 0;
1237         }
1238 }
1239
1240 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1241 {
1242         switch (msg->lm_magic) {
1243         case LUSTRE_MSG_MAGIC_V2: {
1244                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1245                 if (pb == NULL) {
1246                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1247                         return 0;
1248                 }
1249                 return pb->pb_service_time;
1250         }
1251         default:
1252                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1253                 return 0;
1254         }
1255 }
1256
1257 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1258 {
1259         switch (msg->lm_magic) {
1260         case LUSTRE_MSG_MAGIC_V2: {
1261                 struct ptlrpc_body *pb;
1262
1263                 /* the old pltrpc_body_v2 is smaller; doesn't include jobid */
1264                 if (msg->lm_buflens[MSG_PTLRPC_BODY_OFF] <
1265                     sizeof(struct ptlrpc_body))
1266                         return NULL;
1267
1268                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1269                                           sizeof(struct ptlrpc_body));
1270                 if (!pb)
1271                         return NULL;
1272
1273                 return pb->pb_jobid;
1274         }
1275         default:
1276                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1277                 return NULL;
1278         }
1279 }
1280 EXPORT_SYMBOL(lustre_msg_get_jobid);
1281
1282 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1283 {
1284         switch (msg->lm_magic) {
1285         case LUSTRE_MSG_MAGIC_V2:
1286                 return msg->lm_cksum;
1287         default:
1288                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1289                 return 0;
1290         }
1291 }
1292
1293 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1294 {
1295         switch (msg->lm_magic) {
1296         case LUSTRE_MSG_MAGIC_V2: {
1297                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1298                 if (pb == NULL) {
1299                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1300                         return 0;
1301                 }
1302                 return pb->pb_mbits;
1303         }
1304         default:
1305                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1306                 return 0;
1307         }
1308 }
1309
1310 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1311 {
1312         switch (msg->lm_magic) {
1313         case LUSTRE_MSG_MAGIC_V2: {
1314                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1315                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1316
1317                 unsigned int hsize = 4;
1318                 __u32 crc;
1319
1320                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1321                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1322                                        len, NULL, 0, (unsigned char *)&crc,
1323                                        &hsize);
1324                 return crc;
1325         }
1326         default:
1327                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1328                 return 0;
1329         }
1330 }
1331
1332 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1333 {
1334         switch (msg->lm_magic) {
1335         case LUSTRE_MSG_MAGIC_V2: {
1336                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1337                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1338                 pb->pb_handle = *handle;
1339                 return;
1340         }
1341         default:
1342                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1343         }
1344 }
1345
1346 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1347 {
1348         switch (msg->lm_magic) {
1349         case LUSTRE_MSG_MAGIC_V2: {
1350                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1351                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1352                 pb->pb_type = type;
1353                 return;
1354                 }
1355         default:
1356                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1357         }
1358 }
1359
1360 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1361 {
1362         switch (msg->lm_magic) {
1363         case LUSTRE_MSG_MAGIC_V2: {
1364                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1365                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1366                 pb->pb_opc = opc;
1367                 return;
1368         }
1369         default:
1370                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1371         }
1372 }
1373
1374 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1375 {
1376         switch (msg->lm_magic) {
1377         case LUSTRE_MSG_MAGIC_V2: {
1378                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1379                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1380                 pb->pb_last_xid = last_xid;
1381                 return;
1382         }
1383         default:
1384                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1385         }
1386 }
1387 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1388
1389 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1390 {
1391         switch (msg->lm_magic) {
1392         case LUSTRE_MSG_MAGIC_V2: {
1393                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1394                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1395                 pb->pb_tag = tag;
1396                 return;
1397         }
1398         default:
1399                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1400         }
1401 }
1402 EXPORT_SYMBOL(lustre_msg_set_tag);
1403
1404 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1405 {
1406         switch (msg->lm_magic) {
1407         case LUSTRE_MSG_MAGIC_V2: {
1408                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1409                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1410                 pb->pb_last_committed = last_committed;
1411                 return;
1412         }
1413         default:
1414                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1415         }
1416 }
1417
1418 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1419 {
1420         switch (msg->lm_magic) {
1421         case LUSTRE_MSG_MAGIC_V2: {
1422                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1423                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1424                 pb->pb_pre_versions[0] = versions[0];
1425                 pb->pb_pre_versions[1] = versions[1];
1426                 pb->pb_pre_versions[2] = versions[2];
1427                 pb->pb_pre_versions[3] = versions[3];
1428                 return;
1429         }
1430         default:
1431                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1432         }
1433 }
1434 EXPORT_SYMBOL(lustre_msg_set_versions);
1435
1436 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1437 {
1438         switch (msg->lm_magic) {
1439         case LUSTRE_MSG_MAGIC_V2: {
1440                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1441                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1442                 pb->pb_transno = transno;
1443                 return;
1444         }
1445         default:
1446                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1447         }
1448 }
1449 EXPORT_SYMBOL(lustre_msg_set_transno);
1450
1451 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1452 {
1453         switch (msg->lm_magic) {
1454         case LUSTRE_MSG_MAGIC_V2: {
1455                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1456                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1457                 pb->pb_status = status;
1458                 return;
1459         }
1460         default:
1461                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1462         }
1463 }
1464 EXPORT_SYMBOL(lustre_msg_set_status);
1465
1466 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1467 {
1468         switch (msg->lm_magic) {
1469         case LUSTRE_MSG_MAGIC_V2: {
1470                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1471                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1472                 pb->pb_conn_cnt = conn_cnt;
1473                 return;
1474         }
1475         default:
1476                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1477         }
1478 }
1479
1480 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1481 {
1482         switch (msg->lm_magic) {
1483         case LUSTRE_MSG_MAGIC_V2: {
1484                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1485                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1486                 pb->pb_timeout = timeout;
1487                 return;
1488         }
1489         default:
1490                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1491         }
1492 }
1493
1494 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1495 {
1496         switch (msg->lm_magic) {
1497         case LUSTRE_MSG_MAGIC_V2: {
1498                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1499                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1500                 pb->pb_service_time = service_time;
1501                 return;
1502         }
1503         default:
1504                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1505         }
1506 }
1507
1508 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1509 {
1510         switch (msg->lm_magic) {
1511         case LUSTRE_MSG_MAGIC_V2: {
1512                 __u32 opc = lustre_msg_get_opc(msg);
1513                 struct ptlrpc_body *pb;
1514
1515                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1516                  * See the comment in ptlrpc_request_pack(). */
1517                 if (!opc || opc == LDLM_BL_CALLBACK ||
1518                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1519                         return;
1520
1521                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1522                                        sizeof(struct ptlrpc_body));
1523                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1524
1525                 if (jobid != NULL)
1526                         memcpy(pb->pb_jobid, jobid, sizeof(pb->pb_jobid));
1527                 else if (pb->pb_jobid[0] == '\0')
1528                         lustre_get_jobid(pb->pb_jobid, sizeof(pb->pb_jobid));
1529                 return;
1530         }
1531         default:
1532                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1533         }
1534 }
1535 EXPORT_SYMBOL(lustre_msg_set_jobid);
1536
1537 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1538 {
1539         switch (msg->lm_magic) {
1540         case LUSTRE_MSG_MAGIC_V2:
1541                 msg->lm_cksum = cksum;
1542                 return;
1543         default:
1544                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1545         }
1546 }
1547
1548 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1549 {
1550         switch (msg->lm_magic) {
1551         case LUSTRE_MSG_MAGIC_V2: {
1552                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1553
1554                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1555                 pb->pb_mbits = mbits;
1556                 return;
1557         }
1558         default:
1559                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1560         }
1561 }
1562
1563 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1564 {
1565         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1566
1567         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1568                                          req->rq_pill.rc_area[RCL_SERVER]);
1569         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1570                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1571 }
1572 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1573
1574 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1575 {
1576         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1577         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1578                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1579 }
1580
1581 /**
1582  * Send a remote set_info_async.
1583  *
1584  * This may go from client to server or server to client.
1585  */
1586 int do_set_info_async(struct obd_import *imp,
1587                       int opcode, int version,
1588                       size_t keylen, void *key,
1589                       size_t vallen, void *val,
1590                       struct ptlrpc_request_set *set)
1591 {
1592         struct ptlrpc_request *req;
1593         char                  *tmp;
1594         int                    rc;
1595         ENTRY;
1596
1597         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1598         if (req == NULL)
1599                 RETURN(-ENOMEM);
1600
1601         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1602                              RCL_CLIENT, keylen);
1603         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1604                              RCL_CLIENT, vallen);
1605         rc = ptlrpc_request_pack(req, version, opcode);
1606         if (rc) {
1607                 ptlrpc_request_free(req);
1608                 RETURN(rc);
1609         }
1610
1611         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1612         memcpy(tmp, key, keylen);
1613         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1614         memcpy(tmp, val, vallen);
1615
1616         ptlrpc_request_set_replen(req);
1617
1618         if (set) {
1619                 ptlrpc_set_add_req(set, req);
1620                 ptlrpc_check_set(NULL, set);
1621         } else {
1622                 rc = ptlrpc_queue_wait(req);
1623                 ptlrpc_req_finished(req);
1624         }
1625
1626         RETURN(rc);
1627 }
1628 EXPORT_SYMBOL(do_set_info_async);
1629
1630 /* byte flipping routines for all wire types declared in
1631  * lustre_idl.h implemented here.
1632  */
1633 void lustre_swab_ptlrpc_body(struct ptlrpc_body *body)
1634 {
1635         __swab32s(&body->pb_type);
1636         __swab32s(&body->pb_version);
1637         __swab32s(&body->pb_opc);
1638         __swab32s(&body->pb_status);
1639         __swab64s(&body->pb_last_xid);
1640         __swab16s(&body->pb_tag);
1641         CLASSERT(offsetof(typeof(*body), pb_padding0) != 0);
1642         CLASSERT(offsetof(typeof(*body), pb_padding1) != 0);
1643         __swab64s(&body->pb_last_committed);
1644         __swab64s(&body->pb_transno);
1645         __swab32s(&body->pb_flags);
1646         __swab32s(&body->pb_op_flags);
1647         __swab32s(&body->pb_conn_cnt);
1648         __swab32s(&body->pb_timeout);
1649         __swab32s(&body->pb_service_time);
1650         __swab32s(&body->pb_limit);
1651         __swab64s(&body->pb_slv);
1652         __swab64s(&body->pb_pre_versions[0]);
1653         __swab64s(&body->pb_pre_versions[1]);
1654         __swab64s(&body->pb_pre_versions[2]);
1655         __swab64s(&body->pb_pre_versions[3]);
1656         __swab64s(&body->pb_mbits);
1657         CLASSERT(offsetof(typeof(*body), pb_padding64_0) != 0);
1658         CLASSERT(offsetof(typeof(*body), pb_padding64_1) != 0);
1659         CLASSERT(offsetof(typeof(*body), pb_padding64_2) != 0);
1660         /* While we need to maintain compatibility between
1661          * clients and servers without ptlrpc_body_v2 (< 2.3)
1662          * do not swab any fields beyond pb_jobid, as we are
1663          * using this swab function for both ptlrpc_body
1664          * and ptlrpc_body_v2. */
1665         /* pb_jobid is an ASCII string and should not be swabbed */
1666         CLASSERT(offsetof(typeof(*body), pb_jobid) != 0);
1667 }
1668
1669 void lustre_swab_connect(struct obd_connect_data *ocd)
1670 {
1671         __swab64s(&ocd->ocd_connect_flags);
1672         __swab32s(&ocd->ocd_version);
1673         __swab32s(&ocd->ocd_grant);
1674         __swab64s(&ocd->ocd_ibits_known);
1675         __swab32s(&ocd->ocd_index);
1676         __swab32s(&ocd->ocd_brw_size);
1677         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1678          * they are 8-byte values */
1679         __swab16s(&ocd->ocd_grant_tax_kb);
1680         __swab32s(&ocd->ocd_grant_max_blks);
1681         __swab64s(&ocd->ocd_transno);
1682         __swab32s(&ocd->ocd_group);
1683         __swab32s(&ocd->ocd_cksum_types);
1684         __swab32s(&ocd->ocd_instance);
1685         /* Fields after ocd_cksum_types are only accessible by the receiver
1686          * if the corresponding flag in ocd_connect_flags is set. Accessing
1687          * any field after ocd_maxbytes on the receiver without a valid flag
1688          * may result in out-of-bound memory access and kernel oops. */
1689         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1690                 __swab32s(&ocd->ocd_max_easize);
1691         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1692                 __swab64s(&ocd->ocd_maxbytes);
1693         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1694                 __swab16s(&ocd->ocd_maxmodrpcs);
1695         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1696         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1697         if (ocd->ocd_connect_flags & OBD_CONNECT_FLAGS2)
1698                 __swab64s(&ocd->ocd_connect_flags2);
1699         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1700         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1701         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1702         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1703         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1704         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1705         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1706         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1707         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1708         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1709         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1710         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1711         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1712 }
1713
1714 static void lustre_swab_ost_layout(struct ost_layout *ol)
1715 {
1716         __swab32s(&ol->ol_stripe_size);
1717         __swab32s(&ol->ol_stripe_count);
1718         __swab64s(&ol->ol_comp_start);
1719         __swab64s(&ol->ol_comp_end);
1720         __swab32s(&ol->ol_comp_id);
1721 }
1722
1723 void lustre_swab_obdo (struct obdo  *o)
1724 {
1725         __swab64s(&o->o_valid);
1726         lustre_swab_ost_id(&o->o_oi);
1727         __swab64s(&o->o_parent_seq);
1728         __swab64s(&o->o_size);
1729         __swab64s(&o->o_mtime);
1730         __swab64s(&o->o_atime);
1731         __swab64s(&o->o_ctime);
1732         __swab64s(&o->o_blocks);
1733         __swab64s(&o->o_grant);
1734         __swab32s(&o->o_blksize);
1735         __swab32s(&o->o_mode);
1736         __swab32s(&o->o_uid);
1737         __swab32s(&o->o_gid);
1738         __swab32s(&o->o_flags);
1739         __swab32s(&o->o_nlink);
1740         __swab32s(&o->o_parent_oid);
1741         __swab32s(&o->o_misc);
1742         __swab64s(&o->o_ioepoch);
1743         __swab32s(&o->o_stripe_idx);
1744         __swab32s(&o->o_parent_ver);
1745         lustre_swab_ost_layout(&o->o_layout);
1746         __swab32s(&o->o_layout_version);
1747         __swab32s(&o->o_uid_h);
1748         __swab32s(&o->o_gid_h);
1749         __swab64s(&o->o_data_version);
1750         __swab32s(&o->o_projid);
1751         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1752         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1753         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1754
1755 }
1756 EXPORT_SYMBOL(lustre_swab_obdo);
1757
1758 void lustre_swab_obd_statfs (struct obd_statfs *os)
1759 {
1760         __swab64s(&os->os_type);
1761         __swab64s(&os->os_blocks);
1762         __swab64s(&os->os_bfree);
1763         __swab64s(&os->os_bavail);
1764         __swab64s(&os->os_files);
1765         __swab64s(&os->os_ffree);
1766         /* no need to swab os_fsid */
1767         __swab32s(&os->os_bsize);
1768         __swab32s(&os->os_namelen);
1769         __swab64s(&os->os_maxbytes);
1770         __swab32s(&os->os_state);
1771         __swab32s(&os->os_fprecreated);
1772         __swab32s(&os->os_granted);
1773         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1774         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1775         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1776         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1777         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1778         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1779         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1780 }
1781
1782 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1783 {
1784         lustre_swab_ost_id(&ioo->ioo_oid);
1785         __swab32s(&ioo->ioo_max_brw);
1786         __swab32s(&ioo->ioo_bufcnt);
1787 }
1788
1789 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1790 {
1791         __swab64s(&nbr->rnb_offset);
1792         __swab32s(&nbr->rnb_len);
1793         __swab32s(&nbr->rnb_flags);
1794 }
1795
1796 void lustre_swab_ost_body (struct ost_body *b)
1797 {
1798         lustre_swab_obdo (&b->oa);
1799 }
1800
1801 void lustre_swab_ost_last_id(u64 *id)
1802 {
1803         __swab64s(id);
1804 }
1805
1806 void lustre_swab_generic_32s(__u32 *val)
1807 {
1808         __swab32s(val);
1809 }
1810
1811 void lustre_swab_gl_lquota_desc(struct ldlm_gl_lquota_desc *desc)
1812 {
1813         lustre_swab_lu_fid(&desc->gl_id.qid_fid);
1814         __swab64s(&desc->gl_flags);
1815         __swab64s(&desc->gl_ver);
1816         __swab64s(&desc->gl_hardlimit);
1817         __swab64s(&desc->gl_softlimit);
1818         __swab64s(&desc->gl_time);
1819         CLASSERT(offsetof(typeof(*desc), gl_pad2) != 0);
1820 }
1821 EXPORT_SYMBOL(lustre_swab_gl_lquota_desc);
1822
1823 void lustre_swab_gl_barrier_desc(struct ldlm_gl_barrier_desc *desc)
1824 {
1825         __swab32s(&desc->lgbd_status);
1826         __swab32s(&desc->lgbd_timeout);
1827         CLASSERT(offsetof(typeof(*desc), lgbd_padding) != 0);
1828 }
1829 EXPORT_SYMBOL(lustre_swab_gl_barrier_desc);
1830
1831 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1832 {
1833         __swab64s(&lvb->lvb_size);
1834         __swab64s(&lvb->lvb_mtime);
1835         __swab64s(&lvb->lvb_atime);
1836         __swab64s(&lvb->lvb_ctime);
1837         __swab64s(&lvb->lvb_blocks);
1838 }
1839 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1840
1841 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1842 {
1843         __swab64s(&lvb->lvb_size);
1844         __swab64s(&lvb->lvb_mtime);
1845         __swab64s(&lvb->lvb_atime);
1846         __swab64s(&lvb->lvb_ctime);
1847         __swab64s(&lvb->lvb_blocks);
1848         __swab32s(&lvb->lvb_mtime_ns);
1849         __swab32s(&lvb->lvb_atime_ns);
1850         __swab32s(&lvb->lvb_ctime_ns);
1851         __swab32s(&lvb->lvb_padding);
1852 }
1853 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1854
1855 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1856 {
1857         __swab64s(&lvb->lvb_flags);
1858         __swab64s(&lvb->lvb_id_may_rel);
1859         __swab64s(&lvb->lvb_id_rel);
1860         __swab64s(&lvb->lvb_id_qunit);
1861         __swab64s(&lvb->lvb_pad1);
1862 }
1863 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1864
1865 void lustre_swab_barrier_lvb(struct barrier_lvb *lvb)
1866 {
1867         __swab32s(&lvb->lvb_status);
1868         __swab32s(&lvb->lvb_index);
1869         CLASSERT(offsetof(typeof(*lvb), lvb_padding) != 0);
1870 }
1871 EXPORT_SYMBOL(lustre_swab_barrier_lvb);
1872
1873 void lustre_swab_mdt_body (struct mdt_body *b)
1874 {
1875         lustre_swab_lu_fid(&b->mbo_fid1);
1876         lustre_swab_lu_fid(&b->mbo_fid2);
1877         /* handle is opaque */
1878         __swab64s(&b->mbo_valid);
1879         __swab64s(&b->mbo_size);
1880         __swab64s(&b->mbo_mtime);
1881         __swab64s(&b->mbo_atime);
1882         __swab64s(&b->mbo_ctime);
1883         __swab64s(&b->mbo_blocks);
1884         __swab64s(&b->mbo_version);
1885         __swab64s(&b->mbo_t_state);
1886         __swab32s(&b->mbo_fsuid);
1887         __swab32s(&b->mbo_fsgid);
1888         __swab32s(&b->mbo_capability);
1889         __swab32s(&b->mbo_mode);
1890         __swab32s(&b->mbo_uid);
1891         __swab32s(&b->mbo_gid);
1892         __swab32s(&b->mbo_flags);
1893         __swab32s(&b->mbo_rdev);
1894         __swab32s(&b->mbo_nlink);
1895         __swab32s(&b->mbo_layout_gen);
1896         __swab32s(&b->mbo_suppgid);
1897         __swab32s(&b->mbo_eadatasize);
1898         __swab32s(&b->mbo_aclsize);
1899         __swab32s(&b->mbo_max_mdsize);
1900         CLASSERT(offsetof(typeof(*b), mbo_unused3) != 0);
1901         __swab32s(&b->mbo_uid_h);
1902         __swab32s(&b->mbo_gid_h);
1903         __swab32s(&b->mbo_projid);
1904         __swab64s(&b->mbo_dom_size);
1905         __swab64s(&b->mbo_dom_blocks);
1906         CLASSERT(offsetof(typeof(*b), mbo_padding_8) != 0);
1907         CLASSERT(offsetof(typeof(*b), mbo_padding_9) != 0);
1908         CLASSERT(offsetof(typeof(*b), mbo_padding_10) != 0);
1909 }
1910
1911 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1912 {
1913         /* mio_open_handle is opaque */
1914         CLASSERT(offsetof(typeof(*b), mio_unused1) != 0);
1915         CLASSERT(offsetof(typeof(*b), mio_unused2) != 0);
1916         CLASSERT(offsetof(typeof(*b), mio_padding) != 0);
1917 }
1918
1919 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1920 {
1921         int i;
1922
1923         __swab32s(&mti->mti_lustre_ver);
1924         __swab32s(&mti->mti_stripe_index);
1925         __swab32s(&mti->mti_config_ver);
1926         __swab32s(&mti->mti_flags);
1927         __swab32s(&mti->mti_instance);
1928         __swab32s(&mti->mti_nid_count);
1929         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1930         for (i = 0; i < MTI_NIDS_MAX; i++)
1931                 __swab64s(&mti->mti_nids[i]);
1932 }
1933
1934 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1935 {
1936         __u8 i;
1937
1938         __swab64s(&entry->mne_version);
1939         __swab32s(&entry->mne_instance);
1940         __swab32s(&entry->mne_index);
1941         __swab32s(&entry->mne_length);
1942
1943         /* mne_nid_(count|type) must be one byte size because we're gonna
1944          * access it w/o swapping. */
1945         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1946         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1947
1948         /* remove this assertion if ipv6 is supported. */
1949         LASSERT(entry->mne_nid_type == 0);
1950         for (i = 0; i < entry->mne_nid_count; i++) {
1951                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1952                 __swab64s(&entry->u.nids[i]);
1953         }
1954 }
1955 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1956
1957 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1958 {
1959         __swab64s(&body->mcb_offset);
1960         __swab32s(&body->mcb_units);
1961         __swab16s(&body->mcb_type);
1962 }
1963
1964 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1965 {
1966         __swab64s(&body->mcr_offset);
1967         __swab64s(&body->mcr_size);
1968 }
1969
1970 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1971 {
1972         __swab64s (&i->dqi_bgrace);
1973         __swab64s (&i->dqi_igrace);
1974         __swab32s (&i->dqi_flags);
1975         __swab32s (&i->dqi_valid);
1976 }
1977
1978 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1979 {
1980         __swab64s (&b->dqb_ihardlimit);
1981         __swab64s (&b->dqb_isoftlimit);
1982         __swab64s (&b->dqb_curinodes);
1983         __swab64s (&b->dqb_bhardlimit);
1984         __swab64s (&b->dqb_bsoftlimit);
1985         __swab64s (&b->dqb_curspace);
1986         __swab64s (&b->dqb_btime);
1987         __swab64s (&b->dqb_itime);
1988         __swab32s (&b->dqb_valid);
1989         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1990 }
1991
1992 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1993 {
1994         __swab32s (&q->qc_cmd);
1995         __swab32s (&q->qc_type);
1996         __swab32s (&q->qc_id);
1997         __swab32s (&q->qc_stat);
1998         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1999         lustre_swab_obd_dqblk (&q->qc_dqblk);
2000 }
2001
2002 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
2003 {
2004         lustre_swab_lu_fid(&gf->gf_fid);
2005         __swab64s(&gf->gf_recno);
2006         __swab32s(&gf->gf_linkno);
2007         __swab32s(&gf->gf_pathlen);
2008 }
2009 EXPORT_SYMBOL(lustre_swab_fid2path);
2010
2011 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
2012 {
2013         __swab64s(&fm_extent->fe_logical);
2014         __swab64s(&fm_extent->fe_physical);
2015         __swab64s(&fm_extent->fe_length);
2016         __swab32s(&fm_extent->fe_flags);
2017         __swab32s(&fm_extent->fe_device);
2018 }
2019
2020 void lustre_swab_fiemap(struct fiemap *fiemap)
2021 {
2022         __u32 i;
2023
2024         __swab64s(&fiemap->fm_start);
2025         __swab64s(&fiemap->fm_length);
2026         __swab32s(&fiemap->fm_flags);
2027         __swab32s(&fiemap->fm_mapped_extents);
2028         __swab32s(&fiemap->fm_extent_count);
2029         __swab32s(&fiemap->fm_reserved);
2030
2031         for (i = 0; i < fiemap->fm_mapped_extents; i++)
2032                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2033 }
2034
2035 void lustre_swab_idx_info(struct idx_info *ii)
2036 {
2037         __swab32s(&ii->ii_magic);
2038         __swab32s(&ii->ii_flags);
2039         __swab16s(&ii->ii_count);
2040         __swab32s(&ii->ii_attrs);
2041         lustre_swab_lu_fid(&ii->ii_fid);
2042         __swab64s(&ii->ii_version);
2043         __swab64s(&ii->ii_hash_start);
2044         __swab64s(&ii->ii_hash_end);
2045         __swab16s(&ii->ii_keysize);
2046         __swab16s(&ii->ii_recsize);
2047 }
2048
2049 void lustre_swab_lip_header(struct lu_idxpage *lip)
2050 {
2051         /* swab header */
2052         __swab32s(&lip->lip_magic);
2053         __swab16s(&lip->lip_flags);
2054         __swab16s(&lip->lip_nr);
2055 }
2056 EXPORT_SYMBOL(lustre_swab_lip_header);
2057
2058 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2059 {
2060         __swab32s(&rr->rr_opcode);
2061         __swab32s(&rr->rr_cap);
2062         __swab32s(&rr->rr_fsuid);
2063         /* rr_fsuid_h is unused */
2064         __swab32s(&rr->rr_fsgid);
2065         /* rr_fsgid_h is unused */
2066         __swab32s(&rr->rr_suppgid1);
2067         /* rr_suppgid1_h is unused */
2068         __swab32s(&rr->rr_suppgid2);
2069         /* rr_suppgid2_h is unused */
2070         lustre_swab_lu_fid(&rr->rr_fid1);
2071         lustre_swab_lu_fid(&rr->rr_fid2);
2072         __swab64s(&rr->rr_mtime);
2073         __swab64s(&rr->rr_atime);
2074         __swab64s(&rr->rr_ctime);
2075         __swab64s(&rr->rr_size);
2076         __swab64s(&rr->rr_blocks);
2077         __swab32s(&rr->rr_bias);
2078         __swab32s(&rr->rr_mode);
2079         __swab32s(&rr->rr_flags);
2080         __swab32s(&rr->rr_flags_h);
2081         __swab32s(&rr->rr_umask);
2082         __swab16s(&rr->rr_mirror_id);
2083
2084         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2085 };
2086
2087 void lustre_swab_lov_desc (struct lov_desc *ld)
2088 {
2089         __swab32s (&ld->ld_tgt_count);
2090         __swab32s (&ld->ld_active_tgt_count);
2091         __swab32s (&ld->ld_default_stripe_count);
2092         __swab32s (&ld->ld_pattern);
2093         __swab64s (&ld->ld_default_stripe_size);
2094         __swab64s (&ld->ld_default_stripe_offset);
2095         __swab32s (&ld->ld_qos_maxage);
2096         /* uuid endian insensitive */
2097 }
2098 EXPORT_SYMBOL(lustre_swab_lov_desc);
2099
2100 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2101 {
2102         __swab32s (&ld->ld_tgt_count);
2103         __swab32s (&ld->ld_active_tgt_count);
2104         __swab32s (&ld->ld_default_stripe_count);
2105         __swab32s (&ld->ld_pattern);
2106         __swab64s (&ld->ld_default_hash_size);
2107         __swab32s (&ld->ld_qos_maxage);
2108         /* uuid endian insensitive */
2109 }
2110
2111 /* This structure is always in little-endian */
2112 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2113 {
2114         int i;
2115
2116         __swab32s(&lmm1->lmv_magic);
2117         __swab32s(&lmm1->lmv_stripe_count);
2118         __swab32s(&lmm1->lmv_master_mdt_index);
2119         __swab32s(&lmm1->lmv_hash_type);
2120         __swab32s(&lmm1->lmv_layout_version);
2121         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2122                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2123 }
2124
2125 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2126 {
2127         switch (lmm->lmv_magic) {
2128         case LMV_MAGIC_V1:
2129                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2130                 break;
2131         default:
2132                 break;
2133         }
2134 }
2135 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2136
2137 void lustre_swab_lmv_user_md_objects(struct lmv_user_mds_data *lmd,
2138                                      int stripe_count)
2139 {
2140         int i;
2141
2142         for (i = 0; i < stripe_count; i++)
2143                 __swab32s(&(lmd[i].lum_mds));
2144 }
2145 EXPORT_SYMBOL(lustre_swab_lmv_user_md_objects);
2146
2147
2148 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2149 {
2150         __u32 count;
2151
2152         if (lum->lum_magic == LMV_MAGIC_FOREIGN) {
2153                 __swab32s(&lum->lum_magic);
2154                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_length);
2155                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_type);
2156                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_flags);
2157                 return;
2158         }
2159
2160         count = lum->lum_stripe_count;
2161         __swab32s(&lum->lum_magic);
2162         __swab32s(&lum->lum_stripe_count);
2163         __swab32s(&lum->lum_stripe_offset);
2164         __swab32s(&lum->lum_hash_type);
2165         __swab32s(&lum->lum_type);
2166         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2167         switch (lum->lum_magic) {
2168         case LMV_USER_MAGIC_SPECIFIC:
2169                 count = lum->lum_stripe_count;
2170                 /* fallthrough */
2171         case __swab32(LMV_USER_MAGIC_SPECIFIC):
2172                 lustre_swab_lmv_user_md_objects(lum->lum_objects, count);
2173                 break;
2174         default:
2175                 break;
2176         }
2177 }
2178 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2179
2180 static void lustre_print_v1v3(unsigned int lvl, struct lov_user_md *lum,
2181                               const char *msg)
2182 {
2183         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2184         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2185         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2186         CDEBUG(lvl, "\tlmm_object_id: %llu\n", lmm_oi_id(&lum->lmm_oi));
2187         CDEBUG(lvl, "\tlmm_object_gr: %llu\n", lmm_oi_seq(&lum->lmm_oi));
2188         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2189         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2190         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2191                lum->lmm_stripe_offset);
2192         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2193                 struct lov_user_md_v3 *v3 = (void *)lum;
2194                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2195         }
2196         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2197                 struct lov_user_md_v3 *v3 = (void *)lum;
2198                 int i;
2199
2200                 if (v3->lmm_pool_name[0] != '\0')
2201                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2202
2203                 CDEBUG(lvl, "\ttarget list:\n");
2204                 for (i = 0; i < v3->lmm_stripe_count; i++)
2205                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2206         }
2207 }
2208
2209 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2210                           const char *msg)
2211 {
2212         struct lov_comp_md_v1   *comp_v1;
2213         int                      i;
2214
2215         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2216                 return;
2217
2218         if (lum->lmm_magic == LOV_USER_MAGIC_V1 ||
2219             lum->lmm_magic == LOV_USER_MAGIC_V3) {
2220                 lustre_print_v1v3(lvl, lum, msg);
2221                 return;
2222         }
2223
2224         if (lum->lmm_magic != LOV_USER_MAGIC_COMP_V1) {
2225                 CDEBUG(lvl, "%s: bad magic: %x\n", msg, lum->lmm_magic);
2226                 return;
2227         }
2228
2229         comp_v1 = (struct lov_comp_md_v1 *)lum;
2230         CDEBUG(lvl, "%s: lov_comp_md_v1 %p:\n", msg, lum);
2231         CDEBUG(lvl, "\tlcm_magic: %#x\n", comp_v1->lcm_magic);
2232         CDEBUG(lvl, "\tlcm_size: %#x\n", comp_v1->lcm_size);
2233         CDEBUG(lvl, "\tlcm_layout_gen: %#x\n", comp_v1->lcm_layout_gen);
2234         CDEBUG(lvl, "\tlcm_flags: %#x\n", comp_v1->lcm_flags);
2235         CDEBUG(lvl, "\tlcm_entry_count: %#x\n\n", comp_v1->lcm_entry_count);
2236         CDEBUG(lvl, "\tlcm_mirror_count: %#x\n\n", comp_v1->lcm_mirror_count);
2237
2238         for (i = 0; i < comp_v1->lcm_entry_count; i++) {
2239                 struct lov_comp_md_entry_v1 *ent = &comp_v1->lcm_entries[i];
2240                 struct lov_user_md *v1;
2241
2242                 CDEBUG(lvl, "\tentry %d:\n", i);
2243                 CDEBUG(lvl, "\tlcme_id: %#x\n", ent->lcme_id);
2244                 CDEBUG(lvl, "\tlcme_flags: %#x\n", ent->lcme_flags);
2245                 if (ent->lcme_flags & LCME_FL_NOSYNC)
2246                         CDEBUG(lvl, "\tlcme_timestamp: %llu\n",
2247                                         ent->lcme_timestamp);
2248                 CDEBUG(lvl, "\tlcme_extent.e_start: %llu\n",
2249                        ent->lcme_extent.e_start);
2250                 CDEBUG(lvl, "\tlcme_extent.e_end: %llu\n",
2251                        ent->lcme_extent.e_end);
2252                 CDEBUG(lvl, "\tlcme_offset: %#x\n", ent->lcme_offset);
2253                 CDEBUG(lvl, "\tlcme_size: %#x\n\n", ent->lcme_size);
2254
2255                 v1 = (struct lov_user_md *)((char *)comp_v1 +
2256                                 comp_v1->lcm_entries[i].lcme_offset);
2257                 lustre_print_v1v3(lvl, v1, msg);
2258         }
2259 }
2260 EXPORT_SYMBOL(lustre_print_user_md);
2261
2262 static void lustre_swab_lmm_oi(struct ost_id *oi)
2263 {
2264         __swab64s(&oi->oi.oi_id);
2265         __swab64s(&oi->oi.oi_seq);
2266 }
2267
2268 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2269 {
2270         ENTRY;
2271         __swab32s(&lum->lmm_magic);
2272         __swab32s(&lum->lmm_pattern);
2273         lustre_swab_lmm_oi(&lum->lmm_oi);
2274         __swab32s(&lum->lmm_stripe_size);
2275         __swab16s(&lum->lmm_stripe_count);
2276         __swab16s(&lum->lmm_stripe_offset);
2277         EXIT;
2278 }
2279
2280 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2281 {
2282         ENTRY;
2283         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2284         lustre_swab_lov_user_md_common(lum);
2285         EXIT;
2286 }
2287 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2288
2289 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2290 {
2291         ENTRY;
2292         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2293         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2294         /* lmm_pool_name nothing to do with char */
2295         EXIT;
2296 }
2297 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2298
2299 void lustre_swab_lov_comp_md_v1(struct lov_comp_md_v1 *lum)
2300 {
2301         struct lov_comp_md_entry_v1     *ent;
2302         struct lov_user_md_v1   *v1;
2303         struct lov_user_md_v3   *v3;
2304         int     i;
2305         bool    cpu_endian;
2306         __u32   off, size;
2307         __u16   ent_count, stripe_count;
2308         ENTRY;
2309
2310         cpu_endian = lum->lcm_magic == LOV_USER_MAGIC_COMP_V1;
2311         ent_count = lum->lcm_entry_count;
2312         if (!cpu_endian)
2313                 __swab16s(&ent_count);
2314
2315         CDEBUG(D_IOCTL, "swabbing lov_user_comp_md v1\n");
2316         __swab32s(&lum->lcm_magic);
2317         __swab32s(&lum->lcm_size);
2318         __swab32s(&lum->lcm_layout_gen);
2319         __swab16s(&lum->lcm_flags);
2320         __swab16s(&lum->lcm_entry_count);
2321         __swab16s(&lum->lcm_mirror_count);
2322         CLASSERT(offsetof(typeof(*lum), lcm_padding1) != 0);
2323         CLASSERT(offsetof(typeof(*lum), lcm_padding2) != 0);
2324
2325         for (i = 0; i < ent_count; i++) {
2326                 ent = &lum->lcm_entries[i];
2327                 off = ent->lcme_offset;
2328                 size = ent->lcme_size;
2329
2330                 if (!cpu_endian) {
2331                         __swab32s(&off);
2332                         __swab32s(&size);
2333                 }
2334                 __swab32s(&ent->lcme_id);
2335                 __swab32s(&ent->lcme_flags);
2336                 __swab64s(&ent->lcme_timestamp);
2337                 __swab64s(&ent->lcme_extent.e_start);
2338                 __swab64s(&ent->lcme_extent.e_end);
2339                 __swab32s(&ent->lcme_offset);
2340                 __swab32s(&ent->lcme_size);
2341                 __swab32s(&ent->lcme_layout_gen);
2342                 CLASSERT(offsetof(typeof(*ent), lcme_padding_1) != 0);
2343
2344                 v1 = (struct lov_user_md_v1 *)((char *)lum + off);
2345                 stripe_count = v1->lmm_stripe_count;
2346                 if (!cpu_endian)
2347                         __swab16s(&stripe_count);
2348
2349                 if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V1) ||
2350                     v1->lmm_magic == LOV_USER_MAGIC_V1) {
2351                         lustre_swab_lov_user_md_v1(v1);
2352                         if (size > sizeof(*v1))
2353                                 lustre_swab_lov_user_md_objects(v1->lmm_objects,
2354                                                                 stripe_count);
2355                 } else if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V3) ||
2356                            v1->lmm_magic == LOV_USER_MAGIC_V3 ||
2357                            v1->lmm_magic == __swab32(LOV_USER_MAGIC_SPECIFIC) ||
2358                            v1->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2359                         v3 = (struct lov_user_md_v3 *)v1;
2360                         lustre_swab_lov_user_md_v3(v3);
2361                         if (size > sizeof(*v3))
2362                                 lustre_swab_lov_user_md_objects(v3->lmm_objects,
2363                                                                 stripe_count);
2364                 } else {
2365                         CERROR("Invalid magic %#x\n", v1->lmm_magic);
2366                 }
2367         }
2368 }
2369 EXPORT_SYMBOL(lustre_swab_lov_comp_md_v1);
2370
2371 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2372                                      int stripe_count)
2373 {
2374         int i;
2375         ENTRY;
2376         for (i = 0; i < stripe_count; i++) {
2377                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2378                 __swab32s(&(lod[i].l_ost_gen));
2379                 __swab32s(&(lod[i].l_ost_idx));
2380         }
2381         EXIT;
2382 }
2383 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2384
2385 void lustre_swab_lov_user_md(struct lov_user_md *lum, size_t size)
2386 {
2387         struct lov_user_md_v1 *v1;
2388         struct lov_user_md_v3 *v3;
2389         struct lov_foreign_md *lfm;
2390         __u16 stripe_count;
2391         ENTRY;
2392
2393         CDEBUG(D_IOCTL, "swabbing lov_user_md\n");
2394         switch (lum->lmm_magic) {
2395         case __swab32(LOV_MAGIC_V1):
2396         case LOV_USER_MAGIC_V1:
2397         {
2398                 v1 = (struct lov_user_md_v1 *)lum;
2399                 stripe_count = v1->lmm_stripe_count;
2400
2401                 if (lum->lmm_magic != LOV_USER_MAGIC_V1)
2402                         __swab16s(&stripe_count);
2403
2404                 lustre_swab_lov_user_md_v1(v1);
2405                 if (size > sizeof(*v1))
2406                         lustre_swab_lov_user_md_objects(v1->lmm_objects,
2407                                                         stripe_count);
2408
2409                 break;
2410         }
2411         case __swab32(LOV_MAGIC_V3):
2412         case LOV_USER_MAGIC_V3:
2413         {
2414                 v3 = (struct lov_user_md_v3 *)lum;
2415                 stripe_count = v3->lmm_stripe_count;
2416
2417                 if (lum->lmm_magic != LOV_USER_MAGIC_V3)
2418                         __swab16s(&stripe_count);
2419
2420                 lustre_swab_lov_user_md_v3(v3);
2421                 if (size > sizeof(*v3))
2422                         lustre_swab_lov_user_md_objects(v3->lmm_objects,
2423                                                         stripe_count);
2424                 break;
2425         }
2426         case __swab32(LOV_USER_MAGIC_SPECIFIC):
2427         case LOV_USER_MAGIC_SPECIFIC:
2428         {
2429                 v3 = (struct lov_user_md_v3 *)lum;
2430                 stripe_count = v3->lmm_stripe_count;
2431
2432                 if (lum->lmm_magic != LOV_USER_MAGIC_SPECIFIC)
2433                         __swab16s(&stripe_count);
2434
2435                 lustre_swab_lov_user_md_v3(v3);
2436                 lustre_swab_lov_user_md_objects(v3->lmm_objects, stripe_count);
2437                 break;
2438         }
2439         case __swab32(LOV_MAGIC_COMP_V1):
2440         case LOV_USER_MAGIC_COMP_V1:
2441                 lustre_swab_lov_comp_md_v1((struct lov_comp_md_v1 *)lum);
2442                 break;
2443         case __swab32(LOV_MAGIC_FOREIGN):
2444         case LOV_USER_MAGIC_FOREIGN:
2445         {
2446                 lfm = (struct lov_foreign_md *)lum;
2447                 __swab32s(&lfm->lfm_magic);
2448                 __swab32s(&lfm->lfm_length);
2449                 __swab32s(&lfm->lfm_type);
2450                 __swab32s(&lfm->lfm_flags);
2451                 break;
2452         }
2453         default:
2454                 CDEBUG(D_IOCTL, "Invalid LOV magic %08x\n", lum->lmm_magic);
2455         }
2456 }
2457 EXPORT_SYMBOL(lustre_swab_lov_user_md);
2458
2459 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2460 {
2461         ENTRY;
2462         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2463         __swab32s(&lmm->lmm_magic);
2464         __swab32s(&lmm->lmm_pattern);
2465         lustre_swab_lmm_oi(&lmm->lmm_oi);
2466         __swab32s(&lmm->lmm_stripe_size);
2467         __swab16s(&lmm->lmm_stripe_count);
2468         __swab16s(&lmm->lmm_layout_gen);
2469         EXIT;
2470 }
2471 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2472
2473 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2474 {
2475         int  i;
2476
2477         for (i = 0; i < RES_NAME_SIZE; i++)
2478                 __swab64s (&id->name[i]);
2479 }
2480
2481 void lustre_swab_ldlm_policy_data(union ldlm_wire_policy_data *d)
2482 {
2483         /* the lock data is a union and the first two fields are always an
2484          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2485          * data the same way. */
2486         __swab64s(&d->l_extent.start);
2487         __swab64s(&d->l_extent.end);
2488         __swab64s(&d->l_extent.gid);
2489         __swab64s(&d->l_flock.lfw_owner);
2490         __swab32s(&d->l_flock.lfw_pid);
2491 }
2492
2493 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2494 {
2495         __swab64s(&i->opc);
2496 }
2497
2498 void lustre_swab_ldlm_resource_desc(struct ldlm_resource_desc *r)
2499 {
2500         __swab32s(&r->lr_type);
2501         CLASSERT(offsetof(typeof(*r), lr_pad) != 0);
2502         lustre_swab_ldlm_res_id(&r->lr_name);
2503 }
2504
2505 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2506 {
2507         lustre_swab_ldlm_resource_desc (&l->l_resource);
2508         __swab32s (&l->l_req_mode);
2509         __swab32s (&l->l_granted_mode);
2510         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2511 }
2512
2513 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2514 {
2515         __swab32s (&rq->lock_flags);
2516         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2517         __swab32s (&rq->lock_count);
2518         /* lock_handle[] opaque */
2519 }
2520
2521 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2522 {
2523         __swab32s (&r->lock_flags);
2524         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2525         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2526         /* lock_handle opaque */
2527         __swab64s (&r->lock_policy_res1);
2528         __swab64s (&r->lock_policy_res2);
2529 }
2530
2531 void lustre_swab_quota_body(struct quota_body *b)
2532 {
2533         lustre_swab_lu_fid(&b->qb_fid);
2534         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2535         __swab32s(&b->qb_flags);
2536         __swab64s(&b->qb_count);
2537         __swab64s(&b->qb_usage);
2538         __swab64s(&b->qb_slv_ver);
2539 }
2540
2541 /* Dump functions */
2542 void dump_ioo(struct obd_ioobj *ioo)
2543 {
2544         CDEBUG(D_RPCTRACE,
2545                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2546                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2547                ioo->ioo_bufcnt);
2548 }
2549
2550 void dump_rniobuf(struct niobuf_remote *nb)
2551 {
2552         CDEBUG(D_RPCTRACE, "niobuf_remote: offset=%llu, len=%d, flags=%x\n",
2553                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2554 }
2555
2556 void dump_obdo(struct obdo *oa)
2557 {
2558         u64 valid = oa->o_valid;
2559
2560         CDEBUG(D_RPCTRACE, "obdo: o_valid = %#llx\n", valid);
2561         if (valid & OBD_MD_FLID)
2562                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2563         if (valid & OBD_MD_FLFID)
2564                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = %#llx\n",
2565                        oa->o_parent_seq);
2566         if (valid & OBD_MD_FLSIZE)
2567                 CDEBUG(D_RPCTRACE, "obdo: o_size = %lld\n", oa->o_size);
2568         if (valid & OBD_MD_FLMTIME)
2569                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = %lld\n", oa->o_mtime);
2570         if (valid & OBD_MD_FLATIME)
2571                 CDEBUG(D_RPCTRACE, "obdo: o_atime = %lld\n", oa->o_atime);
2572         if (valid & OBD_MD_FLCTIME)
2573                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = %lld\n", oa->o_ctime);
2574         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2575                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = %lld\n", oa->o_blocks);
2576         if (valid & OBD_MD_FLGRANT)
2577                 CDEBUG(D_RPCTRACE, "obdo: o_grant = %lld\n", oa->o_grant);
2578         if (valid & OBD_MD_FLBLKSZ)
2579                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2580         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2581                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2582                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2583                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2584         if (valid & OBD_MD_FLUID)
2585                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2586         if (valid & OBD_MD_FLUID)
2587                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2588         if (valid & OBD_MD_FLGID)
2589                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2590         if (valid & OBD_MD_FLGID)
2591                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2592         if (valid & OBD_MD_FLFLAGS)
2593                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2594         if (valid & OBD_MD_FLNLINK)
2595                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2596         else if (valid & OBD_MD_FLCKSUM)
2597                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2598                        oa->o_nlink);
2599         if (valid & OBD_MD_FLPARENT)
2600                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2601                        oa->o_parent_oid);
2602         if (valid & OBD_MD_FLFID) {
2603                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2604                        oa->o_stripe_idx);
2605                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2606                        oa->o_parent_ver);
2607         }
2608         if (valid & OBD_MD_FLHANDLE)
2609                 CDEBUG(D_RPCTRACE, "obdo: o_handle = %lld\n",
2610                        oa->o_handle.cookie);
2611 }
2612
2613 void dump_ost_body(struct ost_body *ob)
2614 {
2615         dump_obdo(&ob->oa);
2616 }
2617
2618 void dump_rcs(__u32 *rc)
2619 {
2620         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2621 }
2622
2623 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2624 {
2625         LASSERT(req->rq_reqmsg);
2626
2627         switch (req->rq_reqmsg->lm_magic) {
2628         case LUSTRE_MSG_MAGIC_V2:
2629                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2630         default:
2631                 CERROR("bad lustre msg magic: %#08X\n",
2632                        req->rq_reqmsg->lm_magic);
2633         }
2634         return 0;
2635 }
2636
2637 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2638 {
2639         if (unlikely(!req->rq_repmsg))
2640                 return 0;
2641
2642         switch (req->rq_repmsg->lm_magic) {
2643         case LUSTRE_MSG_MAGIC_V2:
2644                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2645         default:
2646                 /* uninitialized yet */
2647                 return 0;
2648         }
2649 }
2650
2651 void _debug_req(struct ptlrpc_request *req,
2652                 struct libcfs_debug_msg_data *msgdata, const char *fmt, ...)
2653 {
2654         bool req_ok = req->rq_reqmsg != NULL;
2655         bool rep_ok = false;
2656         lnet_nid_t nid = LNET_NID_ANY;
2657         struct va_format vaf;
2658         va_list args;
2659         int rep_flags = -1;
2660         int rep_status = -1;
2661
2662         spin_lock(&req->rq_early_free_lock);
2663         if (req->rq_repmsg)
2664                 rep_ok = true;
2665
2666         if (ptlrpc_req_need_swab(req)) {
2667                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2668                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2669         }
2670
2671         if (rep_ok) {
2672                 rep_flags = lustre_msg_get_flags(req->rq_repmsg);
2673                 rep_status = lustre_msg_get_status(req->rq_repmsg);
2674         }
2675         spin_unlock(&req->rq_early_free_lock);
2676
2677         if (req->rq_import && req->rq_import->imp_connection)
2678                 nid = req->rq_import->imp_connection->c_peer.nid;
2679         else if (req->rq_export && req->rq_export->exp_connection)
2680                 nid = req->rq_export->exp_connection->c_peer.nid;
2681
2682         va_start(args, fmt);
2683         vaf.fmt = fmt;
2684         vaf.va = &args;
2685         libcfs_debug_msg(msgdata,
2686                          "%pV req@%p x%llu/t%lld(%lld) o%d->%s@%s:%d/%d lens %d/%d e %d to %lld dl %lld ref %d fl " REQ_FLAGS_FMT "/%x/%x rc %d/%d job:'%s'\n",
2687                          &vaf,
2688                          req, req->rq_xid, req->rq_transno,
2689                          req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2690                          req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2691                          req->rq_import ?
2692                          req->rq_import->imp_obd->obd_name :
2693                          req->rq_export ?
2694                          req->rq_export->exp_client_uuid.uuid :
2695                          "<?>",
2696                          libcfs_nid2str(nid),
2697                          req->rq_request_portal, req->rq_reply_portal,
2698                          req->rq_reqlen, req->rq_replen,
2699                          req->rq_early_count, (s64)req->rq_timedout,
2700                          (s64)req->rq_deadline,
2701                          atomic_read(&req->rq_refcount),
2702                          DEBUG_REQ_FLAGS(req),
2703                          req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2704                          rep_flags, req->rq_status, rep_status,
2705                          req_ok ? lustre_msg_get_jobid(req->rq_reqmsg) ?: ""
2706                                 : "");
2707         va_end(args);
2708 }
2709 EXPORT_SYMBOL(_debug_req);
2710
2711 void lustre_swab_lustre_capa(struct lustre_capa *c)
2712 {
2713         lustre_swab_lu_fid(&c->lc_fid);
2714         __swab64s (&c->lc_opc);
2715         __swab64s (&c->lc_uid);
2716         __swab64s (&c->lc_gid);
2717         __swab32s (&c->lc_flags);
2718         __swab32s (&c->lc_keyid);
2719         __swab32s (&c->lc_timeout);
2720         __swab32s (&c->lc_expiry);
2721 }
2722
2723 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2724 {
2725         __swab64s (&k->lk_seq);
2726         __swab32s (&k->lk_keyid);
2727         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2728 }
2729
2730 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2731 {
2732         __swab32s(&state->hus_states);
2733         __swab32s(&state->hus_archive_id);
2734 }
2735
2736 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2737 {
2738         __swab32s(&hss->hss_valid);
2739         __swab64s(&hss->hss_setmask);
2740         __swab64s(&hss->hss_clearmask);
2741         __swab32s(&hss->hss_archive_id);
2742 }
2743
2744 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2745 {
2746         __swab64s(&extent->offset);
2747         __swab64s(&extent->length);
2748 }
2749
2750 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2751 {
2752         __swab32s(&action->hca_state);
2753         __swab32s(&action->hca_action);
2754         lustre_swab_hsm_extent(&action->hca_location);
2755 }
2756
2757 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2758 {
2759         lustre_swab_lu_fid(&hui->hui_fid);
2760         lustre_swab_hsm_extent(&hui->hui_extent);
2761 }
2762
2763 void lustre_swab_lu_extent(struct lu_extent *le)
2764 {
2765         __swab64s(&le->e_start);
2766         __swab64s(&le->e_end);
2767 }
2768
2769 void lustre_swab_layout_intent(struct layout_intent *li)
2770 {
2771         __swab32s(&li->li_opc);
2772         __swab32s(&li->li_flags);
2773         lustre_swab_lu_extent(&li->li_extent);
2774 }
2775
2776 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2777 {
2778         lustre_swab_lu_fid(&hpk->hpk_fid);
2779         __swab64s(&hpk->hpk_cookie);
2780         __swab64s(&hpk->hpk_extent.offset);
2781         __swab64s(&hpk->hpk_extent.length);
2782         __swab16s(&hpk->hpk_flags);
2783         __swab16s(&hpk->hpk_errval);
2784 }
2785
2786 void lustre_swab_hsm_request(struct hsm_request *hr)
2787 {
2788         __swab32s(&hr->hr_action);
2789         __swab32s(&hr->hr_archive_id);
2790         __swab64s(&hr->hr_flags);
2791         __swab32s(&hr->hr_itemcount);
2792         __swab32s(&hr->hr_data_len);
2793 }
2794
2795 void lustre_swab_object_update(struct object_update *ou)
2796 {
2797         struct object_update_param *param;
2798         size_t  i;
2799
2800         __swab16s(&ou->ou_type);
2801         __swab16s(&ou->ou_params_count);
2802         __swab32s(&ou->ou_result_size);
2803         __swab32s(&ou->ou_flags);
2804         __swab32s(&ou->ou_padding1);
2805         __swab64s(&ou->ou_batchid);
2806         lustre_swab_lu_fid(&ou->ou_fid);
2807         param = &ou->ou_params[0];
2808         for (i = 0; i < ou->ou_params_count; i++) {
2809                 __swab16s(&param->oup_len);
2810                 __swab16s(&param->oup_padding);
2811                 __swab32s(&param->oup_padding2);
2812                 param = (struct object_update_param *)((char *)param +
2813                          object_update_param_size(param));
2814         }
2815 }
2816
2817 void lustre_swab_object_update_request(struct object_update_request *our)
2818 {
2819         size_t i;
2820         __swab32s(&our->ourq_magic);
2821         __swab16s(&our->ourq_count);
2822         __swab16s(&our->ourq_padding);
2823         for (i = 0; i < our->ourq_count; i++) {
2824                 struct object_update *ou;
2825
2826                 ou = object_update_request_get(our, i, NULL);
2827                 if (ou == NULL)
2828                         return;
2829                 lustre_swab_object_update(ou);
2830         }
2831 }
2832
2833 void lustre_swab_object_update_result(struct object_update_result *our)
2834 {
2835         __swab32s(&our->our_rc);
2836         __swab16s(&our->our_datalen);
2837         __swab16s(&our->our_padding);
2838 }
2839
2840 void lustre_swab_object_update_reply(struct object_update_reply *our)
2841 {
2842         size_t i;
2843
2844         __swab32s(&our->ourp_magic);
2845         __swab16s(&our->ourp_count);
2846         __swab16s(&our->ourp_padding);
2847         for (i = 0; i < our->ourp_count; i++) {
2848                 struct object_update_result *ourp;
2849
2850                 __swab16s(&our->ourp_lens[i]);
2851                 ourp = object_update_result_get(our, i, NULL);
2852                 if (ourp == NULL)
2853                         return;
2854                 lustre_swab_object_update_result(ourp);
2855         }
2856 }
2857
2858 void lustre_swab_out_update_header(struct out_update_header *ouh)
2859 {
2860         __swab32s(&ouh->ouh_magic);
2861         __swab32s(&ouh->ouh_count);
2862         __swab32s(&ouh->ouh_inline_length);
2863         __swab32s(&ouh->ouh_reply_size);
2864 }
2865 EXPORT_SYMBOL(lustre_swab_out_update_header);
2866
2867 void lustre_swab_out_update_buffer(struct out_update_buffer *oub)
2868 {
2869         __swab32s(&oub->oub_size);
2870         __swab32s(&oub->oub_padding);
2871 }
2872 EXPORT_SYMBOL(lustre_swab_out_update_buffer);
2873
2874 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2875 {
2876         __swab64s(&msl->msl_flags);
2877 }
2878
2879 void lustre_swab_close_data(struct close_data *cd)
2880 {
2881         lustre_swab_lu_fid(&cd->cd_fid);
2882         __swab64s(&cd->cd_data_version);
2883 }
2884
2885 void lustre_swab_close_data_resync_done(struct close_data_resync_done *resync)
2886 {
2887         int i;
2888
2889         __swab32s(&resync->resync_count);
2890         /* after swab, resync_count must in CPU endian */
2891         if (resync->resync_count <= INLINE_RESYNC_ARRAY_SIZE) {
2892                 for (i = 0; i < resync->resync_count; i++)
2893                         __swab32s(&resync->resync_ids_inline[i]);
2894         }
2895 }
2896 EXPORT_SYMBOL(lustre_swab_close_data_resync_done);
2897
2898 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2899 {
2900         __swab32s(&lr->lr_event);
2901         __swab32s(&lr->lr_index);
2902         __swab32s(&lr->lr_flags);
2903         __swab32s(&lr->lr_valid);
2904         __swab32s(&lr->lr_speed);
2905         __swab16s(&lr->lr_version);
2906         __swab16s(&lr->lr_active);
2907         __swab16s(&lr->lr_param);
2908         __swab16s(&lr->lr_async_windows);
2909         __swab32s(&lr->lr_flags);
2910         lustre_swab_lu_fid(&lr->lr_fid);
2911         lustre_swab_lu_fid(&lr->lr_fid2);
2912         __swab32s(&lr->lr_comp_id);
2913         CLASSERT(offsetof(typeof(*lr), lr_padding_0) != 0);
2914         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2915         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2916         CLASSERT(offsetof(typeof(*lr), lr_padding_3) != 0);
2917 }
2918
2919 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2920 {
2921         __swab32s(&lr->lr_status);
2922         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2923         __swab64s(&lr->lr_repaired);
2924 }
2925
2926 static void lustre_swab_orphan_rec(struct lu_orphan_rec *rec)
2927 {
2928         lustre_swab_lu_fid(&rec->lor_fid);
2929         __swab32s(&rec->lor_uid);
2930         __swab32s(&rec->lor_gid);
2931 }
2932
2933 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2934 {
2935         lustre_swab_lu_fid(&ent->loe_key);
2936         lustre_swab_orphan_rec(&ent->loe_rec);
2937 }
2938 EXPORT_SYMBOL(lustre_swab_orphan_ent);
2939
2940 void lustre_swab_orphan_ent_v2(struct lu_orphan_ent_v2 *ent)
2941 {
2942         lustre_swab_lu_fid(&ent->loe_key);
2943         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
2944         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
2945         CLASSERT(offsetof(typeof(ent->loe_rec), lor_padding) != 0);
2946 }
2947 EXPORT_SYMBOL(lustre_swab_orphan_ent_v2);
2948
2949 void lustre_swab_orphan_ent_v3(struct lu_orphan_ent_v3 *ent)
2950 {
2951         lustre_swab_lu_fid(&ent->loe_key);
2952         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
2953         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
2954         __swab32s(&ent->loe_rec.lor_layout_version);
2955         __swab32s(&ent->loe_rec.lor_range);
2956         CLASSERT(offsetof(typeof(ent->loe_rec), lor_padding_1) != 0);
2957         CLASSERT(offsetof(typeof(ent->loe_rec), lor_padding_2) != 0);
2958 }
2959 EXPORT_SYMBOL(lustre_swab_orphan_ent_v3);
2960
2961 void lustre_swab_ladvise(struct lu_ladvise *ladvise)
2962 {
2963         __swab16s(&ladvise->lla_advice);
2964         __swab16s(&ladvise->lla_value1);
2965         __swab32s(&ladvise->lla_value2);
2966         __swab64s(&ladvise->lla_start);
2967         __swab64s(&ladvise->lla_end);
2968         __swab32s(&ladvise->lla_value3);
2969         __swab32s(&ladvise->lla_value4);
2970 }
2971 EXPORT_SYMBOL(lustre_swab_ladvise);
2972
2973 void lustre_swab_ladvise_hdr(struct ladvise_hdr *ladvise_hdr)
2974 {
2975         __swab32s(&ladvise_hdr->lah_magic);
2976         __swab32s(&ladvise_hdr->lah_count);
2977         __swab64s(&ladvise_hdr->lah_flags);
2978         __swab32s(&ladvise_hdr->lah_value1);
2979         __swab32s(&ladvise_hdr->lah_value2);
2980         __swab64s(&ladvise_hdr->lah_value3);
2981 }
2982 EXPORT_SYMBOL(lustre_swab_ladvise_hdr);