Whamcloud - gitweb
LU-14291 ptlrpc: format UPDATE messages in server-only code
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/ptlrpc/pack_generic.c
33  *
34  * (Un)packing of OST requests
35  *
36  * Author: Peter J. Braam <braam@clusterfs.com>
37  * Author: Phil Schwan <phil@clusterfs.com>
38  * Author: Eric Barton <eeb@clusterfs.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_RPC
42
43 #include <linux/crc32.h>
44
45 #include <libcfs/libcfs.h>
46
47 #include <llog_swab.h>
48 #include <lustre_net.h>
49 #include <lustre_swab.h>
50 #include <obd_cksum.h>
51 #include <obd_class.h>
52 #include <obd_support.h>
53 #include "ptlrpc_internal.h"
54
55 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
56 {
57         return cfs_size_round(offsetof(struct lustre_msg_v2,
58                                        lm_buflens[count]));
59 }
60
61 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
62 {
63         LASSERT(count > 0);
64
65         switch (magic) {
66         case LUSTRE_MSG_MAGIC_V2:
67                 return lustre_msg_hdr_size_v2(count);
68         default:
69                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
70                 return 0;
71         }
72 }
73
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
75                             __u32 index)
76 {
77         if (inout)
78                 lustre_set_req_swabbed(req, index);
79         else
80                 lustre_set_rep_swabbed(req, index);
81 }
82
83 bool ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
84                           __u32 index)
85 {
86         if (inout)
87                 return (ptlrpc_req_need_swab(req) &&
88                         !lustre_req_swabbed(req, index));
89
90         return (ptlrpc_rep_need_swab(req) && !lustre_rep_swabbed(req, index));
91 }
92
93 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
94                                               enum lustre_msg_version version)
95 {
96         enum lustre_msg_version ver = lustre_msg_get_version(msg);
97
98         return (ver & LUSTRE_VERSION_MASK) != version;
99 }
100
101 int lustre_msg_check_version(struct lustre_msg *msg,
102                              enum lustre_msg_version version)
103 {
104 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
105         switch (msg->lm_magic) {
106         case LUSTRE_MSG_MAGIC_V1:
107                 CERROR("msg v1 not supported - please upgrade you system\n");
108                 return -EINVAL;
109         case LUSTRE_MSG_MAGIC_V2:
110                 return lustre_msg_check_version_v2(msg, version);
111         default:
112                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
113                 return -EPROTO;
114         }
115 #undef LUSTRE_MSG_MAGIC_V1
116 }
117
118 /* early reply size */
119 __u32 lustre_msg_early_size()
120 {
121         __u32 pblen = sizeof(struct ptlrpc_body);
122
123         return lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
124 }
125 EXPORT_SYMBOL(lustre_msg_early_size);
126
127 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
128 {
129         __u32 size;
130         int i;
131
132         LASSERT(count > 0);
133         size = lustre_msg_hdr_size_v2(count);
134         for (i = 0; i < count; i++)
135                 size += cfs_size_round(lengths[i]);
136
137         return size;
138 }
139 EXPORT_SYMBOL(lustre_msg_size_v2);
140
141 /*
142  * This returns the size of the buffer that is required to hold a lustre_msg
143  * with the given sub-buffer lengths.
144  * NOTE: this should only be used for NEW requests, and should always be
145  *       in the form of a v2 request.  If this is a connection to a v1
146  *       target then the first buffer will be stripped because the ptlrpc
147  *       data is part of the lustre_msg_v1 header. b=14043
148  */
149 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
150 {
151         __u32 size[] = { sizeof(struct ptlrpc_body) };
152
153         if (!lens) {
154                 LASSERT(count == 1);
155                 lens = size;
156         }
157
158         LASSERT(count > 0);
159         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
160
161         switch (magic) {
162         case LUSTRE_MSG_MAGIC_V2:
163                 return lustre_msg_size_v2(count, lens);
164         default:
165                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
166                 return 0;
167         }
168 }
169
170 /*
171  * This is used to determine the size of a buffer that was already packed
172  * and will correctly handle the different message formats.
173  */
174 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
175 {
176         switch (msg->lm_magic) {
177         case LUSTRE_MSG_MAGIC_V2:
178                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
179         default:
180                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
181                 return 0;
182         }
183 }
184 EXPORT_SYMBOL(lustre_packed_msg_size);
185
186 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
187                         char **bufs)
188 {
189         char *ptr;
190         int i;
191
192         LASSERT(count > 0);
193
194         msg->lm_bufcount = count;
195         /* XXX: lm_secflvr uninitialized here */
196         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
197
198         for (i = 0; i < count; i++)
199                 msg->lm_buflens[i] = lens[i];
200
201         if (bufs == NULL)
202                 return;
203
204         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
205         for (i = 0; i < count; i++) {
206                 char *tmp = bufs[i];
207
208                 if (tmp)
209                         memcpy(ptr, tmp, lens[i]);
210                 ptr += cfs_size_round(lens[i]);
211         }
212 }
213 EXPORT_SYMBOL(lustre_init_msg_v2);
214
215 static int lustre_pack_request_v2(struct ptlrpc_request *req,
216                                   int count, __u32 *lens, char **bufs)
217 {
218         int reqlen, rc;
219
220         reqlen = lustre_msg_size_v2(count, lens);
221
222         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
223         if (rc)
224                 return rc;
225
226         req->rq_reqlen = reqlen;
227
228         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
229         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
230         return 0;
231 }
232
233 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
234                         __u32 *lens, char **bufs)
235 {
236         __u32 size[] = { sizeof(struct ptlrpc_body) };
237
238         if (!lens) {
239                 LASSERT(count == 1);
240                 lens = size;
241         }
242
243         LASSERT(count > 0);
244         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
245
246         /* only use new format, we don't need to be compatible with 1.4 */
247         magic = LUSTRE_MSG_MAGIC_V2;
248
249         switch (magic) {
250         case LUSTRE_MSG_MAGIC_V2:
251                 return lustre_pack_request_v2(req, count, lens, bufs);
252         default:
253                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
254                 return -EINVAL;
255         }
256 }
257
258 #if RS_DEBUG
259 struct list_head ptlrpc_rs_debug_lru =
260         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
261 spinlock_t ptlrpc_rs_debug_lock;
262
263 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
264 do {                                                                    \
265         spin_lock(&ptlrpc_rs_debug_lock);                               \
266         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
267         spin_unlock(&ptlrpc_rs_debug_lock);                             \
268 } while (0)
269
270 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
271 do {                                                                    \
272         spin_lock(&ptlrpc_rs_debug_lock);                               \
273         list_del(&(rs)->rs_debug_list);                         \
274         spin_unlock(&ptlrpc_rs_debug_lock);                             \
275 } while (0)
276 #else
277 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
278 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
279 #endif
280
281 struct ptlrpc_reply_state *
282 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
283 {
284         struct ptlrpc_reply_state *rs = NULL;
285
286         spin_lock(&svcpt->scp_rep_lock);
287
288         /* See if we have anything in a pool, and wait if nothing */
289         while (list_empty(&svcpt->scp_rep_idle)) {
290                 int                     rc;
291
292                 spin_unlock(&svcpt->scp_rep_lock);
293                 /* If we cannot get anything for some long time, we better
294                  * bail out instead of waiting infinitely */
295                 rc = wait_event_idle_timeout(svcpt->scp_rep_waitq,
296                                              !list_empty(&svcpt->scp_rep_idle),
297                                              cfs_time_seconds(10));
298                 if (rc <= 0)
299                         goto out;
300                 spin_lock(&svcpt->scp_rep_lock);
301         }
302
303         rs = list_entry(svcpt->scp_rep_idle.next,
304                             struct ptlrpc_reply_state, rs_list);
305         list_del(&rs->rs_list);
306
307         spin_unlock(&svcpt->scp_rep_lock);
308
309         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
310         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
311         rs->rs_svcpt = svcpt;
312         rs->rs_prealloc = 1;
313 out:
314         return rs;
315 }
316
317 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
318 {
319         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
320
321         spin_lock(&svcpt->scp_rep_lock);
322         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
323         spin_unlock(&svcpt->scp_rep_lock);
324         wake_up(&svcpt->scp_rep_waitq);
325 }
326
327 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
328                          __u32 *lens, char **bufs, int flags)
329 {
330         struct ptlrpc_reply_state *rs;
331         int msg_len, rc;
332         ENTRY;
333
334         LASSERT(req->rq_reply_state == NULL);
335         LASSERT(count > 0);
336
337         if ((flags & LPRFL_EARLY_REPLY) == 0) {
338                 spin_lock(&req->rq_lock);
339                 req->rq_packed_final = 1;
340                 spin_unlock(&req->rq_lock);
341         }
342
343         msg_len = lustre_msg_size_v2(count, lens);
344         rc = sptlrpc_svc_alloc_rs(req, msg_len);
345         if (rc)
346                 RETURN(rc);
347
348         rs = req->rq_reply_state;
349         atomic_set(&rs->rs_refcount, 1); /* 1 ref for rq_reply_state */
350         rs->rs_cb_id.cbid_fn = reply_out_callback;
351         rs->rs_cb_id.cbid_arg = rs;
352         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
353         INIT_LIST_HEAD(&rs->rs_exp_list);
354         INIT_LIST_HEAD(&rs->rs_obd_list);
355         INIT_LIST_HEAD(&rs->rs_list);
356         spin_lock_init(&rs->rs_lock);
357
358         req->rq_replen = msg_len;
359         req->rq_reply_state = rs;
360         req->rq_repmsg = rs->rs_msg;
361
362         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
363         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
364
365         PTLRPC_RS_DEBUG_LRU_ADD(rs);
366
367         RETURN(0);
368 }
369 EXPORT_SYMBOL(lustre_pack_reply_v2);
370
371 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
372                             char **bufs, int flags)
373 {
374         int rc = 0;
375         __u32 size[] = { sizeof(struct ptlrpc_body) };
376
377         if (!lens) {
378                 LASSERT(count == 1);
379                 lens = size;
380         }
381
382         LASSERT(count > 0);
383         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
384
385         switch (req->rq_reqmsg->lm_magic) {
386         case LUSTRE_MSG_MAGIC_V2:
387                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
388                 break;
389         default:
390                 LASSERTF(0, "incorrect message magic: %08x\n",
391                          req->rq_reqmsg->lm_magic);
392                 rc = -EINVAL;
393         }
394         if (rc != 0)
395                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
396                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
397         return rc;
398 }
399
400 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
401                       char **bufs)
402 {
403         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
404 }
405 EXPORT_SYMBOL(lustre_pack_reply);
406
407 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
408 {
409         __u32 i, offset, buflen, bufcount;
410
411         LASSERT(m != NULL);
412         LASSERT(m->lm_bufcount > 0);
413
414         bufcount = m->lm_bufcount;
415         if (unlikely(n >= bufcount)) {
416                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
417                        m, n, bufcount);
418                 return NULL;
419         }
420
421         buflen = m->lm_buflens[n];
422         if (unlikely(buflen < min_size)) {
423                 CERROR("msg %p buffer[%d] size %d too small "
424                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
425                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
426                 return NULL;
427         }
428
429         offset = lustre_msg_hdr_size_v2(bufcount);
430         for (i = 0; i < n; i++)
431                 offset += cfs_size_round(m->lm_buflens[i]);
432
433         return (char *)m + offset;
434 }
435
436 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
437 {
438         switch (m->lm_magic) {
439         case LUSTRE_MSG_MAGIC_V2:
440                 return lustre_msg_buf_v2(m, n, min_size);
441         default:
442                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
443                          m->lm_magic, m);
444                 return NULL;
445         }
446 }
447 EXPORT_SYMBOL(lustre_msg_buf);
448
449 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
450                                 unsigned int newlen, int move_data)
451 {
452         char *tail = NULL, *newpos;
453         int tail_len = 0, n;
454
455         LASSERT(msg);
456         LASSERT(msg->lm_bufcount > segment);
457         LASSERT(msg->lm_buflens[segment] >= newlen);
458
459         if (msg->lm_buflens[segment] == newlen)
460                 goto out;
461
462         if (move_data && msg->lm_bufcount > segment + 1) {
463                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
464                 for (n = segment + 1; n < msg->lm_bufcount; n++)
465                         tail_len += cfs_size_round(msg->lm_buflens[n]);
466         }
467
468         msg->lm_buflens[segment] = newlen;
469
470         if (tail && tail_len) {
471                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
472                 LASSERT(newpos <= tail);
473                 if (newpos != tail)
474                         memmove(newpos, tail, tail_len);
475         }
476 out:
477         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
478 }
479
480 /*
481  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
482  * we also move data forward from @segment + 1.
483  *
484  * if @newlen == 0, we remove the segment completely, but we still keep the
485  * totally bufcount the same to save possible data moving. this will leave a
486  * unused segment with size 0 at the tail, but that's ok.
487  *
488  * return new msg size after shrinking.
489  *
490  * CAUTION:
491  * + if any buffers higher than @segment has been filled in, must call shrink
492  *   with non-zero @move_data.
493  * + caller should NOT keep pointers to msg buffers which higher than @segment
494  *   after call shrink.
495  */
496 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
497                       unsigned int newlen, int move_data)
498 {
499         switch (msg->lm_magic) {
500         case LUSTRE_MSG_MAGIC_V2:
501                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
502         default:
503                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
504         }
505 }
506 EXPORT_SYMBOL(lustre_shrink_msg);
507
508 static int lustre_grow_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
509                               unsigned int newlen)
510 {
511         char *tail = NULL, *newpos;
512         int tail_len = 0, n;
513
514         LASSERT(msg);
515         LASSERT(msg->lm_bufcount > segment);
516         LASSERT(msg->lm_buflens[segment] <= newlen);
517
518         if (msg->lm_buflens[segment] == newlen)
519                 goto out;
520
521         if (msg->lm_bufcount > segment + 1) {
522                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
523                 for (n = segment + 1; n < msg->lm_bufcount; n++)
524                         tail_len += cfs_size_round(msg->lm_buflens[n]);
525         }
526
527         msg->lm_buflens[segment] = newlen;
528
529         if (tail && tail_len) {
530                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
531                 memmove(newpos, tail, tail_len);
532         }
533 out:
534         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
535 }
536
537 /*
538  * for @msg, grow @segment to size @newlen.
539  * Always move higher buffer forward.
540  *
541  * return new msg size after growing.
542  *
543  * CAUTION:
544  * - caller must make sure there is enough space in allocated message buffer
545  * - caller should NOT keep pointers to msg buffers which higher than @segment
546  *   after call shrink.
547  */
548 int lustre_grow_msg(struct lustre_msg *msg, int segment, unsigned int newlen)
549 {
550         switch (msg->lm_magic) {
551         case LUSTRE_MSG_MAGIC_V2:
552                 return lustre_grow_msg_v2(msg, segment, newlen);
553         default:
554                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
555         }
556 }
557 EXPORT_SYMBOL(lustre_grow_msg);
558
559 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
560 {
561         PTLRPC_RS_DEBUG_LRU_DEL(rs);
562
563         LASSERT(atomic_read(&rs->rs_refcount) == 0);
564         LASSERT(!rs->rs_difficult || rs->rs_handled);
565         LASSERT(!rs->rs_on_net);
566         LASSERT(!rs->rs_scheduled);
567         LASSERT(rs->rs_export == NULL);
568         LASSERT(rs->rs_nlocks == 0);
569         LASSERT(list_empty(&rs->rs_exp_list));
570         LASSERT(list_empty(&rs->rs_obd_list));
571
572         sptlrpc_svc_free_rs(rs);
573 }
574
575 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
576 {
577         int swabbed, required_len, i, buflen;
578
579         /* Now we know the sender speaks my language. */
580         required_len = lustre_msg_hdr_size_v2(0);
581         if (len < required_len) {
582                 /* can't even look inside the message */
583                 CERROR("message length %d too small for lustre_msg\n", len);
584                 return -EINVAL;
585         }
586
587         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
588
589         if (swabbed) {
590                 __swab32s(&m->lm_magic);
591                 __swab32s(&m->lm_bufcount);
592                 __swab32s(&m->lm_secflvr);
593                 __swab32s(&m->lm_repsize);
594                 __swab32s(&m->lm_cksum);
595                 __swab32s(&m->lm_flags);
596                 BUILD_BUG_ON(offsetof(typeof(*m), lm_padding_2) == 0);
597                 BUILD_BUG_ON(offsetof(typeof(*m), lm_padding_3) == 0);
598         }
599
600         if (m->lm_bufcount == 0 || m->lm_bufcount > PTLRPC_MAX_BUFCOUNT) {
601                 CERROR("message bufcount %d is not valid\n", m->lm_bufcount);
602                 return -EINVAL;
603         }
604         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
605         if (len < required_len) {
606                 /* didn't receive all the buffer lengths */
607                 CERROR("message length %d too small for %d buflens\n",
608                        len, m->lm_bufcount);
609                 return -EINVAL;
610         }
611
612         for (i = 0; i < m->lm_bufcount; i++) {
613                 if (swabbed)
614                         __swab32s(&m->lm_buflens[i]);
615                 buflen = cfs_size_round(m->lm_buflens[i]);
616                 if (buflen < 0 || buflen > PTLRPC_MAX_BUFLEN) {
617                         CERROR("buffer %d length %d is not valid\n", i, buflen);
618                         return -EINVAL;
619                 }
620                 required_len += buflen;
621         }
622         if (len < required_len || required_len > PTLRPC_MAX_BUFLEN) {
623                 CERROR("len: %d, required_len %d, bufcount: %d\n",
624                        len, required_len, m->lm_bufcount);
625                 for (i = 0; i < m->lm_bufcount; i++)
626                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
627                 return -EINVAL;
628         }
629
630         return swabbed;
631 }
632
633 int __lustre_unpack_msg(struct lustre_msg *m, int len)
634 {
635         int required_len, rc;
636
637         ENTRY;
638         /*
639          * We can provide a slightly better error log, if we check the
640          * message magic and version first.  In the future, struct
641          * lustre_msg may grow, and we'd like to log a version mismatch,
642          * rather than a short message.
643          */
644         required_len = offsetof(struct lustre_msg, lm_magic) +
645                                 sizeof(m->lm_magic);
646         if (len < required_len) {
647                 /* can't even look inside the message */
648                 CERROR("message length %d too small for magic/version check\n",
649                        len);
650                 RETURN(-EINVAL);
651         }
652
653         rc = lustre_unpack_msg_v2(m, len);
654
655         RETURN(rc);
656 }
657 EXPORT_SYMBOL(__lustre_unpack_msg);
658
659 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
660 {
661         int rc;
662
663         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
664         if (rc == 1) {
665                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
666                 rc = 0;
667         }
668         return rc;
669 }
670
671 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
672 {
673         int rc;
674
675         rc = __lustre_unpack_msg(req->rq_repmsg, len);
676         if (rc == 1) {
677                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
678                 rc = 0;
679         }
680         return rc;
681 }
682
683 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
684                                                const int inout, int offset)
685 {
686         struct ptlrpc_body *pb;
687         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
688
689         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
690         if (!pb) {
691                 CERROR("error unpacking ptlrpc body\n");
692                 return -EFAULT;
693         }
694         if (ptlrpc_buf_need_swab(req, inout, offset)) {
695                 lustre_swab_ptlrpc_body(pb);
696                 ptlrpc_buf_set_swabbed(req, inout, offset);
697         }
698
699         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
700                 CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
701                 return -EINVAL;
702         }
703
704         if (!inout)
705                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
706
707         return 0;
708 }
709
710 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
711 {
712         switch (req->rq_reqmsg->lm_magic) {
713         case LUSTRE_MSG_MAGIC_V2:
714                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
715         default:
716                 CERROR("bad lustre msg magic: %08x\n",
717                        req->rq_reqmsg->lm_magic);
718                 return -EINVAL;
719         }
720 }
721
722 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
723 {
724         switch (req->rq_repmsg->lm_magic) {
725         case LUSTRE_MSG_MAGIC_V2:
726                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
727         default:
728                 CERROR("bad lustre msg magic: %08x\n",
729                        req->rq_repmsg->lm_magic);
730                 return -EINVAL;
731         }
732 }
733
734 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
735 {
736         if (n >= m->lm_bufcount)
737                 return 0;
738
739         return m->lm_buflens[n];
740 }
741
742 /**
743  * lustre_msg_buflen - return the length of buffer \a n in message \a m
744  * \param m lustre_msg (request or reply) to look at
745  * \param n message index (base 0)
746  *
747  * returns zero for non-existent message indices
748  */
749 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
750 {
751         switch (m->lm_magic) {
752         case LUSTRE_MSG_MAGIC_V2:
753                 return lustre_msg_buflen_v2(m, n);
754         default:
755                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
756                 return 0;
757         }
758 }
759 EXPORT_SYMBOL(lustre_msg_buflen);
760
761 static inline void
762 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
763 {
764         if (n >= m->lm_bufcount)
765                 LBUG();
766
767         m->lm_buflens[n] = len;
768 }
769
770 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
771 {
772         switch (m->lm_magic) {
773         case LUSTRE_MSG_MAGIC_V2:
774                 lustre_msg_set_buflen_v2(m, n, len);
775                 return;
776         default:
777                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
778         }
779 }
780
781 /*
782  * NB return the bufcount for lustre_msg_v2 format, so if message is packed
783  * in V1 format, the result is one bigger. (add struct ptlrpc_body).
784  */
785 __u32 lustre_msg_bufcount(struct lustre_msg *m)
786 {
787         switch (m->lm_magic) {
788         case LUSTRE_MSG_MAGIC_V2:
789                 return m->lm_bufcount;
790         default:
791                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
792                 return 0;
793         }
794 }
795
796 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
797 {
798         /* max_len == 0 means the string should fill the buffer */
799         char *str;
800         __u32 slen, blen;
801
802         switch (m->lm_magic) {
803         case LUSTRE_MSG_MAGIC_V2:
804                 str = lustre_msg_buf_v2(m, index, 0);
805                 blen = lustre_msg_buflen_v2(m, index);
806                 break;
807         default:
808                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
809         }
810
811         if (str == NULL) {
812                 CERROR("can't unpack string in msg %p buffer[%d]\n", m, index);
813                 return NULL;
814         }
815
816         slen = strnlen(str, blen);
817
818         if (slen == blen) { /* not NULL terminated */
819                 CERROR("can't unpack non-NULL terminated string in msg %p buffer[%d] len %d\n",
820                        m, index, blen);
821                 return NULL;
822         }
823         if (blen > PTLRPC_MAX_BUFLEN) {
824                 CERROR("buffer length of msg %p buffer[%d] is invalid(%d)\n",
825                        m, index, blen);
826                 return NULL;
827         }
828
829         if (max_len == 0) {
830                 if (slen != blen - 1) {
831                         CERROR("can't unpack short string in msg %p buffer[%d] len %d: strlen %d\n",
832                                m, index, blen, slen);
833                         return NULL;
834                 }
835         } else if (slen > max_len) {
836                 CERROR("can't unpack oversized string in msg %p buffer[%d] len %d strlen %d: max %d expected\n",
837                        m, index, blen, slen, max_len);
838                 return NULL;
839         }
840
841         return str;
842 }
843
844 /* Wrap up the normal fixed length cases */
845 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
846                                       __u32 min_size, void *swabber)
847 {
848         void *ptr = NULL;
849
850         LASSERT(msg != NULL);
851         switch (msg->lm_magic) {
852         case LUSTRE_MSG_MAGIC_V2:
853                 ptr = lustre_msg_buf_v2(msg, index, min_size);
854                 break;
855         default:
856                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
857         }
858
859         if (ptr != NULL && swabber != NULL)
860                 ((void (*)(void *))swabber)(ptr);
861
862         return ptr;
863 }
864
865 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
866 {
867         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
868                                  sizeof(struct ptlrpc_body_v2));
869 }
870
871 enum lustre_msghdr lustre_msghdr_get_flags(struct lustre_msg *msg)
872 {
873         switch (msg->lm_magic) {
874         case LUSTRE_MSG_MAGIC_V2:
875                 /* already in host endian */
876                 return msg->lm_flags;
877         default:
878                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
879                 return 0;
880         }
881 }
882 EXPORT_SYMBOL(lustre_msghdr_get_flags);
883
884 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
885 {
886         switch (msg->lm_magic) {
887         case LUSTRE_MSG_MAGIC_V2:
888                 msg->lm_flags = flags;
889                 return;
890         default:
891                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
892         }
893 }
894
895 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
896 {
897         switch (msg->lm_magic) {
898         case LUSTRE_MSG_MAGIC_V2: {
899                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
900                 if (pb != NULL)
901                         return pb->pb_flags;
902
903                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
904         }
905         /* fallthrough */
906         default:
907                 /*
908                  * flags might be printed in debug code while message
909                  * uninitialized
910                  */
911                 return 0;
912         }
913 }
914 EXPORT_SYMBOL(lustre_msg_get_flags);
915
916 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
917 {
918         switch (msg->lm_magic) {
919         case LUSTRE_MSG_MAGIC_V2: {
920                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
921                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
922                 pb->pb_flags |= flags;
923                 return;
924         }
925         default:
926                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
927         }
928 }
929 EXPORT_SYMBOL(lustre_msg_add_flags);
930
931 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
932 {
933         switch (msg->lm_magic) {
934         case LUSTRE_MSG_MAGIC_V2: {
935                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
936                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
937                 pb->pb_flags = flags;
938                 return;
939         }
940         default:
941                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
942         }
943 }
944
945 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
946 {
947         switch (msg->lm_magic) {
948         case LUSTRE_MSG_MAGIC_V2: {
949                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
950                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
951                 pb->pb_flags &= ~flags;
952
953                 return;
954         }
955         default:
956                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
957         }
958 }
959 EXPORT_SYMBOL(lustre_msg_clear_flags);
960
961 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
962 {
963         switch (msg->lm_magic) {
964         case LUSTRE_MSG_MAGIC_V2: {
965                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
966                 if (pb != NULL)
967                         return pb->pb_op_flags;
968
969                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
970         }
971         /* fallthrough */
972         default:
973                 return 0;
974         }
975 }
976
977 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
978 {
979         switch (msg->lm_magic) {
980         case LUSTRE_MSG_MAGIC_V2: {
981                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
982                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
983                 pb->pb_op_flags |= flags;
984                 return;
985         }
986         default:
987                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
988         }
989 }
990 EXPORT_SYMBOL(lustre_msg_add_op_flags);
991
992 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
993 {
994         switch (msg->lm_magic) {
995         case LUSTRE_MSG_MAGIC_V2: {
996                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
997                 if (pb == NULL) {
998                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
999                         return NULL;
1000                 }
1001                 return &pb->pb_handle;
1002         }
1003         default:
1004                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1005                 return NULL;
1006         }
1007 }
1008
1009 __u32 lustre_msg_get_type(struct lustre_msg *msg)
1010 {
1011         switch (msg->lm_magic) {
1012         case LUSTRE_MSG_MAGIC_V2: {
1013                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1014                 if (pb == NULL) {
1015                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1016                         return PTL_RPC_MSG_ERR;
1017                 }
1018                 return pb->pb_type;
1019         }
1020         default:
1021                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1022                 return PTL_RPC_MSG_ERR;
1023         }
1024 }
1025 EXPORT_SYMBOL(lustre_msg_get_type);
1026
1027 enum lustre_msg_version lustre_msg_get_version(struct lustre_msg *msg)
1028 {
1029         switch (msg->lm_magic) {
1030         case LUSTRE_MSG_MAGIC_V2: {
1031                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1032                 if (pb == NULL) {
1033                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1034                         return 0;
1035                 }
1036                 return pb->pb_version;
1037         }
1038         default:
1039                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1040                 return 0;
1041         }
1042 }
1043
1044 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
1045 {
1046         switch (msg->lm_magic) {
1047         case LUSTRE_MSG_MAGIC_V2: {
1048                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1049                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1050                 pb->pb_version |= version;
1051                 return;
1052         }
1053         default:
1054                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1055         }
1056 }
1057
1058 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
1059 {
1060         switch (msg->lm_magic) {
1061         case LUSTRE_MSG_MAGIC_V2: {
1062                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1063                 if (pb == NULL) {
1064                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1065                         return 0;
1066                 }
1067                 return pb->pb_opc;
1068         }
1069         default:
1070                 CERROR("incorrect message magic: %08x (msg:%p)\n",
1071                        msg->lm_magic, msg);
1072                 return 0;
1073         }
1074 }
1075 EXPORT_SYMBOL(lustre_msg_get_opc);
1076
1077 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1078 {
1079         switch (msg->lm_magic) {
1080         case LUSTRE_MSG_MAGIC_V2: {
1081                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1082                 if (pb == NULL) {
1083                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1084                         return 0;
1085                 }
1086                 return pb->pb_last_xid;
1087         }
1088         default:
1089                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1090                 return 0;
1091         }
1092 }
1093 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1094
1095 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1096 {
1097         switch (msg->lm_magic) {
1098         case LUSTRE_MSG_MAGIC_V2: {
1099                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1100                 if (!pb) {
1101                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1102                         return 0;
1103                 }
1104                 return pb->pb_tag;
1105         }
1106         default:
1107                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1108                 return 0;
1109         }
1110 }
1111 EXPORT_SYMBOL(lustre_msg_get_tag);
1112
1113 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1114 {
1115         switch (msg->lm_magic) {
1116         case LUSTRE_MSG_MAGIC_V2: {
1117                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1118                 if (pb == NULL) {
1119                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1120                         return 0;
1121                 }
1122                 return pb->pb_last_committed;
1123         }
1124         default:
1125                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1126                 return 0;
1127         }
1128 }
1129 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1130
1131 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1132 {
1133         switch (msg->lm_magic) {
1134         case LUSTRE_MSG_MAGIC_V2: {
1135                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1136                 if (pb == NULL) {
1137                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1138                         return NULL;
1139                 }
1140                 return pb->pb_pre_versions;
1141         }
1142         default:
1143                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1144                 return NULL;
1145         }
1146 }
1147 EXPORT_SYMBOL(lustre_msg_get_versions);
1148
1149 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1150 {
1151         switch (msg->lm_magic) {
1152         case LUSTRE_MSG_MAGIC_V2: {
1153                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1154                 if (pb == NULL) {
1155                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1156                         return 0;
1157                 }
1158                 return pb->pb_transno;
1159         }
1160         default:
1161                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1162                 return 0;
1163         }
1164 }
1165 EXPORT_SYMBOL(lustre_msg_get_transno);
1166
1167 int lustre_msg_get_status(struct lustre_msg *msg)
1168 {
1169         switch (msg->lm_magic) {
1170         case LUSTRE_MSG_MAGIC_V2: {
1171                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1172                 if (pb != NULL)
1173                         return pb->pb_status;
1174                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1175         }
1176         /* fallthrough */
1177         default:
1178                 /*
1179                  * status might be printed in debug code while message
1180                  * uninitialized
1181                  */
1182                 return -EINVAL;
1183         }
1184 }
1185 EXPORT_SYMBOL(lustre_msg_get_status);
1186
1187 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1188 {
1189         switch (msg->lm_magic) {
1190         case LUSTRE_MSG_MAGIC_V2: {
1191                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1192                 if (pb == NULL) {
1193                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1194                         return -EINVAL;
1195                 }
1196                 return pb->pb_slv;
1197         }
1198         default:
1199                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1200                 return -EINVAL;
1201         }
1202 }
1203
1204
1205 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1206 {
1207         switch (msg->lm_magic) {
1208         case LUSTRE_MSG_MAGIC_V2: {
1209                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1210                 if (pb == NULL) {
1211                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1212                         return;
1213                 }
1214                 pb->pb_slv = slv;
1215                 return;
1216         }
1217         default:
1218                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1219                 return;
1220         }
1221 }
1222
1223 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1224 {
1225         switch (msg->lm_magic) {
1226         case LUSTRE_MSG_MAGIC_V2: {
1227                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1228                 if (pb == NULL) {
1229                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1230                         return -EINVAL;
1231                 }
1232                 return pb->pb_limit;
1233         }
1234         default:
1235                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1236                 return -EINVAL;
1237         }
1238 }
1239
1240
1241 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1242 {
1243         switch (msg->lm_magic) {
1244         case LUSTRE_MSG_MAGIC_V2: {
1245                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1246                 if (pb == NULL) {
1247                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1248                         return;
1249                 }
1250                 pb->pb_limit = limit;
1251                 return;
1252         }
1253         default:
1254                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1255                 return;
1256         }
1257 }
1258
1259 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1260 {
1261         switch (msg->lm_magic) {
1262         case LUSTRE_MSG_MAGIC_V2: {
1263                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1264                 if (pb == NULL) {
1265                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1266                         return 0;
1267                 }
1268                 return pb->pb_conn_cnt;
1269         }
1270         default:
1271                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1272                 return 0;
1273         }
1274 }
1275 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1276
1277 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1278 {
1279         switch (msg->lm_magic) {
1280         case LUSTRE_MSG_MAGIC_V2:
1281                 return msg->lm_magic;
1282         default:
1283                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1284                 return 0;
1285         }
1286 }
1287
1288 timeout_t lustre_msg_get_timeout(struct lustre_msg *msg)
1289 {
1290         switch (msg->lm_magic) {
1291         case LUSTRE_MSG_MAGIC_V2: {
1292                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1293
1294                 if (pb == NULL) {
1295                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1296                         return 0;
1297                 }
1298                 return pb->pb_timeout;
1299         }
1300         default:
1301                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1302                 return 0;
1303         }
1304 }
1305
1306 timeout_t lustre_msg_get_service_timeout(struct lustre_msg *msg)
1307 {
1308         switch (msg->lm_magic) {
1309         case LUSTRE_MSG_MAGIC_V2: {
1310                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1311
1312                 if (pb == NULL) {
1313                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1314                         return 0;
1315                 }
1316                 return pb->pb_service_time;
1317         }
1318         default:
1319                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1320                 return 0;
1321         }
1322 }
1323
1324 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1325 {
1326         switch (msg->lm_magic) {
1327         case LUSTRE_MSG_MAGIC_V2: {
1328                 struct ptlrpc_body *pb;
1329
1330                 /* the old pltrpc_body_v2 is smaller; doesn't include jobid */
1331                 if (msg->lm_buflens[MSG_PTLRPC_BODY_OFF] <
1332                     sizeof(struct ptlrpc_body))
1333                         return NULL;
1334
1335                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1336                                           sizeof(struct ptlrpc_body));
1337                 if (!pb)
1338                         return NULL;
1339
1340                 return pb->pb_jobid;
1341         }
1342         default:
1343                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1344                 return NULL;
1345         }
1346 }
1347 EXPORT_SYMBOL(lustre_msg_get_jobid);
1348
1349 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1350 {
1351         switch (msg->lm_magic) {
1352         case LUSTRE_MSG_MAGIC_V2:
1353                 return msg->lm_cksum;
1354         default:
1355                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1356                 return 0;
1357         }
1358 }
1359
1360 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1361 {
1362         switch (msg->lm_magic) {
1363         case LUSTRE_MSG_MAGIC_V2: {
1364                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1365                 if (pb == NULL) {
1366                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1367                         return 0;
1368                 }
1369                 return pb->pb_mbits;
1370         }
1371         default:
1372                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1373                 return 0;
1374         }
1375 }
1376
1377 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, __u32 buf)
1378 {
1379         switch (msg->lm_magic) {
1380         case LUSTRE_MSG_MAGIC_V2: {
1381                 struct ptlrpc_body *pb = lustre_msg_buf_v2(msg, buf, 0);
1382                 __u32 len = lustre_msg_buflen(msg, buf);
1383                 __u32 crc;
1384
1385 #if IS_ENABLED(CONFIG_CRC32)
1386                 /* about 10x faster than crypto_hash for small buffers */
1387                 crc = crc32_le(~(__u32)0, (unsigned char *)pb, len);
1388 #elif IS_ENABLED(CONFIG_CRYPTO_CRC32)
1389                 unsigned int hsize = 4;
1390
1391                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1392                                        len, NULL, 0, (unsigned char *)&crc,
1393                                        &hsize);
1394 #else
1395 #error "need either CONFIG_CRC32 or CONFIG_CRYPTO_CRC32 enabled in the kernel"
1396 #endif
1397                 return crc;
1398         }
1399         default:
1400                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1401                 return 0;
1402         }
1403 }
1404
1405 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1406 {
1407         switch (msg->lm_magic) {
1408         case LUSTRE_MSG_MAGIC_V2: {
1409                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1410                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1411                 pb->pb_handle = *handle;
1412                 return;
1413         }
1414         default:
1415                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1416         }
1417 }
1418
1419 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1420 {
1421         switch (msg->lm_magic) {
1422         case LUSTRE_MSG_MAGIC_V2: {
1423                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1424                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1425                 pb->pb_type = type;
1426                 return;
1427                 }
1428         default:
1429                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1430         }
1431 }
1432
1433 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1434 {
1435         switch (msg->lm_magic) {
1436         case LUSTRE_MSG_MAGIC_V2: {
1437                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1438                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1439                 pb->pb_opc = opc;
1440                 return;
1441         }
1442         default:
1443                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1444         }
1445 }
1446
1447 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1448 {
1449         switch (msg->lm_magic) {
1450         case LUSTRE_MSG_MAGIC_V2: {
1451                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1452                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1453                 pb->pb_last_xid = last_xid;
1454                 return;
1455         }
1456         default:
1457                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1458         }
1459 }
1460 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1461
1462 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1463 {
1464         switch (msg->lm_magic) {
1465         case LUSTRE_MSG_MAGIC_V2: {
1466                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1467                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1468                 pb->pb_tag = tag;
1469                 return;
1470         }
1471         default:
1472                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1473         }
1474 }
1475 EXPORT_SYMBOL(lustre_msg_set_tag);
1476
1477 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1478 {
1479         switch (msg->lm_magic) {
1480         case LUSTRE_MSG_MAGIC_V2: {
1481                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1482                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1483                 pb->pb_last_committed = last_committed;
1484                 return;
1485         }
1486         default:
1487                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1488         }
1489 }
1490
1491 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1492 {
1493         switch (msg->lm_magic) {
1494         case LUSTRE_MSG_MAGIC_V2: {
1495                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1496                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1497                 pb->pb_pre_versions[0] = versions[0];
1498                 pb->pb_pre_versions[1] = versions[1];
1499                 pb->pb_pre_versions[2] = versions[2];
1500                 pb->pb_pre_versions[3] = versions[3];
1501                 return;
1502         }
1503         default:
1504                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1505         }
1506 }
1507 EXPORT_SYMBOL(lustre_msg_set_versions);
1508
1509 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1510 {
1511         switch (msg->lm_magic) {
1512         case LUSTRE_MSG_MAGIC_V2: {
1513                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1514                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1515                 pb->pb_transno = transno;
1516                 return;
1517         }
1518         default:
1519                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1520         }
1521 }
1522 EXPORT_SYMBOL(lustre_msg_set_transno);
1523
1524 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1525 {
1526         switch (msg->lm_magic) {
1527         case LUSTRE_MSG_MAGIC_V2: {
1528                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1529                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1530                 pb->pb_status = status;
1531                 return;
1532         }
1533         default:
1534                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1535         }
1536 }
1537 EXPORT_SYMBOL(lustre_msg_set_status);
1538
1539 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1540 {
1541         switch (msg->lm_magic) {
1542         case LUSTRE_MSG_MAGIC_V2: {
1543                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1544                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1545                 pb->pb_conn_cnt = conn_cnt;
1546                 return;
1547         }
1548         default:
1549                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1550         }
1551 }
1552
1553 void lustre_msg_set_timeout(struct lustre_msg *msg, timeout_t timeout)
1554 {
1555         switch (msg->lm_magic) {
1556         case LUSTRE_MSG_MAGIC_V2: {
1557                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1558
1559                 LASSERT(timeout >= 0);
1560                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1561                 pb->pb_timeout = timeout;
1562                 return;
1563         }
1564         default:
1565                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1566         }
1567 }
1568
1569 void lustre_msg_set_service_timeout(struct lustre_msg *msg,
1570                                     timeout_t service_timeout)
1571 {
1572         switch (msg->lm_magic) {
1573         case LUSTRE_MSG_MAGIC_V2: {
1574                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1575
1576                 LASSERT(service_timeout >= 0);
1577                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1578                 pb->pb_service_time = service_timeout;
1579                 return;
1580         }
1581         default:
1582                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1583         }
1584 }
1585
1586 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1587 {
1588         switch (msg->lm_magic) {
1589         case LUSTRE_MSG_MAGIC_V2: {
1590                 __u32 opc = lustre_msg_get_opc(msg);
1591                 struct ptlrpc_body *pb;
1592
1593                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1594                  * See the comment in ptlrpc_request_pack(). */
1595                 if (!opc || opc == LDLM_BL_CALLBACK ||
1596                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1597                         return;
1598
1599                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1600                                        sizeof(struct ptlrpc_body));
1601                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1602
1603                 if (jobid != NULL)
1604                         memcpy(pb->pb_jobid, jobid, sizeof(pb->pb_jobid));
1605                 else if (pb->pb_jobid[0] == '\0')
1606                         lustre_get_jobid(pb->pb_jobid, sizeof(pb->pb_jobid));
1607                 return;
1608         }
1609         default:
1610                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1611         }
1612 }
1613 EXPORT_SYMBOL(lustre_msg_set_jobid);
1614
1615 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1616 {
1617         switch (msg->lm_magic) {
1618         case LUSTRE_MSG_MAGIC_V2:
1619                 msg->lm_cksum = cksum;
1620                 return;
1621         default:
1622                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1623         }
1624 }
1625
1626 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1627 {
1628         switch (msg->lm_magic) {
1629         case LUSTRE_MSG_MAGIC_V2: {
1630                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1631
1632                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1633                 pb->pb_mbits = mbits;
1634                 return;
1635         }
1636         default:
1637                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1638         }
1639 }
1640
1641 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1642 {
1643         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1644
1645         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1646                                          req->rq_pill.rc_area[RCL_SERVER]);
1647         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1648                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1649 }
1650 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1651
1652 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1653 {
1654         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1655         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1656                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1657 }
1658
1659 /**
1660  * Send a remote set_info_async.
1661  *
1662  * This may go from client to server or server to client.
1663  */
1664 int do_set_info_async(struct obd_import *imp,
1665                       int opcode, int version,
1666                       size_t keylen, void *key,
1667                       size_t vallen, void *val,
1668                       struct ptlrpc_request_set *set)
1669 {
1670         struct ptlrpc_request *req;
1671         char *tmp;
1672         int rc;
1673
1674         ENTRY;
1675
1676         req = ptlrpc_request_alloc(imp, KEY_IS(KEY_CHANGELOG_CLEAR) ?
1677                                                 &RQF_MDT_SET_INFO :
1678                                                 &RQF_OBD_SET_INFO);
1679         if (req == NULL)
1680                 RETURN(-ENOMEM);
1681
1682         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1683                              RCL_CLIENT, keylen);
1684         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1685                              RCL_CLIENT, vallen);
1686         rc = ptlrpc_request_pack(req, version, opcode);
1687         if (rc) {
1688                 ptlrpc_request_free(req);
1689                 RETURN(rc);
1690         }
1691
1692         if (KEY_IS(KEY_CHANGELOG_CLEAR))
1693                 do_pack_body(req);
1694
1695         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1696         memcpy(tmp, key, keylen);
1697         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1698         memcpy(tmp, val, vallen);
1699
1700         ptlrpc_request_set_replen(req);
1701
1702         if (set) {
1703                 ptlrpc_set_add_req(set, req);
1704                 ptlrpc_check_set(NULL, set);
1705         } else {
1706                 rc = ptlrpc_queue_wait(req);
1707                 ptlrpc_req_finished(req);
1708         }
1709
1710         RETURN(rc);
1711 }
1712 EXPORT_SYMBOL(do_set_info_async);
1713
1714 /* byte flipping routines for all wire types declared in
1715  * lustre_idl.h implemented here.
1716  */
1717 void lustre_swab_ptlrpc_body(struct ptlrpc_body *body)
1718 {
1719         __swab32s(&body->pb_type);
1720         __swab32s(&body->pb_version);
1721         __swab32s(&body->pb_opc);
1722         __swab32s(&body->pb_status);
1723         __swab64s(&body->pb_last_xid);
1724         __swab16s(&body->pb_tag);
1725         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding0) == 0);
1726         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding1) == 0);
1727         __swab64s(&body->pb_last_committed);
1728         __swab64s(&body->pb_transno);
1729         __swab32s(&body->pb_flags);
1730         __swab32s(&body->pb_op_flags);
1731         __swab32s(&body->pb_conn_cnt);
1732         __swab32s(&body->pb_timeout);
1733         __swab32s(&body->pb_service_time);
1734         __swab32s(&body->pb_limit);
1735         __swab64s(&body->pb_slv);
1736         __swab64s(&body->pb_pre_versions[0]);
1737         __swab64s(&body->pb_pre_versions[1]);
1738         __swab64s(&body->pb_pre_versions[2]);
1739         __swab64s(&body->pb_pre_versions[3]);
1740         __swab64s(&body->pb_mbits);
1741         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding64_0) == 0);
1742         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding64_1) == 0);
1743         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding64_2) == 0);
1744         /*
1745          * While we need to maintain compatibility between
1746          * clients and servers without ptlrpc_body_v2 (< 2.3)
1747          * do not swab any fields beyond pb_jobid, as we are
1748          * using this swab function for both ptlrpc_body
1749          * and ptlrpc_body_v2.
1750          */
1751         /* pb_jobid is an ASCII string and should not be swabbed */
1752         BUILD_BUG_ON(offsetof(typeof(*body), pb_jobid) == 0);
1753 }
1754
1755 void lustre_swab_connect(struct obd_connect_data *ocd)
1756 {
1757         __swab64s(&ocd->ocd_connect_flags);
1758         __swab32s(&ocd->ocd_version);
1759         __swab32s(&ocd->ocd_grant);
1760         __swab64s(&ocd->ocd_ibits_known);
1761         __swab32s(&ocd->ocd_index);
1762         __swab32s(&ocd->ocd_brw_size);
1763         /*
1764          * ocd_blocksize and ocd_inodespace don't need to be swabbed because
1765          * they are 8-byte values
1766          */
1767         __swab16s(&ocd->ocd_grant_tax_kb);
1768         __swab32s(&ocd->ocd_grant_max_blks);
1769         __swab64s(&ocd->ocd_transno);
1770         __swab32s(&ocd->ocd_group);
1771         __swab32s(&ocd->ocd_cksum_types);
1772         __swab32s(&ocd->ocd_instance);
1773         /*
1774          * Fields after ocd_cksum_types are only accessible by the receiver
1775          * if the corresponding flag in ocd_connect_flags is set. Accessing
1776          * any field after ocd_maxbytes on the receiver without a valid flag
1777          * may result in out-of-bound memory access and kernel oops.
1778          */
1779         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1780                 __swab32s(&ocd->ocd_max_easize);
1781         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1782                 __swab64s(&ocd->ocd_maxbytes);
1783         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1784                 __swab16s(&ocd->ocd_maxmodrpcs);
1785         BUILD_BUG_ON(offsetof(typeof(*ocd), padding0) == 0);
1786         BUILD_BUG_ON(offsetof(typeof(*ocd), padding1) == 0);
1787         if (ocd->ocd_connect_flags & OBD_CONNECT_FLAGS2)
1788                 __swab64s(&ocd->ocd_connect_flags2);
1789         BUILD_BUG_ON(offsetof(typeof(*ocd), padding3) == 0);
1790         BUILD_BUG_ON(offsetof(typeof(*ocd), padding4) == 0);
1791         BUILD_BUG_ON(offsetof(typeof(*ocd), padding5) == 0);
1792         BUILD_BUG_ON(offsetof(typeof(*ocd), padding6) == 0);
1793         BUILD_BUG_ON(offsetof(typeof(*ocd), padding7) == 0);
1794         BUILD_BUG_ON(offsetof(typeof(*ocd), padding8) == 0);
1795         BUILD_BUG_ON(offsetof(typeof(*ocd), padding9) == 0);
1796         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingA) == 0);
1797         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingB) == 0);
1798         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingC) == 0);
1799         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingD) == 0);
1800         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingE) == 0);
1801         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingF) == 0);
1802 }
1803
1804 static void lustre_swab_ost_layout(struct ost_layout *ol)
1805 {
1806         __swab32s(&ol->ol_stripe_size);
1807         __swab32s(&ol->ol_stripe_count);
1808         __swab64s(&ol->ol_comp_start);
1809         __swab64s(&ol->ol_comp_end);
1810         __swab32s(&ol->ol_comp_id);
1811 }
1812
1813 void lustre_swab_obdo(struct obdo *o)
1814 {
1815         __swab64s(&o->o_valid);
1816         lustre_swab_ost_id(&o->o_oi);
1817         __swab64s(&o->o_parent_seq);
1818         __swab64s(&o->o_size);
1819         __swab64s(&o->o_mtime);
1820         __swab64s(&o->o_atime);
1821         __swab64s(&o->o_ctime);
1822         __swab64s(&o->o_blocks);
1823         __swab64s(&o->o_grant);
1824         __swab32s(&o->o_blksize);
1825         __swab32s(&o->o_mode);
1826         __swab32s(&o->o_uid);
1827         __swab32s(&o->o_gid);
1828         __swab32s(&o->o_flags);
1829         __swab32s(&o->o_nlink);
1830         __swab32s(&o->o_parent_oid);
1831         __swab32s(&o->o_misc);
1832         __swab64s(&o->o_ioepoch);
1833         __swab32s(&o->o_stripe_idx);
1834         __swab32s(&o->o_parent_ver);
1835         lustre_swab_ost_layout(&o->o_layout);
1836         __swab32s(&o->o_layout_version);
1837         __swab32s(&o->o_uid_h);
1838         __swab32s(&o->o_gid_h);
1839         __swab64s(&o->o_data_version);
1840         __swab32s(&o->o_projid);
1841         BUILD_BUG_ON(offsetof(typeof(*o), o_padding_4) == 0);
1842         BUILD_BUG_ON(offsetof(typeof(*o), o_padding_5) == 0);
1843         BUILD_BUG_ON(offsetof(typeof(*o), o_padding_6) == 0);
1844
1845 }
1846 EXPORT_SYMBOL(lustre_swab_obdo);
1847
1848 void lustre_swab_obd_statfs(struct obd_statfs *os)
1849 {
1850         __swab64s(&os->os_type);
1851         __swab64s(&os->os_blocks);
1852         __swab64s(&os->os_bfree);
1853         __swab64s(&os->os_bavail);
1854         __swab64s(&os->os_files);
1855         __swab64s(&os->os_ffree);
1856         /* no need to swab os_fsid */
1857         __swab32s(&os->os_bsize);
1858         __swab32s(&os->os_namelen);
1859         __swab64s(&os->os_maxbytes);
1860         __swab32s(&os->os_state);
1861         __swab32s(&os->os_fprecreated);
1862         __swab32s(&os->os_granted);
1863         BUILD_BUG_ON(offsetof(typeof(*os), os_spare3) == 0);
1864         BUILD_BUG_ON(offsetof(typeof(*os), os_spare4) == 0);
1865         BUILD_BUG_ON(offsetof(typeof(*os), os_spare5) == 0);
1866         BUILD_BUG_ON(offsetof(typeof(*os), os_spare6) == 0);
1867         BUILD_BUG_ON(offsetof(typeof(*os), os_spare7) == 0);
1868         BUILD_BUG_ON(offsetof(typeof(*os), os_spare8) == 0);
1869         BUILD_BUG_ON(offsetof(typeof(*os), os_spare9) == 0);
1870 }
1871
1872 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1873 {
1874         lustre_swab_ost_id(&ioo->ioo_oid);
1875         __swab32s(&ioo->ioo_max_brw);
1876         __swab32s(&ioo->ioo_bufcnt);
1877 }
1878
1879 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1880 {
1881         __swab64s(&nbr->rnb_offset);
1882         __swab32s(&nbr->rnb_len);
1883         __swab32s(&nbr->rnb_flags);
1884 }
1885
1886 void lustre_swab_ost_body(struct ost_body *b)
1887 {
1888         lustre_swab_obdo(&b->oa);
1889 }
1890
1891 void lustre_swab_ost_last_id(u64 *id)
1892 {
1893         __swab64s(id);
1894 }
1895
1896 void lustre_swab_generic_32s(__u32 *val)
1897 {
1898         __swab32s(val);
1899 }
1900
1901 void lustre_swab_gl_lquota_desc(struct ldlm_gl_lquota_desc *desc)
1902 {
1903         lustre_swab_lu_fid(&desc->gl_id.qid_fid);
1904         __swab64s(&desc->gl_flags);
1905         __swab64s(&desc->gl_ver);
1906         __swab64s(&desc->gl_hardlimit);
1907         __swab64s(&desc->gl_softlimit);
1908         __swab64s(&desc->gl_time);
1909         BUILD_BUG_ON(offsetof(typeof(*desc), gl_pad2) == 0);
1910 }
1911 EXPORT_SYMBOL(lustre_swab_gl_lquota_desc);
1912
1913 void lustre_swab_gl_barrier_desc(struct ldlm_gl_barrier_desc *desc)
1914 {
1915         __swab32s(&desc->lgbd_status);
1916         __swab32s(&desc->lgbd_timeout);
1917         BUILD_BUG_ON(offsetof(typeof(*desc), lgbd_padding) == 0);
1918 }
1919 EXPORT_SYMBOL(lustre_swab_gl_barrier_desc);
1920
1921 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1922 {
1923         __swab64s(&lvb->lvb_size);
1924         __swab64s(&lvb->lvb_mtime);
1925         __swab64s(&lvb->lvb_atime);
1926         __swab64s(&lvb->lvb_ctime);
1927         __swab64s(&lvb->lvb_blocks);
1928 }
1929 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1930
1931 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1932 {
1933         __swab64s(&lvb->lvb_size);
1934         __swab64s(&lvb->lvb_mtime);
1935         __swab64s(&lvb->lvb_atime);
1936         __swab64s(&lvb->lvb_ctime);
1937         __swab64s(&lvb->lvb_blocks);
1938         __swab32s(&lvb->lvb_mtime_ns);
1939         __swab32s(&lvb->lvb_atime_ns);
1940         __swab32s(&lvb->lvb_ctime_ns);
1941         __swab32s(&lvb->lvb_padding);
1942 }
1943 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1944
1945 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1946 {
1947         __swab64s(&lvb->lvb_flags);
1948         __swab64s(&lvb->lvb_id_may_rel);
1949         __swab64s(&lvb->lvb_id_rel);
1950         __swab64s(&lvb->lvb_id_qunit);
1951         __swab64s(&lvb->lvb_pad1);
1952 }
1953 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1954
1955 void lustre_swab_barrier_lvb(struct barrier_lvb *lvb)
1956 {
1957         __swab32s(&lvb->lvb_status);
1958         __swab32s(&lvb->lvb_index);
1959         BUILD_BUG_ON(offsetof(typeof(*lvb), lvb_padding) == 0);
1960 }
1961 EXPORT_SYMBOL(lustre_swab_barrier_lvb);
1962
1963 void lustre_swab_mdt_body(struct mdt_body *b)
1964 {
1965         lustre_swab_lu_fid(&b->mbo_fid1);
1966         lustre_swab_lu_fid(&b->mbo_fid2);
1967         /* handle is opaque */
1968         __swab64s(&b->mbo_valid);
1969         __swab64s(&b->mbo_size);
1970         __swab64s(&b->mbo_mtime);
1971         __swab64s(&b->mbo_atime);
1972         __swab64s(&b->mbo_ctime);
1973         __swab64s(&b->mbo_blocks);
1974         __swab64s(&b->mbo_version);
1975         __swab64s(&b->mbo_t_state);
1976         __swab32s(&b->mbo_fsuid);
1977         __swab32s(&b->mbo_fsgid);
1978         __swab32s(&b->mbo_capability);
1979         __swab32s(&b->mbo_mode);
1980         __swab32s(&b->mbo_uid);
1981         __swab32s(&b->mbo_gid);
1982         __swab32s(&b->mbo_flags);
1983         __swab32s(&b->mbo_rdev);
1984         __swab32s(&b->mbo_nlink);
1985         __swab32s(&b->mbo_layout_gen);
1986         __swab32s(&b->mbo_suppgid);
1987         __swab32s(&b->mbo_eadatasize);
1988         __swab32s(&b->mbo_aclsize);
1989         __swab32s(&b->mbo_max_mdsize);
1990         BUILD_BUG_ON(offsetof(typeof(*b), mbo_unused3) == 0);
1991         __swab32s(&b->mbo_uid_h);
1992         __swab32s(&b->mbo_gid_h);
1993         __swab32s(&b->mbo_projid);
1994         __swab64s(&b->mbo_dom_size);
1995         __swab64s(&b->mbo_dom_blocks);
1996         __swab64s(&b->mbo_btime);
1997         BUILD_BUG_ON(offsetof(typeof(*b), mbo_padding_9) == 0);
1998         BUILD_BUG_ON(offsetof(typeof(*b), mbo_padding_10) == 0);
1999 }
2000
2001 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
2002 {
2003         /* mio_open_handle is opaque */
2004         BUILD_BUG_ON(offsetof(typeof(*b), mio_unused1) == 0);
2005         BUILD_BUG_ON(offsetof(typeof(*b), mio_unused2) == 0);
2006         BUILD_BUG_ON(offsetof(typeof(*b), mio_padding) == 0);
2007 }
2008
2009 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
2010 {
2011         int i;
2012
2013         __swab32s(&mti->mti_lustre_ver);
2014         __swab32s(&mti->mti_stripe_index);
2015         __swab32s(&mti->mti_config_ver);
2016         __swab32s(&mti->mti_flags);
2017         __swab32s(&mti->mti_instance);
2018         __swab32s(&mti->mti_nid_count);
2019         BUILD_BUG_ON(sizeof(lnet_nid_t) != sizeof(__u64));
2020         for (i = 0; i < MTI_NIDS_MAX; i++)
2021                 __swab64s(&mti->mti_nids[i]);
2022 }
2023
2024 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
2025 {
2026         __u8 i;
2027
2028         __swab64s(&entry->mne_version);
2029         __swab32s(&entry->mne_instance);
2030         __swab32s(&entry->mne_index);
2031         __swab32s(&entry->mne_length);
2032
2033         /* mne_nid_(count|type) must be one byte size because we're gonna
2034          * access it w/o swapping. */
2035         BUILD_BUG_ON(sizeof(entry->mne_nid_count) != sizeof(__u8));
2036         BUILD_BUG_ON(sizeof(entry->mne_nid_type) != sizeof(__u8));
2037
2038         /* remove this assertion if ipv6 is supported. */
2039         LASSERT(entry->mne_nid_type == 0);
2040         for (i = 0; i < entry->mne_nid_count; i++) {
2041                 BUILD_BUG_ON(sizeof(lnet_nid_t) != sizeof(__u64));
2042                 __swab64s(&entry->u.nids[i]);
2043         }
2044 }
2045 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
2046
2047 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
2048 {
2049         __swab64s(&body->mcb_offset);
2050         __swab32s(&body->mcb_units);
2051         __swab16s(&body->mcb_type);
2052 }
2053
2054 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
2055 {
2056         __swab64s(&body->mcr_offset);
2057         __swab64s(&body->mcr_size);
2058 }
2059
2060 static void lustre_swab_obd_dqinfo(struct obd_dqinfo *i)
2061 {
2062         __swab64s(&i->dqi_bgrace);
2063         __swab64s(&i->dqi_igrace);
2064         __swab32s(&i->dqi_flags);
2065         __swab32s(&i->dqi_valid);
2066 }
2067
2068 static void lustre_swab_obd_dqblk(struct obd_dqblk *b)
2069 {
2070         __swab64s(&b->dqb_ihardlimit);
2071         __swab64s(&b->dqb_isoftlimit);
2072         __swab64s(&b->dqb_curinodes);
2073         __swab64s(&b->dqb_bhardlimit);
2074         __swab64s(&b->dqb_bsoftlimit);
2075         __swab64s(&b->dqb_curspace);
2076         __swab64s(&b->dqb_btime);
2077         __swab64s(&b->dqb_itime);
2078         __swab32s(&b->dqb_valid);
2079         BUILD_BUG_ON(offsetof(typeof(*b), dqb_padding) == 0);
2080 }
2081
2082 int lustre_swab_obd_quotactl(struct obd_quotactl *q, __u32 len)
2083 {
2084         if (unlikely(len <= sizeof(struct obd_quotactl)))
2085                 return -EOVERFLOW;
2086
2087         __swab32s(&q->qc_cmd);
2088         __swab32s(&q->qc_type);
2089         __swab32s(&q->qc_id);
2090         __swab32s(&q->qc_stat);
2091         lustre_swab_obd_dqinfo(&q->qc_dqinfo);
2092         lustre_swab_obd_dqblk(&q->qc_dqblk);
2093
2094         return len;
2095 }
2096
2097 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
2098 {
2099         lustre_swab_lu_fid(&gf->gf_fid);
2100         __swab64s(&gf->gf_recno);
2101         __swab32s(&gf->gf_linkno);
2102         __swab32s(&gf->gf_pathlen);
2103 }
2104 EXPORT_SYMBOL(lustre_swab_fid2path);
2105
2106 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
2107 {
2108         __swab64s(&fm_extent->fe_logical);
2109         __swab64s(&fm_extent->fe_physical);
2110         __swab64s(&fm_extent->fe_length);
2111         __swab32s(&fm_extent->fe_flags);
2112         __swab32s(&fm_extent->fe_device);
2113 }
2114
2115 static void lustre_swab_fiemap_hdr(struct fiemap *fiemap)
2116 {
2117         __swab64s(&fiemap->fm_start);
2118         __swab64s(&fiemap->fm_length);
2119         __swab32s(&fiemap->fm_flags);
2120         __swab32s(&fiemap->fm_mapped_extents);
2121         __swab32s(&fiemap->fm_extent_count);
2122         __swab32s(&fiemap->fm_reserved);
2123 }
2124
2125 int lustre_swab_fiemap(struct fiemap *fiemap, __u32 len)
2126 {
2127         __u32 i, size, count;
2128
2129         lustre_swab_fiemap_hdr(fiemap);
2130
2131         size = fiemap_count_to_size(fiemap->fm_mapped_extents);
2132         count = fiemap->fm_mapped_extents;
2133         if (unlikely(size > len)) {
2134                 count = (len - sizeof(struct fiemap)) /
2135                         sizeof(struct fiemap_extent);
2136                 fiemap->fm_mapped_extents = count;
2137                 size = -EOVERFLOW;
2138         }
2139         /* still swab extents as we cannot yet pass rc to callers */
2140         for (i = 0; i < count; i++)
2141                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2142
2143         return size;
2144 }
2145
2146 void lustre_swab_fiemap_info_key(struct ll_fiemap_info_key *fiemap_info)
2147 {
2148         lustre_swab_obdo(&fiemap_info->lfik_oa);
2149         lustre_swab_fiemap_hdr(&fiemap_info->lfik_fiemap);
2150 }
2151
2152 void lustre_swab_idx_info(struct idx_info *ii)
2153 {
2154         __swab32s(&ii->ii_magic);
2155         __swab32s(&ii->ii_flags);
2156         __swab16s(&ii->ii_count);
2157         __swab32s(&ii->ii_attrs);
2158         lustre_swab_lu_fid(&ii->ii_fid);
2159         __swab64s(&ii->ii_version);
2160         __swab64s(&ii->ii_hash_start);
2161         __swab64s(&ii->ii_hash_end);
2162         __swab16s(&ii->ii_keysize);
2163         __swab16s(&ii->ii_recsize);
2164 }
2165
2166 void lustre_swab_lip_header(struct lu_idxpage *lip)
2167 {
2168         /* swab header */
2169         __swab32s(&lip->lip_magic);
2170         __swab16s(&lip->lip_flags);
2171         __swab16s(&lip->lip_nr);
2172 }
2173 EXPORT_SYMBOL(lustre_swab_lip_header);
2174
2175 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2176 {
2177         __swab32s(&rr->rr_opcode);
2178         __swab32s(&rr->rr_cap);
2179         __swab32s(&rr->rr_fsuid);
2180         /* rr_fsuid_h is unused */
2181         __swab32s(&rr->rr_fsgid);
2182         /* rr_fsgid_h is unused */
2183         __swab32s(&rr->rr_suppgid1);
2184         /* rr_suppgid1_h is unused */
2185         __swab32s(&rr->rr_suppgid2);
2186         /* rr_suppgid2_h is unused */
2187         lustre_swab_lu_fid(&rr->rr_fid1);
2188         lustre_swab_lu_fid(&rr->rr_fid2);
2189         __swab64s(&rr->rr_mtime);
2190         __swab64s(&rr->rr_atime);
2191         __swab64s(&rr->rr_ctime);
2192         __swab64s(&rr->rr_size);
2193         __swab64s(&rr->rr_blocks);
2194         __swab32s(&rr->rr_bias);
2195         __swab32s(&rr->rr_mode);
2196         __swab32s(&rr->rr_flags);
2197         __swab32s(&rr->rr_flags_h);
2198         __swab32s(&rr->rr_umask);
2199         __swab16s(&rr->rr_mirror_id);
2200
2201         BUILD_BUG_ON(offsetof(typeof(*rr), rr_padding_4) == 0);
2202 };
2203
2204 void lustre_swab_lov_desc(struct lov_desc *ld)
2205 {
2206         __swab32s(&ld->ld_tgt_count);
2207         __swab32s(&ld->ld_active_tgt_count);
2208         __swab32s(&ld->ld_default_stripe_count);
2209         __swab32s(&ld->ld_pattern);
2210         __swab64s(&ld->ld_default_stripe_size);
2211         __swab64s(&ld->ld_default_stripe_offset);
2212         __swab32s(&ld->ld_qos_maxage);
2213         /* uuid endian insensitive */
2214 }
2215 EXPORT_SYMBOL(lustre_swab_lov_desc);
2216
2217 void lustre_swab_lmv_desc(struct lmv_desc *ld)
2218 {
2219         __swab32s(&ld->ld_tgt_count);
2220         __swab32s(&ld->ld_active_tgt_count);
2221         __swab32s(&ld->ld_default_stripe_count);
2222         __swab32s(&ld->ld_pattern);
2223         __swab64s(&ld->ld_default_hash_size);
2224         __swab32s(&ld->ld_qos_maxage);
2225         /* uuid endian insensitive */
2226 }
2227
2228 /* This structure is always in little-endian */
2229 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2230 {
2231         int i;
2232
2233         __swab32s(&lmm1->lmv_magic);
2234         __swab32s(&lmm1->lmv_stripe_count);
2235         __swab32s(&lmm1->lmv_master_mdt_index);
2236         __swab32s(&lmm1->lmv_hash_type);
2237         __swab32s(&lmm1->lmv_layout_version);
2238         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2239                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2240 }
2241
2242 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2243 {
2244         switch (lmm->lmv_magic) {
2245         case LMV_MAGIC_V1:
2246                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2247                 break;
2248         default:
2249                 break;
2250         }
2251 }
2252 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2253
2254 void lustre_swab_lmv_user_md_objects(struct lmv_user_mds_data *lmd,
2255                                      int stripe_count)
2256 {
2257         int i;
2258
2259         for (i = 0; i < stripe_count; i++)
2260                 __swab32s(&(lmd[i].lum_mds));
2261 }
2262 EXPORT_SYMBOL(lustre_swab_lmv_user_md_objects);
2263
2264
2265 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2266 {
2267         __u32 count;
2268
2269         if (lum->lum_magic == LMV_MAGIC_FOREIGN) {
2270                 __swab32s(&lum->lum_magic);
2271                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_length);
2272                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_type);
2273                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_flags);
2274                 return;
2275         }
2276
2277         count = lum->lum_stripe_count;
2278         __swab32s(&lum->lum_magic);
2279         __swab32s(&lum->lum_stripe_count);
2280         __swab32s(&lum->lum_stripe_offset);
2281         __swab32s(&lum->lum_hash_type);
2282         __swab32s(&lum->lum_type);
2283         BUILD_BUG_ON(offsetof(typeof(*lum), lum_padding1) == 0);
2284         switch (lum->lum_magic) {
2285         case LMV_USER_MAGIC_SPECIFIC:
2286                 count = lum->lum_stripe_count;
2287                 /* fallthrough */
2288         case __swab32(LMV_USER_MAGIC_SPECIFIC):
2289                 lustre_swab_lmv_user_md_objects(lum->lum_objects, count);
2290                 break;
2291         default:
2292                 break;
2293         }
2294 }
2295 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2296
2297 static void lustre_print_v1v3(unsigned int lvl, struct lov_user_md *lum,
2298                               const char *msg)
2299 {
2300         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2301         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2302         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2303         CDEBUG(lvl, "\tlmm_object_id: %llu\n", lmm_oi_id(&lum->lmm_oi));
2304         CDEBUG(lvl, "\tlmm_object_gr: %llu\n", lmm_oi_seq(&lum->lmm_oi));
2305         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2306         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2307         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2308                lum->lmm_stripe_offset);
2309         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2310                 struct lov_user_md_v3 *v3 = (void *)lum;
2311                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2312         }
2313         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2314                 struct lov_user_md_v3 *v3 = (void *)lum;
2315                 int i;
2316
2317                 if (v3->lmm_pool_name[0] != '\0')
2318                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2319
2320                 CDEBUG(lvl, "\ttarget list:\n");
2321                 for (i = 0; i < v3->lmm_stripe_count; i++)
2322                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2323         }
2324 }
2325
2326 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2327                           const char *msg)
2328 {
2329         struct lov_comp_md_v1   *comp_v1;
2330         int                      i;
2331
2332         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2333                 return;
2334
2335         if (lum->lmm_magic == LOV_USER_MAGIC_V1 ||
2336             lum->lmm_magic == LOV_USER_MAGIC_V3) {
2337                 lustre_print_v1v3(lvl, lum, msg);
2338                 return;
2339         }
2340
2341         if (lum->lmm_magic != LOV_USER_MAGIC_COMP_V1) {
2342                 CDEBUG(lvl, "%s: bad magic: %x\n", msg, lum->lmm_magic);
2343                 return;
2344         }
2345
2346         comp_v1 = (struct lov_comp_md_v1 *)lum;
2347         CDEBUG(lvl, "%s: lov_comp_md_v1 %p:\n", msg, lum);
2348         CDEBUG(lvl, "\tlcm_magic: %#x\n", comp_v1->lcm_magic);
2349         CDEBUG(lvl, "\tlcm_size: %#x\n", comp_v1->lcm_size);
2350         CDEBUG(lvl, "\tlcm_layout_gen: %#x\n", comp_v1->lcm_layout_gen);
2351         CDEBUG(lvl, "\tlcm_flags: %#x\n", comp_v1->lcm_flags);
2352         CDEBUG(lvl, "\tlcm_entry_count: %#x\n\n", comp_v1->lcm_entry_count);
2353         CDEBUG(lvl, "\tlcm_mirror_count: %#x\n\n", comp_v1->lcm_mirror_count);
2354
2355         for (i = 0; i < comp_v1->lcm_entry_count; i++) {
2356                 struct lov_comp_md_entry_v1 *ent = &comp_v1->lcm_entries[i];
2357                 struct lov_user_md *v1;
2358
2359                 CDEBUG(lvl, "\tentry %d:\n", i);
2360                 CDEBUG(lvl, "\tlcme_id: %#x\n", ent->lcme_id);
2361                 CDEBUG(lvl, "\tlcme_flags: %#x\n", ent->lcme_flags);
2362                 if (ent->lcme_flags & LCME_FL_NOSYNC)
2363                         CDEBUG(lvl, "\tlcme_timestamp: %llu\n",
2364                                         ent->lcme_timestamp);
2365                 CDEBUG(lvl, "\tlcme_extent.e_start: %llu\n",
2366                        ent->lcme_extent.e_start);
2367                 CDEBUG(lvl, "\tlcme_extent.e_end: %llu\n",
2368                        ent->lcme_extent.e_end);
2369                 CDEBUG(lvl, "\tlcme_offset: %#x\n", ent->lcme_offset);
2370                 CDEBUG(lvl, "\tlcme_size: %#x\n\n", ent->lcme_size);
2371
2372                 v1 = (struct lov_user_md *)((char *)comp_v1 +
2373                                 comp_v1->lcm_entries[i].lcme_offset);
2374                 lustre_print_v1v3(lvl, v1, msg);
2375         }
2376 }
2377 EXPORT_SYMBOL(lustre_print_user_md);
2378
2379 static void lustre_swab_lmm_oi(struct ost_id *oi)
2380 {
2381         __swab64s(&oi->oi.oi_id);
2382         __swab64s(&oi->oi.oi_seq);
2383 }
2384
2385 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2386 {
2387         ENTRY;
2388         __swab32s(&lum->lmm_magic);
2389         __swab32s(&lum->lmm_pattern);
2390         lustre_swab_lmm_oi(&lum->lmm_oi);
2391         __swab32s(&lum->lmm_stripe_size);
2392         __swab16s(&lum->lmm_stripe_count);
2393         __swab16s(&lum->lmm_stripe_offset);
2394         EXIT;
2395 }
2396
2397 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2398 {
2399         ENTRY;
2400         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2401         lustre_swab_lov_user_md_common(lum);
2402         EXIT;
2403 }
2404 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2405
2406 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2407 {
2408         ENTRY;
2409         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2410         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2411         /* lmm_pool_name nothing to do with char */
2412         EXIT;
2413 }
2414 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2415
2416 void lustre_swab_lov_comp_md_v1(struct lov_comp_md_v1 *lum)
2417 {
2418         struct lov_comp_md_entry_v1     *ent;
2419         struct lov_user_md_v1   *v1;
2420         struct lov_user_md_v3   *v3;
2421         int     i;
2422         bool    cpu_endian;
2423         __u32   off, size;
2424         __u16   ent_count, stripe_count;
2425         ENTRY;
2426
2427         cpu_endian = lum->lcm_magic == LOV_USER_MAGIC_COMP_V1;
2428         ent_count = lum->lcm_entry_count;
2429         if (!cpu_endian)
2430                 __swab16s(&ent_count);
2431
2432         CDEBUG(D_IOCTL, "swabbing lov_user_comp_md v1\n");
2433         __swab32s(&lum->lcm_magic);
2434         __swab32s(&lum->lcm_size);
2435         __swab32s(&lum->lcm_layout_gen);
2436         __swab16s(&lum->lcm_flags);
2437         __swab16s(&lum->lcm_entry_count);
2438         __swab16s(&lum->lcm_mirror_count);
2439         BUILD_BUG_ON(offsetof(typeof(*lum), lcm_padding1) == 0);
2440         BUILD_BUG_ON(offsetof(typeof(*lum), lcm_padding2) == 0);
2441
2442         for (i = 0; i < ent_count; i++) {
2443                 ent = &lum->lcm_entries[i];
2444                 off = ent->lcme_offset;
2445                 size = ent->lcme_size;
2446
2447                 if (!cpu_endian) {
2448                         __swab32s(&off);
2449                         __swab32s(&size);
2450                 }
2451                 __swab32s(&ent->lcme_id);
2452                 __swab32s(&ent->lcme_flags);
2453                 __swab64s(&ent->lcme_timestamp);
2454                 __swab64s(&ent->lcme_extent.e_start);
2455                 __swab64s(&ent->lcme_extent.e_end);
2456                 __swab32s(&ent->lcme_offset);
2457                 __swab32s(&ent->lcme_size);
2458                 __swab32s(&ent->lcme_layout_gen);
2459                 BUILD_BUG_ON(offsetof(typeof(*ent), lcme_padding_1) == 0);
2460
2461                 v1 = (struct lov_user_md_v1 *)((char *)lum + off);
2462                 stripe_count = v1->lmm_stripe_count;
2463                 if (!cpu_endian)
2464                         __swab16s(&stripe_count);
2465
2466                 if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V1) ||
2467                     v1->lmm_magic == LOV_USER_MAGIC_V1) {
2468                         lustre_swab_lov_user_md_v1(v1);
2469                         if (size > sizeof(*v1))
2470                                 lustre_swab_lov_user_md_objects(v1->lmm_objects,
2471                                                                 stripe_count);
2472                 } else if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V3) ||
2473                            v1->lmm_magic == LOV_USER_MAGIC_V3 ||
2474                            v1->lmm_magic == __swab32(LOV_USER_MAGIC_SPECIFIC) ||
2475                            v1->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2476                         v3 = (struct lov_user_md_v3 *)v1;
2477                         lustre_swab_lov_user_md_v3(v3);
2478                         if (size > sizeof(*v3))
2479                                 lustre_swab_lov_user_md_objects(v3->lmm_objects,
2480                                                                 stripe_count);
2481                 } else {
2482                         CERROR("Invalid magic %#x\n", v1->lmm_magic);
2483                 }
2484         }
2485 }
2486 EXPORT_SYMBOL(lustre_swab_lov_comp_md_v1);
2487
2488 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2489                                      int stripe_count)
2490 {
2491         int i;
2492
2493         ENTRY;
2494         for (i = 0; i < stripe_count; i++) {
2495                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2496                 __swab32s(&(lod[i].l_ost_gen));
2497                 __swab32s(&(lod[i].l_ost_idx));
2498         }
2499         EXIT;
2500 }
2501 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2502
2503 void lustre_swab_lov_user_md(struct lov_user_md *lum, size_t size)
2504 {
2505         struct lov_user_md_v1 *v1;
2506         struct lov_user_md_v3 *v3;
2507         struct lov_foreign_md *lfm;
2508         __u16 stripe_count;
2509         ENTRY;
2510
2511         CDEBUG(D_IOCTL, "swabbing lov_user_md\n");
2512         switch (lum->lmm_magic) {
2513         case __swab32(LOV_MAGIC_V1):
2514         case LOV_USER_MAGIC_V1:
2515         {
2516                 v1 = (struct lov_user_md_v1 *)lum;
2517                 stripe_count = v1->lmm_stripe_count;
2518
2519                 if (lum->lmm_magic != LOV_USER_MAGIC_V1)
2520                         __swab16s(&stripe_count);
2521
2522                 lustre_swab_lov_user_md_v1(v1);
2523                 if (size > sizeof(*v1))
2524                         lustre_swab_lov_user_md_objects(v1->lmm_objects,
2525                                                         stripe_count);
2526
2527                 break;
2528         }
2529         case __swab32(LOV_MAGIC_V3):
2530         case LOV_USER_MAGIC_V3:
2531         {
2532                 v3 = (struct lov_user_md_v3 *)lum;
2533                 stripe_count = v3->lmm_stripe_count;
2534
2535                 if (lum->lmm_magic != LOV_USER_MAGIC_V3)
2536                         __swab16s(&stripe_count);
2537
2538                 lustre_swab_lov_user_md_v3(v3);
2539                 if (size > sizeof(*v3))
2540                         lustre_swab_lov_user_md_objects(v3->lmm_objects,
2541                                                         stripe_count);
2542                 break;
2543         }
2544         case __swab32(LOV_USER_MAGIC_SPECIFIC):
2545         case LOV_USER_MAGIC_SPECIFIC:
2546         {
2547                 v3 = (struct lov_user_md_v3 *)lum;
2548                 stripe_count = v3->lmm_stripe_count;
2549
2550                 if (lum->lmm_magic != LOV_USER_MAGIC_SPECIFIC)
2551                         __swab16s(&stripe_count);
2552
2553                 lustre_swab_lov_user_md_v3(v3);
2554                 lustre_swab_lov_user_md_objects(v3->lmm_objects, stripe_count);
2555                 break;
2556         }
2557         case __swab32(LOV_MAGIC_COMP_V1):
2558         case LOV_USER_MAGIC_COMP_V1:
2559                 lustre_swab_lov_comp_md_v1((struct lov_comp_md_v1 *)lum);
2560                 break;
2561         case __swab32(LOV_MAGIC_FOREIGN):
2562         case LOV_USER_MAGIC_FOREIGN:
2563         {
2564                 lfm = (struct lov_foreign_md *)lum;
2565                 __swab32s(&lfm->lfm_magic);
2566                 __swab32s(&lfm->lfm_length);
2567                 __swab32s(&lfm->lfm_type);
2568                 __swab32s(&lfm->lfm_flags);
2569                 break;
2570         }
2571         default:
2572                 CDEBUG(D_IOCTL, "Invalid LOV magic %08x\n", lum->lmm_magic);
2573         }
2574 }
2575 EXPORT_SYMBOL(lustre_swab_lov_user_md);
2576
2577 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2578 {
2579         ENTRY;
2580         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2581         __swab32s(&lmm->lmm_magic);
2582         __swab32s(&lmm->lmm_pattern);
2583         lustre_swab_lmm_oi(&lmm->lmm_oi);
2584         __swab32s(&lmm->lmm_stripe_size);
2585         __swab16s(&lmm->lmm_stripe_count);
2586         __swab16s(&lmm->lmm_layout_gen);
2587         EXIT;
2588 }
2589 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2590
2591 void lustre_swab_ldlm_res_id(struct ldlm_res_id *id)
2592 {
2593         int i;
2594
2595         for (i = 0; i < RES_NAME_SIZE; i++)
2596                 __swab64s(&id->name[i]);
2597 }
2598
2599 void lustre_swab_ldlm_policy_data(union ldlm_wire_policy_data *d)
2600 {
2601         /* the lock data is a union and the first two fields are always an
2602          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2603          * data the same way.
2604          */
2605         __swab64s(&d->l_extent.start);
2606         __swab64s(&d->l_extent.end);
2607         __swab64s(&d->l_extent.gid);
2608         __swab64s(&d->l_flock.lfw_owner);
2609         __swab32s(&d->l_flock.lfw_pid);
2610 }
2611
2612 void lustre_swab_ldlm_intent(struct ldlm_intent *i)
2613 {
2614         __swab64s(&i->opc);
2615 }
2616
2617 void lustre_swab_ldlm_resource_desc(struct ldlm_resource_desc *r)
2618 {
2619         __swab32s(&r->lr_type);
2620         BUILD_BUG_ON(offsetof(typeof(*r), lr_pad) == 0);
2621         lustre_swab_ldlm_res_id(&r->lr_name);
2622 }
2623
2624 void lustre_swab_ldlm_lock_desc(struct ldlm_lock_desc *l)
2625 {
2626         lustre_swab_ldlm_resource_desc(&l->l_resource);
2627         __swab32s(&l->l_req_mode);
2628         __swab32s(&l->l_granted_mode);
2629         lustre_swab_ldlm_policy_data(&l->l_policy_data);
2630 }
2631
2632 void lustre_swab_ldlm_request(struct ldlm_request *rq)
2633 {
2634         __swab32s(&rq->lock_flags);
2635         lustre_swab_ldlm_lock_desc(&rq->lock_desc);
2636         __swab32s(&rq->lock_count);
2637         /* lock_handle[] opaque */
2638 }
2639
2640 void lustre_swab_ldlm_reply(struct ldlm_reply *r)
2641 {
2642         __swab32s(&r->lock_flags);
2643         BUILD_BUG_ON(offsetof(typeof(*r), lock_padding) == 0);
2644         lustre_swab_ldlm_lock_desc(&r->lock_desc);
2645         /* lock_handle opaque */
2646         __swab64s(&r->lock_policy_res1);
2647         __swab64s(&r->lock_policy_res2);
2648 }
2649
2650 void lustre_swab_quota_body(struct quota_body *b)
2651 {
2652         lustre_swab_lu_fid(&b->qb_fid);
2653         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2654         __swab32s(&b->qb_flags);
2655         __swab64s(&b->qb_count);
2656         __swab64s(&b->qb_usage);
2657         __swab64s(&b->qb_slv_ver);
2658 }
2659
2660 /* Dump functions */
2661 void dump_ioo(struct obd_ioobj *ioo)
2662 {
2663         CDEBUG(D_RPCTRACE,
2664                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2665                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2666                ioo->ioo_bufcnt);
2667 }
2668
2669 void dump_rniobuf(struct niobuf_remote *nb)
2670 {
2671         CDEBUG(D_RPCTRACE, "niobuf_remote: offset=%llu, len=%d, flags=%x\n",
2672                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2673 }
2674
2675 void dump_obdo(struct obdo *oa)
2676 {
2677         u64 valid = oa->o_valid;
2678
2679         CDEBUG(D_RPCTRACE, "obdo: o_valid = %#llx\n", valid);
2680         if (valid & OBD_MD_FLID)
2681                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2682         if (valid & OBD_MD_FLFID)
2683                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = %#llx\n",
2684                        oa->o_parent_seq);
2685         if (valid & OBD_MD_FLSIZE)
2686                 CDEBUG(D_RPCTRACE, "obdo: o_size = %lld\n", oa->o_size);
2687         if (valid & OBD_MD_FLMTIME)
2688                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = %lld\n", oa->o_mtime);
2689         if (valid & OBD_MD_FLATIME)
2690                 CDEBUG(D_RPCTRACE, "obdo: o_atime = %lld\n", oa->o_atime);
2691         if (valid & OBD_MD_FLCTIME)
2692                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = %lld\n", oa->o_ctime);
2693         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2694                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = %lld\n", oa->o_blocks);
2695         if (valid & OBD_MD_FLGRANT)
2696                 CDEBUG(D_RPCTRACE, "obdo: o_grant = %lld\n", oa->o_grant);
2697         if (valid & OBD_MD_FLBLKSZ)
2698                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2699         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2700                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2701                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2702                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2703         if (valid & OBD_MD_FLUID)
2704                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2705         if (valid & OBD_MD_FLUID)
2706                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2707         if (valid & OBD_MD_FLGID)
2708                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2709         if (valid & OBD_MD_FLGID)
2710                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2711         if (valid & OBD_MD_FLFLAGS)
2712                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2713         if (valid & OBD_MD_FLNLINK)
2714                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2715         else if (valid & OBD_MD_FLCKSUM)
2716                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2717                        oa->o_nlink);
2718         if (valid & OBD_MD_FLPARENT)
2719                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2720                        oa->o_parent_oid);
2721         if (valid & OBD_MD_FLFID) {
2722                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2723                        oa->o_stripe_idx);
2724                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2725                        oa->o_parent_ver);
2726         }
2727         if (valid & OBD_MD_FLHANDLE)
2728                 CDEBUG(D_RPCTRACE, "obdo: o_handle = %lld\n",
2729                        oa->o_handle.cookie);
2730 }
2731
2732 void dump_ost_body(struct ost_body *ob)
2733 {
2734         dump_obdo(&ob->oa);
2735 }
2736
2737 void dump_rcs(__u32 *rc)
2738 {
2739         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2740 }
2741
2742 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2743 {
2744         LASSERT(req->rq_reqmsg);
2745
2746         switch (req->rq_reqmsg->lm_magic) {
2747         case LUSTRE_MSG_MAGIC_V2:
2748                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2749         default:
2750                 CERROR("bad lustre msg magic: %#08X\n",
2751                        req->rq_reqmsg->lm_magic);
2752         }
2753         return 0;
2754 }
2755
2756 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2757 {
2758         if (unlikely(!req->rq_repmsg))
2759                 return 0;
2760
2761         switch (req->rq_repmsg->lm_magic) {
2762         case LUSTRE_MSG_MAGIC_V2:
2763                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2764         default:
2765                 /* uninitialized yet */
2766                 return 0;
2767         }
2768 }
2769
2770 void _debug_req(struct ptlrpc_request *req,
2771                 struct libcfs_debug_msg_data *msgdata, const char *fmt, ...)
2772 {
2773         bool req_ok = req->rq_reqmsg != NULL;
2774         bool rep_ok = false;
2775         lnet_nid_t nid = LNET_NID_ANY;
2776         struct va_format vaf;
2777         va_list args;
2778         int rep_flags = -1;
2779         int rep_status = -1;
2780
2781         spin_lock(&req->rq_early_free_lock);
2782         if (req->rq_repmsg)
2783                 rep_ok = true;
2784
2785         if (ptlrpc_req_need_swab(req)) {
2786                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2787                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2788         }
2789
2790         if (rep_ok) {
2791                 rep_flags = lustre_msg_get_flags(req->rq_repmsg);
2792                 rep_status = lustre_msg_get_status(req->rq_repmsg);
2793         }
2794         spin_unlock(&req->rq_early_free_lock);
2795
2796         if (req->rq_import && req->rq_import->imp_connection)
2797                 nid = req->rq_import->imp_connection->c_peer.nid;
2798         else if (req->rq_export && req->rq_export->exp_connection)
2799                 nid = req->rq_export->exp_connection->c_peer.nid;
2800
2801         va_start(args, fmt);
2802         vaf.fmt = fmt;
2803         vaf.va = &args;
2804         libcfs_debug_msg(msgdata,
2805                          "%pV req@%p x%llu/t%lld(%lld) o%d->%s@%s:%d/%d lens %d/%d e %d to %lld dl %lld ref %d fl " REQ_FLAGS_FMT "/%x/%x rc %d/%d job:'%s'\n",
2806                          &vaf,
2807                          req, req->rq_xid, req->rq_transno,
2808                          req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2809                          req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2810                          req->rq_import ?
2811                          req->rq_import->imp_obd->obd_name :
2812                          req->rq_export ?
2813                          req->rq_export->exp_client_uuid.uuid :
2814                          "<?>",
2815                          libcfs_nid2str(nid),
2816                          req->rq_request_portal, req->rq_reply_portal,
2817                          req->rq_reqlen, req->rq_replen,
2818                          req->rq_early_count, (s64)req->rq_timedout,
2819                          (s64)req->rq_deadline,
2820                          atomic_read(&req->rq_refcount),
2821                          DEBUG_REQ_FLAGS(req),
2822                          req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2823                          rep_flags, req->rq_status, rep_status,
2824                          req_ok ? lustre_msg_get_jobid(req->rq_reqmsg) ?: ""
2825                                 : "");
2826         va_end(args);
2827 }
2828 EXPORT_SYMBOL(_debug_req);
2829
2830 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2831 {
2832         __swab32s(&state->hus_states);
2833         __swab32s(&state->hus_archive_id);
2834 }
2835
2836 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2837 {
2838         __swab32s(&hss->hss_valid);
2839         __swab64s(&hss->hss_setmask);
2840         __swab64s(&hss->hss_clearmask);
2841         __swab32s(&hss->hss_archive_id);
2842 }
2843
2844 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2845 {
2846         __swab64s(&extent->offset);
2847         __swab64s(&extent->length);
2848 }
2849
2850 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2851 {
2852         __swab32s(&action->hca_state);
2853         __swab32s(&action->hca_action);
2854         lustre_swab_hsm_extent(&action->hca_location);
2855 }
2856
2857 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2858 {
2859         lustre_swab_lu_fid(&hui->hui_fid);
2860         lustre_swab_hsm_extent(&hui->hui_extent);
2861 }
2862
2863 void lustre_swab_lu_extent(struct lu_extent *le)
2864 {
2865         __swab64s(&le->e_start);
2866         __swab64s(&le->e_end);
2867 }
2868
2869 void lustre_swab_layout_intent(struct layout_intent *li)
2870 {
2871         __swab32s(&li->li_opc);
2872         __swab32s(&li->li_flags);
2873         lustre_swab_lu_extent(&li->li_extent);
2874 }
2875
2876 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2877 {
2878         lustre_swab_lu_fid(&hpk->hpk_fid);
2879         __swab64s(&hpk->hpk_cookie);
2880         __swab64s(&hpk->hpk_extent.offset);
2881         __swab64s(&hpk->hpk_extent.length);
2882         __swab16s(&hpk->hpk_flags);
2883         __swab16s(&hpk->hpk_errval);
2884 }
2885
2886 void lustre_swab_hsm_request(struct hsm_request *hr)
2887 {
2888         __swab32s(&hr->hr_action);
2889         __swab32s(&hr->hr_archive_id);
2890         __swab64s(&hr->hr_flags);
2891         __swab32s(&hr->hr_itemcount);
2892         __swab32s(&hr->hr_data_len);
2893 }
2894
2895 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2896 {
2897         __swab64s(&msl->msl_flags);
2898 }
2899
2900 void lustre_swab_close_data(struct close_data *cd)
2901 {
2902         lustre_swab_lu_fid(&cd->cd_fid);
2903         __swab64s(&cd->cd_data_version);
2904 }
2905
2906 void lustre_swab_close_data_resync_done(struct close_data_resync_done *resync)
2907 {
2908         int i;
2909
2910         __swab32s(&resync->resync_count);
2911         /* after swab, resync_count must in CPU endian */
2912         if (resync->resync_count <= INLINE_RESYNC_ARRAY_SIZE) {
2913                 for (i = 0; i < resync->resync_count; i++)
2914                         __swab32s(&resync->resync_ids_inline[i]);
2915         }
2916 }
2917 EXPORT_SYMBOL(lustre_swab_close_data_resync_done);
2918
2919 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2920 {
2921         __swab32s(&lr->lr_event);
2922         __swab32s(&lr->lr_index);
2923         __swab32s(&lr->lr_flags);
2924         __swab32s(&lr->lr_valid);
2925         __swab32s(&lr->lr_speed);
2926         __swab16s(&lr->lr_version);
2927         __swab16s(&lr->lr_active);
2928         __swab16s(&lr->lr_param);
2929         __swab16s(&lr->lr_async_windows);
2930         __swab32s(&lr->lr_flags);
2931         lustre_swab_lu_fid(&lr->lr_fid);
2932         lustre_swab_lu_fid(&lr->lr_fid2);
2933         __swab32s(&lr->lr_comp_id);
2934         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_0) == 0);
2935         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_1) == 0);
2936         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_2) == 0);
2937         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_3) == 0);
2938 }
2939
2940 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2941 {
2942         __swab32s(&lr->lr_status);
2943         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_1) == 0);
2944         __swab64s(&lr->lr_repaired);
2945 }
2946
2947 static void lustre_swab_orphan_rec(struct lu_orphan_rec *rec)
2948 {
2949         lustre_swab_lu_fid(&rec->lor_fid);
2950         __swab32s(&rec->lor_uid);
2951         __swab32s(&rec->lor_gid);
2952 }
2953
2954 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2955 {
2956         lustre_swab_lu_fid(&ent->loe_key);
2957         lustre_swab_orphan_rec(&ent->loe_rec);
2958 }
2959 EXPORT_SYMBOL(lustre_swab_orphan_ent);
2960
2961 void lustre_swab_orphan_ent_v2(struct lu_orphan_ent_v2 *ent)
2962 {
2963         lustre_swab_lu_fid(&ent->loe_key);
2964         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
2965         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
2966         BUILD_BUG_ON(offsetof(typeof(ent->loe_rec), lor_padding) == 0);
2967 }
2968 EXPORT_SYMBOL(lustre_swab_orphan_ent_v2);
2969
2970 void lustre_swab_orphan_ent_v3(struct lu_orphan_ent_v3 *ent)
2971 {
2972         lustre_swab_lu_fid(&ent->loe_key);
2973         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
2974         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
2975         __swab32s(&ent->loe_rec.lor_layout_version);
2976         __swab32s(&ent->loe_rec.lor_range);
2977         BUILD_BUG_ON(offsetof(typeof(ent->loe_rec), lor_padding_1) == 0);
2978         BUILD_BUG_ON(offsetof(typeof(ent->loe_rec), lor_padding_2) == 0);
2979 }
2980 EXPORT_SYMBOL(lustre_swab_orphan_ent_v3);
2981
2982 void lustre_swab_ladvise(struct lu_ladvise *ladvise)
2983 {
2984         __swab16s(&ladvise->lla_advice);
2985         __swab16s(&ladvise->lla_value1);
2986         __swab32s(&ladvise->lla_value2);
2987         __swab64s(&ladvise->lla_start);
2988         __swab64s(&ladvise->lla_end);
2989         __swab32s(&ladvise->lla_value3);
2990         __swab32s(&ladvise->lla_value4);
2991 }
2992 EXPORT_SYMBOL(lustre_swab_ladvise);
2993
2994 void lustre_swab_ladvise_hdr(struct ladvise_hdr *ladvise_hdr)
2995 {
2996         __swab32s(&ladvise_hdr->lah_magic);
2997         __swab32s(&ladvise_hdr->lah_count);
2998         __swab64s(&ladvise_hdr->lah_flags);
2999         __swab32s(&ladvise_hdr->lah_value1);
3000         __swab32s(&ladvise_hdr->lah_value2);
3001         __swab64s(&ladvise_hdr->lah_value3);
3002 }
3003 EXPORT_SYMBOL(lustre_swab_ladvise_hdr);