Whamcloud - gitweb
LU-5319 ptlrpc: Add OBD_CONNECT_MULTIMODRPCS flag
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2014, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/ptlrpc/pack_generic.c
37  *
38  * (Un)packing of OST requests
39  *
40  * Author: Peter J. Braam <braam@clusterfs.com>
41  * Author: Phil Schwan <phil@clusterfs.com>
42  * Author: Eric Barton <eeb@clusterfs.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_RPC
46
47 #include <libcfs/libcfs.h>
48
49 #include <obd_support.h>
50 #include <obd_class.h>
51 #include <lustre_net.h>
52 #include <obd_cksum.h>
53 #include <lustre/ll_fiemap.h>
54
55 #include "ptlrpc_internal.h"
56
57 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
58 {
59         return cfs_size_round(offsetof(struct lustre_msg_v2,
60                                        lm_buflens[count]));
61 }
62
63 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
64 {
65         switch (magic) {
66         case LUSTRE_MSG_MAGIC_V2:
67                 return lustre_msg_hdr_size_v2(count);
68         default:
69                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
70                 return 0;
71         }
72 }
73
74 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
75                             __u32 index)
76 {
77         if (inout)
78                 lustre_set_req_swabbed(req, index);
79         else
80                 lustre_set_rep_swabbed(req, index);
81 }
82
83 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
84                          __u32 index)
85 {
86         if (inout)
87                 return (ptlrpc_req_need_swab(req) &&
88                         !lustre_req_swabbed(req, index));
89         else
90                 return (ptlrpc_rep_need_swab(req) &&
91                         !lustre_rep_swabbed(req, index));
92 }
93
94 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
95                                                 __u32 version)
96 {
97         __u32 ver = lustre_msg_get_version(msg);
98         return (ver & LUSTRE_VERSION_MASK) != version;
99 }
100
101 int lustre_msg_check_version(struct lustre_msg *msg, __u32 version)
102 {
103         switch (msg->lm_magic) {
104         case LUSTRE_MSG_MAGIC_V1:
105                 CERROR("msg v1 not supported - please upgrade you system\n");
106                 return -EINVAL;
107         case LUSTRE_MSG_MAGIC_V2:
108                 return lustre_msg_check_version_v2(msg, version);
109         default:
110                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
111                 return 0;
112         }
113 }
114
115 /* early reply size */
116 __u32 lustre_msg_early_size()
117 {
118         static __u32 size;
119         if (!size) {
120                 /* Always reply old ptlrpc_body_v2 to keep interoprability
121                  * with the old client (< 2.3) which doesn't have pb_jobid
122                  * in the ptlrpc_body.
123                  *
124                  * XXX Remove this whenever we dorp interoprability with such
125                  *     client.
126                  */
127                 __u32 pblen = sizeof(struct ptlrpc_body_v2);
128                 size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
129         }
130         return size;
131 }
132 EXPORT_SYMBOL(lustre_msg_early_size);
133
134 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
135 {
136         __u32 size;
137         int i;
138
139         size = lustre_msg_hdr_size_v2(count);
140         for (i = 0; i < count; i++)
141                 size += cfs_size_round(lengths[i]);
142
143         return size;
144 }
145 EXPORT_SYMBOL(lustre_msg_size_v2);
146
147 /* This returns the size of the buffer that is required to hold a lustre_msg
148  * with the given sub-buffer lengths.
149  * NOTE: this should only be used for NEW requests, and should always be
150  *       in the form of a v2 request.  If this is a connection to a v1
151  *       target then the first buffer will be stripped because the ptlrpc
152  *       data is part of the lustre_msg_v1 header. b=14043 */
153 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
154 {
155         __u32 size[] = { sizeof(struct ptlrpc_body) };
156
157         if (!lens) {
158                 LASSERT(count == 1);
159                 lens = size;
160         }
161
162         LASSERT(count > 0);
163         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
164
165         switch (magic) {
166         case LUSTRE_MSG_MAGIC_V2:
167                 return lustre_msg_size_v2(count, lens);
168         default:
169                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
170                 return 0;
171         }
172 }
173
174 /* This is used to determine the size of a buffer that was already packed
175  * and will correctly handle the different message formats. */
176 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
177 {
178         switch (msg->lm_magic) {
179         case LUSTRE_MSG_MAGIC_V2:
180                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
181         default:
182                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
183                 return 0;
184         }
185 }
186
187 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
188                         char **bufs)
189 {
190         char *ptr;
191         int i;
192
193         msg->lm_bufcount = count;
194         /* XXX: lm_secflvr uninitialized here */
195         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
196
197         for (i = 0; i < count; i++)
198                 msg->lm_buflens[i] = lens[i];
199
200         if (bufs == NULL)
201                 return;
202
203         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
204         for (i = 0; i < count; i++) {
205                 char *tmp = bufs[i];
206                 LOGL(tmp, lens[i], ptr);
207         }
208 }
209 EXPORT_SYMBOL(lustre_init_msg_v2);
210
211 static int lustre_pack_request_v2(struct ptlrpc_request *req,
212                                   int count, __u32 *lens, char **bufs)
213 {
214         int reqlen, rc;
215
216         reqlen = lustre_msg_size_v2(count, lens);
217
218         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
219         if (rc)
220                 return rc;
221
222         req->rq_reqlen = reqlen;
223
224         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
225         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
226         return 0;
227 }
228
229 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
230                         __u32 *lens, char **bufs)
231 {
232         __u32 size[] = { sizeof(struct ptlrpc_body) };
233
234         if (!lens) {
235                 LASSERT(count == 1);
236                 lens = size;
237         }
238
239         LASSERT(count > 0);
240         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
241
242         /* only use new format, we don't need to be compatible with 1.4 */
243         magic = LUSTRE_MSG_MAGIC_V2;
244
245         switch (magic) {
246         case LUSTRE_MSG_MAGIC_V2:
247                 return lustre_pack_request_v2(req, count, lens, bufs);
248         default:
249                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
250                 return -EINVAL;
251         }
252 }
253
254 #if RS_DEBUG
255 struct list_head ptlrpc_rs_debug_lru =
256         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
257 spinlock_t ptlrpc_rs_debug_lock;
258
259 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
260 do {                                                                    \
261         spin_lock(&ptlrpc_rs_debug_lock);                               \
262         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
263         spin_unlock(&ptlrpc_rs_debug_lock);                             \
264 } while (0)
265
266 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
267 do {                                                                    \
268         spin_lock(&ptlrpc_rs_debug_lock);                               \
269         list_del(&(rs)->rs_debug_list);                         \
270         spin_unlock(&ptlrpc_rs_debug_lock);                             \
271 } while (0)
272 #else
273 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
274 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
275 #endif
276
277 struct ptlrpc_reply_state *
278 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
279 {
280         struct ptlrpc_reply_state *rs = NULL;
281
282         spin_lock(&svcpt->scp_rep_lock);
283
284         /* See if we have anything in a pool, and wait if nothing */
285         while (list_empty(&svcpt->scp_rep_idle)) {
286                 struct l_wait_info      lwi;
287                 int                     rc;
288
289                 spin_unlock(&svcpt->scp_rep_lock);
290                 /* If we cannot get anything for some long time, we better
291                  * bail out instead of waiting infinitely */
292                 lwi = LWI_TIMEOUT(cfs_time_seconds(10), NULL, NULL);
293                 rc = l_wait_event(svcpt->scp_rep_waitq,
294                                   !list_empty(&svcpt->scp_rep_idle), &lwi);
295                 if (rc != 0)
296                         goto out;
297                 spin_lock(&svcpt->scp_rep_lock);
298         }
299
300         rs = list_entry(svcpt->scp_rep_idle.next,
301                             struct ptlrpc_reply_state, rs_list);
302         list_del(&rs->rs_list);
303
304         spin_unlock(&svcpt->scp_rep_lock);
305
306         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
307         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
308         rs->rs_svcpt = svcpt;
309         rs->rs_prealloc = 1;
310 out:
311         return rs;
312 }
313
314 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
315 {
316         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
317
318         spin_lock(&svcpt->scp_rep_lock);
319         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
320         spin_unlock(&svcpt->scp_rep_lock);
321         wake_up(&svcpt->scp_rep_waitq);
322 }
323
324 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
325                          __u32 *lens, char **bufs, int flags)
326 {
327         struct ptlrpc_reply_state *rs;
328         int                        msg_len, rc;
329         ENTRY;
330
331         LASSERT(req->rq_reply_state == NULL);
332
333         if ((flags & LPRFL_EARLY_REPLY) == 0) {
334                 spin_lock(&req->rq_lock);
335                 req->rq_packed_final = 1;
336                 spin_unlock(&req->rq_lock);
337         }
338
339         msg_len = lustre_msg_size_v2(count, lens);
340         rc = sptlrpc_svc_alloc_rs(req, msg_len);
341         if (rc)
342                 RETURN(rc);
343
344         rs = req->rq_reply_state;
345         atomic_set(&rs->rs_refcount, 1);        /* 1 ref for rq_reply_state */
346         rs->rs_cb_id.cbid_fn = reply_out_callback;
347         rs->rs_cb_id.cbid_arg = rs;
348         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
349         INIT_LIST_HEAD(&rs->rs_exp_list);
350         INIT_LIST_HEAD(&rs->rs_obd_list);
351         INIT_LIST_HEAD(&rs->rs_list);
352         spin_lock_init(&rs->rs_lock);
353
354         req->rq_replen = msg_len;
355         req->rq_reply_state = rs;
356         req->rq_repmsg = rs->rs_msg;
357
358         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
359         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
360
361         PTLRPC_RS_DEBUG_LRU_ADD(rs);
362
363         RETURN(0);
364 }
365 EXPORT_SYMBOL(lustre_pack_reply_v2);
366
367 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
368                             char **bufs, int flags)
369 {
370         int rc = 0;
371         __u32 size[] = { sizeof(struct ptlrpc_body) };
372
373         if (!lens) {
374                 LASSERT(count == 1);
375                 lens = size;
376         }
377
378         LASSERT(count > 0);
379         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
380
381         switch (req->rq_reqmsg->lm_magic) {
382         case LUSTRE_MSG_MAGIC_V2:
383                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
384                 break;
385         default:
386                 LASSERTF(0, "incorrect message magic: %08x\n",
387                          req->rq_reqmsg->lm_magic);
388                 rc = -EINVAL;
389         }
390         if (rc != 0)
391                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
392                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
393         return rc;
394 }
395
396 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
397                       char **bufs)
398 {
399         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
400 }
401 EXPORT_SYMBOL(lustre_pack_reply);
402
403 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
404 {
405         __u32 i, offset, buflen, bufcount;
406
407         LASSERT(m != NULL);
408
409         bufcount = m->lm_bufcount;
410         if (unlikely(n >= bufcount)) {
411                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
412                        m, n, bufcount);
413                 return NULL;
414         }
415
416         buflen = m->lm_buflens[n];
417         if (unlikely(buflen < min_size)) {
418                 CERROR("msg %p buffer[%d] size %d too small "
419                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
420                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
421                 return NULL;
422         }
423
424         offset = lustre_msg_hdr_size_v2(bufcount);
425         for (i = 0; i < n; i++)
426                 offset += cfs_size_round(m->lm_buflens[i]);
427
428         return (char *)m + offset;
429 }
430
431 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
432 {
433         switch (m->lm_magic) {
434         case LUSTRE_MSG_MAGIC_V2:
435                 return lustre_msg_buf_v2(m, n, min_size);
436         default:
437                 LASSERTF(0, "incorrect message magic: %08x(msg:%p)\n", m->lm_magic, m);
438                 return NULL;
439         }
440 }
441 EXPORT_SYMBOL(lustre_msg_buf);
442
443 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
444                                 unsigned int newlen, int move_data)
445 {
446         char   *tail = NULL, *newpos;
447         int     tail_len = 0, n;
448
449         LASSERT(msg);
450         LASSERT(msg->lm_bufcount > segment);
451         LASSERT(msg->lm_buflens[segment] >= newlen);
452
453         if (msg->lm_buflens[segment] == newlen)
454                 goto out;
455
456         if (move_data && msg->lm_bufcount > segment + 1) {
457                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
458                 for (n = segment + 1; n < msg->lm_bufcount; n++)
459                         tail_len += cfs_size_round(msg->lm_buflens[n]);
460         }
461
462         msg->lm_buflens[segment] = newlen;
463
464         if (tail && tail_len) {
465                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
466                 LASSERT(newpos <= tail);
467                 if (newpos != tail)
468                         memmove(newpos, tail, tail_len);
469         }
470 out:
471         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
472 }
473
474 /*
475  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
476  * we also move data forward from @segment + 1.
477  *
478  * if @newlen == 0, we remove the segment completely, but we still keep the
479  * totally bufcount the same to save possible data moving. this will leave a
480  * unused segment with size 0 at the tail, but that's ok.
481  *
482  * return new msg size after shrinking.
483  *
484  * CAUTION:
485  * + if any buffers higher than @segment has been filled in, must call shrink
486  *   with non-zero @move_data.
487  * + caller should NOT keep pointers to msg buffers which higher than @segment
488  *   after call shrink.
489  */
490 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
491                       unsigned int newlen, int move_data)
492 {
493         switch (msg->lm_magic) {
494         case LUSTRE_MSG_MAGIC_V2:
495                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
496         default:
497                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
498         }
499 }
500 EXPORT_SYMBOL(lustre_shrink_msg);
501
502 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
503 {
504         PTLRPC_RS_DEBUG_LRU_DEL(rs);
505
506         LASSERT(atomic_read(&rs->rs_refcount) == 0);
507         LASSERT(!rs->rs_difficult || rs->rs_handled);
508         LASSERT(!rs->rs_on_net);
509         LASSERT(!rs->rs_scheduled);
510         LASSERT(rs->rs_export == NULL);
511         LASSERT(rs->rs_nlocks == 0);
512         LASSERT(list_empty(&rs->rs_exp_list));
513         LASSERT(list_empty(&rs->rs_obd_list));
514
515         sptlrpc_svc_free_rs(rs);
516 }
517
518 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
519 {
520         int swabbed, required_len, i;
521
522         /* Now we know the sender speaks my language. */
523         required_len = lustre_msg_hdr_size_v2(0);
524         if (len < required_len) {
525                 /* can't even look inside the message */
526                 CERROR("message length %d too small for lustre_msg\n", len);
527                 return -EINVAL;
528         }
529
530         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
531
532         if (swabbed) {
533                 __swab32s(&m->lm_magic);
534                 __swab32s(&m->lm_bufcount);
535                 __swab32s(&m->lm_secflvr);
536                 __swab32s(&m->lm_repsize);
537                 __swab32s(&m->lm_cksum);
538                 __swab32s(&m->lm_flags);
539                 CLASSERT(offsetof(typeof(*m), lm_padding_2) != 0);
540                 CLASSERT(offsetof(typeof(*m), lm_padding_3) != 0);
541         }
542
543         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
544         if (len < required_len) {
545                 /* didn't receive all the buffer lengths */
546                 CERROR ("message length %d too small for %d buflens\n",
547                         len, m->lm_bufcount);
548                 return -EINVAL;
549         }
550
551         for (i = 0; i < m->lm_bufcount; i++) {
552                 if (swabbed)
553                         __swab32s(&m->lm_buflens[i]);
554                 required_len += cfs_size_round(m->lm_buflens[i]);
555         }
556
557         if (len < required_len) {
558                 CERROR("len: %d, required_len %d\n", len, required_len);
559                 CERROR("bufcount: %d\n", m->lm_bufcount);
560                 for (i = 0; i < m->lm_bufcount; i++)
561                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
562                 return -EINVAL;
563         }
564
565         return swabbed;
566 }
567
568 int __lustre_unpack_msg(struct lustre_msg *m, int len)
569 {
570         int required_len, rc;
571         ENTRY;
572
573         /* We can provide a slightly better error log, if we check the
574          * message magic and version first.  In the future, struct
575          * lustre_msg may grow, and we'd like to log a version mismatch,
576          * rather than a short message.
577          *
578          */
579         required_len = offsetof(struct lustre_msg, lm_magic) +
580                        sizeof(m->lm_magic);
581         if (len < required_len) {
582                 /* can't even look inside the message */
583                 CERROR("message length %d too small for magic/version check\n",
584                        len);
585                 RETURN(-EINVAL);
586         }
587
588         rc = lustre_unpack_msg_v2(m, len);
589
590         RETURN(rc);
591 }
592 EXPORT_SYMBOL(__lustre_unpack_msg);
593
594 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
595 {
596         int rc;
597         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
598         if (rc == 1) {
599                 lustre_set_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
600                 rc = 0;
601         }
602         return rc;
603 }
604
605 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
606 {
607         int rc;
608         rc = __lustre_unpack_msg(req->rq_repmsg, len);
609         if (rc == 1) {
610                 lustre_set_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
611                 rc = 0;
612         }
613         return rc;
614 }
615
616 static inline int lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
617                                                const int inout, int offset)
618 {
619         struct ptlrpc_body *pb;
620         struct lustre_msg_v2 *m = inout ? req->rq_reqmsg : req->rq_repmsg;
621
622         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
623         if (!pb) {
624                 CERROR("error unpacking ptlrpc body\n");
625                 return -EFAULT;
626         }
627         if (ptlrpc_buf_need_swab(req, inout, offset)) {
628                 lustre_swab_ptlrpc_body(pb);
629                 ptlrpc_buf_set_swabbed(req, inout, offset);
630         }
631
632         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
633                  CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
634                  return -EINVAL;
635         }
636
637         if (!inout)
638                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
639
640         return 0;
641 }
642
643 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
644 {
645         switch (req->rq_reqmsg->lm_magic) {
646         case LUSTRE_MSG_MAGIC_V2:
647                 return lustre_unpack_ptlrpc_body_v2(req, 1, offset);
648         default:
649                 CERROR("bad lustre msg magic: %08x\n",
650                        req->rq_reqmsg->lm_magic);
651                 return -EINVAL;
652         }
653 }
654
655 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
656 {
657         switch (req->rq_repmsg->lm_magic) {
658         case LUSTRE_MSG_MAGIC_V2:
659                 return lustre_unpack_ptlrpc_body_v2(req, 0, offset);
660         default:
661                 CERROR("bad lustre msg magic: %08x\n",
662                        req->rq_repmsg->lm_magic);
663                 return -EINVAL;
664         }
665 }
666
667 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
668 {
669         if (n >= m->lm_bufcount)
670                 return 0;
671
672         return m->lm_buflens[n];
673 }
674
675 /**
676  * lustre_msg_buflen - return the length of buffer \a n in message \a m
677  * \param m lustre_msg (request or reply) to look at
678  * \param n message index (base 0)
679  *
680  * returns zero for non-existent message indices
681  */
682 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
683 {
684         switch (m->lm_magic) {
685         case LUSTRE_MSG_MAGIC_V2:
686                 return lustre_msg_buflen_v2(m, n);
687         default:
688                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
689                 return 0;
690         }
691 }
692 EXPORT_SYMBOL(lustre_msg_buflen);
693
694 static inline void
695 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
696 {
697         if (n >= m->lm_bufcount)
698                 LBUG();
699
700         m->lm_buflens[n] = len;
701 }
702
703 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
704 {
705         switch (m->lm_magic) {
706         case LUSTRE_MSG_MAGIC_V2:
707                 lustre_msg_set_buflen_v2(m, n, len);
708                 return;
709         default:
710                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
711         }
712 }
713
714 /* NB return the bufcount for lustre_msg_v2 format, so if message is packed
715  * in V1 format, the result is one bigger. (add struct ptlrpc_body). */
716 __u32 lustre_msg_bufcount(struct lustre_msg *m)
717 {
718         switch (m->lm_magic) {
719         case LUSTRE_MSG_MAGIC_V2:
720                 return m->lm_bufcount;
721         default:
722                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
723                 return 0;
724         }
725 }
726
727 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
728 {
729         /* max_len == 0 means the string should fill the buffer */
730         char *str;
731         __u32 slen, blen;
732
733         switch (m->lm_magic) {
734         case LUSTRE_MSG_MAGIC_V2:
735                 str = lustre_msg_buf_v2(m, index, 0);
736                 blen = lustre_msg_buflen_v2(m, index);
737                 break;
738         default:
739                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
740         }
741
742         if (str == NULL) {
743                 CERROR ("can't unpack string in msg %p buffer[%d]\n", m, index);
744                 return NULL;
745         }
746
747         slen = strnlen(str, blen);
748
749         if (slen == blen) {                     /* not NULL terminated */
750                 CERROR("can't unpack non-NULL terminated string in "
751                         "msg %p buffer[%d] len %d\n", m, index, blen);
752                 return NULL;
753         }
754
755         if (max_len == 0) {
756                 if (slen != blen - 1) {
757                         CERROR("can't unpack short string in msg %p "
758                                "buffer[%d] len %d: strlen %d\n",
759                                m, index, blen, slen);
760                         return NULL;
761                 }
762         } else if (slen > max_len) {
763                 CERROR("can't unpack oversized string in msg %p "
764                        "buffer[%d] len %d strlen %d: max %d expected\n",
765                        m, index, blen, slen, max_len);
766                 return NULL;
767         }
768
769         return str;
770 }
771
772 /* Wrap up the normal fixed length cases */
773 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
774                                       __u32 min_size, void *swabber)
775 {
776         void *ptr = NULL;
777
778         LASSERT(msg != NULL);
779         switch (msg->lm_magic) {
780         case LUSTRE_MSG_MAGIC_V2:
781                 ptr = lustre_msg_buf_v2(msg, index, min_size);
782                 break;
783         default:
784                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
785         }
786
787         if (ptr && swabber)
788                 ((void (*)(void *))swabber)(ptr);
789
790         return ptr;
791 }
792
793 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
794 {
795         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
796                                  sizeof(struct ptlrpc_body_v2));
797 }
798
799 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg)
800 {
801         switch (msg->lm_magic) {
802         case LUSTRE_MSG_MAGIC_V1:
803         case LUSTRE_MSG_MAGIC_V1_SWABBED:
804                 return 0;
805         case LUSTRE_MSG_MAGIC_V2:
806                 /* already in host endian */
807                 return msg->lm_flags;
808         default:
809                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
810                 return 0;
811         }
812 }
813 EXPORT_SYMBOL(lustre_msghdr_get_flags);
814
815 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
816 {
817         switch (msg->lm_magic) {
818         case LUSTRE_MSG_MAGIC_V1:
819                 return;
820         case LUSTRE_MSG_MAGIC_V2:
821                 msg->lm_flags = flags;
822                 return;
823         default:
824                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
825         }
826 }
827
828 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
829 {
830         switch (msg->lm_magic) {
831         case LUSTRE_MSG_MAGIC_V2: {
832                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
833                 if (!pb) {
834                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
835                         return 0;
836                 }
837                 return pb->pb_flags;
838         }
839         default:
840                 /* flags might be printed in debug code while message
841                  * uninitialized */
842                 return 0;
843         }
844 }
845 EXPORT_SYMBOL(lustre_msg_get_flags);
846
847 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
848 {
849         switch (msg->lm_magic) {
850         case LUSTRE_MSG_MAGIC_V2: {
851                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
852                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
853                 pb->pb_flags |= flags;
854                 return;
855         }
856         default:
857                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
858         }
859 }
860 EXPORT_SYMBOL(lustre_msg_add_flags);
861
862 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
863 {
864         switch (msg->lm_magic) {
865         case LUSTRE_MSG_MAGIC_V2: {
866                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
867                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
868                 pb->pb_flags = flags;
869                 return;
870         }
871         default:
872                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
873         }
874 }
875
876 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
877 {
878         switch (msg->lm_magic) {
879         case LUSTRE_MSG_MAGIC_V2: {
880                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
881                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
882                 pb->pb_flags &= ~(MSG_GEN_FLAG_MASK & flags);
883                 return;
884         }
885         default:
886                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
887         }
888 }
889 EXPORT_SYMBOL(lustre_msg_clear_flags);
890
891 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
892 {
893         switch (msg->lm_magic) {
894         case LUSTRE_MSG_MAGIC_V2: {
895                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
896                 if (!pb) {
897                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
898                         return 0;
899                 }
900                 return pb->pb_op_flags;
901         }
902         default:
903                 return 0;
904         }
905 }
906
907 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
908 {
909         switch (msg->lm_magic) {
910         case LUSTRE_MSG_MAGIC_V2: {
911                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
912                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
913                 pb->pb_op_flags |= flags;
914                 return;
915         }
916         default:
917                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
918         }
919 }
920 EXPORT_SYMBOL(lustre_msg_add_op_flags);
921
922 void lustre_msg_set_op_flags(struct lustre_msg *msg, __u32 flags)
923 {
924         switch (msg->lm_magic) {
925         case LUSTRE_MSG_MAGIC_V2: {
926                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
927                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
928                 pb->pb_op_flags |= flags;
929                 return;
930         }
931         default:
932                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
933         }
934 }
935
936 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
937 {
938         switch (msg->lm_magic) {
939         case LUSTRE_MSG_MAGIC_V2: {
940                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
941                 if (!pb) {
942                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
943                         return NULL;
944                 }
945                 return &pb->pb_handle;
946         }
947         default:
948                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
949                 return NULL;
950         }
951 }
952
953 __u32 lustre_msg_get_type(struct lustre_msg *msg)
954 {
955         switch (msg->lm_magic) {
956         case LUSTRE_MSG_MAGIC_V2: {
957                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
958                 if (!pb) {
959                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
960                         return PTL_RPC_MSG_ERR;
961                 }
962                 return pb->pb_type;
963         }
964         default:
965                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
966                 return PTL_RPC_MSG_ERR;
967         }
968 }
969 EXPORT_SYMBOL(lustre_msg_get_type);
970
971 __u32 lustre_msg_get_version(struct lustre_msg *msg)
972 {
973         switch (msg->lm_magic) {
974         case LUSTRE_MSG_MAGIC_V2: {
975                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
976                 if (!pb) {
977                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
978                         return 0;
979                 }
980                 return pb->pb_version;
981         }
982         default:
983                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
984                 return 0;
985         }
986 }
987
988 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
989 {
990         switch (msg->lm_magic) {
991         case LUSTRE_MSG_MAGIC_V2: {
992                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
993                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
994                 pb->pb_version |= version;
995                 return;
996         }
997         default:
998                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
999         }
1000 }
1001
1002 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
1003 {
1004         switch (msg->lm_magic) {
1005         case LUSTRE_MSG_MAGIC_V2: {
1006                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1007                 if (!pb) {
1008                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1009                         return 0;
1010                 }
1011                 return pb->pb_opc;
1012         }
1013         default:
1014                 CERROR("incorrect message magic: %08x(msg:%p)\n", msg->lm_magic, msg);
1015                 LBUG();
1016                 return 0;
1017         }
1018 }
1019 EXPORT_SYMBOL(lustre_msg_get_opc);
1020
1021 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1022 {
1023         switch (msg->lm_magic) {
1024         case LUSTRE_MSG_MAGIC_V2: {
1025                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1026                 if (!pb) {
1027                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1028                         return 0;
1029                 }
1030                 return pb->pb_last_xid;
1031         }
1032         default:
1033                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1034                 return 0;
1035         }
1036 }
1037
1038 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1039 {
1040         switch (msg->lm_magic) {
1041         case LUSTRE_MSG_MAGIC_V2: {
1042                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1043                 if (!pb) {
1044                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1045                         return 0;
1046                 }
1047                 return pb->pb_last_committed;
1048         }
1049         default:
1050                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1051                 return 0;
1052         }
1053 }
1054 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1055
1056 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1057 {
1058         switch (msg->lm_magic) {
1059         case LUSTRE_MSG_MAGIC_V1:
1060                 return NULL;
1061         case LUSTRE_MSG_MAGIC_V2: {
1062                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1063                 if (!pb) {
1064                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1065                         return NULL;
1066                 }
1067                 return pb->pb_pre_versions;
1068         }
1069         default:
1070                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1071                 return NULL;
1072         }
1073 }
1074 EXPORT_SYMBOL(lustre_msg_get_versions);
1075
1076 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1077 {
1078         switch (msg->lm_magic) {
1079         case LUSTRE_MSG_MAGIC_V2: {
1080                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1081                 if (!pb) {
1082                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1083                         return 0;
1084                 }
1085                 return pb->pb_transno;
1086         }
1087         default:
1088                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1089                 return 0;
1090         }
1091 }
1092 EXPORT_SYMBOL(lustre_msg_get_transno);
1093
1094 int lustre_msg_get_status(struct lustre_msg *msg)
1095 {
1096         switch (msg->lm_magic) {
1097         case LUSTRE_MSG_MAGIC_V2: {
1098                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1099                 if (!pb) {
1100                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1101                         return -EINVAL;
1102                 }
1103                 return pb->pb_status;
1104         }
1105         default:
1106                 /* status might be printed in debug code while message
1107                  * uninitialized */
1108                 return -EINVAL;
1109         }
1110 }
1111 EXPORT_SYMBOL(lustre_msg_get_status);
1112
1113 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1114 {
1115         switch (msg->lm_magic) {
1116         case LUSTRE_MSG_MAGIC_V2: {
1117                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1118                 if (!pb) {
1119                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1120                         return -EINVAL;
1121                 }
1122                 return pb->pb_slv;
1123         }
1124         default:
1125                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1126                 return -EINVAL;
1127         }
1128 }
1129
1130
1131 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1132 {
1133         switch (msg->lm_magic) {
1134         case LUSTRE_MSG_MAGIC_V2: {
1135                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1136                 if (!pb) {
1137                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1138                         return;
1139                 }
1140                 pb->pb_slv = slv;
1141                 return;
1142         }
1143         default:
1144                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1145                 return;
1146         }
1147 }
1148
1149 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1150 {
1151         switch (msg->lm_magic) {
1152         case LUSTRE_MSG_MAGIC_V2: {
1153                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1154                 if (!pb) {
1155                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1156                         return -EINVAL;
1157                 }
1158                 return pb->pb_limit;
1159         }
1160         default:
1161                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1162                 return -EINVAL;
1163         }
1164 }
1165
1166
1167 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1168 {
1169         switch (msg->lm_magic) {
1170         case LUSTRE_MSG_MAGIC_V2: {
1171                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1172                 if (!pb) {
1173                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1174                         return;
1175                 }
1176                 pb->pb_limit = limit;
1177                 return;
1178         }
1179         default:
1180                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1181                 return;
1182         }
1183 }
1184
1185 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1186 {
1187         switch (msg->lm_magic) {
1188         case LUSTRE_MSG_MAGIC_V2: {
1189                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1190                 if (!pb) {
1191                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1192                         return 0;
1193                 }
1194                 return pb->pb_conn_cnt;
1195         }
1196         default:
1197                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1198                 return 0;
1199         }
1200 }
1201 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1202
1203 int lustre_msg_is_v1(struct lustre_msg *msg)
1204 {
1205         switch (msg->lm_magic) {
1206         case LUSTRE_MSG_MAGIC_V1:
1207         case LUSTRE_MSG_MAGIC_V1_SWABBED:
1208                 return 1;
1209         default:
1210                 return 0;
1211         }
1212 }
1213
1214 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1215 {
1216         switch (msg->lm_magic) {
1217         case LUSTRE_MSG_MAGIC_V2:
1218                 return msg->lm_magic;
1219         default:
1220                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1221                 return 0;
1222         }
1223 }
1224
1225 __u32 lustre_msg_get_timeout(struct lustre_msg *msg)
1226 {
1227         switch (msg->lm_magic) {
1228         case LUSTRE_MSG_MAGIC_V1:
1229         case LUSTRE_MSG_MAGIC_V1_SWABBED:
1230                 return 0;
1231         case LUSTRE_MSG_MAGIC_V2: {
1232                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1233                 if (!pb) {
1234                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1235                         return 0;
1236
1237                 }
1238                 return pb->pb_timeout;
1239         }
1240         default:
1241                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1242                 return 0;
1243         }
1244 }
1245
1246 __u32 lustre_msg_get_service_time(struct lustre_msg *msg)
1247 {
1248         switch (msg->lm_magic) {
1249         case LUSTRE_MSG_MAGIC_V1:
1250         case LUSTRE_MSG_MAGIC_V1_SWABBED:
1251                 return 0;
1252         case LUSTRE_MSG_MAGIC_V2: {
1253                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1254                 if (!pb) {
1255                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1256                         return 0;
1257
1258                 }
1259                 return pb->pb_service_time;
1260         }
1261         default:
1262                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1263                 return 0;
1264         }
1265 }
1266
1267 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1268 {
1269         switch (msg->lm_magic) {
1270         case LUSTRE_MSG_MAGIC_V1:
1271         case LUSTRE_MSG_MAGIC_V1_SWABBED:
1272                 return NULL;
1273         case LUSTRE_MSG_MAGIC_V2: {
1274                 struct ptlrpc_body *pb =
1275                         lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1276                                           sizeof(struct ptlrpc_body));
1277                 if (!pb)
1278                         return NULL;
1279
1280                 return pb->pb_jobid;
1281         }
1282         default:
1283                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1284                 return NULL;
1285         }
1286 }
1287 EXPORT_SYMBOL(lustre_msg_get_jobid);
1288
1289 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1290 {
1291         switch (msg->lm_magic) {
1292         case LUSTRE_MSG_MAGIC_V2:
1293                 return msg->lm_cksum;
1294         default:
1295                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1296                 return 0;
1297         }
1298 }
1299
1300 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 53, 0)
1301 /*
1302  * In 1.6 and 1.8 the checksum was computed only on struct ptlrpc_body as
1303  * it was in 1.6 (88 bytes, smaller than the full size in 1.8).  It makes
1304  * more sense to compute the checksum on the full ptlrpc_body, regardless
1305  * of what size it is, but in order to keep interoperability with 1.8 we
1306  * can optionally also checksum only the first 88 bytes (caller decides). */
1307 # define ptlrpc_body_cksum_size_compat18         88
1308
1309 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, int compat18)
1310 #else
1311 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg)
1312 #endif
1313 {
1314         switch (msg->lm_magic) {
1315         case LUSTRE_MSG_MAGIC_V2: {
1316                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1317 #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 7, 53, 0)
1318                 __u32 len = compat18 ? ptlrpc_body_cksum_size_compat18 :
1319                             lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1320 #else
1321                 __u32 len = lustre_msg_buflen(msg, MSG_PTLRPC_BODY_OFF);
1322 #endif
1323                 unsigned int hsize = 4;
1324                 __u32 crc;
1325
1326                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1327                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1328                                        len, NULL, 0, (unsigned char *)&crc,
1329                                        &hsize);
1330                 return crc;
1331         }
1332         default:
1333                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1334                 return 0;
1335         }
1336 }
1337
1338 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1339 {
1340         switch (msg->lm_magic) {
1341         case LUSTRE_MSG_MAGIC_V2: {
1342                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1343                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1344                 pb->pb_handle = *handle;
1345                 return;
1346         }
1347         default:
1348                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1349         }
1350 }
1351
1352 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1353 {
1354         switch (msg->lm_magic) {
1355         case LUSTRE_MSG_MAGIC_V2: {
1356                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1357                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1358                 pb->pb_type = type;
1359                 return;
1360         }
1361         default:
1362                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1363         }
1364 }
1365
1366 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1367 {
1368         switch (msg->lm_magic) {
1369         case LUSTRE_MSG_MAGIC_V2: {
1370                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1371                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1372                 pb->pb_opc = opc;
1373                 return;
1374         }
1375         default:
1376                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1377         }
1378 }
1379
1380 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1381 {
1382         switch (msg->lm_magic) {
1383         case LUSTRE_MSG_MAGIC_V2: {
1384                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1385                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1386                 pb->pb_last_xid = last_xid;
1387                 return;
1388         }
1389         default:
1390                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1391         }
1392 }
1393
1394 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1395 {
1396         switch (msg->lm_magic) {
1397         case LUSTRE_MSG_MAGIC_V2: {
1398                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1399                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1400                 pb->pb_last_committed = last_committed;
1401                 return;
1402         }
1403         default:
1404                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1405         }
1406 }
1407
1408 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1409 {
1410         switch (msg->lm_magic) {
1411         case LUSTRE_MSG_MAGIC_V1:
1412                 return;
1413         case LUSTRE_MSG_MAGIC_V2: {
1414                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1415                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1416                 pb->pb_pre_versions[0] = versions[0];
1417                 pb->pb_pre_versions[1] = versions[1];
1418                 pb->pb_pre_versions[2] = versions[2];
1419                 pb->pb_pre_versions[3] = versions[3];
1420                 return;
1421         }
1422         default:
1423                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1424         }
1425 }
1426 EXPORT_SYMBOL(lustre_msg_set_versions);
1427
1428 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1429 {
1430         switch (msg->lm_magic) {
1431         case LUSTRE_MSG_MAGIC_V2: {
1432                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1433                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1434                 pb->pb_transno = transno;
1435                 return;
1436         }
1437         default:
1438                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1439         }
1440 }
1441 EXPORT_SYMBOL(lustre_msg_set_transno);
1442
1443 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1444 {
1445         switch (msg->lm_magic) {
1446         case LUSTRE_MSG_MAGIC_V2: {
1447                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1448                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1449                 pb->pb_status = status;
1450                 return;
1451         }
1452         default:
1453                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1454         }
1455 }
1456 EXPORT_SYMBOL(lustre_msg_set_status);
1457
1458 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1459 {
1460         switch (msg->lm_magic) {
1461         case LUSTRE_MSG_MAGIC_V2: {
1462                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1463                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1464                 pb->pb_conn_cnt = conn_cnt;
1465                 return;
1466         }
1467         default:
1468                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1469         }
1470 }
1471
1472 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout)
1473 {
1474         switch (msg->lm_magic) {
1475         case LUSTRE_MSG_MAGIC_V1:
1476                 return;
1477         case LUSTRE_MSG_MAGIC_V2: {
1478                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1479                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1480                 pb->pb_timeout = timeout;
1481                 return;
1482         }
1483         default:
1484                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1485         }
1486 }
1487
1488 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time)
1489 {
1490         switch (msg->lm_magic) {
1491         case LUSTRE_MSG_MAGIC_V1:
1492                 return;
1493         case LUSTRE_MSG_MAGIC_V2: {
1494                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1495                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1496                 pb->pb_service_time = service_time;
1497                 return;
1498         }
1499         default:
1500                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1501         }
1502 }
1503
1504 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1505 {
1506         switch (msg->lm_magic) {
1507         case LUSTRE_MSG_MAGIC_V1:
1508                 return;
1509         case LUSTRE_MSG_MAGIC_V2: {
1510                 __u32 opc = lustre_msg_get_opc(msg);
1511                 struct ptlrpc_body *pb;
1512
1513                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1514                  * See the comment in ptlrpc_request_pack(). */
1515                 if (!opc || opc == LDLM_BL_CALLBACK ||
1516                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1517                         return;
1518
1519                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1520                                        sizeof(struct ptlrpc_body));
1521                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1522
1523                 if (jobid != NULL)
1524                         memcpy(pb->pb_jobid, jobid, LUSTRE_JOBID_SIZE);
1525                 else if (pb->pb_jobid[0] == '\0')
1526                         lustre_get_jobid(pb->pb_jobid);
1527                 return;
1528         }
1529         default:
1530                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1531         }
1532 }
1533 EXPORT_SYMBOL(lustre_msg_set_jobid);
1534
1535 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1536 {
1537         switch (msg->lm_magic) {
1538         case LUSTRE_MSG_MAGIC_V1:
1539                 return;
1540         case LUSTRE_MSG_MAGIC_V2:
1541                 msg->lm_cksum = cksum;
1542                 return;
1543         default:
1544                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1545         }
1546 }
1547
1548
1549 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1550 {
1551         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1552
1553         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1554                                          req->rq_pill.rc_area[RCL_SERVER]);
1555         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1556                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1557 }
1558 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1559
1560 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1561 {
1562         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1563         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1564                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1565 }
1566
1567 /**
1568  * Send a remote set_info_async.
1569  *
1570  * This may go from client to server or server to client.
1571  */
1572 int do_set_info_async(struct obd_import *imp,
1573                       int opcode, int version,
1574                       size_t keylen, void *key,
1575                       size_t vallen, void *val,
1576                       struct ptlrpc_request_set *set)
1577 {
1578         struct ptlrpc_request *req;
1579         char                  *tmp;
1580         int                    rc;
1581         ENTRY;
1582
1583         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1584         if (req == NULL)
1585                 RETURN(-ENOMEM);
1586
1587         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1588                              RCL_CLIENT, keylen);
1589         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1590                              RCL_CLIENT, vallen);
1591         rc = ptlrpc_request_pack(req, version, opcode);
1592         if (rc) {
1593                 ptlrpc_request_free(req);
1594                 RETURN(rc);
1595         }
1596
1597         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1598         memcpy(tmp, key, keylen);
1599         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1600         memcpy(tmp, val, vallen);
1601
1602         ptlrpc_request_set_replen(req);
1603
1604         if (set) {
1605                 ptlrpc_set_add_req(set, req);
1606                 ptlrpc_check_set(NULL, set);
1607         } else {
1608                 rc = ptlrpc_queue_wait(req);
1609                 ptlrpc_req_finished(req);
1610         }
1611
1612         RETURN(rc);
1613 }
1614 EXPORT_SYMBOL(do_set_info_async);
1615
1616 /* byte flipping routines for all wire types declared in
1617  * lustre_idl.h implemented here.
1618  */
1619 void lustre_swab_ptlrpc_body(struct ptlrpc_body *b)
1620 {
1621         __swab32s (&b->pb_type);
1622         __swab32s (&b->pb_version);
1623         __swab32s (&b->pb_opc);
1624         __swab32s (&b->pb_status);
1625         __swab64s (&b->pb_last_xid);
1626         __swab64s (&b->pb_last_seen);
1627         __swab64s (&b->pb_last_committed);
1628         __swab64s (&b->pb_transno);
1629         __swab32s (&b->pb_flags);
1630         __swab32s (&b->pb_op_flags);
1631         __swab32s (&b->pb_conn_cnt);
1632         __swab32s (&b->pb_timeout);
1633         __swab32s (&b->pb_service_time);
1634         __swab32s (&b->pb_limit);
1635         __swab64s (&b->pb_slv);
1636         __swab64s (&b->pb_pre_versions[0]);
1637         __swab64s (&b->pb_pre_versions[1]);
1638         __swab64s (&b->pb_pre_versions[2]);
1639         __swab64s (&b->pb_pre_versions[3]);
1640         CLASSERT(offsetof(typeof(*b), pb_padding) != 0);
1641         /* While we need to maintain compatibility between
1642          * clients and servers without ptlrpc_body_v2 (< 2.3)
1643          * do not swab any fields beyond pb_jobid, as we are
1644          * using this swab function for both ptlrpc_body
1645          * and ptlrpc_body_v2. */
1646         CLASSERT(offsetof(typeof(*b), pb_jobid) != 0);
1647 }
1648
1649 void lustre_swab_connect(struct obd_connect_data *ocd)
1650 {
1651         __swab64s(&ocd->ocd_connect_flags);
1652         __swab32s(&ocd->ocd_version);
1653         __swab32s(&ocd->ocd_grant);
1654         __swab64s(&ocd->ocd_ibits_known);
1655         __swab32s(&ocd->ocd_index);
1656         __swab32s(&ocd->ocd_brw_size);
1657         /* ocd_blocksize and ocd_inodespace don't need to be swabbed because
1658          * they are 8-byte values */
1659         __swab16s(&ocd->ocd_grant_extent);
1660         __swab32s(&ocd->ocd_unused);
1661         __swab64s(&ocd->ocd_transno);
1662         __swab32s(&ocd->ocd_group);
1663         __swab32s(&ocd->ocd_cksum_types);
1664         __swab32s(&ocd->ocd_instance);
1665         /* Fields after ocd_cksum_types are only accessible by the receiver
1666          * if the corresponding flag in ocd_connect_flags is set. Accessing
1667          * any field after ocd_maxbytes on the receiver without a valid flag
1668          * may result in out-of-bound memory access and kernel oops. */
1669         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1670                 __swab32s(&ocd->ocd_max_easize);
1671         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1672                 __swab64s(&ocd->ocd_maxbytes);
1673         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1674                 __swab16s(&ocd->ocd_maxmodrpcs);
1675         CLASSERT(offsetof(typeof(*ocd), padding0) != 0);
1676         CLASSERT(offsetof(typeof(*ocd), padding1) != 0);
1677         CLASSERT(offsetof(typeof(*ocd), padding2) != 0);
1678         CLASSERT(offsetof(typeof(*ocd), padding3) != 0);
1679         CLASSERT(offsetof(typeof(*ocd), padding4) != 0);
1680         CLASSERT(offsetof(typeof(*ocd), padding5) != 0);
1681         CLASSERT(offsetof(typeof(*ocd), padding6) != 0);
1682         CLASSERT(offsetof(typeof(*ocd), padding7) != 0);
1683         CLASSERT(offsetof(typeof(*ocd), padding8) != 0);
1684         CLASSERT(offsetof(typeof(*ocd), padding9) != 0);
1685         CLASSERT(offsetof(typeof(*ocd), paddingA) != 0);
1686         CLASSERT(offsetof(typeof(*ocd), paddingB) != 0);
1687         CLASSERT(offsetof(typeof(*ocd), paddingC) != 0);
1688         CLASSERT(offsetof(typeof(*ocd), paddingD) != 0);
1689         CLASSERT(offsetof(typeof(*ocd), paddingE) != 0);
1690         CLASSERT(offsetof(typeof(*ocd), paddingF) != 0);
1691 }
1692
1693 void lustre_swab_obdo (struct obdo  *o)
1694 {
1695         __swab64s (&o->o_valid);
1696         lustre_swab_ost_id(&o->o_oi);
1697         __swab64s (&o->o_parent_seq);
1698         __swab64s (&o->o_size);
1699         __swab64s (&o->o_mtime);
1700         __swab64s (&o->o_atime);
1701         __swab64s (&o->o_ctime);
1702         __swab64s (&o->o_blocks);
1703         __swab64s (&o->o_grant);
1704         __swab32s (&o->o_blksize);
1705         __swab32s (&o->o_mode);
1706         __swab32s (&o->o_uid);
1707         __swab32s (&o->o_gid);
1708         __swab32s (&o->o_flags);
1709         __swab32s (&o->o_nlink);
1710         __swab32s (&o->o_parent_oid);
1711         __swab32s (&o->o_misc);
1712         __swab64s (&o->o_ioepoch);
1713         __swab32s (&o->o_stripe_idx);
1714         __swab32s (&o->o_parent_ver);
1715         /* o_handle is opaque */
1716         /* o_lcookie is swabbed elsewhere */
1717         __swab32s (&o->o_uid_h);
1718         __swab32s (&o->o_gid_h);
1719         __swab64s (&o->o_data_version);
1720         CLASSERT(offsetof(typeof(*o), o_padding_4) != 0);
1721         CLASSERT(offsetof(typeof(*o), o_padding_5) != 0);
1722         CLASSERT(offsetof(typeof(*o), o_padding_6) != 0);
1723
1724 }
1725 EXPORT_SYMBOL(lustre_swab_obdo);
1726
1727 void lustre_swab_obd_statfs (struct obd_statfs *os)
1728 {
1729         __swab64s (&os->os_type);
1730         __swab64s (&os->os_blocks);
1731         __swab64s (&os->os_bfree);
1732         __swab64s (&os->os_bavail);
1733         __swab64s (&os->os_files);
1734         __swab64s (&os->os_ffree);
1735         /* no need to swab os_fsid */
1736         __swab32s (&os->os_bsize);
1737         __swab32s (&os->os_namelen);
1738         __swab64s (&os->os_maxbytes);
1739         __swab32s (&os->os_state);
1740         CLASSERT(offsetof(typeof(*os), os_fprecreated) != 0);
1741         CLASSERT(offsetof(typeof(*os), os_spare2) != 0);
1742         CLASSERT(offsetof(typeof(*os), os_spare3) != 0);
1743         CLASSERT(offsetof(typeof(*os), os_spare4) != 0);
1744         CLASSERT(offsetof(typeof(*os), os_spare5) != 0);
1745         CLASSERT(offsetof(typeof(*os), os_spare6) != 0);
1746         CLASSERT(offsetof(typeof(*os), os_spare7) != 0);
1747         CLASSERT(offsetof(typeof(*os), os_spare8) != 0);
1748         CLASSERT(offsetof(typeof(*os), os_spare9) != 0);
1749 }
1750
1751 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1752 {
1753         lustre_swab_ost_id(&ioo->ioo_oid);
1754         __swab32s(&ioo->ioo_max_brw);
1755         __swab32s(&ioo->ioo_bufcnt);
1756 }
1757
1758 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1759 {
1760         __swab64s(&nbr->rnb_offset);
1761         __swab32s(&nbr->rnb_len);
1762         __swab32s(&nbr->rnb_flags);
1763 }
1764
1765 void lustre_swab_ost_body (struct ost_body *b)
1766 {
1767         lustre_swab_obdo (&b->oa);
1768 }
1769
1770 void lustre_swab_ost_last_id(u64 *id)
1771 {
1772         __swab64s(id);
1773 }
1774
1775 void lustre_swab_generic_32s(__u32 *val)
1776 {
1777         __swab32s(val);
1778 }
1779
1780 void lustre_swab_gl_desc(union ldlm_gl_desc *desc)
1781 {
1782         lustre_swab_lu_fid(&desc->lquota_desc.gl_id.qid_fid);
1783         __swab64s(&desc->lquota_desc.gl_flags);
1784         __swab64s(&desc->lquota_desc.gl_ver);
1785         __swab64s(&desc->lquota_desc.gl_hardlimit);
1786         __swab64s(&desc->lquota_desc.gl_softlimit);
1787         __swab64s(&desc->lquota_desc.gl_time);
1788         CLASSERT(offsetof(typeof(desc->lquota_desc), gl_pad2) != 0);
1789 }
1790
1791 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1792 {
1793         __swab64s(&lvb->lvb_size);
1794         __swab64s(&lvb->lvb_mtime);
1795         __swab64s(&lvb->lvb_atime);
1796         __swab64s(&lvb->lvb_ctime);
1797         __swab64s(&lvb->lvb_blocks);
1798 }
1799 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1800
1801 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1802 {
1803         __swab64s(&lvb->lvb_size);
1804         __swab64s(&lvb->lvb_mtime);
1805         __swab64s(&lvb->lvb_atime);
1806         __swab64s(&lvb->lvb_ctime);
1807         __swab64s(&lvb->lvb_blocks);
1808         __swab32s(&lvb->lvb_mtime_ns);
1809         __swab32s(&lvb->lvb_atime_ns);
1810         __swab32s(&lvb->lvb_ctime_ns);
1811         __swab32s(&lvb->lvb_padding);
1812 }
1813 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1814
1815 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1816 {
1817         __swab64s(&lvb->lvb_flags);
1818         __swab64s(&lvb->lvb_id_may_rel);
1819         __swab64s(&lvb->lvb_id_rel);
1820         __swab64s(&lvb->lvb_id_qunit);
1821         __swab64s(&lvb->lvb_pad1);
1822 }
1823 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1824
1825 void lustre_swab_mdt_body (struct mdt_body *b)
1826 {
1827         lustre_swab_lu_fid(&b->mbo_fid1);
1828         lustre_swab_lu_fid(&b->mbo_fid2);
1829         /* handle is opaque */
1830         __swab64s(&b->mbo_valid);
1831         __swab64s(&b->mbo_size);
1832         __swab64s(&b->mbo_mtime);
1833         __swab64s(&b->mbo_atime);
1834         __swab64s(&b->mbo_ctime);
1835         __swab64s(&b->mbo_blocks);
1836         __swab64s(&b->mbo_ioepoch);
1837         __swab64s(&b->mbo_t_state);
1838         __swab32s(&b->mbo_fsuid);
1839         __swab32s(&b->mbo_fsgid);
1840         __swab32s(&b->mbo_capability);
1841         __swab32s(&b->mbo_mode);
1842         __swab32s(&b->mbo_uid);
1843         __swab32s(&b->mbo_gid);
1844         __swab32s(&b->mbo_flags);
1845         __swab32s(&b->mbo_rdev);
1846         __swab32s(&b->mbo_nlink);
1847         CLASSERT(offsetof(typeof(*b), mbo_unused2) != 0);
1848         __swab32s(&b->mbo_suppgid);
1849         __swab32s(&b->mbo_eadatasize);
1850         __swab32s(&b->mbo_aclsize);
1851         __swab32s(&b->mbo_max_mdsize);
1852         __swab32s(&b->mbo_max_cookiesize);
1853         __swab32s(&b->mbo_uid_h);
1854         __swab32s(&b->mbo_gid_h);
1855         CLASSERT(offsetof(typeof(*b), mbo_padding_5) != 0);
1856 }
1857
1858 void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b)
1859 {
1860         /* handle is opaque */
1861          __swab64s (&b->ioepoch);
1862          __swab32s (&b->flags);
1863          CLASSERT(offsetof(typeof(*b), padding) != 0);
1864 }
1865
1866 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
1867 {
1868         int i;
1869         __swab32s(&mti->mti_lustre_ver);
1870         __swab32s(&mti->mti_stripe_index);
1871         __swab32s(&mti->mti_config_ver);
1872         __swab32s(&mti->mti_flags);
1873         __swab32s(&mti->mti_instance);
1874         __swab32s(&mti->mti_nid_count);
1875         CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1876         for (i = 0; i < MTI_NIDS_MAX; i++)
1877                 __swab64s(&mti->mti_nids[i]);
1878 }
1879
1880 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
1881 {
1882         __u8 i;
1883
1884         __swab64s(&entry->mne_version);
1885         __swab32s(&entry->mne_instance);
1886         __swab32s(&entry->mne_index);
1887         __swab32s(&entry->mne_length);
1888
1889         /* mne_nid_(count|type) must be one byte size because we're gonna
1890          * access it w/o swapping. */
1891         CLASSERT(sizeof(entry->mne_nid_count) == sizeof(__u8));
1892         CLASSERT(sizeof(entry->mne_nid_type) == sizeof(__u8));
1893
1894         /* remove this assertion if ipv6 is supported. */
1895         LASSERT(entry->mne_nid_type == 0);
1896         for (i = 0; i < entry->mne_nid_count; i++) {
1897                 CLASSERT(sizeof(lnet_nid_t) == sizeof(__u64));
1898                 __swab64s(&entry->u.nids[i]);
1899         }
1900 }
1901 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
1902
1903 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
1904 {
1905         __swab64s(&body->mcb_offset);
1906         __swab32s(&body->mcb_units);
1907         __swab16s(&body->mcb_type);
1908 }
1909
1910 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
1911 {
1912         __swab64s(&body->mcr_offset);
1913         __swab64s(&body->mcr_size);
1914 }
1915
1916 static void lustre_swab_obd_dqinfo (struct obd_dqinfo *i)
1917 {
1918         __swab64s (&i->dqi_bgrace);
1919         __swab64s (&i->dqi_igrace);
1920         __swab32s (&i->dqi_flags);
1921         __swab32s (&i->dqi_valid);
1922 }
1923
1924 static void lustre_swab_obd_dqblk (struct obd_dqblk *b)
1925 {
1926         __swab64s (&b->dqb_ihardlimit);
1927         __swab64s (&b->dqb_isoftlimit);
1928         __swab64s (&b->dqb_curinodes);
1929         __swab64s (&b->dqb_bhardlimit);
1930         __swab64s (&b->dqb_bsoftlimit);
1931         __swab64s (&b->dqb_curspace);
1932         __swab64s (&b->dqb_btime);
1933         __swab64s (&b->dqb_itime);
1934         __swab32s (&b->dqb_valid);
1935         CLASSERT(offsetof(typeof(*b), dqb_padding) != 0);
1936 }
1937
1938 void lustre_swab_obd_quotactl (struct obd_quotactl *q)
1939 {
1940         __swab32s (&q->qc_cmd);
1941         __swab32s (&q->qc_type);
1942         __swab32s (&q->qc_id);
1943         __swab32s (&q->qc_stat);
1944         lustre_swab_obd_dqinfo (&q->qc_dqinfo);
1945         lustre_swab_obd_dqblk (&q->qc_dqblk);
1946 }
1947
1948 void lustre_swab_mdt_remote_perm (struct mdt_remote_perm *p)
1949 {
1950         __swab32s (&p->rp_uid);
1951         __swab32s (&p->rp_gid);
1952         __swab32s (&p->rp_fsuid);
1953         __swab32s (&p->rp_fsuid_h);
1954         __swab32s (&p->rp_fsgid);
1955         __swab32s (&p->rp_fsgid_h);
1956         __swab32s (&p->rp_access_perm);
1957         __swab32s (&p->rp_padding);
1958 };
1959 EXPORT_SYMBOL(lustre_swab_mdt_remote_perm);
1960
1961 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
1962 {
1963         lustre_swab_lu_fid(&gf->gf_fid);
1964         __swab64s(&gf->gf_recno);
1965         __swab32s(&gf->gf_linkno);
1966         __swab32s(&gf->gf_pathlen);
1967 }
1968 EXPORT_SYMBOL(lustre_swab_fid2path);
1969
1970 static void lustre_swab_fiemap_extent(struct ll_fiemap_extent *fm_extent)
1971 {
1972         __swab64s(&fm_extent->fe_logical);
1973         __swab64s(&fm_extent->fe_physical);
1974         __swab64s(&fm_extent->fe_length);
1975         __swab32s(&fm_extent->fe_flags);
1976         __swab32s(&fm_extent->fe_device);
1977 }
1978
1979 void lustre_swab_fiemap(struct ll_user_fiemap *fiemap)
1980 {
1981         __u32 i;
1982
1983         __swab64s(&fiemap->fm_start);
1984         __swab64s(&fiemap->fm_length);
1985         __swab32s(&fiemap->fm_flags);
1986         __swab32s(&fiemap->fm_mapped_extents);
1987         __swab32s(&fiemap->fm_extent_count);
1988         __swab32s(&fiemap->fm_reserved);
1989
1990         for (i = 0; i < fiemap->fm_mapped_extents; i++)
1991                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
1992 }
1993
1994 void lustre_swab_idx_info(struct idx_info *ii)
1995 {
1996         __swab32s(&ii->ii_magic);
1997         __swab32s(&ii->ii_flags);
1998         __swab16s(&ii->ii_count);
1999         __swab32s(&ii->ii_attrs);
2000         lustre_swab_lu_fid(&ii->ii_fid);
2001         __swab64s(&ii->ii_version);
2002         __swab64s(&ii->ii_hash_start);
2003         __swab64s(&ii->ii_hash_end);
2004         __swab16s(&ii->ii_keysize);
2005         __swab16s(&ii->ii_recsize);
2006 }
2007
2008 void lustre_swab_lip_header(struct lu_idxpage *lip)
2009 {
2010         /* swab header */
2011         __swab32s(&lip->lip_magic);
2012         __swab16s(&lip->lip_flags);
2013         __swab16s(&lip->lip_nr);
2014 }
2015 EXPORT_SYMBOL(lustre_swab_lip_header);
2016
2017 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2018 {
2019         __swab32s(&rr->rr_opcode);
2020         __swab32s(&rr->rr_cap);
2021         __swab32s(&rr->rr_fsuid);
2022         /* rr_fsuid_h is unused */
2023         __swab32s(&rr->rr_fsgid);
2024         /* rr_fsgid_h is unused */
2025         __swab32s(&rr->rr_suppgid1);
2026         /* rr_suppgid1_h is unused */
2027         __swab32s(&rr->rr_suppgid2);
2028         /* rr_suppgid2_h is unused */
2029         lustre_swab_lu_fid(&rr->rr_fid1);
2030         lustre_swab_lu_fid(&rr->rr_fid2);
2031         __swab64s(&rr->rr_mtime);
2032         __swab64s(&rr->rr_atime);
2033         __swab64s(&rr->rr_ctime);
2034         __swab64s(&rr->rr_size);
2035         __swab64s(&rr->rr_blocks);
2036         __swab32s(&rr->rr_bias);
2037         __swab32s(&rr->rr_mode);
2038         __swab32s(&rr->rr_flags);
2039         __swab32s(&rr->rr_flags_h);
2040         __swab32s(&rr->rr_umask);
2041
2042         CLASSERT(offsetof(typeof(*rr), rr_padding_4) != 0);
2043 };
2044
2045 void lustre_swab_lov_desc (struct lov_desc *ld)
2046 {
2047         __swab32s (&ld->ld_tgt_count);
2048         __swab32s (&ld->ld_active_tgt_count);
2049         __swab32s (&ld->ld_default_stripe_count);
2050         __swab32s (&ld->ld_pattern);
2051         __swab64s (&ld->ld_default_stripe_size);
2052         __swab64s (&ld->ld_default_stripe_offset);
2053         __swab32s (&ld->ld_qos_maxage);
2054         /* uuid endian insensitive */
2055 }
2056 EXPORT_SYMBOL(lustre_swab_lov_desc);
2057
2058 void lustre_swab_lmv_desc (struct lmv_desc *ld)
2059 {
2060         __swab32s (&ld->ld_tgt_count);
2061         __swab32s (&ld->ld_active_tgt_count);
2062         __swab32s (&ld->ld_default_stripe_count);
2063         __swab32s (&ld->ld_pattern);
2064         __swab64s (&ld->ld_default_hash_size);
2065         __swab32s (&ld->ld_qos_maxage);
2066         /* uuid endian insensitive */
2067 }
2068
2069 /* This structure is always in little-endian */
2070 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2071 {
2072         int i;
2073
2074         __swab32s(&lmm1->lmv_magic);
2075         __swab32s(&lmm1->lmv_stripe_count);
2076         __swab32s(&lmm1->lmv_master_mdt_index);
2077         __swab32s(&lmm1->lmv_hash_type);
2078         __swab32s(&lmm1->lmv_layout_version);
2079         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2080                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2081 }
2082
2083 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2084 {
2085         switch (lmm->lmv_magic) {
2086         case LMV_MAGIC_V1:
2087                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2088                 break;
2089         default:
2090                 break;
2091         }
2092 }
2093
2094 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2095 {
2096         __swab32s(&lum->lum_magic);
2097         __swab32s(&lum->lum_stripe_count);
2098         __swab32s(&lum->lum_stripe_offset);
2099         __swab32s(&lum->lum_hash_type);
2100         __swab32s(&lum->lum_type);
2101         CLASSERT(offsetof(typeof(*lum), lum_padding1) != 0);
2102 }
2103 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2104
2105 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2106                           const char *msg)
2107 {
2108         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2109                 return;
2110
2111         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2112         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2113         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2114         CDEBUG(lvl, "\tlmm_object_id: "LPU64"\n", lmm_oi_id(&lum->lmm_oi));
2115         CDEBUG(lvl, "\tlmm_object_gr: "LPU64"\n", lmm_oi_seq(&lum->lmm_oi));
2116         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2117         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2118         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2119                lum->lmm_stripe_offset);
2120         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2121                 struct lov_user_md_v3 *v3 = (void *)lum;
2122                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2123         }
2124         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2125                 struct lov_user_md_v3 *v3 = (void *)lum;
2126                 int i;
2127
2128                 if (v3->lmm_pool_name[0] != '\0')
2129                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2130
2131                 CDEBUG(lvl, "\ttarget list:\n");
2132                 for (i = 0; i < v3->lmm_stripe_count; i++)
2133                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2134         }
2135 }
2136 EXPORT_SYMBOL(lustre_print_user_md);
2137
2138 static void lustre_swab_lmm_oi(struct ost_id *oi)
2139 {
2140         __swab64s(&oi->oi.oi_id);
2141         __swab64s(&oi->oi.oi_seq);
2142 }
2143
2144 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2145 {
2146         ENTRY;
2147         __swab32s(&lum->lmm_magic);
2148         __swab32s(&lum->lmm_pattern);
2149         lustre_swab_lmm_oi(&lum->lmm_oi);
2150         __swab32s(&lum->lmm_stripe_size);
2151         __swab16s(&lum->lmm_stripe_count);
2152         __swab16s(&lum->lmm_stripe_offset);
2153         EXIT;
2154 }
2155
2156 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2157 {
2158         ENTRY;
2159         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2160         lustre_swab_lov_user_md_common(lum);
2161         EXIT;
2162 }
2163 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2164
2165 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2166 {
2167         ENTRY;
2168         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2169         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2170         /* lmm_pool_name nothing to do with char */
2171         EXIT;
2172 }
2173 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2174
2175 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2176 {
2177         ENTRY;
2178         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2179         __swab32s(&lmm->lmm_magic);
2180         __swab32s(&lmm->lmm_pattern);
2181         lustre_swab_lmm_oi(&lmm->lmm_oi);
2182         __swab32s(&lmm->lmm_stripe_size);
2183         __swab16s(&lmm->lmm_stripe_count);
2184         __swab16s(&lmm->lmm_layout_gen);
2185         EXIT;
2186 }
2187
2188 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2189                                      int stripe_count)
2190 {
2191         int i;
2192         ENTRY;
2193         for (i = 0; i < stripe_count; i++) {
2194                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2195                 __swab32s(&(lod[i].l_ost_gen));
2196                 __swab32s(&(lod[i].l_ost_idx));
2197         }
2198         EXIT;
2199 }
2200 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2201
2202 void lustre_swab_ldlm_res_id (struct ldlm_res_id *id)
2203 {
2204         int  i;
2205
2206         for (i = 0; i < RES_NAME_SIZE; i++)
2207                 __swab64s (&id->name[i]);
2208 }
2209
2210 void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d)
2211 {
2212         /* the lock data is a union and the first two fields are always an
2213          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2214          * data the same way. */
2215         __swab64s(&d->l_extent.start);
2216         __swab64s(&d->l_extent.end);
2217         __swab64s(&d->l_extent.gid);
2218         __swab64s(&d->l_flock.lfw_owner);
2219         __swab32s(&d->l_flock.lfw_pid);
2220 }
2221
2222 void lustre_swab_ldlm_intent (struct ldlm_intent *i)
2223 {
2224         __swab64s (&i->opc);
2225 }
2226
2227 void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r)
2228 {
2229         __swab32s (&r->lr_type);
2230         CLASSERT(offsetof(typeof(*r), lr_padding) != 0);
2231         lustre_swab_ldlm_res_id (&r->lr_name);
2232 }
2233
2234 void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l)
2235 {
2236         lustre_swab_ldlm_resource_desc (&l->l_resource);
2237         __swab32s (&l->l_req_mode);
2238         __swab32s (&l->l_granted_mode);
2239         lustre_swab_ldlm_policy_data (&l->l_policy_data);
2240 }
2241
2242 void lustre_swab_ldlm_request (struct ldlm_request *rq)
2243 {
2244         __swab32s (&rq->lock_flags);
2245         lustre_swab_ldlm_lock_desc (&rq->lock_desc);
2246         __swab32s (&rq->lock_count);
2247         /* lock_handle[] opaque */
2248 }
2249
2250 void lustre_swab_ldlm_reply (struct ldlm_reply *r)
2251 {
2252         __swab32s (&r->lock_flags);
2253         CLASSERT(offsetof(typeof(*r), lock_padding) != 0);
2254         lustre_swab_ldlm_lock_desc (&r->lock_desc);
2255         /* lock_handle opaque */
2256         __swab64s (&r->lock_policy_res1);
2257         __swab64s (&r->lock_policy_res2);
2258 }
2259
2260 void lustre_swab_quota_body(struct quota_body *b)
2261 {
2262         lustre_swab_lu_fid(&b->qb_fid);
2263         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2264         __swab32s(&b->qb_flags);
2265         __swab64s(&b->qb_count);
2266         __swab64s(&b->qb_usage);
2267         __swab64s(&b->qb_slv_ver);
2268 }
2269
2270 /* Dump functions */
2271 void dump_ioo(struct obd_ioobj *ioo)
2272 {
2273         CDEBUG(D_RPCTRACE,
2274                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2275                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2276                ioo->ioo_bufcnt);
2277 }
2278
2279 void dump_rniobuf(struct niobuf_remote *nb)
2280 {
2281         CDEBUG(D_RPCTRACE, "niobuf_remote: offset="LPU64", len=%d, flags=%x\n",
2282                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2283 }
2284
2285 void dump_obdo(struct obdo *oa)
2286 {
2287         u64 valid = oa->o_valid;
2288
2289         CDEBUG(D_RPCTRACE, "obdo: o_valid = "LPX64"\n", valid);
2290         if (valid & OBD_MD_FLID)
2291                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2292         if (valid & OBD_MD_FLFID)
2293                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = "LPX64"\n",
2294                        oa->o_parent_seq);
2295         if (valid & OBD_MD_FLSIZE)
2296                 CDEBUG(D_RPCTRACE, "obdo: o_size = "LPD64"\n", oa->o_size);
2297         if (valid & OBD_MD_FLMTIME)
2298                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = "LPD64"\n", oa->o_mtime);
2299         if (valid & OBD_MD_FLATIME)
2300                 CDEBUG(D_RPCTRACE, "obdo: o_atime = "LPD64"\n", oa->o_atime);
2301         if (valid & OBD_MD_FLCTIME)
2302                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = "LPD64"\n", oa->o_ctime);
2303         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2304                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = "LPD64"\n", oa->o_blocks);
2305         if (valid & OBD_MD_FLGRANT)
2306                 CDEBUG(D_RPCTRACE, "obdo: o_grant = "LPD64"\n", oa->o_grant);
2307         if (valid & OBD_MD_FLBLKSZ)
2308                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2309         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2310                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2311                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2312                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2313         if (valid & OBD_MD_FLUID)
2314                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2315         if (valid & OBD_MD_FLUID)
2316                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2317         if (valid & OBD_MD_FLGID)
2318                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2319         if (valid & OBD_MD_FLGID)
2320                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2321         if (valid & OBD_MD_FLFLAGS)
2322                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2323         if (valid & OBD_MD_FLNLINK)
2324                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2325         else if (valid & OBD_MD_FLCKSUM)
2326                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2327                        oa->o_nlink);
2328         if (valid & OBD_MD_FLGENER)
2329                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2330                        oa->o_parent_oid);
2331         if (valid & OBD_MD_FLEPOCH)
2332                 CDEBUG(D_RPCTRACE, "obdo: o_ioepoch = "LPD64"\n",
2333                        oa->o_ioepoch);
2334         if (valid & OBD_MD_FLFID) {
2335                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2336                        oa->o_stripe_idx);
2337                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2338                        oa->o_parent_ver);
2339         }
2340         if (valid & OBD_MD_FLHANDLE)
2341                 CDEBUG(D_RPCTRACE, "obdo: o_handle = "LPD64"\n",
2342                        oa->o_handle.cookie);
2343         if (valid & OBD_MD_FLCOOKIE)
2344                 CDEBUG(D_RPCTRACE, "obdo: o_lcookie = "
2345                        "(llog_cookie dumping not yet implemented)\n");
2346 }
2347
2348 void dump_ost_body(struct ost_body *ob)
2349 {
2350         dump_obdo(&ob->oa);
2351 }
2352
2353 void dump_rcs(__u32 *rc)
2354 {
2355         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2356 }
2357
2358 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2359 {
2360         LASSERT(req->rq_reqmsg);
2361
2362         switch (req->rq_reqmsg->lm_magic) {
2363         case LUSTRE_MSG_MAGIC_V2:
2364                 return lustre_req_swabbed(req, MSG_PTLRPC_BODY_OFF);
2365         default:
2366                 CERROR("bad lustre msg magic: %#08X\n",
2367                        req->rq_reqmsg->lm_magic);
2368         }
2369         return 0;
2370 }
2371
2372 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2373 {
2374         LASSERT(req->rq_repmsg);
2375
2376         switch (req->rq_repmsg->lm_magic) {
2377         case LUSTRE_MSG_MAGIC_V2:
2378                 return lustre_rep_swabbed(req, MSG_PTLRPC_BODY_OFF);
2379         default:
2380                 /* uninitialized yet */
2381                 return 0;
2382         }
2383 }
2384
2385 void _debug_req(struct ptlrpc_request *req,
2386                 struct libcfs_debug_msg_data *msgdata,
2387                 const char *fmt, ... )
2388 {
2389         int req_ok = req->rq_reqmsg != NULL;
2390         int rep_ok = req->rq_repmsg != NULL;
2391         lnet_nid_t nid = LNET_NID_ANY;
2392         va_list args;
2393
2394         if (ptlrpc_req_need_swab(req)) {
2395                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2396                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2397         }
2398
2399         if (req->rq_import && req->rq_import->imp_connection)
2400                 nid = req->rq_import->imp_connection->c_peer.nid;
2401         else if (req->rq_export && req->rq_export->exp_connection)
2402                 nid = req->rq_export->exp_connection->c_peer.nid;
2403
2404         va_start(args, fmt);
2405         libcfs_debug_vmsg2(msgdata, fmt, args,
2406                            " req@%p x"LPU64"/t"LPD64"("LPD64") o%d->%s@%s:%d/%d"
2407                            " lens %d/%d e %d to %d dl "CFS_TIME_T" ref %d "
2408                            "fl "REQ_FLAGS_FMT"/%x/%x rc %d/%d\n",
2409                            req, req->rq_xid, req->rq_transno,
2410                            req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2411                            req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2412                            req->rq_import ?
2413                                 req->rq_import->imp_obd->obd_name :
2414                                 req->rq_export ?
2415                                         req->rq_export->exp_client_uuid.uuid :
2416                                         "<?>",
2417                            libcfs_nid2str(nid),
2418                            req->rq_request_portal, req->rq_reply_portal,
2419                            req->rq_reqlen, req->rq_replen,
2420                            req->rq_early_count, req->rq_timedout,
2421                            req->rq_deadline,
2422                            atomic_read(&req->rq_refcount),
2423                            DEBUG_REQ_FLAGS(req),
2424                            req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2425                            rep_ok ? lustre_msg_get_flags(req->rq_repmsg) : -1,
2426                            req->rq_status,
2427                            rep_ok ? lustre_msg_get_status(req->rq_repmsg) : -1);
2428         va_end(args);
2429 }
2430 EXPORT_SYMBOL(_debug_req);
2431
2432 void lustre_swab_lustre_capa(struct lustre_capa *c)
2433 {
2434         lustre_swab_lu_fid(&c->lc_fid);
2435         __swab64s (&c->lc_opc);
2436         __swab64s (&c->lc_uid);
2437         __swab64s (&c->lc_gid);
2438         __swab32s (&c->lc_flags);
2439         __swab32s (&c->lc_keyid);
2440         __swab32s (&c->lc_timeout);
2441         __swab32s (&c->lc_expiry);
2442 }
2443
2444 void lustre_swab_lustre_capa_key(struct lustre_capa_key *k)
2445 {
2446         __swab64s (&k->lk_seq);
2447         __swab32s (&k->lk_keyid);
2448         CLASSERT(offsetof(typeof(*k), lk_padding) != 0);
2449 }
2450
2451 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2452 {
2453         __swab32s(&state->hus_states);
2454         __swab32s(&state->hus_archive_id);
2455 }
2456
2457 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2458 {
2459         __swab32s(&hss->hss_valid);
2460         __swab64s(&hss->hss_setmask);
2461         __swab64s(&hss->hss_clearmask);
2462         __swab32s(&hss->hss_archive_id);
2463 }
2464
2465 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2466 {
2467         __swab64s(&extent->offset);
2468         __swab64s(&extent->length);
2469 }
2470
2471 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2472 {
2473         __swab32s(&action->hca_state);
2474         __swab32s(&action->hca_action);
2475         lustre_swab_hsm_extent(&action->hca_location);
2476 }
2477
2478 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2479 {
2480         lustre_swab_lu_fid(&hui->hui_fid);
2481         lustre_swab_hsm_extent(&hui->hui_extent);
2482 }
2483
2484 void lustre_swab_layout_intent(struct layout_intent *li)
2485 {
2486         __swab32s(&li->li_opc);
2487         __swab32s(&li->li_flags);
2488         __swab64s(&li->li_start);
2489         __swab64s(&li->li_end);
2490 }
2491
2492 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2493 {
2494         lustre_swab_lu_fid(&hpk->hpk_fid);
2495         __swab64s(&hpk->hpk_cookie);
2496         __swab64s(&hpk->hpk_extent.offset);
2497         __swab64s(&hpk->hpk_extent.length);
2498         __swab16s(&hpk->hpk_flags);
2499         __swab16s(&hpk->hpk_errval);
2500 }
2501
2502 void lustre_swab_hsm_request(struct hsm_request *hr)
2503 {
2504         __swab32s(&hr->hr_action);
2505         __swab32s(&hr->hr_archive_id);
2506         __swab64s(&hr->hr_flags);
2507         __swab32s(&hr->hr_itemcount);
2508         __swab32s(&hr->hr_data_len);
2509 }
2510
2511 void lustre_swab_object_update(struct object_update *ou)
2512 {
2513         struct object_update_param *param;
2514         size_t  i;
2515
2516         __swab16s(&ou->ou_type);
2517         __swab16s(&ou->ou_params_count);
2518         __swab32s(&ou->ou_master_index);
2519         __swab32s(&ou->ou_flags);
2520         __swab32s(&ou->ou_padding1);
2521         __swab64s(&ou->ou_batchid);
2522         lustre_swab_lu_fid(&ou->ou_fid);
2523         param = &ou->ou_params[0];
2524         for (i = 0; i < ou->ou_params_count; i++) {
2525                 __swab16s(&param->oup_len);
2526                 __swab16s(&param->oup_padding);
2527                 __swab32s(&param->oup_padding2);
2528                 param = (struct object_update_param *)((char *)param +
2529                          object_update_param_size(param));
2530         }
2531 }
2532
2533 void lustre_swab_object_update_request(struct object_update_request *our)
2534 {
2535         size_t i;
2536         __swab32s(&our->ourq_magic);
2537         __swab16s(&our->ourq_count);
2538         __swab16s(&our->ourq_padding);
2539         for (i = 0; i < our->ourq_count; i++) {
2540                 struct object_update *ou;
2541
2542                 ou = object_update_request_get(our, i, NULL);
2543                 if (ou == NULL)
2544                         return;
2545                 lustre_swab_object_update(ou);
2546         }
2547 }
2548
2549 void lustre_swab_object_update_result(struct object_update_result *our)
2550 {
2551         __swab32s(&our->our_rc);
2552         __swab16s(&our->our_datalen);
2553         __swab16s(&our->our_padding);
2554 }
2555
2556 void lustre_swab_object_update_reply(struct object_update_reply *our)
2557 {
2558         size_t i;
2559
2560         __swab32s(&our->ourp_magic);
2561         __swab16s(&our->ourp_count);
2562         __swab16s(&our->ourp_padding);
2563         for (i = 0; i < our->ourp_count; i++) {
2564                 struct object_update_result *ourp;
2565
2566                 __swab16s(&our->ourp_lens[i]);
2567                 ourp = object_update_result_get(our, i, NULL);
2568                 if (ourp == NULL)
2569                         return;
2570                 lustre_swab_object_update_result(ourp);
2571         }
2572 }
2573
2574 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2575 {
2576         __swab64s(&msl->msl_flags);
2577 }
2578
2579 void lustre_swab_close_data(struct close_data *cd)
2580 {
2581         lustre_swab_lu_fid(&cd->cd_fid);
2582         __swab64s(&cd->cd_data_version);
2583 }
2584
2585 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2586 {
2587         __swab32s(&lr->lr_event);
2588         __swab32s(&lr->lr_index);
2589         __swab32s(&lr->lr_flags);
2590         __swab32s(&lr->lr_valid);
2591         __swab32s(&lr->lr_speed);
2592         __swab16s(&lr->lr_version);
2593         __swab16s(&lr->lr_active);
2594         __swab16s(&lr->lr_param);
2595         __swab16s(&lr->lr_async_windows);
2596         __swab32s(&lr->lr_flags);
2597         lustre_swab_lu_fid(&lr->lr_fid);
2598         lustre_swab_lu_fid(&lr->lr_fid2);
2599         lustre_swab_lu_fid(&lr->lr_fid3);
2600         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2601         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2602 }
2603
2604 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2605 {
2606         __swab32s(&lr->lr_status);
2607         CLASSERT(offsetof(typeof(*lr), lr_padding_1) != 0);
2608         CLASSERT(offsetof(typeof(*lr), lr_padding_2) != 0);
2609 }
2610
2611 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2612 {
2613         lustre_swab_lu_fid(&ent->loe_key);
2614         lustre_swab_lu_fid(&ent->loe_rec.lor_fid);
2615         __swab32s(&ent->loe_rec.lor_uid);
2616         __swab32s(&ent->loe_rec.lor_gid);
2617 }
2618 EXPORT_SYMBOL(lustre_swab_orphan_ent);