Whamcloud - gitweb
LU-14393 protocol: basic batching processing framework
[fs/lustre-release.git] / lustre / ptlrpc / pack_generic.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  *
31  * lustre/ptlrpc/pack_generic.c
32  *
33  * (Un)packing of OST requests
34  *
35  * Author: Peter J. Braam <braam@clusterfs.com>
36  * Author: Phil Schwan <phil@clusterfs.com>
37  * Author: Eric Barton <eeb@clusterfs.com>
38  */
39
40 #define DEBUG_SUBSYSTEM S_RPC
41
42 #include <linux/crc32.h>
43
44 #include <libcfs/libcfs.h>
45
46 #include <llog_swab.h>
47 #include <lustre_net.h>
48 #include <lustre_swab.h>
49 #include <obd_cksum.h>
50 #include <obd_class.h>
51 #include <obd_support.h>
52 #include "ptlrpc_internal.h"
53
54 static inline __u32 lustre_msg_hdr_size_v2(__u32 count)
55 {
56         return cfs_size_round(offsetof(struct lustre_msg_v2,
57                                        lm_buflens[count]));
58 }
59
60 __u32 lustre_msg_hdr_size(__u32 magic, __u32 count)
61 {
62         LASSERT(count > 0);
63
64         switch (magic) {
65         case LUSTRE_MSG_MAGIC_V2:
66                 return lustre_msg_hdr_size_v2(count);
67         default:
68                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
69                 return 0;
70         }
71 }
72
73 static inline int lustre_msg_check_version_v2(struct lustre_msg_v2 *msg,
74                                               enum lustre_msg_version version)
75 {
76         enum lustre_msg_version ver = lustre_msg_get_version(msg);
77
78         return (ver & LUSTRE_VERSION_MASK) != version;
79 }
80
81 int lustre_msg_check_version(struct lustre_msg *msg,
82                              enum lustre_msg_version version)
83 {
84 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
85         switch (msg->lm_magic) {
86         case LUSTRE_MSG_MAGIC_V1:
87                 CERROR("msg v1 not supported - please upgrade you system\n");
88                 return -EINVAL;
89         case LUSTRE_MSG_MAGIC_V2:
90                 return lustre_msg_check_version_v2(msg, version);
91         default:
92                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
93                 return -EPROTO;
94         }
95 #undef LUSTRE_MSG_MAGIC_V1
96 }
97
98 __u32 lustre_msg_early_size;
99 EXPORT_SYMBOL(lustre_msg_early_size);
100
101 /* early reply size */
102 void lustre_msg_early_size_init(void)
103 {
104         __u32 pblen = sizeof(struct ptlrpc_body);
105
106         lustre_msg_early_size = lustre_msg_size(LUSTRE_MSG_MAGIC_V2, 1, &pblen);
107 }
108
109 __u32 lustre_msg_size_v2(int count, __u32 *lengths)
110 {
111         __u32 size;
112         int i;
113
114         LASSERT(count > 0);
115         size = lustre_msg_hdr_size_v2(count);
116         for (i = 0; i < count; i++)
117                 size += cfs_size_round(lengths[i]);
118
119         return size;
120 }
121 EXPORT_SYMBOL(lustre_msg_size_v2);
122
123 /*
124  * This returns the size of the buffer that is required to hold a lustre_msg
125  * with the given sub-buffer lengths.
126  * NOTE: this should only be used for NEW requests, and should always be
127  *       in the form of a v2 request.  If this is a connection to a v1
128  *       target then the first buffer will be stripped because the ptlrpc
129  *       data is part of the lustre_msg_v1 header. b=14043
130  */
131 __u32 lustre_msg_size(__u32 magic, int count, __u32 *lens)
132 {
133         __u32 size[] = { sizeof(struct ptlrpc_body) };
134
135         if (!lens) {
136                 LASSERT(count == 1);
137                 lens = size;
138         }
139
140         LASSERT(count > 0);
141         LASSERT(lens[MSG_PTLRPC_BODY_OFF] >= sizeof(struct ptlrpc_body_v2));
142
143         switch (magic) {
144         case LUSTRE_MSG_MAGIC_V2:
145                 return lustre_msg_size_v2(count, lens);
146         default:
147                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
148                 return 0;
149         }
150 }
151
152 /*
153  * This is used to determine the size of a buffer that was already packed
154  * and will correctly handle the different message formats.
155  */
156 __u32 lustre_packed_msg_size(struct lustre_msg *msg)
157 {
158         switch (msg->lm_magic) {
159         case LUSTRE_MSG_MAGIC_V2:
160                 return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
161         default:
162                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
163                 return 0;
164         }
165 }
166 EXPORT_SYMBOL(lustre_packed_msg_size);
167
168 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
169                         char **bufs)
170 {
171         char *ptr;
172         int i;
173
174         LASSERT(count > 0);
175
176         msg->lm_bufcount = count;
177         /* XXX: lm_secflvr uninitialized here */
178         msg->lm_magic = LUSTRE_MSG_MAGIC_V2;
179
180         for (i = 0; i < count; i++)
181                 msg->lm_buflens[i] = lens[i];
182
183         if (bufs == NULL)
184                 return;
185
186         ptr = (char *)msg + lustre_msg_hdr_size_v2(count);
187         for (i = 0; i < count; i++) {
188                 char *tmp = bufs[i];
189
190                 if (tmp)
191                         memcpy(ptr, tmp, lens[i]);
192                 ptr += cfs_size_round(lens[i]);
193         }
194 }
195 EXPORT_SYMBOL(lustre_init_msg_v2);
196
197 static int lustre_pack_request_v2(struct ptlrpc_request *req,
198                                   int count, __u32 *lens, char **bufs)
199 {
200         int reqlen, rc;
201
202         reqlen = lustre_msg_size_v2(count, lens);
203
204         rc = sptlrpc_cli_alloc_reqbuf(req, reqlen);
205         if (rc)
206                 return rc;
207
208         req->rq_reqlen = reqlen;
209
210         lustre_init_msg_v2(req->rq_reqmsg, count, lens, bufs);
211         lustre_msg_add_version(req->rq_reqmsg, PTLRPC_MSG_VERSION);
212         return 0;
213 }
214
215 int lustre_pack_request(struct ptlrpc_request *req, __u32 magic, int count,
216                         __u32 *lens, char **bufs)
217 {
218         __u32 size[] = { sizeof(struct ptlrpc_body) };
219
220         if (!lens) {
221                 LASSERT(count == 1);
222                 lens = size;
223         }
224
225         LASSERT(count > 0);
226         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
227
228         /* only use new format, we don't need to be compatible with 1.4 */
229         magic = LUSTRE_MSG_MAGIC_V2;
230
231         switch (magic) {
232         case LUSTRE_MSG_MAGIC_V2:
233                 return lustre_pack_request_v2(req, count, lens, bufs);
234         default:
235                 LASSERTF(0, "incorrect message magic: %08x\n", magic);
236                 return -EINVAL;
237         }
238 }
239
240 #if RS_DEBUG
241 struct list_head ptlrpc_rs_debug_lru =
242         LIST_HEAD_INIT(ptlrpc_rs_debug_lru);
243 spinlock_t ptlrpc_rs_debug_lock;
244
245 #define PTLRPC_RS_DEBUG_LRU_ADD(rs)                                     \
246 do {                                                                    \
247         spin_lock(&ptlrpc_rs_debug_lock);                               \
248         list_add_tail(&(rs)->rs_debug_list, &ptlrpc_rs_debug_lru);      \
249         spin_unlock(&ptlrpc_rs_debug_lock);                             \
250 } while (0)
251
252 #define PTLRPC_RS_DEBUG_LRU_DEL(rs)                                     \
253 do {                                                                    \
254         spin_lock(&ptlrpc_rs_debug_lock);                               \
255         list_del(&(rs)->rs_debug_list);                         \
256         spin_unlock(&ptlrpc_rs_debug_lock);                             \
257 } while (0)
258 #else
259 # define PTLRPC_RS_DEBUG_LRU_ADD(rs) do {} while(0)
260 # define PTLRPC_RS_DEBUG_LRU_DEL(rs) do {} while(0)
261 #endif
262
263 struct ptlrpc_reply_state *
264 lustre_get_emerg_rs(struct ptlrpc_service_part *svcpt)
265 {
266         struct ptlrpc_reply_state *rs = NULL;
267
268         spin_lock(&svcpt->scp_rep_lock);
269
270         /* See if we have anything in a pool, and wait if nothing */
271         while (list_empty(&svcpt->scp_rep_idle)) {
272                 int                     rc;
273
274                 spin_unlock(&svcpt->scp_rep_lock);
275                 /* If we cannot get anything for some long time, we better
276                  * bail out instead of waiting infinitely */
277                 rc = wait_event_idle_timeout(svcpt->scp_rep_waitq,
278                                              !list_empty(&svcpt->scp_rep_idle),
279                                              cfs_time_seconds(10));
280                 if (rc <= 0)
281                         goto out;
282                 spin_lock(&svcpt->scp_rep_lock);
283         }
284
285         rs = list_first_entry(&svcpt->scp_rep_idle,
286                               struct ptlrpc_reply_state, rs_list);
287         list_del(&rs->rs_list);
288
289         spin_unlock(&svcpt->scp_rep_lock);
290
291         memset(rs, 0, svcpt->scp_service->srv_max_reply_size);
292         rs->rs_size = svcpt->scp_service->srv_max_reply_size;
293         rs->rs_svcpt = svcpt;
294         rs->rs_prealloc = 1;
295 out:
296         return rs;
297 }
298
299 void lustre_put_emerg_rs(struct ptlrpc_reply_state *rs)
300 {
301         struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
302
303         spin_lock(&svcpt->scp_rep_lock);
304         list_add(&rs->rs_list, &svcpt->scp_rep_idle);
305         spin_unlock(&svcpt->scp_rep_lock);
306         wake_up(&svcpt->scp_rep_waitq);
307 }
308
309 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
310                          __u32 *lens, char **bufs, int flags)
311 {
312         struct ptlrpc_reply_state *rs;
313         int msg_len, rc;
314         ENTRY;
315
316         LASSERT(req->rq_reply_state == NULL);
317         LASSERT(count > 0);
318
319         if ((flags & LPRFL_EARLY_REPLY) == 0) {
320                 spin_lock(&req->rq_lock);
321                 req->rq_packed_final = 1;
322                 spin_unlock(&req->rq_lock);
323         }
324
325         msg_len = lustre_msg_size_v2(count, lens);
326         rc = sptlrpc_svc_alloc_rs(req, msg_len);
327         if (rc)
328                 RETURN(rc);
329
330         rs = req->rq_reply_state;
331         atomic_set(&rs->rs_refcount, 1); /* 1 ref for rq_reply_state */
332         rs->rs_cb_id.cbid_fn = reply_out_callback;
333         rs->rs_cb_id.cbid_arg = rs;
334         rs->rs_svcpt = req->rq_rqbd->rqbd_svcpt;
335         INIT_LIST_HEAD(&rs->rs_exp_list);
336         INIT_LIST_HEAD(&rs->rs_obd_list);
337         INIT_LIST_HEAD(&rs->rs_list);
338         spin_lock_init(&rs->rs_lock);
339
340         req->rq_replen = msg_len;
341         req->rq_reply_state = rs;
342         req->rq_repmsg = rs->rs_msg;
343
344         lustre_init_msg_v2(rs->rs_msg, count, lens, bufs);
345         lustre_msg_add_version(rs->rs_msg, PTLRPC_MSG_VERSION);
346
347         PTLRPC_RS_DEBUG_LRU_ADD(rs);
348
349         RETURN(0);
350 }
351 EXPORT_SYMBOL(lustre_pack_reply_v2);
352
353 int lustre_pack_reply_flags(struct ptlrpc_request *req, int count, __u32 *lens,
354                             char **bufs, int flags)
355 {
356         int rc = 0;
357         __u32 size[] = { sizeof(struct ptlrpc_body) };
358
359         if (!lens) {
360                 LASSERT(count == 1);
361                 lens = size;
362         }
363
364         LASSERT(count > 0);
365         LASSERT(lens[MSG_PTLRPC_BODY_OFF] == sizeof(struct ptlrpc_body));
366
367         switch (req->rq_reqmsg->lm_magic) {
368         case LUSTRE_MSG_MAGIC_V2:
369                 rc = lustre_pack_reply_v2(req, count, lens, bufs, flags);
370                 break;
371         default:
372                 LASSERTF(0, "incorrect message magic: %08x\n",
373                          req->rq_reqmsg->lm_magic);
374                 rc = -EINVAL;
375         }
376         if (rc != 0)
377                 CERROR("lustre_pack_reply failed: rc=%d size=%d\n", rc,
378                        lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens));
379         return rc;
380 }
381
382 int lustre_pack_reply(struct ptlrpc_request *req, int count, __u32 *lens,
383                       char **bufs)
384 {
385         return lustre_pack_reply_flags(req, count, lens, bufs, 0);
386 }
387 EXPORT_SYMBOL(lustre_pack_reply);
388
389 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, __u32 n, __u32 min_size)
390 {
391         __u32 i, offset, buflen, bufcount;
392
393         LASSERT(m != NULL);
394         LASSERT(m->lm_bufcount > 0);
395
396         bufcount = m->lm_bufcount;
397         if (unlikely(n >= bufcount)) {
398                 CDEBUG(D_INFO, "msg %p buffer[%d] not present (count %d)\n",
399                        m, n, bufcount);
400                 return NULL;
401         }
402
403         buflen = m->lm_buflens[n];
404         if (unlikely(buflen < min_size)) {
405                 CERROR("msg %p buffer[%d] size %d too small "
406                        "(required %d, opc=%d)\n", m, n, buflen, min_size,
407                        n == MSG_PTLRPC_BODY_OFF ? -1 : lustre_msg_get_opc(m));
408                 return NULL;
409         }
410
411         offset = lustre_msg_hdr_size_v2(bufcount);
412         for (i = 0; i < n; i++)
413                 offset += cfs_size_round(m->lm_buflens[i]);
414
415         return (char *)m + offset;
416 }
417
418 void *lustre_msg_buf(struct lustre_msg *m, __u32 n, __u32 min_size)
419 {
420         switch (m->lm_magic) {
421         case LUSTRE_MSG_MAGIC_V2:
422                 return lustre_msg_buf_v2(m, n, min_size);
423         default:
424                 LASSERTF(0, "incorrect message magic: %08x (msg:%p)\n",
425                          m->lm_magic, m);
426                 return NULL;
427         }
428 }
429 EXPORT_SYMBOL(lustre_msg_buf);
430
431 static int lustre_shrink_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
432                                 unsigned int newlen, int move_data)
433 {
434         char *tail = NULL, *newpos;
435         int tail_len = 0, n;
436
437         LASSERT(msg);
438         LASSERT(msg->lm_bufcount > segment);
439         LASSERT(msg->lm_buflens[segment] >= newlen);
440
441         if (msg->lm_buflens[segment] == newlen)
442                 goto out;
443
444         if (move_data && msg->lm_bufcount > segment + 1) {
445                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
446                 for (n = segment + 1; n < msg->lm_bufcount; n++)
447                         tail_len += cfs_size_round(msg->lm_buflens[n]);
448         }
449
450         msg->lm_buflens[segment] = newlen;
451
452         if (tail && tail_len) {
453                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
454                 LASSERT(newpos <= tail);
455                 if (newpos != tail)
456                         memmove(newpos, tail, tail_len);
457         }
458 out:
459         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
460 }
461
462 /*
463  * for @msg, shrink @segment to size @newlen. if @move_data is non-zero,
464  * we also move data forward from @segment + 1.
465  *
466  * if @newlen == 0, we remove the segment completely, but we still keep the
467  * totally bufcount the same to save possible data moving. this will leave a
468  * unused segment with size 0 at the tail, but that's ok.
469  *
470  * return new msg size after shrinking.
471  *
472  * CAUTION:
473  * + if any buffers higher than @segment has been filled in, must call shrink
474  *   with non-zero @move_data.
475  * + caller should NOT keep pointers to msg buffers which higher than @segment
476  *   after call shrink.
477  */
478 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
479                       unsigned int newlen, int move_data)
480 {
481         switch (msg->lm_magic) {
482         case LUSTRE_MSG_MAGIC_V2:
483                 return lustre_shrink_msg_v2(msg, segment, newlen, move_data);
484         default:
485                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
486         }
487 }
488 EXPORT_SYMBOL(lustre_shrink_msg);
489
490 static int lustre_grow_msg_v2(struct lustre_msg_v2 *msg, __u32 segment,
491                               unsigned int newlen)
492 {
493         char *tail = NULL, *newpos;
494         int tail_len = 0, n;
495
496         LASSERT(msg);
497         LASSERT(msg->lm_bufcount > segment);
498         LASSERT(msg->lm_buflens[segment] <= newlen);
499
500         if (msg->lm_buflens[segment] == newlen)
501                 goto out;
502
503         if (msg->lm_bufcount > segment + 1) {
504                 tail = lustre_msg_buf_v2(msg, segment + 1, 0);
505                 for (n = segment + 1; n < msg->lm_bufcount; n++)
506                         tail_len += cfs_size_round(msg->lm_buflens[n]);
507         }
508
509         msg->lm_buflens[segment] = newlen;
510
511         if (tail && tail_len) {
512                 newpos = lustre_msg_buf_v2(msg, segment + 1, 0);
513                 memmove(newpos, tail, tail_len);
514         }
515 out:
516         return lustre_msg_size_v2(msg->lm_bufcount, msg->lm_buflens);
517 }
518
519 /*
520  * for @msg, grow @segment to size @newlen.
521  * Always move higher buffer forward.
522  *
523  * return new msg size after growing.
524  *
525  * CAUTION:
526  * - caller must make sure there is enough space in allocated message buffer
527  * - caller should NOT keep pointers to msg buffers which higher than @segment
528  *   after call shrink.
529  */
530 int lustre_grow_msg(struct lustre_msg *msg, int segment, unsigned int newlen)
531 {
532         switch (msg->lm_magic) {
533         case LUSTRE_MSG_MAGIC_V2:
534                 return lustre_grow_msg_v2(msg, segment, newlen);
535         default:
536                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
537         }
538 }
539 EXPORT_SYMBOL(lustre_grow_msg);
540
541 void lustre_free_reply_state(struct ptlrpc_reply_state *rs)
542 {
543         PTLRPC_RS_DEBUG_LRU_DEL(rs);
544
545         LASSERT(atomic_read(&rs->rs_refcount) == 0);
546         LASSERT(!rs->rs_difficult || rs->rs_handled);
547         LASSERT(!rs->rs_difficult || rs->rs_unlinked);
548         LASSERT(!rs->rs_scheduled);
549         LASSERT(rs->rs_export == NULL);
550         LASSERT(rs->rs_nlocks == 0);
551         LASSERT(list_empty(&rs->rs_exp_list));
552         LASSERT(list_empty(&rs->rs_obd_list));
553
554         sptlrpc_svc_free_rs(rs);
555 }
556
557 static int lustre_unpack_msg_v2(struct lustre_msg_v2 *m, int len)
558 {
559         int swabbed, required_len, i, buflen;
560
561         /* Now we know the sender speaks my language. */
562         required_len = lustre_msg_hdr_size_v2(0);
563         if (len < required_len) {
564                 /* can't even look inside the message */
565                 CERROR("message length %d too small for lustre_msg\n", len);
566                 return -EINVAL;
567         }
568
569         swabbed = (m->lm_magic == LUSTRE_MSG_MAGIC_V2_SWABBED);
570
571         if (swabbed) {
572                 __swab32s(&m->lm_magic);
573                 __swab32s(&m->lm_bufcount);
574                 __swab32s(&m->lm_secflvr);
575                 __swab32s(&m->lm_repsize);
576                 __swab32s(&m->lm_cksum);
577                 __swab32s(&m->lm_flags);
578                 __swab32s(&m->lm_opc);
579                 BUILD_BUG_ON(offsetof(typeof(*m), lm_padding_3) == 0);
580         }
581
582         if (m->lm_bufcount == 0 || m->lm_bufcount > PTLRPC_MAX_BUFCOUNT) {
583                 CERROR("message bufcount %d is not valid\n", m->lm_bufcount);
584                 return -EINVAL;
585         }
586         required_len = lustre_msg_hdr_size_v2(m->lm_bufcount);
587         if (len < required_len) {
588                 /* didn't receive all the buffer lengths */
589                 CERROR("message length %d too small for %d buflens\n",
590                        len, m->lm_bufcount);
591                 return -EINVAL;
592         }
593
594         for (i = 0; i < m->lm_bufcount; i++) {
595                 if (swabbed)
596                         __swab32s(&m->lm_buflens[i]);
597                 buflen = cfs_size_round(m->lm_buflens[i]);
598                 if (buflen < 0 || buflen > PTLRPC_MAX_BUFLEN) {
599                         CERROR("buffer %d length %d is not valid\n", i, buflen);
600                         return -EINVAL;
601                 }
602                 required_len += buflen;
603         }
604         if (len < required_len || required_len > PTLRPC_MAX_BUFLEN) {
605                 CERROR("len: %d, required_len %d, bufcount: %d\n",
606                        len, required_len, m->lm_bufcount);
607                 for (i = 0; i < m->lm_bufcount; i++)
608                         CERROR("buffer %d length %d\n", i, m->lm_buflens[i]);
609                 return -EINVAL;
610         }
611
612         return swabbed;
613 }
614
615 int __lustre_unpack_msg(struct lustre_msg *m, int len)
616 {
617         int required_len, rc;
618
619         ENTRY;
620         /*
621          * We can provide a slightly better error log, if we check the
622          * message magic and version first.  In the future, struct
623          * lustre_msg may grow, and we'd like to log a version mismatch,
624          * rather than a short message.
625          */
626         required_len = offsetof(struct lustre_msg, lm_magic) +
627                                 sizeof(m->lm_magic);
628         if (len < required_len) {
629                 /* can't even look inside the message */
630                 CERROR("message length %d too small for magic/version check\n",
631                        len);
632                 RETURN(-EINVAL);
633         }
634
635         rc = lustre_unpack_msg_v2(m, len);
636
637         RETURN(rc);
638 }
639 EXPORT_SYMBOL(__lustre_unpack_msg);
640
641 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len)
642 {
643         int rc;
644
645         rc = __lustre_unpack_msg(req->rq_reqmsg, len);
646         if (rc == 1) {
647                 req_capsule_set_req_swabbed(&req->rq_pill,
648                                             MSG_PTLRPC_HEADER_OFF);
649                 rc = 0;
650         }
651         return rc;
652 }
653
654 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len)
655 {
656         int rc;
657
658         rc = __lustre_unpack_msg(req->rq_repmsg, len);
659         if (rc == 1) {
660                 req_capsule_set_rep_swabbed(&req->rq_pill,
661                                             MSG_PTLRPC_HEADER_OFF);
662                 rc = 0;
663         }
664         return rc;
665 }
666
667 static inline int
668 lustre_unpack_ptlrpc_body_v2(struct ptlrpc_request *req,
669                              enum req_location loc, int offset)
670 {
671         struct ptlrpc_body *pb;
672         struct lustre_msg_v2 *m;
673
674         m = loc == RCL_CLIENT ? req->rq_reqmsg : req->rq_repmsg;
675
676         pb = lustre_msg_buf_v2(m, offset, sizeof(struct ptlrpc_body_v2));
677         if (!pb) {
678                 CERROR("error unpacking ptlrpc body\n");
679                 return -EFAULT;
680         }
681         if (req_capsule_need_swab(&req->rq_pill, loc, offset)) {
682                 lustre_swab_ptlrpc_body(pb);
683                 req_capsule_set_swabbed(&req->rq_pill, loc, offset);
684         }
685
686         if ((pb->pb_version & ~LUSTRE_VERSION_MASK) != PTLRPC_MSG_VERSION) {
687                 CERROR("wrong lustre_msg version %08x\n", pb->pb_version);
688                 return -EINVAL;
689         }
690
691         if (loc == RCL_SERVER)
692                 pb->pb_status = ptlrpc_status_ntoh(pb->pb_status);
693
694         return 0;
695 }
696
697 int lustre_unpack_req_ptlrpc_body(struct ptlrpc_request *req, int offset)
698 {
699         switch (req->rq_reqmsg->lm_magic) {
700         case LUSTRE_MSG_MAGIC_V2:
701                 return lustre_unpack_ptlrpc_body_v2(req, RCL_CLIENT, offset);
702         default:
703                 CERROR("bad lustre msg magic: %08x\n",
704                        req->rq_reqmsg->lm_magic);
705                 return -EINVAL;
706         }
707 }
708
709 int lustre_unpack_rep_ptlrpc_body(struct ptlrpc_request *req, int offset)
710 {
711         switch (req->rq_repmsg->lm_magic) {
712         case LUSTRE_MSG_MAGIC_V2:
713                 return lustre_unpack_ptlrpc_body_v2(req, RCL_SERVER, offset);
714         default:
715                 CERROR("bad lustre msg magic: %08x\n",
716                        req->rq_repmsg->lm_magic);
717                 return -EINVAL;
718         }
719 }
720
721 static inline __u32 lustre_msg_buflen_v2(struct lustre_msg_v2 *m, __u32 n)
722 {
723         if (n >= m->lm_bufcount)
724                 return 0;
725
726         return m->lm_buflens[n];
727 }
728
729 /**
730  * lustre_msg_buflen - return the length of buffer \a n in message \a m
731  * \param m lustre_msg (request or reply) to look at
732  * \param n message index (base 0)
733  *
734  * returns zero for non-existent message indices
735  */
736 __u32 lustre_msg_buflen(struct lustre_msg *m, __u32 n)
737 {
738         switch (m->lm_magic) {
739         case LUSTRE_MSG_MAGIC_V2:
740                 return lustre_msg_buflen_v2(m, n);
741         default:
742                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
743                 return 0;
744         }
745 }
746 EXPORT_SYMBOL(lustre_msg_buflen);
747
748 static inline void
749 lustre_msg_set_buflen_v2(struct lustre_msg_v2 *m, __u32 n, __u32 len)
750 {
751         if (n >= m->lm_bufcount)
752                 LBUG();
753
754         m->lm_buflens[n] = len;
755 }
756
757 void lustre_msg_set_buflen(struct lustre_msg *m, __u32 n, __u32 len)
758 {
759         switch (m->lm_magic) {
760         case LUSTRE_MSG_MAGIC_V2:
761                 lustre_msg_set_buflen_v2(m, n, len);
762                 return;
763         default:
764                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
765         }
766 }
767
768 /*
769  * NB return the bufcount for lustre_msg_v2 format, so if message is packed
770  * in V1 format, the result is one bigger. (add struct ptlrpc_body).
771  */
772 __u32 lustre_msg_bufcount(struct lustre_msg *m)
773 {
774         switch (m->lm_magic) {
775         case LUSTRE_MSG_MAGIC_V2:
776                 return m->lm_bufcount;
777         default:
778                 CERROR("incorrect message magic: %08x\n", m->lm_magic);
779                 return 0;
780         }
781 }
782
783 char *lustre_msg_string(struct lustre_msg *m, __u32 index, __u32 max_len)
784 {
785         /* max_len == 0 means the string should fill the buffer */
786         char *str;
787         __u32 slen, blen;
788
789         switch (m->lm_magic) {
790         case LUSTRE_MSG_MAGIC_V2:
791                 str = lustre_msg_buf_v2(m, index, 0);
792                 blen = lustre_msg_buflen_v2(m, index);
793                 break;
794         default:
795                 LASSERTF(0, "incorrect message magic: %08x\n", m->lm_magic);
796         }
797
798         if (str == NULL) {
799                 CERROR("can't unpack string in msg %p buffer[%d]\n", m, index);
800                 return NULL;
801         }
802
803         slen = strnlen(str, blen);
804
805         if (slen == blen) { /* not NULL terminated */
806                 CERROR("can't unpack non-NULL terminated string in msg %p buffer[%d] len %d\n",
807                        m, index, blen);
808                 return NULL;
809         }
810         if (blen > PTLRPC_MAX_BUFLEN) {
811                 CERROR("buffer length of msg %p buffer[%d] is invalid(%d)\n",
812                        m, index, blen);
813                 return NULL;
814         }
815
816         if (max_len == 0) {
817                 if (slen != blen - 1) {
818                         CERROR("can't unpack short string in msg %p buffer[%d] len %d: strlen %d\n",
819                                m, index, blen, slen);
820                         return NULL;
821                 }
822         } else if (slen > max_len) {
823                 CERROR("can't unpack oversized string in msg %p buffer[%d] len %d strlen %d: max %d expected\n",
824                        m, index, blen, slen, max_len);
825                 return NULL;
826         }
827
828         return str;
829 }
830
831 /* Wrap up the normal fixed length cases */
832 static inline void *__lustre_swab_buf(struct lustre_msg *msg, __u32 index,
833                                       __u32 min_size, void *swabber)
834 {
835         void *ptr = NULL;
836
837         LASSERT(msg != NULL);
838         switch (msg->lm_magic) {
839         case LUSTRE_MSG_MAGIC_V2:
840                 ptr = lustre_msg_buf_v2(msg, index, min_size);
841                 break;
842         default:
843                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
844         }
845
846         if (ptr != NULL && swabber != NULL)
847                 ((void (*)(void *))swabber)(ptr);
848
849         return ptr;
850 }
851
852 static inline struct ptlrpc_body *lustre_msg_ptlrpc_body(struct lustre_msg *msg)
853 {
854         return lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
855                                  sizeof(struct ptlrpc_body_v2));
856 }
857
858 enum lustre_msghdr lustre_msghdr_get_flags(struct lustre_msg *msg)
859 {
860         switch (msg->lm_magic) {
861         case LUSTRE_MSG_MAGIC_V2:
862                 /* already in host endian */
863                 return msg->lm_flags;
864         default:
865                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
866                 return 0;
867         }
868 }
869 EXPORT_SYMBOL(lustre_msghdr_get_flags);
870
871 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags)
872 {
873         switch (msg->lm_magic) {
874         case LUSTRE_MSG_MAGIC_V2:
875                 msg->lm_flags = flags;
876                 return;
877         default:
878                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
879         }
880 }
881
882 __u32 lustre_msg_get_flags(struct lustre_msg *msg)
883 {
884         switch (msg->lm_magic) {
885         case LUSTRE_MSG_MAGIC_V2: {
886                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
887                 if (pb != NULL)
888                         return pb->pb_flags;
889
890                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
891         }
892         fallthrough;
893         default:
894                 /*
895                  * flags might be printed in debug code while message
896                  * uninitialized
897                  */
898                 return 0;
899         }
900 }
901 EXPORT_SYMBOL(lustre_msg_get_flags);
902
903 void lustre_msg_add_flags(struct lustre_msg *msg, __u32 flags)
904 {
905         switch (msg->lm_magic) {
906         case LUSTRE_MSG_MAGIC_V2: {
907                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
908                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
909                 pb->pb_flags |= flags;
910                 return;
911         }
912         default:
913                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
914         }
915 }
916 EXPORT_SYMBOL(lustre_msg_add_flags);
917
918 void lustre_msg_set_flags(struct lustre_msg *msg, __u32 flags)
919 {
920         switch (msg->lm_magic) {
921         case LUSTRE_MSG_MAGIC_V2: {
922                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
923                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
924                 pb->pb_flags = flags;
925                 return;
926         }
927         default:
928                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
929         }
930 }
931
932 void lustre_msg_clear_flags(struct lustre_msg *msg, __u32 flags)
933 {
934         switch (msg->lm_magic) {
935         case LUSTRE_MSG_MAGIC_V2: {
936                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
937                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
938                 pb->pb_flags &= ~flags;
939
940                 return;
941         }
942         default:
943                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
944         }
945 }
946 EXPORT_SYMBOL(lustre_msg_clear_flags);
947
948 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg)
949 {
950         switch (msg->lm_magic) {
951         case LUSTRE_MSG_MAGIC_V2: {
952                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
953                 if (pb != NULL)
954                         return pb->pb_op_flags;
955
956                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
957         }
958         fallthrough;
959         default:
960                 return 0;
961         }
962 }
963
964 void lustre_msg_add_op_flags(struct lustre_msg *msg, __u32 flags)
965 {
966         switch (msg->lm_magic) {
967         case LUSTRE_MSG_MAGIC_V2: {
968                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
969                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
970                 pb->pb_op_flags |= flags;
971                 return;
972         }
973         default:
974                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
975         }
976 }
977 EXPORT_SYMBOL(lustre_msg_add_op_flags);
978
979 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg)
980 {
981         switch (msg->lm_magic) {
982         case LUSTRE_MSG_MAGIC_V2: {
983                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
984                 if (pb == NULL) {
985                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
986                         return NULL;
987                 }
988                 return &pb->pb_handle;
989         }
990         default:
991                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
992                 return NULL;
993         }
994 }
995
996 __u32 lustre_msg_get_type(struct lustre_msg *msg)
997 {
998         switch (msg->lm_magic) {
999         case LUSTRE_MSG_MAGIC_V2: {
1000                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1001                 if (pb == NULL) {
1002                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1003                         return PTL_RPC_MSG_ERR;
1004                 }
1005                 return pb->pb_type;
1006         }
1007         default:
1008                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1009                 return PTL_RPC_MSG_ERR;
1010         }
1011 }
1012 EXPORT_SYMBOL(lustre_msg_get_type);
1013
1014 enum lustre_msg_version lustre_msg_get_version(struct lustre_msg *msg)
1015 {
1016         switch (msg->lm_magic) {
1017         case LUSTRE_MSG_MAGIC_V2: {
1018                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1019                 if (pb == NULL) {
1020                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1021                         return 0;
1022                 }
1023                 return pb->pb_version;
1024         }
1025         default:
1026                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1027                 return 0;
1028         }
1029 }
1030
1031 void lustre_msg_add_version(struct lustre_msg *msg, __u32 version)
1032 {
1033         switch (msg->lm_magic) {
1034         case LUSTRE_MSG_MAGIC_V2: {
1035                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1036                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1037                 pb->pb_version |= version;
1038                 return;
1039         }
1040         default:
1041                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1042         }
1043 }
1044
1045 __u32 lustre_msg_get_opc(struct lustre_msg *msg)
1046 {
1047         switch (msg->lm_magic) {
1048         case LUSTRE_MSG_MAGIC_V2: {
1049                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1050                 if (pb == NULL) {
1051                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1052                         return 0;
1053                 }
1054                 return pb->pb_opc;
1055         }
1056         default:
1057                 CERROR("incorrect message magic: %08x (msg:%p)\n",
1058                        msg->lm_magic, msg);
1059                 return 0;
1060         }
1061 }
1062 EXPORT_SYMBOL(lustre_msg_get_opc);
1063
1064 __u64 lustre_msg_get_last_xid(struct lustre_msg *msg)
1065 {
1066         switch (msg->lm_magic) {
1067         case LUSTRE_MSG_MAGIC_V2: {
1068                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1069                 if (pb == NULL) {
1070                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1071                         return 0;
1072                 }
1073                 return pb->pb_last_xid;
1074         }
1075         default:
1076                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1077                 return 0;
1078         }
1079 }
1080 EXPORT_SYMBOL(lustre_msg_get_last_xid);
1081
1082 __u16 lustre_msg_get_tag(struct lustre_msg *msg)
1083 {
1084         switch (msg->lm_magic) {
1085         case LUSTRE_MSG_MAGIC_V2: {
1086                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1087                 if (!pb) {
1088                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1089                         return 0;
1090                 }
1091                 return pb->pb_tag;
1092         }
1093         default:
1094                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1095                 return 0;
1096         }
1097 }
1098 EXPORT_SYMBOL(lustre_msg_get_tag);
1099
1100 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg)
1101 {
1102         switch (msg->lm_magic) {
1103         case LUSTRE_MSG_MAGIC_V2: {
1104                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1105                 if (pb == NULL) {
1106                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1107                         return 0;
1108                 }
1109                 return pb->pb_last_committed;
1110         }
1111         default:
1112                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1113                 return 0;
1114         }
1115 }
1116 EXPORT_SYMBOL(lustre_msg_get_last_committed);
1117
1118 __u64 *lustre_msg_get_versions(struct lustre_msg *msg)
1119 {
1120         switch (msg->lm_magic) {
1121         case LUSTRE_MSG_MAGIC_V2: {
1122                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1123                 if (pb == NULL) {
1124                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1125                         return NULL;
1126                 }
1127                 return pb->pb_pre_versions;
1128         }
1129         default:
1130                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1131                 return NULL;
1132         }
1133 }
1134 EXPORT_SYMBOL(lustre_msg_get_versions);
1135
1136 __u64 lustre_msg_get_transno(struct lustre_msg *msg)
1137 {
1138         switch (msg->lm_magic) {
1139         case LUSTRE_MSG_MAGIC_V2: {
1140                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1141                 if (pb == NULL) {
1142                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1143                         return 0;
1144                 }
1145                 return pb->pb_transno;
1146         }
1147         default:
1148                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1149                 return 0;
1150         }
1151 }
1152 EXPORT_SYMBOL(lustre_msg_get_transno);
1153
1154 int lustre_msg_get_status(struct lustre_msg *msg)
1155 {
1156         switch (msg->lm_magic) {
1157         case LUSTRE_MSG_MAGIC_V2: {
1158                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1159                 if (pb != NULL)
1160                         return pb->pb_status;
1161                 CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1162         }
1163         fallthrough;
1164         default:
1165                 /*
1166                  * status might be printed in debug code while message
1167                  * uninitialized
1168                  */
1169                 return -EINVAL;
1170         }
1171 }
1172 EXPORT_SYMBOL(lustre_msg_get_status);
1173
1174 __u64 lustre_msg_get_slv(struct lustre_msg *msg)
1175 {
1176         switch (msg->lm_magic) {
1177         case LUSTRE_MSG_MAGIC_V2: {
1178                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1179                 if (pb == NULL) {
1180                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1181                         return -EINVAL;
1182                 }
1183                 return pb->pb_slv;
1184         }
1185         default:
1186                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1187                 return -EINVAL;
1188         }
1189 }
1190
1191
1192 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv)
1193 {
1194         switch (msg->lm_magic) {
1195         case LUSTRE_MSG_MAGIC_V2: {
1196                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1197                 if (pb == NULL) {
1198                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1199                         return;
1200                 }
1201                 pb->pb_slv = slv;
1202                 return;
1203         }
1204         default:
1205                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1206                 return;
1207         }
1208 }
1209
1210 __u32 lustre_msg_get_limit(struct lustre_msg *msg)
1211 {
1212         switch (msg->lm_magic) {
1213         case LUSTRE_MSG_MAGIC_V2: {
1214                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1215                 if (pb == NULL) {
1216                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1217                         return -EINVAL;
1218                 }
1219                 return pb->pb_limit;
1220         }
1221         default:
1222                 CERROR("invalid msg magic %x\n", msg->lm_magic);
1223                 return -EINVAL;
1224         }
1225 }
1226
1227
1228 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit)
1229 {
1230         switch (msg->lm_magic) {
1231         case LUSTRE_MSG_MAGIC_V2: {
1232                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1233                 if (pb == NULL) {
1234                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1235                         return;
1236                 }
1237                 pb->pb_limit = limit;
1238                 return;
1239         }
1240         default:
1241                 CERROR("invalid msg magic %08x\n", msg->lm_magic);
1242                 return;
1243         }
1244 }
1245
1246 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg)
1247 {
1248         switch (msg->lm_magic) {
1249         case LUSTRE_MSG_MAGIC_V2: {
1250                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1251                 if (pb == NULL) {
1252                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1253                         return 0;
1254                 }
1255                 return pb->pb_conn_cnt;
1256         }
1257         default:
1258                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1259                 return 0;
1260         }
1261 }
1262 EXPORT_SYMBOL(lustre_msg_get_conn_cnt);
1263
1264 __u32 lustre_msg_get_magic(struct lustre_msg *msg)
1265 {
1266         switch (msg->lm_magic) {
1267         case LUSTRE_MSG_MAGIC_V2:
1268                 return msg->lm_magic;
1269         default:
1270                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1271                 return 0;
1272         }
1273 }
1274
1275 timeout_t lustre_msg_get_timeout(struct lustre_msg *msg)
1276 {
1277         switch (msg->lm_magic) {
1278         case LUSTRE_MSG_MAGIC_V2: {
1279                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1280
1281                 if (pb == NULL) {
1282                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1283                         return 0;
1284                 }
1285                 return pb->pb_timeout;
1286         }
1287         default:
1288                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1289                 return 0;
1290         }
1291 }
1292
1293 timeout_t lustre_msg_get_service_timeout(struct lustre_msg *msg)
1294 {
1295         switch (msg->lm_magic) {
1296         case LUSTRE_MSG_MAGIC_V2: {
1297                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1298
1299                 if (pb == NULL) {
1300                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1301                         return 0;
1302                 }
1303                 return pb->pb_service_time;
1304         }
1305         default:
1306                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1307                 return 0;
1308         }
1309 }
1310
1311 char *lustre_msg_get_jobid(struct lustre_msg *msg)
1312 {
1313         switch (msg->lm_magic) {
1314         case LUSTRE_MSG_MAGIC_V2: {
1315                 struct ptlrpc_body *pb;
1316
1317                 /* the old pltrpc_body_v2 is smaller; doesn't include jobid */
1318                 if (msg->lm_buflens[MSG_PTLRPC_BODY_OFF] <
1319                     sizeof(struct ptlrpc_body))
1320                         return NULL;
1321
1322                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1323                                           sizeof(struct ptlrpc_body));
1324                 if (!pb)
1325                         return NULL;
1326
1327                 /* If clients send unterminated jobids, terminate them here
1328                  * so that there is no chance of string overflow later.
1329                  */
1330                 if (unlikely(pb->pb_jobid[LUSTRE_JOBID_SIZE - 1] != '\0'))
1331                         pb->pb_jobid[LUSTRE_JOBID_SIZE - 1] = '\0';
1332
1333                 return pb->pb_jobid;
1334         }
1335         default:
1336                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1337                 return NULL;
1338         }
1339 }
1340 EXPORT_SYMBOL(lustre_msg_get_jobid);
1341
1342 __u32 lustre_msg_get_cksum(struct lustre_msg *msg)
1343 {
1344         switch (msg->lm_magic) {
1345         case LUSTRE_MSG_MAGIC_V2:
1346                 return msg->lm_cksum;
1347         default:
1348                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1349                 return 0;
1350         }
1351 }
1352
1353 __u64 lustre_msg_get_mbits(struct lustre_msg *msg)
1354 {
1355         switch (msg->lm_magic) {
1356         case LUSTRE_MSG_MAGIC_V2: {
1357                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1358                 if (pb == NULL) {
1359                         CERROR("invalid msg %p: no ptlrpc body!\n", msg);
1360                         return 0;
1361                 }
1362                 return pb->pb_mbits;
1363         }
1364         default:
1365                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1366                 return 0;
1367         }
1368 }
1369
1370 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg, __u32 buf)
1371 {
1372         switch (msg->lm_magic) {
1373         case LUSTRE_MSG_MAGIC_V2: {
1374                 struct ptlrpc_body *pb = lustre_msg_buf_v2(msg, buf, 0);
1375                 __u32 len = lustre_msg_buflen(msg, buf);
1376                 __u32 crc;
1377
1378 #if IS_ENABLED(CONFIG_CRC32)
1379                 /* about 10x faster than crypto_hash for small buffers */
1380                 crc = crc32_le(~(__u32)0, (unsigned char *)pb, len);
1381 #elif IS_ENABLED(CONFIG_CRYPTO_CRC32)
1382                 unsigned int hsize = 4;
1383
1384                 cfs_crypto_hash_digest(CFS_HASH_ALG_CRC32, (unsigned char *)pb,
1385                                        len, NULL, 0, (unsigned char *)&crc,
1386                                        &hsize);
1387 #else
1388 #error "need either CONFIG_CRC32 or CONFIG_CRYPTO_CRC32 enabled in the kernel"
1389 #endif
1390                 return crc;
1391         }
1392         default:
1393                 CERROR("incorrect message magic: %08x\n", msg->lm_magic);
1394                 return 0;
1395         }
1396 }
1397
1398 void lustre_msg_set_handle(struct lustre_msg *msg, struct lustre_handle *handle)
1399 {
1400         switch (msg->lm_magic) {
1401         case LUSTRE_MSG_MAGIC_V2: {
1402                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1403                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1404                 pb->pb_handle = *handle;
1405                 return;
1406         }
1407         default:
1408                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1409         }
1410 }
1411
1412 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type)
1413 {
1414         switch (msg->lm_magic) {
1415         case LUSTRE_MSG_MAGIC_V2: {
1416                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1417                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1418                 pb->pb_type = type;
1419                 return;
1420                 }
1421         default:
1422                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1423         }
1424 }
1425
1426 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc)
1427 {
1428         switch (msg->lm_magic) {
1429         case LUSTRE_MSG_MAGIC_V2: {
1430                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1431                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1432                 pb->pb_opc = opc;
1433                 return;
1434         }
1435         default:
1436                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1437         }
1438 }
1439
1440 void lustre_msg_set_last_xid(struct lustre_msg *msg, __u64 last_xid)
1441 {
1442         switch (msg->lm_magic) {
1443         case LUSTRE_MSG_MAGIC_V2: {
1444                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1445                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1446                 pb->pb_last_xid = last_xid;
1447                 return;
1448         }
1449         default:
1450                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1451         }
1452 }
1453 EXPORT_SYMBOL(lustre_msg_set_last_xid);
1454
1455 void lustre_msg_set_tag(struct lustre_msg *msg, __u16 tag)
1456 {
1457         switch (msg->lm_magic) {
1458         case LUSTRE_MSG_MAGIC_V2: {
1459                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1460                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1461                 pb->pb_tag = tag;
1462                 return;
1463         }
1464         default:
1465                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1466         }
1467 }
1468 EXPORT_SYMBOL(lustre_msg_set_tag);
1469
1470 void lustre_msg_set_last_committed(struct lustre_msg *msg, __u64 last_committed)
1471 {
1472         switch (msg->lm_magic) {
1473         case LUSTRE_MSG_MAGIC_V2: {
1474                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1475                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1476                 pb->pb_last_committed = last_committed;
1477                 return;
1478         }
1479         default:
1480                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1481         }
1482 }
1483
1484 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions)
1485 {
1486         switch (msg->lm_magic) {
1487         case LUSTRE_MSG_MAGIC_V2: {
1488                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1489                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1490                 pb->pb_pre_versions[0] = versions[0];
1491                 pb->pb_pre_versions[1] = versions[1];
1492                 pb->pb_pre_versions[2] = versions[2];
1493                 pb->pb_pre_versions[3] = versions[3];
1494                 return;
1495         }
1496         default:
1497                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1498         }
1499 }
1500 EXPORT_SYMBOL(lustre_msg_set_versions);
1501
1502 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno)
1503 {
1504         switch (msg->lm_magic) {
1505         case LUSTRE_MSG_MAGIC_V2: {
1506                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1507                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1508                 pb->pb_transno = transno;
1509                 return;
1510         }
1511         default:
1512                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1513         }
1514 }
1515 EXPORT_SYMBOL(lustre_msg_set_transno);
1516
1517 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status)
1518 {
1519         switch (msg->lm_magic) {
1520         case LUSTRE_MSG_MAGIC_V2: {
1521                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1522                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1523                 pb->pb_status = status;
1524                 return;
1525         }
1526         default:
1527                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1528         }
1529 }
1530 EXPORT_SYMBOL(lustre_msg_set_status);
1531
1532 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt)
1533 {
1534         switch (msg->lm_magic) {
1535         case LUSTRE_MSG_MAGIC_V2: {
1536                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1537                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1538                 pb->pb_conn_cnt = conn_cnt;
1539                 return;
1540         }
1541         default:
1542                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1543         }
1544 }
1545
1546 void lustre_msg_set_timeout(struct lustre_msg *msg, timeout_t timeout)
1547 {
1548         switch (msg->lm_magic) {
1549         case LUSTRE_MSG_MAGIC_V2: {
1550                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1551
1552                 LASSERT(timeout >= 0);
1553                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1554                 pb->pb_timeout = timeout;
1555                 return;
1556         }
1557         default:
1558                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1559         }
1560 }
1561
1562 void lustre_msg_set_service_timeout(struct lustre_msg *msg,
1563                                     timeout_t service_timeout)
1564 {
1565         switch (msg->lm_magic) {
1566         case LUSTRE_MSG_MAGIC_V2: {
1567                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1568
1569                 LASSERT(service_timeout >= 0);
1570                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1571                 pb->pb_service_time = service_timeout;
1572                 return;
1573         }
1574         default:
1575                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1576         }
1577 }
1578
1579 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid)
1580 {
1581         switch (msg->lm_magic) {
1582         case LUSTRE_MSG_MAGIC_V2: {
1583                 __u32 opc = lustre_msg_get_opc(msg);
1584                 struct ptlrpc_body *pb;
1585
1586                 /* Don't set jobid for ldlm ast RPCs, they've been shrinked.
1587                  * See the comment in ptlrpc_request_pack(). */
1588                 if (!opc || opc == LDLM_BL_CALLBACK ||
1589                     opc == LDLM_CP_CALLBACK || opc == LDLM_GL_CALLBACK)
1590                         return;
1591
1592                 pb = lustre_msg_buf_v2(msg, MSG_PTLRPC_BODY_OFF,
1593                                        sizeof(struct ptlrpc_body));
1594                 LASSERTF(pb, "invalid msg %p: no ptlrpc body!\n", msg);
1595
1596                 if (jobid != NULL)
1597                         memcpy(pb->pb_jobid, jobid, sizeof(pb->pb_jobid));
1598                 else if (pb->pb_jobid[0] == '\0')
1599                         lustre_get_jobid(pb->pb_jobid, sizeof(pb->pb_jobid));
1600                 return;
1601         }
1602         default:
1603                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1604         }
1605 }
1606 EXPORT_SYMBOL(lustre_msg_set_jobid);
1607
1608 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum)
1609 {
1610         switch (msg->lm_magic) {
1611         case LUSTRE_MSG_MAGIC_V2:
1612                 msg->lm_cksum = cksum;
1613                 return;
1614         default:
1615                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1616         }
1617 }
1618
1619 void lustre_msg_set_mbits(struct lustre_msg *msg, __u64 mbits)
1620 {
1621         switch (msg->lm_magic) {
1622         case LUSTRE_MSG_MAGIC_V2: {
1623                 struct ptlrpc_body *pb = lustre_msg_ptlrpc_body(msg);
1624
1625                 LASSERTF(pb != NULL, "invalid msg %p: no ptlrpc body!\n", msg);
1626                 pb->pb_mbits = mbits;
1627                 return;
1628         }
1629         default:
1630                 LASSERTF(0, "incorrect message magic: %08x\n", msg->lm_magic);
1631         }
1632 }
1633
1634 void ptlrpc_request_set_replen(struct ptlrpc_request *req)
1635 {
1636         int count = req_capsule_filled_sizes(&req->rq_pill, RCL_SERVER);
1637
1638         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count,
1639                                          req->rq_pill.rc_area[RCL_SERVER]);
1640         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1641                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1642 }
1643 EXPORT_SYMBOL(ptlrpc_request_set_replen);
1644
1645 void ptlrpc_req_set_repsize(struct ptlrpc_request *req, int count, __u32 *lens)
1646 {
1647         req->rq_replen = lustre_msg_size(req->rq_reqmsg->lm_magic, count, lens);
1648         if (req->rq_reqmsg->lm_magic == LUSTRE_MSG_MAGIC_V2)
1649                 req->rq_reqmsg->lm_repsize = req->rq_replen;
1650 }
1651
1652 /**
1653  * Send a remote set_info_async.
1654  *
1655  * This may go from client to server or server to client.
1656  */
1657 int do_set_info_async(struct obd_import *imp,
1658                       int opcode, int version,
1659                       size_t keylen, void *key,
1660                       size_t vallen, void *val,
1661                       struct ptlrpc_request_set *set)
1662 {
1663         struct ptlrpc_request *req;
1664         char *tmp;
1665         int rc;
1666
1667         ENTRY;
1668
1669         req = ptlrpc_request_alloc(imp, KEY_IS(KEY_CHANGELOG_CLEAR) ?
1670                                                 &RQF_MDT_SET_INFO :
1671                                                 &RQF_OBD_SET_INFO);
1672         if (req == NULL)
1673                 RETURN(-ENOMEM);
1674
1675         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1676                              RCL_CLIENT, keylen);
1677         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1678                              RCL_CLIENT, vallen);
1679         rc = ptlrpc_request_pack(req, version, opcode);
1680         if (rc) {
1681                 ptlrpc_request_free(req);
1682                 RETURN(rc);
1683         }
1684
1685         if (KEY_IS(KEY_CHANGELOG_CLEAR))
1686                 do_pack_body(req);
1687
1688         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1689         memcpy(tmp, key, keylen);
1690         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1691         memcpy(tmp, val, vallen);
1692
1693         ptlrpc_request_set_replen(req);
1694
1695         if (set) {
1696                 ptlrpc_set_add_req(set, req);
1697                 ptlrpc_check_set(NULL, set);
1698         } else {
1699                 rc = ptlrpc_queue_wait(req);
1700                 ptlrpc_req_finished(req);
1701         }
1702
1703         RETURN(rc);
1704 }
1705 EXPORT_SYMBOL(do_set_info_async);
1706
1707 /* byte flipping routines for all wire types declared in
1708  * lustre_idl.h implemented here.
1709  */
1710 void lustre_swab_ptlrpc_body(struct ptlrpc_body *body)
1711 {
1712         __swab32s(&body->pb_type);
1713         __swab32s(&body->pb_version);
1714         __swab32s(&body->pb_opc);
1715         __swab32s(&body->pb_status);
1716         __swab64s(&body->pb_last_xid);
1717         __swab16s(&body->pb_tag);
1718         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding0) == 0);
1719         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding1) == 0);
1720         __swab64s(&body->pb_last_committed);
1721         __swab64s(&body->pb_transno);
1722         __swab32s(&body->pb_flags);
1723         __swab32s(&body->pb_op_flags);
1724         __swab32s(&body->pb_conn_cnt);
1725         __swab32s(&body->pb_timeout);
1726         __swab32s(&body->pb_service_time);
1727         __swab32s(&body->pb_limit);
1728         __swab64s(&body->pb_slv);
1729         __swab64s(&body->pb_pre_versions[0]);
1730         __swab64s(&body->pb_pre_versions[1]);
1731         __swab64s(&body->pb_pre_versions[2]);
1732         __swab64s(&body->pb_pre_versions[3]);
1733         __swab64s(&body->pb_mbits);
1734         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding64_0) == 0);
1735         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding64_1) == 0);
1736         BUILD_BUG_ON(offsetof(typeof(*body), pb_padding64_2) == 0);
1737         /*
1738          * While we need to maintain compatibility between
1739          * clients and servers without ptlrpc_body_v2 (< 2.3)
1740          * do not swab any fields beyond pb_jobid, as we are
1741          * using this swab function for both ptlrpc_body
1742          * and ptlrpc_body_v2.
1743          */
1744         /* pb_jobid is an ASCII string and should not be swabbed */
1745         BUILD_BUG_ON(offsetof(typeof(*body), pb_jobid) == 0);
1746 }
1747
1748 void lustre_swab_connect(struct obd_connect_data *ocd)
1749 {
1750         __swab64s(&ocd->ocd_connect_flags);
1751         __swab32s(&ocd->ocd_version);
1752         __swab32s(&ocd->ocd_grant);
1753         __swab64s(&ocd->ocd_ibits_known);
1754         __swab32s(&ocd->ocd_index);
1755         __swab32s(&ocd->ocd_brw_size);
1756         /*
1757          * ocd_blocksize and ocd_inodespace don't need to be swabbed because
1758          * they are 8-byte values
1759          */
1760         __swab16s(&ocd->ocd_grant_tax_kb);
1761         __swab32s(&ocd->ocd_grant_max_blks);
1762         __swab64s(&ocd->ocd_transno);
1763         __swab32s(&ocd->ocd_group);
1764         __swab32s(&ocd->ocd_cksum_types);
1765         __swab32s(&ocd->ocd_instance);
1766         /*
1767          * Fields after ocd_cksum_types are only accessible by the receiver
1768          * if the corresponding flag in ocd_connect_flags is set. Accessing
1769          * any field after ocd_maxbytes on the receiver without a valid flag
1770          * may result in out-of-bound memory access and kernel oops.
1771          */
1772         if (ocd->ocd_connect_flags & OBD_CONNECT_MAX_EASIZE)
1773                 __swab32s(&ocd->ocd_max_easize);
1774         if (ocd->ocd_connect_flags & OBD_CONNECT_MAXBYTES)
1775                 __swab64s(&ocd->ocd_maxbytes);
1776         if (ocd->ocd_connect_flags & OBD_CONNECT_MULTIMODRPCS)
1777                 __swab16s(&ocd->ocd_maxmodrpcs);
1778         BUILD_BUG_ON(offsetof(typeof(*ocd), padding0) == 0);
1779         BUILD_BUG_ON(offsetof(typeof(*ocd), padding1) == 0);
1780         if (ocd->ocd_connect_flags & OBD_CONNECT_FLAGS2)
1781                 __swab64s(&ocd->ocd_connect_flags2);
1782         BUILD_BUG_ON(offsetof(typeof(*ocd), padding3) == 0);
1783         BUILD_BUG_ON(offsetof(typeof(*ocd), padding4) == 0);
1784         BUILD_BUG_ON(offsetof(typeof(*ocd), padding5) == 0);
1785         BUILD_BUG_ON(offsetof(typeof(*ocd), padding6) == 0);
1786         BUILD_BUG_ON(offsetof(typeof(*ocd), padding7) == 0);
1787         BUILD_BUG_ON(offsetof(typeof(*ocd), padding8) == 0);
1788         BUILD_BUG_ON(offsetof(typeof(*ocd), padding9) == 0);
1789         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingA) == 0);
1790         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingB) == 0);
1791         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingC) == 0);
1792         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingD) == 0);
1793         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingE) == 0);
1794         BUILD_BUG_ON(offsetof(typeof(*ocd), paddingF) == 0);
1795 }
1796
1797 static void lustre_swab_ost_layout(struct ost_layout *ol)
1798 {
1799         __swab32s(&ol->ol_stripe_size);
1800         __swab32s(&ol->ol_stripe_count);
1801         __swab64s(&ol->ol_comp_start);
1802         __swab64s(&ol->ol_comp_end);
1803         __swab32s(&ol->ol_comp_id);
1804 }
1805
1806 void lustre_swab_obdo(struct obdo *o)
1807 {
1808         __swab64s(&o->o_valid);
1809         lustre_swab_ost_id(&o->o_oi);
1810         __swab64s(&o->o_parent_seq);
1811         __swab64s(&o->o_size);
1812         __swab64s(&o->o_mtime);
1813         __swab64s(&o->o_atime);
1814         __swab64s(&o->o_ctime);
1815         __swab64s(&o->o_blocks);
1816         __swab64s(&o->o_grant);
1817         __swab32s(&o->o_blksize);
1818         __swab32s(&o->o_mode);
1819         __swab32s(&o->o_uid);
1820         __swab32s(&o->o_gid);
1821         __swab32s(&o->o_flags);
1822         __swab32s(&o->o_nlink);
1823         __swab32s(&o->o_parent_oid);
1824         __swab32s(&o->o_misc);
1825         __swab64s(&o->o_ioepoch);
1826         __swab32s(&o->o_stripe_idx);
1827         __swab32s(&o->o_parent_ver);
1828         lustre_swab_ost_layout(&o->o_layout);
1829         __swab32s(&o->o_layout_version);
1830         __swab32s(&o->o_uid_h);
1831         __swab32s(&o->o_gid_h);
1832         __swab64s(&o->o_data_version);
1833         __swab32s(&o->o_projid);
1834         BUILD_BUG_ON(offsetof(typeof(*o), o_padding_4) == 0);
1835         BUILD_BUG_ON(offsetof(typeof(*o), o_padding_5) == 0);
1836         BUILD_BUG_ON(offsetof(typeof(*o), o_padding_6) == 0);
1837
1838 }
1839 EXPORT_SYMBOL(lustre_swab_obdo);
1840
1841 void lustre_swab_obd_statfs(struct obd_statfs *os)
1842 {
1843         __swab64s(&os->os_type);
1844         __swab64s(&os->os_blocks);
1845         __swab64s(&os->os_bfree);
1846         __swab64s(&os->os_bavail);
1847         __swab64s(&os->os_files);
1848         __swab64s(&os->os_ffree);
1849         /* no need to swab os_fsid */
1850         __swab32s(&os->os_bsize);
1851         __swab32s(&os->os_namelen);
1852         __swab64s(&os->os_maxbytes);
1853         __swab32s(&os->os_state);
1854         __swab32s(&os->os_fprecreated);
1855         __swab32s(&os->os_granted);
1856         BUILD_BUG_ON(offsetof(typeof(*os), os_spare3) == 0);
1857         BUILD_BUG_ON(offsetof(typeof(*os), os_spare4) == 0);
1858         BUILD_BUG_ON(offsetof(typeof(*os), os_spare5) == 0);
1859         BUILD_BUG_ON(offsetof(typeof(*os), os_spare6) == 0);
1860         BUILD_BUG_ON(offsetof(typeof(*os), os_spare7) == 0);
1861         BUILD_BUG_ON(offsetof(typeof(*os), os_spare8) == 0);
1862         BUILD_BUG_ON(offsetof(typeof(*os), os_spare9) == 0);
1863 }
1864
1865 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo)
1866 {
1867         lustre_swab_ost_id(&ioo->ioo_oid);
1868         __swab32s(&ioo->ioo_max_brw);
1869         __swab32s(&ioo->ioo_bufcnt);
1870 }
1871
1872 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr)
1873 {
1874         __swab64s(&nbr->rnb_offset);
1875         __swab32s(&nbr->rnb_len);
1876         __swab32s(&nbr->rnb_flags);
1877 }
1878
1879 void lustre_swab_ost_body(struct ost_body *b)
1880 {
1881         lustre_swab_obdo(&b->oa);
1882 }
1883
1884 void lustre_swab_ost_last_id(u64 *id)
1885 {
1886         __swab64s(id);
1887 }
1888
1889 void lustre_swab_generic_32s(__u32 *val)
1890 {
1891         __swab32s(val);
1892 }
1893
1894 void lustre_swab_gl_lquota_desc(struct ldlm_gl_lquota_desc *desc)
1895 {
1896         lustre_swab_lu_fid(&desc->gl_id.qid_fid);
1897         __swab64s(&desc->gl_flags);
1898         __swab64s(&desc->gl_ver);
1899         __swab64s(&desc->gl_hardlimit);
1900         __swab64s(&desc->gl_softlimit);
1901         __swab64s(&desc->gl_time);
1902         BUILD_BUG_ON(offsetof(typeof(*desc), gl_pad2) == 0);
1903 }
1904 EXPORT_SYMBOL(lustre_swab_gl_lquota_desc);
1905
1906 void lustre_swab_gl_barrier_desc(struct ldlm_gl_barrier_desc *desc)
1907 {
1908         __swab32s(&desc->lgbd_status);
1909         __swab32s(&desc->lgbd_timeout);
1910         BUILD_BUG_ON(offsetof(typeof(*desc), lgbd_padding) == 0);
1911 }
1912 EXPORT_SYMBOL(lustre_swab_gl_barrier_desc);
1913
1914 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb)
1915 {
1916         __swab64s(&lvb->lvb_size);
1917         __swab64s(&lvb->lvb_mtime);
1918         __swab64s(&lvb->lvb_atime);
1919         __swab64s(&lvb->lvb_ctime);
1920         __swab64s(&lvb->lvb_blocks);
1921 }
1922 EXPORT_SYMBOL(lustre_swab_ost_lvb_v1);
1923
1924 void lustre_swab_ost_lvb(struct ost_lvb *lvb)
1925 {
1926         __swab64s(&lvb->lvb_size);
1927         __swab64s(&lvb->lvb_mtime);
1928         __swab64s(&lvb->lvb_atime);
1929         __swab64s(&lvb->lvb_ctime);
1930         __swab64s(&lvb->lvb_blocks);
1931         __swab32s(&lvb->lvb_mtime_ns);
1932         __swab32s(&lvb->lvb_atime_ns);
1933         __swab32s(&lvb->lvb_ctime_ns);
1934         __swab32s(&lvb->lvb_padding);
1935 }
1936 EXPORT_SYMBOL(lustre_swab_ost_lvb);
1937
1938 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb)
1939 {
1940         __swab64s(&lvb->lvb_flags);
1941         __swab64s(&lvb->lvb_id_may_rel);
1942         __swab64s(&lvb->lvb_id_rel);
1943         __swab64s(&lvb->lvb_id_qunit);
1944         __swab64s(&lvb->lvb_pad1);
1945 }
1946 EXPORT_SYMBOL(lustre_swab_lquota_lvb);
1947
1948 void lustre_swab_barrier_lvb(struct barrier_lvb *lvb)
1949 {
1950         __swab32s(&lvb->lvb_status);
1951         __swab32s(&lvb->lvb_index);
1952         BUILD_BUG_ON(offsetof(typeof(*lvb), lvb_padding) == 0);
1953 }
1954 EXPORT_SYMBOL(lustre_swab_barrier_lvb);
1955
1956 void lustre_swab_mdt_body(struct mdt_body *b)
1957 {
1958         lustre_swab_lu_fid(&b->mbo_fid1);
1959         lustre_swab_lu_fid(&b->mbo_fid2);
1960         /* handle is opaque */
1961         __swab64s(&b->mbo_valid);
1962         __swab64s(&b->mbo_size);
1963         __swab64s(&b->mbo_mtime);
1964         __swab64s(&b->mbo_atime);
1965         __swab64s(&b->mbo_ctime);
1966         __swab64s(&b->mbo_blocks);
1967         __swab64s(&b->mbo_version);
1968         __swab64s(&b->mbo_t_state);
1969         __swab32s(&b->mbo_fsuid);
1970         __swab32s(&b->mbo_fsgid);
1971         __swab32s(&b->mbo_capability);
1972         __swab32s(&b->mbo_mode);
1973         __swab32s(&b->mbo_uid);
1974         __swab32s(&b->mbo_gid);
1975         __swab32s(&b->mbo_flags);
1976         __swab32s(&b->mbo_rdev);
1977         __swab32s(&b->mbo_nlink);
1978         __swab32s(&b->mbo_layout_gen);
1979         __swab32s(&b->mbo_suppgid);
1980         __swab32s(&b->mbo_eadatasize);
1981         __swab32s(&b->mbo_aclsize);
1982         __swab32s(&b->mbo_max_mdsize);
1983         BUILD_BUG_ON(offsetof(typeof(*b), mbo_unused3) == 0);
1984         __swab32s(&b->mbo_uid_h);
1985         __swab32s(&b->mbo_gid_h);
1986         __swab32s(&b->mbo_projid);
1987         __swab64s(&b->mbo_dom_size);
1988         __swab64s(&b->mbo_dom_blocks);
1989         __swab64s(&b->mbo_btime);
1990         BUILD_BUG_ON(offsetof(typeof(*b), mbo_padding_9) == 0);
1991         BUILD_BUG_ON(offsetof(typeof(*b), mbo_padding_10) == 0);
1992 }
1993
1994 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b)
1995 {
1996         /* mio_open_handle is opaque */
1997         BUILD_BUG_ON(offsetof(typeof(*b), mio_unused1) == 0);
1998         BUILD_BUG_ON(offsetof(typeof(*b), mio_unused2) == 0);
1999         BUILD_BUG_ON(offsetof(typeof(*b), mio_padding) == 0);
2000 }
2001
2002 void lustre_swab_mgs_target_info(struct mgs_target_info *mti)
2003 {
2004         int i;
2005
2006         __swab32s(&mti->mti_lustre_ver);
2007         __swab32s(&mti->mti_stripe_index);
2008         __swab32s(&mti->mti_config_ver);
2009         __swab32s(&mti->mti_flags);
2010         __swab32s(&mti->mti_instance);
2011         __swab32s(&mti->mti_nid_count);
2012         BUILD_BUG_ON(sizeof(lnet_nid_t) != sizeof(__u64));
2013         for (i = 0; i < MTI_NIDS_MAX; i++)
2014                 __swab64s(&mti->mti_nids[i]);
2015 }
2016
2017 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *entry)
2018 {
2019         __u8 i;
2020
2021         __swab64s(&entry->mne_version);
2022         __swab32s(&entry->mne_instance);
2023         __swab32s(&entry->mne_index);
2024         __swab32s(&entry->mne_length);
2025
2026         /* mne_nid_(count|type) must be one byte size because we're gonna
2027          * access it w/o swapping. */
2028         BUILD_BUG_ON(sizeof(entry->mne_nid_count) != sizeof(__u8));
2029         BUILD_BUG_ON(sizeof(entry->mne_nid_type) != sizeof(__u8));
2030
2031         /* remove this assertion if ipv6 is supported. */
2032         LASSERT(entry->mne_nid_type == 0);
2033         for (i = 0; i < entry->mne_nid_count; i++) {
2034                 BUILD_BUG_ON(sizeof(lnet_nid_t) != sizeof(__u64));
2035                 __swab64s(&entry->u.nids[i]);
2036         }
2037 }
2038 EXPORT_SYMBOL(lustre_swab_mgs_nidtbl_entry);
2039
2040 void lustre_swab_mgs_config_body(struct mgs_config_body *body)
2041 {
2042         __swab64s(&body->mcb_offset);
2043         __swab32s(&body->mcb_units);
2044         __swab16s(&body->mcb_type);
2045 }
2046
2047 void lustre_swab_mgs_config_res(struct mgs_config_res *body)
2048 {
2049         __swab64s(&body->mcr_offset);
2050         __swab64s(&body->mcr_size);
2051 }
2052
2053 static void lustre_swab_obd_dqinfo(struct obd_dqinfo *i)
2054 {
2055         __swab64s(&i->dqi_bgrace);
2056         __swab64s(&i->dqi_igrace);
2057         __swab32s(&i->dqi_flags);
2058         __swab32s(&i->dqi_valid);
2059 }
2060
2061 static void lustre_swab_obd_dqblk(struct obd_dqblk *b)
2062 {
2063         __swab64s(&b->dqb_ihardlimit);
2064         __swab64s(&b->dqb_isoftlimit);
2065         __swab64s(&b->dqb_curinodes);
2066         __swab64s(&b->dqb_bhardlimit);
2067         __swab64s(&b->dqb_bsoftlimit);
2068         __swab64s(&b->dqb_curspace);
2069         __swab64s(&b->dqb_btime);
2070         __swab64s(&b->dqb_itime);
2071         __swab32s(&b->dqb_valid);
2072         BUILD_BUG_ON(offsetof(typeof(*b), dqb_padding) == 0);
2073 }
2074
2075 int lustre_swab_obd_quotactl(struct obd_quotactl *q, __u32 len)
2076 {
2077         if (unlikely(len <= sizeof(struct obd_quotactl)))
2078                 return -EOVERFLOW;
2079
2080         __swab32s(&q->qc_cmd);
2081         __swab32s(&q->qc_type);
2082         __swab32s(&q->qc_id);
2083         __swab32s(&q->qc_stat);
2084         lustre_swab_obd_dqinfo(&q->qc_dqinfo);
2085         lustre_swab_obd_dqblk(&q->qc_dqblk);
2086
2087         return len;
2088 }
2089
2090 void lustre_swab_fid2path(struct getinfo_fid2path *gf)
2091 {
2092         lustre_swab_lu_fid(&gf->gf_fid);
2093         __swab64s(&gf->gf_recno);
2094         __swab32s(&gf->gf_linkno);
2095         __swab32s(&gf->gf_pathlen);
2096 }
2097 EXPORT_SYMBOL(lustre_swab_fid2path);
2098
2099 static void lustre_swab_fiemap_extent(struct fiemap_extent *fm_extent)
2100 {
2101         __swab64s(&fm_extent->fe_logical);
2102         __swab64s(&fm_extent->fe_physical);
2103         __swab64s(&fm_extent->fe_length);
2104         __swab32s(&fm_extent->fe_flags);
2105         __swab32s(&fm_extent->fe_device);
2106 }
2107
2108 static void lustre_swab_fiemap_hdr(struct fiemap *fiemap)
2109 {
2110         __swab64s(&fiemap->fm_start);
2111         __swab64s(&fiemap->fm_length);
2112         __swab32s(&fiemap->fm_flags);
2113         __swab32s(&fiemap->fm_mapped_extents);
2114         __swab32s(&fiemap->fm_extent_count);
2115         __swab32s(&fiemap->fm_reserved);
2116 }
2117
2118 int lustre_swab_fiemap(struct fiemap *fiemap, __u32 len)
2119 {
2120         __u32 i, size, count;
2121
2122         lustre_swab_fiemap_hdr(fiemap);
2123
2124         size = fiemap_count_to_size(fiemap->fm_mapped_extents);
2125         count = fiemap->fm_mapped_extents;
2126         if (unlikely(size > len)) {
2127                 count = (len - sizeof(struct fiemap)) /
2128                         sizeof(struct fiemap_extent);
2129                 fiemap->fm_mapped_extents = count;
2130                 size = -EOVERFLOW;
2131         }
2132         /* still swab extents as we cannot yet pass rc to callers */
2133         for (i = 0; i < count; i++)
2134                 lustre_swab_fiemap_extent(&fiemap->fm_extents[i]);
2135
2136         return size;
2137 }
2138
2139 void lustre_swab_fiemap_info_key(struct ll_fiemap_info_key *fiemap_info)
2140 {
2141         lustre_swab_obdo(&fiemap_info->lfik_oa);
2142         lustre_swab_fiemap_hdr(&fiemap_info->lfik_fiemap);
2143 }
2144
2145 void lustre_swab_idx_info(struct idx_info *ii)
2146 {
2147         __swab32s(&ii->ii_magic);
2148         __swab32s(&ii->ii_flags);
2149         __swab16s(&ii->ii_count);
2150         __swab32s(&ii->ii_attrs);
2151         lustre_swab_lu_fid(&ii->ii_fid);
2152         __swab64s(&ii->ii_version);
2153         __swab64s(&ii->ii_hash_start);
2154         __swab64s(&ii->ii_hash_end);
2155         __swab16s(&ii->ii_keysize);
2156         __swab16s(&ii->ii_recsize);
2157 }
2158
2159 void lustre_swab_lip_header(struct lu_idxpage *lip)
2160 {
2161         /* swab header */
2162         __swab32s(&lip->lip_magic);
2163         __swab16s(&lip->lip_flags);
2164         __swab16s(&lip->lip_nr);
2165 }
2166 EXPORT_SYMBOL(lustre_swab_lip_header);
2167
2168 void lustre_swab_mdt_rec_reint (struct mdt_rec_reint *rr)
2169 {
2170         __swab32s(&rr->rr_opcode);
2171         __swab32s(&rr->rr_cap);
2172         __swab32s(&rr->rr_fsuid);
2173         /* rr_fsuid_h is unused */
2174         __swab32s(&rr->rr_fsgid);
2175         /* rr_fsgid_h is unused */
2176         __swab32s(&rr->rr_suppgid1);
2177         /* rr_suppgid1_h is unused */
2178         __swab32s(&rr->rr_suppgid2);
2179         /* rr_suppgid2_h is unused */
2180         lustre_swab_lu_fid(&rr->rr_fid1);
2181         lustre_swab_lu_fid(&rr->rr_fid2);
2182         __swab64s(&rr->rr_mtime);
2183         __swab64s(&rr->rr_atime);
2184         __swab64s(&rr->rr_ctime);
2185         __swab64s(&rr->rr_size);
2186         __swab64s(&rr->rr_blocks);
2187         __swab32s(&rr->rr_bias);
2188         __swab32s(&rr->rr_mode);
2189         __swab32s(&rr->rr_flags);
2190         __swab32s(&rr->rr_flags_h);
2191         __swab32s(&rr->rr_umask);
2192         __swab16s(&rr->rr_mirror_id);
2193
2194         BUILD_BUG_ON(offsetof(typeof(*rr), rr_padding_4) == 0);
2195 };
2196
2197 void lustre_swab_lov_desc(struct lov_desc *ld)
2198 {
2199         __swab32s(&ld->ld_tgt_count);
2200         __swab32s(&ld->ld_active_tgt_count);
2201         __swab32s(&ld->ld_default_stripe_count);
2202         __swab32s(&ld->ld_pattern);
2203         __swab64s(&ld->ld_default_stripe_size);
2204         __swab64s(&ld->ld_default_stripe_offset);
2205         __swab32s(&ld->ld_qos_maxage);
2206         /* uuid endian insensitive */
2207 }
2208 EXPORT_SYMBOL(lustre_swab_lov_desc);
2209
2210 void lustre_swab_lmv_desc(struct lmv_desc *ld)
2211 {
2212         __swab32s(&ld->ld_tgt_count);
2213         __swab32s(&ld->ld_active_tgt_count);
2214         __swab32s(&ld->ld_default_stripe_count);
2215         __swab32s(&ld->ld_pattern);
2216         __swab64s(&ld->ld_default_hash_size);
2217         __swab32s(&ld->ld_qos_maxage);
2218         /* uuid endian insensitive */
2219 }
2220
2221 /* This structure is always in little-endian */
2222 static void lustre_swab_lmv_mds_md_v1(struct lmv_mds_md_v1 *lmm1)
2223 {
2224         int i;
2225
2226         __swab32s(&lmm1->lmv_magic);
2227         __swab32s(&lmm1->lmv_stripe_count);
2228         __swab32s(&lmm1->lmv_master_mdt_index);
2229         __swab32s(&lmm1->lmv_hash_type);
2230         __swab32s(&lmm1->lmv_layout_version);
2231         for (i = 0; i < lmm1->lmv_stripe_count; i++)
2232                 lustre_swab_lu_fid(&lmm1->lmv_stripe_fids[i]);
2233 }
2234
2235 void lustre_swab_lmv_mds_md(union lmv_mds_md *lmm)
2236 {
2237         switch (lmm->lmv_magic) {
2238         case LMV_MAGIC_V1:
2239                 lustre_swab_lmv_mds_md_v1(&lmm->lmv_md_v1);
2240                 break;
2241         default:
2242                 break;
2243         }
2244 }
2245 EXPORT_SYMBOL(lustre_swab_lmv_mds_md);
2246
2247 void lustre_swab_lmv_user_md_objects(struct lmv_user_mds_data *lmd,
2248                                      int stripe_count)
2249 {
2250         int i;
2251
2252         for (i = 0; i < stripe_count; i++)
2253                 __swab32s(&(lmd[i].lum_mds));
2254 }
2255 EXPORT_SYMBOL(lustre_swab_lmv_user_md_objects);
2256
2257
2258 void lustre_swab_lmv_user_md(struct lmv_user_md *lum)
2259 {
2260         __u32 count;
2261
2262         if (lum->lum_magic == LMV_MAGIC_FOREIGN) {
2263                 __swab32s(&lum->lum_magic);
2264                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_length);
2265                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_type);
2266                 __swab32s(&((struct lmv_foreign_md *)lum)->lfm_flags);
2267                 return;
2268         }
2269
2270         count = lum->lum_stripe_count;
2271         __swab32s(&lum->lum_magic);
2272         __swab32s(&lum->lum_stripe_count);
2273         __swab32s(&lum->lum_stripe_offset);
2274         __swab32s(&lum->lum_hash_type);
2275         __swab32s(&lum->lum_type);
2276         /* lum_max_inherit and lum_max_inherit_rr do not need to be swabbed */
2277         BUILD_BUG_ON(offsetof(typeof(*lum), lum_padding1) == 0);
2278         BUILD_BUG_ON(offsetof(typeof(*lum), lum_padding2) == 0);
2279         BUILD_BUG_ON(offsetof(typeof(*lum), lum_padding3) == 0);
2280         switch (lum->lum_magic) {
2281         case LMV_USER_MAGIC_SPECIFIC:
2282                 count = lum->lum_stripe_count;
2283                 fallthrough;
2284         case __swab32(LMV_USER_MAGIC_SPECIFIC):
2285                 lustre_swab_lmv_user_md_objects(lum->lum_objects, count);
2286                 break;
2287         default:
2288                 break;
2289         }
2290 }
2291 EXPORT_SYMBOL(lustre_swab_lmv_user_md);
2292
2293 static void lustre_print_v1v3(unsigned int lvl, struct lov_user_md *lum,
2294                               const char *msg)
2295 {
2296         CDEBUG(lvl, "%s lov_user_md %p:\n", msg, lum);
2297         CDEBUG(lvl, "\tlmm_magic: %#x\n", lum->lmm_magic);
2298         CDEBUG(lvl, "\tlmm_pattern: %#x\n", lum->lmm_pattern);
2299         CDEBUG(lvl, "\tlmm_object_id: %llu\n", lmm_oi_id(&lum->lmm_oi));
2300         CDEBUG(lvl, "\tlmm_object_gr: %llu\n", lmm_oi_seq(&lum->lmm_oi));
2301         CDEBUG(lvl, "\tlmm_stripe_size: %#x\n", lum->lmm_stripe_size);
2302         CDEBUG(lvl, "\tlmm_stripe_count: %#x\n", lum->lmm_stripe_count);
2303         CDEBUG(lvl, "\tlmm_stripe_offset/lmm_layout_gen: %#x\n",
2304                lum->lmm_stripe_offset);
2305         if (lum->lmm_magic == LOV_USER_MAGIC_V3) {
2306                 struct lov_user_md_v3 *v3 = (void *)lum;
2307                 CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2308         }
2309         if (lum->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2310                 struct lov_user_md_v3 *v3 = (void *)lum;
2311                 int i;
2312
2313                 if (v3->lmm_pool_name[0] != '\0')
2314                         CDEBUG(lvl, "\tlmm_pool_name: %s\n", v3->lmm_pool_name);
2315
2316                 CDEBUG(lvl, "\ttarget list:\n");
2317                 for (i = 0; i < v3->lmm_stripe_count; i++)
2318                         CDEBUG(lvl, "\t\t%u\n", v3->lmm_objects[i].l_ost_idx);
2319         }
2320 }
2321
2322 void lustre_print_user_md(unsigned int lvl, struct lov_user_md *lum,
2323                           const char *msg)
2324 {
2325         struct lov_comp_md_v1   *comp_v1;
2326         int                      i;
2327
2328         if (likely(!cfs_cdebug_show(lvl, DEBUG_SUBSYSTEM)))
2329                 return;
2330
2331         if (lum->lmm_magic == LOV_USER_MAGIC_V1 ||
2332             lum->lmm_magic == LOV_USER_MAGIC_V3) {
2333                 lustre_print_v1v3(lvl, lum, msg);
2334                 return;
2335         }
2336
2337         if (lum->lmm_magic != LOV_USER_MAGIC_COMP_V1) {
2338                 CDEBUG(lvl, "%s: bad magic: %x\n", msg, lum->lmm_magic);
2339                 return;
2340         }
2341
2342         comp_v1 = (struct lov_comp_md_v1 *)lum;
2343         CDEBUG(lvl, "%s: lov_comp_md_v1 %p:\n", msg, lum);
2344         CDEBUG(lvl, "\tlcm_magic: %#x\n", comp_v1->lcm_magic);
2345         CDEBUG(lvl, "\tlcm_size: %#x\n", comp_v1->lcm_size);
2346         CDEBUG(lvl, "\tlcm_layout_gen: %#x\n", comp_v1->lcm_layout_gen);
2347         CDEBUG(lvl, "\tlcm_flags: %#x\n", comp_v1->lcm_flags);
2348         CDEBUG(lvl, "\tlcm_entry_count: %#x\n\n", comp_v1->lcm_entry_count);
2349         CDEBUG(lvl, "\tlcm_mirror_count: %#x\n\n", comp_v1->lcm_mirror_count);
2350
2351         for (i = 0; i < comp_v1->lcm_entry_count; i++) {
2352                 struct lov_comp_md_entry_v1 *ent = &comp_v1->lcm_entries[i];
2353                 struct lov_user_md *v1;
2354
2355                 CDEBUG(lvl, "\tentry %d:\n", i);
2356                 CDEBUG(lvl, "\tlcme_id: %#x\n", ent->lcme_id);
2357                 CDEBUG(lvl, "\tlcme_flags: %#x\n", ent->lcme_flags);
2358                 if (ent->lcme_flags & LCME_FL_NOSYNC)
2359                         CDEBUG(lvl, "\tlcme_timestamp: %llu\n",
2360                                         ent->lcme_timestamp);
2361                 CDEBUG(lvl, "\tlcme_extent.e_start: %llu\n",
2362                        ent->lcme_extent.e_start);
2363                 CDEBUG(lvl, "\tlcme_extent.e_end: %llu\n",
2364                        ent->lcme_extent.e_end);
2365                 CDEBUG(lvl, "\tlcme_offset: %#x\n", ent->lcme_offset);
2366                 CDEBUG(lvl, "\tlcme_size: %#x\n\n", ent->lcme_size);
2367
2368                 v1 = (struct lov_user_md *)((char *)comp_v1 +
2369                                 comp_v1->lcm_entries[i].lcme_offset);
2370                 lustre_print_v1v3(lvl, v1, msg);
2371         }
2372 }
2373 EXPORT_SYMBOL(lustre_print_user_md);
2374
2375 static void lustre_swab_lmm_oi(struct ost_id *oi)
2376 {
2377         __swab64s(&oi->oi.oi_id);
2378         __swab64s(&oi->oi.oi_seq);
2379 }
2380
2381 static void lustre_swab_lov_user_md_common(struct lov_user_md_v1 *lum)
2382 {
2383         ENTRY;
2384         __swab32s(&lum->lmm_magic);
2385         __swab32s(&lum->lmm_pattern);
2386         lustre_swab_lmm_oi(&lum->lmm_oi);
2387         __swab32s(&lum->lmm_stripe_size);
2388         __swab16s(&lum->lmm_stripe_count);
2389         __swab16s(&lum->lmm_stripe_offset);
2390         EXIT;
2391 }
2392
2393 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum)
2394 {
2395         ENTRY;
2396         CDEBUG(D_IOCTL, "swabbing lov_user_md v1\n");
2397         lustre_swab_lov_user_md_common(lum);
2398         EXIT;
2399 }
2400 EXPORT_SYMBOL(lustre_swab_lov_user_md_v1);
2401
2402 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum)
2403 {
2404         ENTRY;
2405         CDEBUG(D_IOCTL, "swabbing lov_user_md v3\n");
2406         lustre_swab_lov_user_md_common((struct lov_user_md_v1 *)lum);
2407         /* lmm_pool_name nothing to do with char */
2408         EXIT;
2409 }
2410 EXPORT_SYMBOL(lustre_swab_lov_user_md_v3);
2411
2412 void lustre_swab_lov_comp_md_v1(struct lov_comp_md_v1 *lum)
2413 {
2414         struct lov_comp_md_entry_v1     *ent;
2415         struct lov_user_md_v1   *v1;
2416         struct lov_user_md_v3   *v3;
2417         int     i;
2418         bool    cpu_endian;
2419         __u32   off, size;
2420         __u16   ent_count, stripe_count;
2421         ENTRY;
2422
2423         cpu_endian = lum->lcm_magic == LOV_USER_MAGIC_COMP_V1;
2424         ent_count = lum->lcm_entry_count;
2425         if (!cpu_endian)
2426                 __swab16s(&ent_count);
2427
2428         CDEBUG(D_IOCTL, "swabbing lov_user_comp_md v1\n");
2429         __swab32s(&lum->lcm_magic);
2430         __swab32s(&lum->lcm_size);
2431         __swab32s(&lum->lcm_layout_gen);
2432         __swab16s(&lum->lcm_flags);
2433         __swab16s(&lum->lcm_entry_count);
2434         __swab16s(&lum->lcm_mirror_count);
2435         /* no need to swab lcm_ec_count */
2436         BUILD_BUG_ON(offsetof(typeof(*lum), lcm_padding1) == 0);
2437         BUILD_BUG_ON(offsetof(typeof(*lum), lcm_padding2) == 0);
2438         BUILD_BUG_ON(offsetof(typeof(*lum), lcm_padding3) == 0);
2439
2440         for (i = 0; i < ent_count; i++) {
2441                 ent = &lum->lcm_entries[i];
2442                 off = ent->lcme_offset;
2443                 size = ent->lcme_size;
2444
2445                 if (!cpu_endian) {
2446                         __swab32s(&off);
2447                         __swab32s(&size);
2448                 }
2449                 __swab32s(&ent->lcme_id);
2450                 __swab32s(&ent->lcme_flags);
2451                 __swab64s(&ent->lcme_timestamp);
2452                 __swab64s(&ent->lcme_extent.e_start);
2453                 __swab64s(&ent->lcme_extent.e_end);
2454                 __swab32s(&ent->lcme_offset);
2455                 __swab32s(&ent->lcme_size);
2456                 __swab32s(&ent->lcme_layout_gen);
2457                 /* no need to swab lcme_dstripe_count */
2458                 /* no need to swab lcme_cstripe_count */
2459                 BUILD_BUG_ON(offsetof(typeof(*ent), lcme_padding_1) == 0);
2460
2461                 v1 = (struct lov_user_md_v1 *)((char *)lum + off);
2462                 stripe_count = v1->lmm_stripe_count;
2463                 if (!cpu_endian)
2464                         __swab16s(&stripe_count);
2465
2466                 if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V1) ||
2467                     v1->lmm_magic == LOV_USER_MAGIC_V1) {
2468                         lustre_swab_lov_user_md_v1(v1);
2469                         if (size > sizeof(*v1))
2470                                 lustre_swab_lov_user_md_objects(v1->lmm_objects,
2471                                                                 stripe_count);
2472                 } else if (v1->lmm_magic == __swab32(LOV_USER_MAGIC_V3) ||
2473                            v1->lmm_magic == LOV_USER_MAGIC_V3 ||
2474                            v1->lmm_magic == __swab32(LOV_USER_MAGIC_SPECIFIC) ||
2475                            v1->lmm_magic == LOV_USER_MAGIC_SPECIFIC) {
2476                         v3 = (struct lov_user_md_v3 *)v1;
2477                         lustre_swab_lov_user_md_v3(v3);
2478                         if (size > sizeof(*v3))
2479                                 lustre_swab_lov_user_md_objects(v3->lmm_objects,
2480                                                                 stripe_count);
2481                 } else {
2482                         CERROR("Invalid magic %#x\n", v1->lmm_magic);
2483                 }
2484         }
2485 }
2486 EXPORT_SYMBOL(lustre_swab_lov_comp_md_v1);
2487
2488 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
2489                                      int stripe_count)
2490 {
2491         int i;
2492
2493         ENTRY;
2494         for (i = 0; i < stripe_count; i++) {
2495                 lustre_swab_ost_id(&(lod[i].l_ost_oi));
2496                 __swab32s(&(lod[i].l_ost_gen));
2497                 __swab32s(&(lod[i].l_ost_idx));
2498         }
2499         EXIT;
2500 }
2501 EXPORT_SYMBOL(lustre_swab_lov_user_md_objects);
2502
2503 void lustre_swab_lov_user_md(struct lov_user_md *lum, size_t size)
2504 {
2505         struct lov_user_md_v1 *v1;
2506         struct lov_user_md_v3 *v3;
2507         struct lov_foreign_md *lfm;
2508         __u16 stripe_count;
2509         ENTRY;
2510
2511         CDEBUG(D_IOCTL, "swabbing lov_user_md\n");
2512         switch (lum->lmm_magic) {
2513         case __swab32(LOV_MAGIC_V1):
2514         case LOV_USER_MAGIC_V1:
2515         {
2516                 v1 = (struct lov_user_md_v1 *)lum;
2517                 stripe_count = v1->lmm_stripe_count;
2518
2519                 if (lum->lmm_magic != LOV_USER_MAGIC_V1)
2520                         __swab16s(&stripe_count);
2521
2522                 lustre_swab_lov_user_md_v1(v1);
2523                 if (size > sizeof(*v1))
2524                         lustre_swab_lov_user_md_objects(v1->lmm_objects,
2525                                                         stripe_count);
2526
2527                 break;
2528         }
2529         case __swab32(LOV_MAGIC_V3):
2530         case LOV_USER_MAGIC_V3:
2531         {
2532                 v3 = (struct lov_user_md_v3 *)lum;
2533                 stripe_count = v3->lmm_stripe_count;
2534
2535                 if (lum->lmm_magic != LOV_USER_MAGIC_V3)
2536                         __swab16s(&stripe_count);
2537
2538                 lustre_swab_lov_user_md_v3(v3);
2539                 if (size > sizeof(*v3))
2540                         lustre_swab_lov_user_md_objects(v3->lmm_objects,
2541                                                         stripe_count);
2542                 break;
2543         }
2544         case __swab32(LOV_USER_MAGIC_SPECIFIC):
2545         case LOV_USER_MAGIC_SPECIFIC:
2546         {
2547                 v3 = (struct lov_user_md_v3 *)lum;
2548                 stripe_count = v3->lmm_stripe_count;
2549
2550                 if (lum->lmm_magic != LOV_USER_MAGIC_SPECIFIC)
2551                         __swab16s(&stripe_count);
2552
2553                 lustre_swab_lov_user_md_v3(v3);
2554                 lustre_swab_lov_user_md_objects(v3->lmm_objects, stripe_count);
2555                 break;
2556         }
2557         case __swab32(LOV_MAGIC_COMP_V1):
2558         case LOV_USER_MAGIC_COMP_V1:
2559                 lustre_swab_lov_comp_md_v1((struct lov_comp_md_v1 *)lum);
2560                 break;
2561         case __swab32(LOV_MAGIC_FOREIGN):
2562         case LOV_USER_MAGIC_FOREIGN:
2563         {
2564                 lfm = (struct lov_foreign_md *)lum;
2565                 __swab32s(&lfm->lfm_magic);
2566                 __swab32s(&lfm->lfm_length);
2567                 __swab32s(&lfm->lfm_type);
2568                 __swab32s(&lfm->lfm_flags);
2569                 break;
2570         }
2571         default:
2572                 CDEBUG(D_IOCTL, "Invalid LOV magic %08x\n", lum->lmm_magic);
2573         }
2574 }
2575 EXPORT_SYMBOL(lustre_swab_lov_user_md);
2576
2577 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm)
2578 {
2579         ENTRY;
2580         CDEBUG(D_IOCTL, "swabbing lov_mds_md\n");
2581         __swab32s(&lmm->lmm_magic);
2582         __swab32s(&lmm->lmm_pattern);
2583         lustre_swab_lmm_oi(&lmm->lmm_oi);
2584         __swab32s(&lmm->lmm_stripe_size);
2585         __swab16s(&lmm->lmm_stripe_count);
2586         __swab16s(&lmm->lmm_layout_gen);
2587         EXIT;
2588 }
2589 EXPORT_SYMBOL(lustre_swab_lov_mds_md);
2590
2591 void lustre_swab_ldlm_res_id(struct ldlm_res_id *id)
2592 {
2593         int i;
2594
2595         for (i = 0; i < RES_NAME_SIZE; i++)
2596                 __swab64s(&id->name[i]);
2597 }
2598
2599 void lustre_swab_ldlm_policy_data(union ldlm_wire_policy_data *d)
2600 {
2601         /* the lock data is a union and the first two fields are always an
2602          * extent so it's ok to process an LDLM_EXTENT and LDLM_FLOCK lock
2603          * data the same way.
2604          */
2605         __swab64s(&d->l_extent.start);
2606         __swab64s(&d->l_extent.end);
2607         __swab64s(&d->l_extent.gid);
2608         __swab64s(&d->l_flock.lfw_owner);
2609         __swab32s(&d->l_flock.lfw_pid);
2610 }
2611
2612 void lustre_swab_ldlm_intent(struct ldlm_intent *i)
2613 {
2614         __swab64s(&i->opc);
2615 }
2616
2617 void lustre_swab_ldlm_resource_desc(struct ldlm_resource_desc *r)
2618 {
2619         __swab32s(&r->lr_type);
2620         BUILD_BUG_ON(offsetof(typeof(*r), lr_pad) == 0);
2621         lustre_swab_ldlm_res_id(&r->lr_name);
2622 }
2623
2624 void lustre_swab_ldlm_lock_desc(struct ldlm_lock_desc *l)
2625 {
2626         lustre_swab_ldlm_resource_desc(&l->l_resource);
2627         __swab32s(&l->l_req_mode);
2628         __swab32s(&l->l_granted_mode);
2629         lustre_swab_ldlm_policy_data(&l->l_policy_data);
2630 }
2631
2632 void lustre_swab_ldlm_request(struct ldlm_request *rq)
2633 {
2634         __swab32s(&rq->lock_flags);
2635         lustre_swab_ldlm_lock_desc(&rq->lock_desc);
2636         __swab32s(&rq->lock_count);
2637         /* lock_handle[] opaque */
2638 }
2639
2640 void lustre_swab_ldlm_reply(struct ldlm_reply *r)
2641 {
2642         __swab32s(&r->lock_flags);
2643         BUILD_BUG_ON(offsetof(typeof(*r), lock_padding) == 0);
2644         lustre_swab_ldlm_lock_desc(&r->lock_desc);
2645         /* lock_handle opaque */
2646         __swab64s(&r->lock_policy_res1);
2647         __swab64s(&r->lock_policy_res2);
2648 }
2649
2650 void lustre_swab_quota_body(struct quota_body *b)
2651 {
2652         lustre_swab_lu_fid(&b->qb_fid);
2653         lustre_swab_lu_fid((struct lu_fid *)&b->qb_id);
2654         __swab32s(&b->qb_flags);
2655         __swab64s(&b->qb_count);
2656         __swab64s(&b->qb_usage);
2657         __swab64s(&b->qb_slv_ver);
2658 }
2659
2660 /* Dump functions */
2661 void dump_ioo(struct obd_ioobj *ioo)
2662 {
2663         CDEBUG(D_RPCTRACE,
2664                "obd_ioobj: ioo_oid="DOSTID", ioo_max_brw=%#x, "
2665                "ioo_bufct=%d\n", POSTID(&ioo->ioo_oid), ioo->ioo_max_brw,
2666                ioo->ioo_bufcnt);
2667 }
2668
2669 void dump_rniobuf(struct niobuf_remote *nb)
2670 {
2671         CDEBUG(D_RPCTRACE, "niobuf_remote: offset=%llu, len=%d, flags=%x\n",
2672                nb->rnb_offset, nb->rnb_len, nb->rnb_flags);
2673 }
2674
2675 void dump_obdo(struct obdo *oa)
2676 {
2677         u64 valid = oa->o_valid;
2678
2679         CDEBUG(D_RPCTRACE, "obdo: o_valid = %#llx\n", valid);
2680         if (valid & OBD_MD_FLID)
2681                 CDEBUG(D_RPCTRACE, "obdo: id = "DOSTID"\n", POSTID(&oa->o_oi));
2682         if (valid & OBD_MD_FLFID)
2683                 CDEBUG(D_RPCTRACE, "obdo: o_parent_seq = %#llx\n",
2684                        oa->o_parent_seq);
2685         if (valid & OBD_MD_FLSIZE)
2686                 CDEBUG(D_RPCTRACE, "obdo: o_size = %lld\n", oa->o_size);
2687         if (valid & OBD_MD_FLMTIME)
2688                 CDEBUG(D_RPCTRACE, "obdo: o_mtime = %lld\n", oa->o_mtime);
2689         if (valid & OBD_MD_FLATIME)
2690                 CDEBUG(D_RPCTRACE, "obdo: o_atime = %lld\n", oa->o_atime);
2691         if (valid & OBD_MD_FLCTIME)
2692                 CDEBUG(D_RPCTRACE, "obdo: o_ctime = %lld\n", oa->o_ctime);
2693         if (valid & OBD_MD_FLBLOCKS)   /* allocation of space */
2694                 CDEBUG(D_RPCTRACE, "obdo: o_blocks = %lld\n", oa->o_blocks);
2695         if (valid & OBD_MD_FLGRANT)
2696                 CDEBUG(D_RPCTRACE, "obdo: o_grant = %lld\n", oa->o_grant);
2697         if (valid & OBD_MD_FLBLKSZ)
2698                 CDEBUG(D_RPCTRACE, "obdo: o_blksize = %d\n", oa->o_blksize);
2699         if (valid & (OBD_MD_FLTYPE | OBD_MD_FLMODE))
2700                 CDEBUG(D_RPCTRACE, "obdo: o_mode = %o\n",
2701                        oa->o_mode & ((valid & OBD_MD_FLTYPE ?  S_IFMT : 0) |
2702                                      (valid & OBD_MD_FLMODE ? ~S_IFMT : 0)));
2703         if (valid & OBD_MD_FLUID)
2704                 CDEBUG(D_RPCTRACE, "obdo: o_uid = %u\n", oa->o_uid);
2705         if (valid & OBD_MD_FLUID)
2706                 CDEBUG(D_RPCTRACE, "obdo: o_uid_h = %u\n", oa->o_uid_h);
2707         if (valid & OBD_MD_FLGID)
2708                 CDEBUG(D_RPCTRACE, "obdo: o_gid = %u\n", oa->o_gid);
2709         if (valid & OBD_MD_FLGID)
2710                 CDEBUG(D_RPCTRACE, "obdo: o_gid_h = %u\n", oa->o_gid_h);
2711         if (valid & OBD_MD_FLFLAGS)
2712                 CDEBUG(D_RPCTRACE, "obdo: o_flags = %x\n", oa->o_flags);
2713         if (valid & OBD_MD_FLNLINK)
2714                 CDEBUG(D_RPCTRACE, "obdo: o_nlink = %u\n", oa->o_nlink);
2715         else if (valid & OBD_MD_FLCKSUM)
2716                 CDEBUG(D_RPCTRACE, "obdo: o_checksum (o_nlink) = %u\n",
2717                        oa->o_nlink);
2718         if (valid & OBD_MD_FLPARENT)
2719                 CDEBUG(D_RPCTRACE, "obdo: o_parent_oid = %x\n",
2720                        oa->o_parent_oid);
2721         if (valid & OBD_MD_FLFID) {
2722                 CDEBUG(D_RPCTRACE, "obdo: o_stripe_idx = %u\n",
2723                        oa->o_stripe_idx);
2724                 CDEBUG(D_RPCTRACE, "obdo: o_parent_ver = %x\n",
2725                        oa->o_parent_ver);
2726         }
2727         if (valid & OBD_MD_FLHANDLE)
2728                 CDEBUG(D_RPCTRACE, "obdo: o_handle = %lld\n",
2729                        oa->o_handle.cookie);
2730 }
2731
2732 void dump_ost_body(struct ost_body *ob)
2733 {
2734         dump_obdo(&ob->oa);
2735 }
2736
2737 void dump_rcs(__u32 *rc)
2738 {
2739         CDEBUG(D_RPCTRACE, "rmf_rcs: %d\n", *rc);
2740 }
2741
2742 static inline int req_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2743 {
2744         LASSERT(req->rq_reqmsg);
2745
2746         switch (req->rq_reqmsg->lm_magic) {
2747         case LUSTRE_MSG_MAGIC_V2:
2748                 return req_capsule_req_swabbed(&req->rq_pill,
2749                                                MSG_PTLRPC_BODY_OFF);
2750         default:
2751                 CERROR("bad lustre msg magic: %#08X\n",
2752                        req->rq_reqmsg->lm_magic);
2753         }
2754         return 0;
2755 }
2756
2757 static inline int rep_ptlrpc_body_swabbed(struct ptlrpc_request *req)
2758 {
2759         if (unlikely(!req->rq_repmsg))
2760                 return 0;
2761
2762         switch (req->rq_repmsg->lm_magic) {
2763         case LUSTRE_MSG_MAGIC_V2:
2764                 return req_capsule_rep_swabbed(&req->rq_pill,
2765                                                MSG_PTLRPC_BODY_OFF);
2766         default:
2767                 /* uninitialized yet */
2768                 return 0;
2769         }
2770 }
2771
2772 void _debug_req(struct ptlrpc_request *req,
2773                 struct libcfs_debug_msg_data *msgdata, const char *fmt, ...)
2774 {
2775         bool req_ok = req->rq_reqmsg != NULL;
2776         bool rep_ok = false;
2777         struct lnet_nid *nid = NULL;
2778         struct va_format vaf;
2779         va_list args;
2780         int rep_flags = -1;
2781         int rep_status = -1;
2782
2783         spin_lock(&req->rq_early_free_lock);
2784         if (req->rq_repmsg)
2785                 rep_ok = true;
2786
2787         if (req_capsule_req_need_swab(&req->rq_pill)) {
2788                 req_ok = req_ok && req_ptlrpc_body_swabbed(req);
2789                 rep_ok = rep_ok && rep_ptlrpc_body_swabbed(req);
2790         }
2791
2792         if (rep_ok) {
2793                 rep_flags = lustre_msg_get_flags(req->rq_repmsg);
2794                 rep_status = lustre_msg_get_status(req->rq_repmsg);
2795         }
2796         spin_unlock(&req->rq_early_free_lock);
2797
2798         if (req->rq_import && req->rq_import->imp_connection)
2799                 nid = &req->rq_import->imp_connection->c_peer.nid;
2800         else if (req->rq_export && req->rq_export->exp_connection)
2801                 nid = &req->rq_export->exp_connection->c_peer.nid;
2802
2803         va_start(args, fmt);
2804         vaf.fmt = fmt;
2805         vaf.va = &args;
2806         libcfs_debug_msg(msgdata,
2807                          "%pV req@%p x%llu/t%lld(%lld) o%d->%s@%s:%d/%d lens %d/%d e %d to %lld dl %lld ref %d fl " REQ_FLAGS_FMT "/%x/%x rc %d/%d job:'%s'\n",
2808                          &vaf,
2809                          req, req->rq_xid, req->rq_transno,
2810                          req_ok ? lustre_msg_get_transno(req->rq_reqmsg) : 0,
2811                          req_ok ? lustre_msg_get_opc(req->rq_reqmsg) : -1,
2812                          req->rq_import ?
2813                          req->rq_import->imp_obd->obd_name :
2814                          req->rq_export ?
2815                          req->rq_export->exp_client_uuid.uuid :
2816                          "<?>",
2817                          nid ? libcfs_nidstr(nid) : "<unknown>",
2818                          req->rq_request_portal, req->rq_reply_portal,
2819                          req->rq_reqlen, req->rq_replen,
2820                          req->rq_early_count, (s64)req->rq_timedout,
2821                          (s64)req->rq_deadline,
2822                          atomic_read(&req->rq_refcount),
2823                          DEBUG_REQ_FLAGS(req),
2824                          req_ok ? lustre_msg_get_flags(req->rq_reqmsg) : -1,
2825                          rep_flags, req->rq_status, rep_status,
2826                          req_ok ? lustre_msg_get_jobid(req->rq_reqmsg) ?: ""
2827                                 : "");
2828         va_end(args);
2829 }
2830 EXPORT_SYMBOL(_debug_req);
2831
2832 void lustre_swab_hsm_user_state(struct hsm_user_state *state)
2833 {
2834         __swab32s(&state->hus_states);
2835         __swab32s(&state->hus_archive_id);
2836 }
2837
2838 void lustre_swab_hsm_state_set(struct hsm_state_set *hss)
2839 {
2840         __swab32s(&hss->hss_valid);
2841         __swab64s(&hss->hss_setmask);
2842         __swab64s(&hss->hss_clearmask);
2843         __swab32s(&hss->hss_archive_id);
2844 }
2845
2846 static void lustre_swab_hsm_extent(struct hsm_extent *extent)
2847 {
2848         __swab64s(&extent->offset);
2849         __swab64s(&extent->length);
2850 }
2851
2852 void lustre_swab_hsm_current_action(struct hsm_current_action *action)
2853 {
2854         __swab32s(&action->hca_state);
2855         __swab32s(&action->hca_action);
2856         lustre_swab_hsm_extent(&action->hca_location);
2857 }
2858
2859 void lustre_swab_hsm_user_item(struct hsm_user_item *hui)
2860 {
2861         lustre_swab_lu_fid(&hui->hui_fid);
2862         lustre_swab_hsm_extent(&hui->hui_extent);
2863 }
2864
2865 void lustre_swab_lu_extent(struct lu_extent *le)
2866 {
2867         __swab64s(&le->e_start);
2868         __swab64s(&le->e_end);
2869 }
2870
2871 void lustre_swab_layout_intent(struct layout_intent *li)
2872 {
2873         __swab32s(&li->li_opc);
2874         __swab32s(&li->li_flags);
2875         lustre_swab_lu_extent(&li->li_extent);
2876 }
2877
2878 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk)
2879 {
2880         lustre_swab_lu_fid(&hpk->hpk_fid);
2881         __swab64s(&hpk->hpk_cookie);
2882         __swab64s(&hpk->hpk_extent.offset);
2883         __swab64s(&hpk->hpk_extent.length);
2884         __swab16s(&hpk->hpk_flags);
2885         __swab16s(&hpk->hpk_errval);
2886 }
2887
2888 void lustre_swab_hsm_request(struct hsm_request *hr)
2889 {
2890         __swab32s(&hr->hr_action);
2891         __swab32s(&hr->hr_archive_id);
2892         __swab64s(&hr->hr_flags);
2893         __swab32s(&hr->hr_itemcount);
2894         __swab32s(&hr->hr_data_len);
2895 }
2896
2897 /* TODO: swab each sub request message */
2898 void lustre_swab_batch_update_request(struct batch_update_request *bur)
2899 {
2900         __swab32s(&bur->burq_magic);
2901         __swab16s(&bur->burq_count);
2902         __swab16s(&bur->burq_padding);
2903 }
2904
2905 /* TODO: swab each sub reply message. */
2906 void lustre_swab_batch_update_reply(struct batch_update_reply *bur)
2907 {
2908         __swab32s(&bur->burp_magic);
2909         __swab16s(&bur->burp_count);
2910         __swab16s(&bur->burp_padding);
2911 }
2912
2913 void lustre_swab_but_update_header(struct but_update_header *buh)
2914 {
2915         __swab32s(&buh->buh_magic);
2916         __swab32s(&buh->buh_count);
2917         __swab32s(&buh->buh_inline_length);
2918         __swab32s(&buh->buh_reply_size);
2919         __swab32s(&buh->buh_update_count);
2920 }
2921 EXPORT_SYMBOL(lustre_swab_but_update_header);
2922
2923 void lustre_swab_but_update_buffer(struct but_update_buffer *bub)
2924 {
2925         __swab32s(&bub->bub_size);
2926         __swab32s(&bub->bub_padding);
2927 }
2928 EXPORT_SYMBOL(lustre_swab_but_update_buffer);
2929
2930 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl)
2931 {
2932         __swab64s(&msl->msl_flags);
2933 }
2934
2935 void lustre_swab_close_data(struct close_data *cd)
2936 {
2937         lustre_swab_lu_fid(&cd->cd_fid);
2938         __swab64s(&cd->cd_data_version);
2939 }
2940
2941 void lustre_swab_close_data_resync_done(struct close_data_resync_done *resync)
2942 {
2943         int i;
2944
2945         __swab32s(&resync->resync_count);
2946         /* after swab, resync_count must in CPU endian */
2947         if (resync->resync_count <= INLINE_RESYNC_ARRAY_SIZE) {
2948                 for (i = 0; i < resync->resync_count; i++)
2949                         __swab32s(&resync->resync_ids_inline[i]);
2950         }
2951 }
2952 EXPORT_SYMBOL(lustre_swab_close_data_resync_done);
2953
2954 void lustre_swab_lfsck_request(struct lfsck_request *lr)
2955 {
2956         __swab32s(&lr->lr_event);
2957         __swab32s(&lr->lr_index);
2958         __swab32s(&lr->lr_flags);
2959         __swab32s(&lr->lr_valid);
2960         __swab32s(&lr->lr_speed);
2961         __swab16s(&lr->lr_version);
2962         __swab16s(&lr->lr_active);
2963         __swab16s(&lr->lr_param);
2964         __swab16s(&lr->lr_async_windows);
2965         __swab32s(&lr->lr_flags);
2966         lustre_swab_lu_fid(&lr->lr_fid);
2967         lustre_swab_lu_fid(&lr->lr_fid2);
2968         __swab32s(&lr->lr_comp_id);
2969         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_0) == 0);
2970         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_1) == 0);
2971         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_2) == 0);
2972         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_3) == 0);
2973 }
2974
2975 void lustre_swab_lfsck_reply(struct lfsck_reply *lr)
2976 {
2977         __swab32s(&lr->lr_status);
2978         BUILD_BUG_ON(offsetof(typeof(*lr), lr_padding_1) == 0);
2979         __swab64s(&lr->lr_repaired);
2980 }
2981
2982 static void lustre_swab_orphan_rec(struct lu_orphan_rec *rec)
2983 {
2984         lustre_swab_lu_fid(&rec->lor_fid);
2985         __swab32s(&rec->lor_uid);
2986         __swab32s(&rec->lor_gid);
2987 }
2988
2989 void lustre_swab_orphan_ent(struct lu_orphan_ent *ent)
2990 {
2991         lustre_swab_lu_fid(&ent->loe_key);
2992         lustre_swab_orphan_rec(&ent->loe_rec);
2993 }
2994 EXPORT_SYMBOL(lustre_swab_orphan_ent);
2995
2996 void lustre_swab_orphan_ent_v2(struct lu_orphan_ent_v2 *ent)
2997 {
2998         lustre_swab_lu_fid(&ent->loe_key);
2999         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
3000         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
3001         BUILD_BUG_ON(offsetof(typeof(ent->loe_rec), lor_padding) == 0);
3002 }
3003 EXPORT_SYMBOL(lustre_swab_orphan_ent_v2);
3004
3005 void lustre_swab_orphan_ent_v3(struct lu_orphan_ent_v3 *ent)
3006 {
3007         lustre_swab_lu_fid(&ent->loe_key);
3008         lustre_swab_orphan_rec(&ent->loe_rec.lor_rec);
3009         lustre_swab_ost_layout(&ent->loe_rec.lor_layout);
3010         __swab32s(&ent->loe_rec.lor_layout_version);
3011         __swab32s(&ent->loe_rec.lor_range);
3012         BUILD_BUG_ON(offsetof(typeof(ent->loe_rec), lor_padding_1) == 0);
3013         BUILD_BUG_ON(offsetof(typeof(ent->loe_rec), lor_padding_2) == 0);
3014 }
3015 EXPORT_SYMBOL(lustre_swab_orphan_ent_v3);
3016
3017 void lustre_swab_ladvise(struct lu_ladvise *ladvise)
3018 {
3019         __swab16s(&ladvise->lla_advice);
3020         __swab16s(&ladvise->lla_value1);
3021         __swab32s(&ladvise->lla_value2);
3022         __swab64s(&ladvise->lla_start);
3023         __swab64s(&ladvise->lla_end);
3024         __swab32s(&ladvise->lla_value3);
3025         __swab32s(&ladvise->lla_value4);
3026 }
3027 EXPORT_SYMBOL(lustre_swab_ladvise);
3028
3029 void lustre_swab_ladvise_hdr(struct ladvise_hdr *ladvise_hdr)
3030 {
3031         __swab32s(&ladvise_hdr->lah_magic);
3032         __swab32s(&ladvise_hdr->lah_count);
3033         __swab64s(&ladvise_hdr->lah_flags);
3034         __swab32s(&ladvise_hdr->lah_value1);
3035         __swab32s(&ladvise_hdr->lah_value2);
3036         __swab64s(&ladvise_hdr->lah_value3);
3037 }
3038 EXPORT_SYMBOL(lustre_swab_ladvise_hdr);