Whamcloud - gitweb
218fb4daa54875c0a90b11547117b35b7f49e852
[fs/lustre-release.git] / lustre / ptlrpc / client.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  */
32
33 /** Implementation of client-side PortalRPC interfaces */
34
35 #define DEBUG_SUBSYSTEM S_RPC
36
37 #include <linux/delay.h>
38 #include <linux/random.h>
39
40 #include <obd_support.h>
41 #include <obd_class.h>
42 #include <lustre_lib.h>
43 #include <lustre_ha.h>
44 #include <lustre_import.h>
45 #include <lustre_req_layout.h>
46
47 #include "ptlrpc_internal.h"
48
49 static void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
50                                       struct page *page, int pageoffset,
51                                       int len)
52 {
53         __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
54 }
55
56 static void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
57                                         struct page *page, int pageoffset,
58                                         int len)
59 {
60         __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
61 }
62
63 static void ptlrpc_release_bulk_page_pin(struct ptlrpc_bulk_desc *desc)
64 {
65         int i;
66
67         for (i = 0; i < desc->bd_iov_count ; i++)
68                 put_page(BD_GET_KIOV(desc, i).kiov_page);
69 }
70
71 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops = {
72         .add_kiov_frag  = ptlrpc_prep_bulk_page_pin,
73         .release_frags  = ptlrpc_release_bulk_page_pin,
74 };
75 EXPORT_SYMBOL(ptlrpc_bulk_kiov_pin_ops);
76
77 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops = {
78         .add_kiov_frag  = ptlrpc_prep_bulk_page_nopin,
79         .release_frags  = ptlrpc_release_bulk_noop,
80 };
81 EXPORT_SYMBOL(ptlrpc_bulk_kiov_nopin_ops);
82
83 const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kvec_ops = {
84         .add_iov_frag = ptlrpc_prep_bulk_frag,
85 };
86 EXPORT_SYMBOL(ptlrpc_bulk_kvec_ops);
87
88 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
89 static int ptlrpcd_check_work(struct ptlrpc_request *req);
90 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async);
91
92 /**
93  * Initialize passed in client structure \a cl.
94  */
95 void ptlrpc_init_client(int req_portal, int rep_portal, const char *name,
96                         struct ptlrpc_client *cl)
97 {
98         cl->cli_request_portal = req_portal;
99         cl->cli_reply_portal   = rep_portal;
100         cl->cli_name           = name;
101 }
102 EXPORT_SYMBOL(ptlrpc_init_client);
103
104 /**
105  * Return PortalRPC connection for remore uud \a uuid
106  */
107 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid,
108                                                     lnet_nid_t nid4refnet)
109 {
110         struct ptlrpc_connection *c;
111         lnet_nid_t self;
112         struct lnet_process_id peer;
113         int err;
114
115         /*
116          * ptlrpc_uuid_to_peer() initializes its 2nd parameter
117          * before accessing its values.
118          */
119         /* coverity[uninit_use_in_call] */
120         peer.nid = nid4refnet;
121         err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
122         if (err != 0) {
123                 CNETERR("cannot find peer %s!\n", uuid->uuid);
124                 return NULL;
125         }
126
127         c = ptlrpc_connection_get(peer, self, uuid);
128         if (c) {
129                 memcpy(c->c_remote_uuid.uuid,
130                        uuid->uuid, sizeof(c->c_remote_uuid.uuid));
131         }
132
133         CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
134
135         return c;
136 }
137
138 /**
139  * Allocate and initialize new bulk descriptor on the sender.
140  * Returns pointer to the descriptor or NULL on error.
141  */
142 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned int nfrags,
143                                          unsigned int max_brw,
144                                          enum ptlrpc_bulk_op_type type,
145                                          unsigned int portal,
146                                          const struct ptlrpc_bulk_frag_ops *ops)
147 {
148         struct ptlrpc_bulk_desc *desc;
149         int i;
150
151         /* ensure that only one of KIOV or IOVEC is set but not both */
152         LASSERT((ptlrpc_is_bulk_desc_kiov(type) &&
153                  ops->add_kiov_frag != NULL) ||
154                 (ptlrpc_is_bulk_desc_kvec(type) &&
155                  ops->add_iov_frag != NULL));
156
157         OBD_ALLOC_PTR(desc);
158         if (!desc)
159                 return NULL;
160         if (type & PTLRPC_BULK_BUF_KIOV) {
161                 OBD_ALLOC_LARGE(GET_KIOV(desc),
162                                 nfrags * sizeof(*GET_KIOV(desc)));
163                 if (!GET_KIOV(desc))
164                         goto out;
165         } else {
166                 OBD_ALLOC_LARGE(GET_KVEC(desc),
167                                 nfrags * sizeof(*GET_KVEC(desc)));
168                 if (!GET_KVEC(desc))
169                         goto out;
170         }
171
172         spin_lock_init(&desc->bd_lock);
173         init_waitqueue_head(&desc->bd_waitq);
174         desc->bd_max_iov = nfrags;
175         desc->bd_iov_count = 0;
176         desc->bd_portal = portal;
177         desc->bd_type = type;
178         desc->bd_md_count = 0;
179         desc->bd_frag_ops = ops;
180         LASSERT(max_brw > 0);
181         desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
182         /*
183          * PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
184          * node. Negotiated ocd_brw_size will always be <= this number.
185          */
186         for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
187                 LNetInvalidateMDHandle(&desc->bd_mds[i]);
188
189         return desc;
190 out:
191         OBD_FREE_PTR(desc);
192         return NULL;
193 }
194
195 /**
196  * Prepare bulk descriptor for specified outgoing request \a req that
197  * can fit \a nfrags * pages. \a type is bulk type. \a portal is where
198  * the bulk to be sent. Used on client-side.
199  * Returns pointer to newly allocatrd initialized bulk descriptor or NULL on
200  * error.
201  */
202 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
203                                               unsigned int nfrags,
204                                               unsigned int max_brw,
205                                               unsigned int type,
206                                               unsigned int portal,
207                                               const struct ptlrpc_bulk_frag_ops
208                                                 *ops)
209 {
210         struct obd_import *imp = req->rq_import;
211         struct ptlrpc_bulk_desc *desc;
212
213         ENTRY;
214         LASSERT(ptlrpc_is_bulk_op_passive(type));
215
216         desc = ptlrpc_new_bulk(nfrags, max_brw, type, portal, ops);
217         if (!desc)
218                 RETURN(NULL);
219
220         desc->bd_import_generation = req->rq_import_generation;
221         desc->bd_import = class_import_get(imp);
222         desc->bd_req = req;
223
224         desc->bd_cbid.cbid_fn  = client_bulk_callback;
225         desc->bd_cbid.cbid_arg = desc;
226
227         /* This makes req own desc, and free it when she frees herself */
228         req->rq_bulk = desc;
229
230         return desc;
231 }
232 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
233
234 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
235                              struct page *page, int pageoffset, int len,
236                              int pin)
237 {
238         lnet_kiov_t *kiov;
239
240         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
241         LASSERT(page != NULL);
242         LASSERT(pageoffset >= 0);
243         LASSERT(len > 0);
244         LASSERT(pageoffset + len <= PAGE_SIZE);
245         LASSERT(ptlrpc_is_bulk_desc_kiov(desc->bd_type));
246
247         kiov = &BD_GET_KIOV(desc, desc->bd_iov_count);
248
249         desc->bd_nob += len;
250
251         if (pin)
252                 get_page(page);
253
254         kiov->kiov_page = page;
255         kiov->kiov_offset = pageoffset;
256         kiov->kiov_len = len;
257
258         desc->bd_iov_count++;
259 }
260 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
261
262 int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc,
263                           void *frag, int len)
264 {
265         struct kvec *iovec;
266
267         ENTRY;
268
269         LASSERT(desc->bd_iov_count < desc->bd_max_iov);
270         LASSERT(frag != NULL);
271         LASSERT(len > 0);
272         LASSERT(ptlrpc_is_bulk_desc_kvec(desc->bd_type));
273
274         iovec = &BD_GET_KVEC(desc, desc->bd_iov_count);
275
276         desc->bd_nob += len;
277
278         iovec->iov_base = frag;
279         iovec->iov_len = len;
280
281         desc->bd_iov_count++;
282
283         RETURN(desc->bd_nob);
284 }
285 EXPORT_SYMBOL(ptlrpc_prep_bulk_frag);
286
287 void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc)
288 {
289         ENTRY;
290
291         LASSERT(desc != NULL);
292         LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
293         LASSERT(desc->bd_md_count == 0);         /* network hands off */
294         LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
295         LASSERT(desc->bd_frag_ops != NULL);
296
297         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
298                 sptlrpc_enc_pool_put_pages(desc);
299
300         if (desc->bd_export)
301                 class_export_put(desc->bd_export);
302         else
303                 class_import_put(desc->bd_import);
304
305         if (desc->bd_frag_ops->release_frags != NULL)
306                 desc->bd_frag_ops->release_frags(desc);
307
308         if (ptlrpc_is_bulk_desc_kiov(desc->bd_type))
309                 OBD_FREE_LARGE(GET_KIOV(desc),
310                                desc->bd_max_iov * sizeof(*GET_KIOV(desc)));
311         else
312                 OBD_FREE_LARGE(GET_KVEC(desc),
313                                desc->bd_max_iov * sizeof(*GET_KVEC(desc)));
314         OBD_FREE_PTR(desc);
315         EXIT;
316 }
317 EXPORT_SYMBOL(ptlrpc_free_bulk);
318
319 /**
320  * Set server timelimit for this req, i.e. how long are we willing to wait
321  * for reply before timing out this request.
322  */
323 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
324 {
325         __u32 serv_est;
326         int idx;
327         struct imp_at *at;
328
329         LASSERT(req->rq_import);
330
331         if (AT_OFF) {
332                 /* non-AT settings */
333                 /**
334                  * \a imp_server_timeout means this is reverse import and
335                  * we send (currently only) ASTs to the client and cannot afford
336                  * to wait too long for the reply, otherwise the other client
337                  * (because of which we are sending this request) would
338                  * timeout waiting for us
339                  */
340                 req->rq_timeout = req->rq_import->imp_server_timeout ?
341                                   obd_timeout / 2 : obd_timeout;
342         } else {
343                 at = &req->rq_import->imp_at;
344                 idx = import_at_get_index(req->rq_import,
345                                           req->rq_request_portal);
346                 serv_est = at_get(&at->iat_service_estimate[idx]);
347                 req->rq_timeout = at_est2timeout(serv_est);
348         }
349         /*
350          * We could get even fancier here, using history to predict increased
351          * loading...
352          */
353
354         /*
355          * Let the server know what this RPC timeout is by putting it in the
356          * reqmsg
357          */
358         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
359 }
360 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
361
362 /* Adjust max service estimate based on server value */
363 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
364                                   unsigned int serv_est)
365 {
366         int idx;
367         unsigned int oldse;
368         struct imp_at *at;
369
370         LASSERT(req->rq_import);
371         at = &req->rq_import->imp_at;
372
373         idx = import_at_get_index(req->rq_import, req->rq_request_portal);
374         /*
375          * max service estimates are tracked on the server side,
376          * so just keep minimal history here
377          */
378         oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
379         if (oldse != 0)
380                 CDEBUG(D_ADAPTTO,
381                        "The RPC service estimate for %s ptl %d has changed from %d to %d\n",
382                        req->rq_import->imp_obd->obd_name,
383                        req->rq_request_portal,
384                        oldse, at_get(&at->iat_service_estimate[idx]));
385 }
386
387 /* Expected network latency per remote node (secs) */
388 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
389 {
390         return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
391 }
392
393 /* Adjust expected network latency */
394 void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
395                                unsigned int service_time)
396 {
397         unsigned int nl, oldnl;
398         struct imp_at *at;
399         time64_t now = ktime_get_real_seconds();
400
401         LASSERT(req->rq_import);
402
403         if (service_time > now - req->rq_sent + 3) {
404                 /*
405                  * b=16408, however, this can also happen if early reply
406                  * is lost and client RPC is expired and resent, early reply
407                  * or reply of original RPC can still be fit in reply buffer
408                  * of resent RPC, now client is measuring time from the
409                  * resent time, but server sent back service time of original
410                  * RPC.
411                  */
412                 CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
413                        D_ADAPTTO : D_WARNING,
414                        "Reported service time %u > total measured time %lld\n",
415                        service_time, now - req->rq_sent);
416                 return;
417         }
418
419         /* Network latency is total time less server processing time */
420         nl = max_t(int, now - req->rq_sent -
421                         service_time, 0) + 1; /* st rounding */
422         at = &req->rq_import->imp_at;
423
424         oldnl = at_measured(&at->iat_net_latency, nl);
425         if (oldnl != 0)
426                 CDEBUG(D_ADAPTTO,
427                        "The network latency for %s (nid %s) has changed from %d to %d\n",
428                        req->rq_import->imp_obd->obd_name,
429                        obd_uuid2str(&req->rq_import->imp_connection->c_remote_uuid),
430                        oldnl, at_get(&at->iat_net_latency));
431 }
432
433 static int unpack_reply(struct ptlrpc_request *req)
434 {
435         int rc;
436
437         if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
438                 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
439                 if (rc) {
440                         DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
441                         return -EPROTO;
442                 }
443         }
444
445         rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
446         if (rc) {
447                 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
448                 return -EPROTO;
449         }
450         return 0;
451 }
452
453 /**
454  * Handle an early reply message, called with the rq_lock held.
455  * If anything goes wrong just ignore it - same as if it never happened
456  */
457 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
458 __must_hold(&req->rq_lock)
459 {
460         struct ptlrpc_request *early_req;
461         time64_t olddl;
462         int rc;
463
464         ENTRY;
465         req->rq_early = 0;
466         spin_unlock(&req->rq_lock);
467
468         rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
469         if (rc) {
470                 spin_lock(&req->rq_lock);
471                 RETURN(rc);
472         }
473
474         rc = unpack_reply(early_req);
475         if (rc != 0) {
476                 sptlrpc_cli_finish_early_reply(early_req);
477                 spin_lock(&req->rq_lock);
478                 RETURN(rc);
479         }
480
481         /*
482          * Use new timeout value just to adjust the local value for this
483          * request, don't include it into at_history. It is unclear yet why
484          * service time increased and should it be counted or skipped, e.g.
485          * that can be recovery case or some error or server, the real reply
486          * will add all new data if it is worth to add.
487          */
488         req->rq_timeout = lustre_msg_get_timeout(early_req->rq_repmsg);
489         lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
490
491         /* Network latency can be adjusted, it is pure network delays */
492         ptlrpc_at_adj_net_latency(req,
493                                   lustre_msg_get_service_time(early_req->rq_repmsg));
494
495         sptlrpc_cli_finish_early_reply(early_req);
496
497         spin_lock(&req->rq_lock);
498         olddl = req->rq_deadline;
499         /*
500          * server assumes it now has rq_timeout from when the request
501          * arrived, so the client should give it at least that long.
502          * since we don't know the arrival time we'll use the original
503          * sent time
504          */
505         req->rq_deadline = req->rq_sent + req->rq_timeout +
506                            ptlrpc_at_get_net_latency(req);
507
508         DEBUG_REQ(D_ADAPTTO, req,
509                   "Early reply #%d, new deadline in %llds (%llds)",
510                   req->rq_early_count,
511                   req->rq_deadline - ktime_get_real_seconds(),
512                   req->rq_deadline - olddl);
513
514         RETURN(rc);
515 }
516
517 static struct kmem_cache *request_cache;
518
519 int ptlrpc_request_cache_init(void)
520 {
521         request_cache = kmem_cache_create("ptlrpc_cache",
522                                           sizeof(struct ptlrpc_request),
523                                           0, SLAB_HWCACHE_ALIGN, NULL);
524         return request_cache ? 0 : -ENOMEM;
525 }
526
527 void ptlrpc_request_cache_fini(void)
528 {
529         kmem_cache_destroy(request_cache);
530 }
531
532 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
533 {
534         struct ptlrpc_request *req;
535
536         OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
537         return req;
538 }
539
540 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
541 {
542         OBD_SLAB_FREE_PTR(req, request_cache);
543 }
544
545 /**
546  * Wind down request pool \a pool.
547  * Frees all requests from the pool too
548  */
549 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
550 {
551         struct list_head *l, *tmp;
552         struct ptlrpc_request *req;
553
554         LASSERT(pool != NULL);
555
556         spin_lock(&pool->prp_lock);
557         list_for_each_safe(l, tmp, &pool->prp_req_list) {
558                 req = list_entry(l, struct ptlrpc_request, rq_list);
559                 list_del(&req->rq_list);
560                 LASSERT(req->rq_reqbuf);
561                 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
562                 OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size);
563                 ptlrpc_request_cache_free(req);
564         }
565         spin_unlock(&pool->prp_lock);
566         OBD_FREE(pool, sizeof(*pool));
567 }
568 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
569
570 /**
571  * Allocates, initializes and adds \a num_rq requests to the pool \a pool
572  */
573 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
574 {
575         int i;
576         int size = 1;
577
578         while (size < pool->prp_rq_size)
579                 size <<= 1;
580
581         LASSERTF(list_empty(&pool->prp_req_list) ||
582                  size == pool->prp_rq_size,
583                  "Trying to change pool size with nonempty pool from %d to %d bytes\n",
584                  pool->prp_rq_size, size);
585
586         spin_lock(&pool->prp_lock);
587         pool->prp_rq_size = size;
588         for (i = 0; i < num_rq; i++) {
589                 struct ptlrpc_request *req;
590                 struct lustre_msg *msg;
591
592                 spin_unlock(&pool->prp_lock);
593                 req = ptlrpc_request_cache_alloc(GFP_NOFS);
594                 if (!req)
595                         return i;
596                 OBD_ALLOC_LARGE(msg, size);
597                 if (!msg) {
598                         ptlrpc_request_cache_free(req);
599                         return i;
600                 }
601                 req->rq_reqbuf = msg;
602                 req->rq_reqbuf_len = size;
603                 req->rq_pool = pool;
604                 spin_lock(&pool->prp_lock);
605                 list_add_tail(&req->rq_list, &pool->prp_req_list);
606         }
607         spin_unlock(&pool->prp_lock);
608         return num_rq;
609 }
610 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
611
612 /**
613  * Create and initialize new request pool with given attributes:
614  * \a num_rq - initial number of requests to create for the pool
615  * \a msgsize - maximum message size possible for requests in thid pool
616  * \a populate_pool - function to be called when more requests need to be added
617  *                    to the pool
618  * Returns pointer to newly created pool or NULL on error.
619  */
620 struct ptlrpc_request_pool *
621 ptlrpc_init_rq_pool(int num_rq, int msgsize,
622                     int (*populate_pool)(struct ptlrpc_request_pool *, int))
623 {
624         struct ptlrpc_request_pool *pool;
625
626         OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool));
627         if (!pool)
628                 return NULL;
629
630         /*
631          * Request next power of two for the allocation, because internally
632          * kernel would do exactly this
633          */
634         spin_lock_init(&pool->prp_lock);
635         INIT_LIST_HEAD(&pool->prp_req_list);
636         pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
637         pool->prp_populate = populate_pool;
638
639         populate_pool(pool, num_rq);
640
641         return pool;
642 }
643 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
644
645 /**
646  * Fetches one request from pool \a pool
647  */
648 static struct ptlrpc_request *
649 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
650 {
651         struct ptlrpc_request *request;
652         struct lustre_msg *reqbuf;
653
654         if (!pool)
655                 return NULL;
656
657         spin_lock(&pool->prp_lock);
658
659         /*
660          * See if we have anything in a pool, and bail out if nothing,
661          * in writeout path, where this matters, this is safe to do, because
662          * nothing is lost in this case, and when some in-flight requests
663          * complete, this code will be called again.
664          */
665         if (unlikely(list_empty(&pool->prp_req_list))) {
666                 spin_unlock(&pool->prp_lock);
667                 return NULL;
668         }
669
670         request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
671                              rq_list);
672         list_del_init(&request->rq_list);
673         spin_unlock(&pool->prp_lock);
674
675         LASSERT(request->rq_reqbuf);
676         LASSERT(request->rq_pool);
677
678         reqbuf = request->rq_reqbuf;
679         memset(request, 0, sizeof(*request));
680         request->rq_reqbuf = reqbuf;
681         request->rq_reqbuf_len = pool->prp_rq_size;
682         request->rq_pool = pool;
683
684         return request;
685 }
686
687 /**
688  * Returns freed \a request to pool.
689  */
690 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
691 {
692         struct ptlrpc_request_pool *pool = request->rq_pool;
693
694         spin_lock(&pool->prp_lock);
695         LASSERT(list_empty(&request->rq_list));
696         LASSERT(!request->rq_receiving_reply);
697         list_add_tail(&request->rq_list, &pool->prp_req_list);
698         spin_unlock(&pool->prp_lock);
699 }
700
701 void ptlrpc_add_unreplied(struct ptlrpc_request *req)
702 {
703         struct obd_import *imp = req->rq_import;
704         struct list_head *tmp;
705         struct ptlrpc_request *iter;
706
707         assert_spin_locked(&imp->imp_lock);
708         LASSERT(list_empty(&req->rq_unreplied_list));
709
710         /* unreplied list is sorted by xid in ascending order */
711         list_for_each_prev(tmp, &imp->imp_unreplied_list) {
712                 iter = list_entry(tmp, struct ptlrpc_request,
713                                   rq_unreplied_list);
714
715                 LASSERT(req->rq_xid != iter->rq_xid);
716                 if (req->rq_xid < iter->rq_xid)
717                         continue;
718                 list_add(&req->rq_unreplied_list, &iter->rq_unreplied_list);
719                 return;
720         }
721         list_add(&req->rq_unreplied_list, &imp->imp_unreplied_list);
722 }
723
724 void ptlrpc_assign_next_xid_nolock(struct ptlrpc_request *req)
725 {
726         req->rq_xid = ptlrpc_next_xid();
727         ptlrpc_add_unreplied(req);
728 }
729
730 static inline void ptlrpc_assign_next_xid(struct ptlrpc_request *req)
731 {
732         spin_lock(&req->rq_import->imp_lock);
733         ptlrpc_assign_next_xid_nolock(req);
734         spin_unlock(&req->rq_import->imp_lock);
735 }
736
737 static __u64 ptlrpc_last_xid;
738 static spinlock_t ptlrpc_last_xid_lock;
739
740 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
741                              __u32 version, int opcode, char **bufs,
742                              struct ptlrpc_cli_ctx *ctx)
743 {
744         int count;
745         struct obd_import *imp;
746         __u32 *lengths;
747         int rc;
748
749         ENTRY;
750
751         count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
752         imp = request->rq_import;
753         lengths = request->rq_pill.rc_area[RCL_CLIENT];
754
755         if (ctx) {
756                 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
757         } else {
758                 rc = sptlrpc_req_get_ctx(request);
759                 if (rc)
760                         GOTO(out_free, rc);
761         }
762         sptlrpc_req_set_flavor(request, opcode);
763
764         rc = lustre_pack_request(request, imp->imp_msg_magic, count,
765                                  lengths, bufs);
766         if (rc)
767                 GOTO(out_ctx, rc);
768
769         lustre_msg_add_version(request->rq_reqmsg, version);
770         request->rq_send_state = LUSTRE_IMP_FULL;
771         request->rq_type = PTL_RPC_MSG_REQUEST;
772
773         request->rq_req_cbid.cbid_fn  = request_out_callback;
774         request->rq_req_cbid.cbid_arg = request;
775
776         request->rq_reply_cbid.cbid_fn  = reply_in_callback;
777         request->rq_reply_cbid.cbid_arg = request;
778
779         request->rq_reply_deadline = 0;
780         request->rq_bulk_deadline = 0;
781         request->rq_req_deadline = 0;
782         request->rq_phase = RQ_PHASE_NEW;
783         request->rq_next_phase = RQ_PHASE_UNDEFINED;
784
785         request->rq_request_portal = imp->imp_client->cli_request_portal;
786         request->rq_reply_portal = imp->imp_client->cli_reply_portal;
787
788         ptlrpc_at_set_req_timeout(request);
789
790         lustre_msg_set_opc(request->rq_reqmsg, opcode);
791
792         /* Let's setup deadline for req/reply/bulk unlink for opcode. */
793         if (cfs_fail_val == opcode) {
794                 time64_t *fail_t = NULL, *fail2_t = NULL;
795
796                 if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
797                         fail_t = &request->rq_bulk_deadline;
798                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
799                         fail_t = &request->rq_reply_deadline;
800                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK)) {
801                         fail_t = &request->rq_req_deadline;
802                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BOTH_UNLINK)) {
803                         fail_t = &request->rq_reply_deadline;
804                         fail2_t = &request->rq_bulk_deadline;
805                 } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_ROUND_XID)) {
806                         time64_t now = ktime_get_real_seconds();
807                         spin_lock(&ptlrpc_last_xid_lock);
808                         ptlrpc_last_xid = ((__u64)now >> 4) << 24;
809                         spin_unlock(&ptlrpc_last_xid_lock);
810                 }
811
812                 if (fail_t) {
813                         *fail_t = ktime_get_real_seconds() + LONG_UNLINK;
814
815                         if (fail2_t)
816                                 *fail2_t = ktime_get_real_seconds() +
817                                            LONG_UNLINK;
818
819                         /*
820                          * The RPC is infected, let the test to change the
821                          * fail_loc
822                          */
823                         msleep(4 * MSEC_PER_SEC);
824                 }
825         }
826         ptlrpc_assign_next_xid(request);
827
828         RETURN(0);
829
830 out_ctx:
831         LASSERT(!request->rq_pool);
832         sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
833 out_free:
834         class_import_put(imp);
835
836         return rc;
837 }
838 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
839
840 /**
841  * Pack request buffers for network transfer, performing necessary encryption
842  * steps if necessary.
843  */
844 int ptlrpc_request_pack(struct ptlrpc_request *request,
845                         __u32 version, int opcode)
846 {
847         int rc;
848
849         rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
850         if (rc)
851                 return rc;
852
853         /*
854          * For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
855          * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
856          * have to send old ptlrpc_body to keep interoprability with these
857          * clients.
858          *
859          * Only three kinds of server->client RPCs so far:
860          *  - LDLM_BL_CALLBACK
861          *  - LDLM_CP_CALLBACK
862          *  - LDLM_GL_CALLBACK
863          *
864          * XXX This should be removed whenever we drop the interoprability with
865          *     the these old clients.
866          */
867         if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
868             opcode == LDLM_GL_CALLBACK)
869                 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
870                                    sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
871
872         return rc;
873 }
874 EXPORT_SYMBOL(ptlrpc_request_pack);
875
876 /**
877  * Helper function to allocate new request on import \a imp
878  * and possibly using existing request from pool \a pool if provided.
879  * Returns allocated request structure with import field filled or
880  * NULL on error.
881  */
882 static inline
883 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
884                                               struct ptlrpc_request_pool *pool)
885 {
886         struct ptlrpc_request *request = NULL;
887
888         request = ptlrpc_request_cache_alloc(GFP_NOFS);
889
890         if (!request && pool)
891                 request = ptlrpc_prep_req_from_pool(pool);
892
893         if (request) {
894                 ptlrpc_cli_req_init(request);
895
896                 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
897                 LASSERT(imp != LP_POISON);
898                 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n",
899                          imp->imp_client);
900                 LASSERT(imp->imp_client != LP_POISON);
901
902                 request->rq_import = class_import_get(imp);
903         } else {
904                 CERROR("request allocation out of memory\n");
905         }
906
907         return request;
908 }
909
910 /**
911  * Helper function for creating a request.
912  * Calls __ptlrpc_request_alloc to allocate new request sturcture and inits
913  * buffer structures according to capsule template \a format.
914  * Returns allocated request structure pointer or NULL on error.
915  */
916 static struct ptlrpc_request *
917 ptlrpc_request_alloc_internal(struct obd_import *imp,
918                               struct ptlrpc_request_pool *pool,
919                               const struct req_format *format)
920 {
921         struct ptlrpc_request *request;
922         int connect = 0;
923
924         request = __ptlrpc_request_alloc(imp, pool);
925         if (!request)
926                 return NULL;
927
928         /*
929          * initiate connection if needed when the import has been
930          * referenced by the new request to avoid races with disconnect
931          */
932         if (unlikely(imp->imp_state == LUSTRE_IMP_IDLE)) {
933                 int rc;
934
935                 CDEBUG_LIMIT(imp->imp_idle_debug,
936                              "%s: reconnect after %llds idle\n",
937                              imp->imp_obd->obd_name, ktime_get_real_seconds() -
938                                                      imp->imp_last_reply_time);
939                 spin_lock(&imp->imp_lock);
940                 if (imp->imp_state == LUSTRE_IMP_IDLE) {
941                         imp->imp_generation++;
942                         imp->imp_initiated_at = imp->imp_generation;
943                         imp->imp_state =  LUSTRE_IMP_NEW;
944                         connect = 1;
945                 }
946                 spin_unlock(&imp->imp_lock);
947                 if (connect) {
948                         rc = ptlrpc_connect_import(imp);
949                         if (rc < 0) {
950                                 ptlrpc_request_free(request);
951                                 return NULL;
952                         }
953                         ptlrpc_pinger_add_import(imp);
954                 }
955         }
956
957         req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
958         req_capsule_set(&request->rq_pill, format);
959         return request;
960 }
961
962 /**
963  * Allocate new request structure for import \a imp and initialize its
964  * buffer structure according to capsule template \a format.
965  */
966 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
967                                             const struct req_format *format)
968 {
969         return ptlrpc_request_alloc_internal(imp, NULL, format);
970 }
971 EXPORT_SYMBOL(ptlrpc_request_alloc);
972
973 /**
974  * Allocate new request structure for import \a imp from pool \a pool and
975  * initialize its buffer structure according to capsule template \a format.
976  */
977 struct ptlrpc_request *
978 ptlrpc_request_alloc_pool(struct obd_import *imp,
979                           struct ptlrpc_request_pool *pool,
980                           const struct req_format *format)
981 {
982         return ptlrpc_request_alloc_internal(imp, pool, format);
983 }
984 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
985
986 /**
987  * For requests not from pool, free memory of the request structure.
988  * For requests obtained from a pool earlier, return request back to pool.
989  */
990 void ptlrpc_request_free(struct ptlrpc_request *request)
991 {
992         if (request->rq_pool)
993                 __ptlrpc_free_req_to_pool(request);
994         else
995                 ptlrpc_request_cache_free(request);
996 }
997 EXPORT_SYMBOL(ptlrpc_request_free);
998
999 /**
1000  * Allocate new request for operatione \a opcode and immediatelly pack it for
1001  * network transfer.
1002  * Only used for simple requests like OBD_PING where the only important
1003  * part of the request is operation itself.
1004  * Returns allocated request or NULL on error.
1005  */
1006 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
1007                                                  const struct req_format *format,
1008                                                  __u32 version, int opcode)
1009 {
1010         struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
1011         int rc;
1012
1013         if (req) {
1014                 rc = ptlrpc_request_pack(req, version, opcode);
1015                 if (rc) {
1016                         ptlrpc_request_free(req);
1017                         req = NULL;
1018                 }
1019         }
1020         return req;
1021 }
1022 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
1023
1024 /**
1025  * Allocate and initialize new request set structure on the current CPT.
1026  * Returns a pointer to the newly allocated set structure or NULL on error.
1027  */
1028 struct ptlrpc_request_set *ptlrpc_prep_set(void)
1029 {
1030         struct ptlrpc_request_set *set;
1031         int cpt;
1032
1033         ENTRY;
1034         cpt = cfs_cpt_current(cfs_cpt_table, 0);
1035         OBD_CPT_ALLOC(set, cfs_cpt_table, cpt, sizeof(*set));
1036         if (!set)
1037                 RETURN(NULL);
1038         atomic_set(&set->set_refcount, 1);
1039         INIT_LIST_HEAD(&set->set_requests);
1040         init_waitqueue_head(&set->set_waitq);
1041         atomic_set(&set->set_new_count, 0);
1042         atomic_set(&set->set_remaining, 0);
1043         spin_lock_init(&set->set_new_req_lock);
1044         INIT_LIST_HEAD(&set->set_new_requests);
1045         set->set_max_inflight = UINT_MAX;
1046         set->set_producer     = NULL;
1047         set->set_producer_arg = NULL;
1048         set->set_rc           = 0;
1049
1050         RETURN(set);
1051 }
1052 EXPORT_SYMBOL(ptlrpc_prep_set);
1053
1054 /**
1055  * Allocate and initialize new request set structure with flow control
1056  * extension. This extension allows to control the number of requests in-flight
1057  * for the whole set. A callback function to generate requests must be provided
1058  * and the request set will keep the number of requests sent over the wire to
1059  * @max_inflight.
1060  * Returns a pointer to the newly allocated set structure or NULL on error.
1061  */
1062 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
1063                                              void *arg)
1064
1065 {
1066         struct ptlrpc_request_set *set;
1067
1068         set = ptlrpc_prep_set();
1069         if (!set)
1070                 RETURN(NULL);
1071
1072         set->set_max_inflight  = max;
1073         set->set_producer      = func;
1074         set->set_producer_arg  = arg;
1075
1076         RETURN(set);
1077 }
1078
1079 /**
1080  * Wind down and free request set structure previously allocated with
1081  * ptlrpc_prep_set.
1082  * Ensures that all requests on the set have completed and removes
1083  * all requests from the request list in a set.
1084  * If any unsent request happen to be on the list, pretends that they got
1085  * an error in flight and calls their completion handler.
1086  */
1087 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
1088 {
1089         struct list_head *tmp;
1090         struct list_head *next;
1091         int expected_phase;
1092         int n = 0;
1093
1094         ENTRY;
1095
1096         /* Requests on the set should either all be completed, or all be new */
1097         expected_phase = (atomic_read(&set->set_remaining) == 0) ?
1098                          RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
1099         list_for_each(tmp, &set->set_requests) {
1100                 struct ptlrpc_request *req =
1101                         list_entry(tmp, struct ptlrpc_request,
1102                                    rq_set_chain);
1103
1104                 LASSERT(req->rq_phase == expected_phase);
1105                 n++;
1106         }
1107
1108         LASSERTF(atomic_read(&set->set_remaining) == 0 ||
1109                  atomic_read(&set->set_remaining) == n, "%d / %d\n",
1110                  atomic_read(&set->set_remaining), n);
1111
1112         list_for_each_safe(tmp, next, &set->set_requests) {
1113                 struct ptlrpc_request *req =
1114                         list_entry(tmp, struct ptlrpc_request,
1115                                    rq_set_chain);
1116                 list_del_init(&req->rq_set_chain);
1117
1118                 LASSERT(req->rq_phase == expected_phase);
1119
1120                 if (req->rq_phase == RQ_PHASE_NEW) {
1121                         ptlrpc_req_interpret(NULL, req, -EBADR);
1122                         atomic_dec(&set->set_remaining);
1123                 }
1124
1125                 spin_lock(&req->rq_lock);
1126                 req->rq_set = NULL;
1127                 req->rq_invalid_rqset = 0;
1128                 spin_unlock(&req->rq_lock);
1129
1130                 ptlrpc_req_finished(req);
1131         }
1132
1133         LASSERT(atomic_read(&set->set_remaining) == 0);
1134
1135         ptlrpc_reqset_put(set);
1136         EXIT;
1137 }
1138 EXPORT_SYMBOL(ptlrpc_set_destroy);
1139
1140 /**
1141  * Add a new request to the general purpose request set.
1142  * Assumes request reference from the caller.
1143  */
1144 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
1145                         struct ptlrpc_request *req)
1146 {
1147         LASSERT(req->rq_import->imp_state != LUSTRE_IMP_IDLE);
1148         LASSERT(list_empty(&req->rq_set_chain));
1149
1150         if (req->rq_allow_intr)
1151                 set->set_allow_intr = 1;
1152
1153         /* The set takes over the caller's request reference */
1154         list_add_tail(&req->rq_set_chain, &set->set_requests);
1155         req->rq_set = set;
1156         atomic_inc(&set->set_remaining);
1157         req->rq_queued_time = ktime_get_seconds();
1158
1159         if (req->rq_reqmsg)
1160                 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
1161
1162         if (set->set_producer)
1163                 /*
1164                  * If the request set has a producer callback, the RPC must be
1165                  * sent straight away
1166                  */
1167                 ptlrpc_send_new_req(req);
1168 }
1169 EXPORT_SYMBOL(ptlrpc_set_add_req);
1170
1171 /**
1172  * Add a request to a request with dedicated server thread
1173  * and wake the thread to make any necessary processing.
1174  * Currently only used for ptlrpcd.
1175  */
1176 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1177                             struct ptlrpc_request *req)
1178 {
1179         struct ptlrpc_request_set *set = pc->pc_set;
1180         int count, i;
1181
1182         LASSERT(req->rq_set == NULL);
1183         LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1184
1185         spin_lock(&set->set_new_req_lock);
1186         /*
1187          * The set takes over the caller's request reference.
1188          */
1189         req->rq_set = set;
1190         req->rq_queued_time = ktime_get_seconds();
1191         list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1192         count = atomic_inc_return(&set->set_new_count);
1193         spin_unlock(&set->set_new_req_lock);
1194
1195         /* Only need to call wakeup once for the first entry. */
1196         if (count == 1) {
1197                 wake_up(&set->set_waitq);
1198
1199                 /*
1200                  * XXX: It maybe unnecessary to wakeup all the partners. But to
1201                  *      guarantee the async RPC can be processed ASAP, we have
1202                  *      no other better choice. It maybe fixed in future.
1203                  */
1204                 for (i = 0; i < pc->pc_npartners; i++)
1205                         wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1206         }
1207 }
1208
1209 /**
1210  * Based on the current state of the import, determine if the request
1211  * can be sent, is an error, or should be delayed.
1212  *
1213  * Returns true if this request should be delayed. If false, and
1214  * *status is set, then the request can not be sent and *status is the
1215  * error code.  If false and status is 0, then request can be sent.
1216  *
1217  * The imp->imp_lock must be held.
1218  */
1219 static int ptlrpc_import_delay_req(struct obd_import *imp,
1220                                    struct ptlrpc_request *req, int *status)
1221 {
1222         int delay = 0;
1223
1224         ENTRY;
1225         LASSERT(status);
1226         *status = 0;
1227
1228         if (req->rq_ctx_init || req->rq_ctx_fini) {
1229                 /* always allow ctx init/fini rpc go through */
1230         } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1231                 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1232                 *status = -EIO;
1233         } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1234                 unsigned int opc = lustre_msg_get_opc(req->rq_reqmsg);
1235
1236                 /*
1237                  * pings or MDS-equivalent STATFS may safely
1238                  * race with umount
1239                  */
1240                 DEBUG_REQ((opc == OBD_PING || opc == OST_STATFS) ?
1241                           D_HA : D_ERROR, req, "IMP_CLOSED ");
1242                 *status = -EIO;
1243         } else if (ptlrpc_send_limit_expired(req)) {
1244                 /* probably doesn't need to be a D_ERROR afterinitial testing */
1245                 DEBUG_REQ(D_HA, req, "send limit expired ");
1246                 *status = -ETIMEDOUT;
1247         } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1248                    imp->imp_state == LUSTRE_IMP_CONNECTING) {
1249                 ;/* allow CONNECT even if import is invalid */
1250                 if (atomic_read(&imp->imp_inval_count) != 0) {
1251                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1252                         *status = -EIO;
1253                 }
1254         } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1255                 if (!imp->imp_deactive)
1256                         DEBUG_REQ(D_NET, req, "IMP_INVALID");
1257                 *status = -ESHUTDOWN; /* b=12940 */
1258         } else if (req->rq_import_generation != imp->imp_generation) {
1259                 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1260                 *status = -EIO;
1261         } else if (req->rq_send_state != imp->imp_state) {
1262                 /* invalidate in progress - any requests should be drop */
1263                 if (atomic_read(&imp->imp_inval_count) != 0) {
1264                         DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1265                         *status = -EIO;
1266                 } else if (req->rq_no_delay &&
1267                            imp->imp_generation != imp->imp_initiated_at) {
1268                         /* ignore nodelay for requests initiating connections */
1269                         *status = -EWOULDBLOCK;
1270                 } else if (req->rq_allow_replay &&
1271                            (imp->imp_state == LUSTRE_IMP_REPLAY ||
1272                             imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1273                             imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1274                             imp->imp_state == LUSTRE_IMP_RECOVER)) {
1275                         DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1276                 } else {
1277                         delay = 1;
1278                 }
1279         }
1280
1281         RETURN(delay);
1282 }
1283
1284 /**
1285  * Decide if the error message should be printed to the console or not.
1286  * Makes its decision based on request type, status, and failure frequency.
1287  *
1288  * \param[in] req  request that failed and may need a console message
1289  *
1290  * \retval false if no message should be printed
1291  * \retval true  if console message should be printed
1292  */
1293 static bool ptlrpc_console_allow(struct ptlrpc_request *req, __u32 opc, int err)
1294 {
1295         LASSERT(req->rq_reqmsg != NULL);
1296
1297         /* Suppress particular reconnect errors which are to be expected. */
1298         if (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT) {
1299                 /* Suppress timed out reconnect requests */
1300                 if (lustre_handle_is_used(&req->rq_import->imp_remote_handle) ||
1301                     req->rq_timedout)
1302                         return false;
1303
1304                 /*
1305                  * Suppress most unavailable/again reconnect requests, but
1306                  * print occasionally so it is clear client is trying to
1307                  * connect to a server where no target is running.
1308                  */
1309                 if ((err == -ENODEV || err == -EAGAIN) &&
1310                     req->rq_import->imp_conn_cnt % 30 != 20)
1311                         return false;
1312         }
1313
1314         if (opc == LDLM_ENQUEUE && err == -EAGAIN)
1315                 /* -EAGAIN is normal when using POSIX flocks */
1316                 return false;
1317
1318         if (opc == OBD_PING && (err == -ENODEV || err == -ENOTCONN) &&
1319             (req->rq_xid & 0xf) != 10)
1320                 /* Suppress most ping requests, they may fail occasionally */
1321                 return false;
1322
1323         return true;
1324 }
1325
1326 /**
1327  * Check request processing status.
1328  * Returns the status.
1329  */
1330 static int ptlrpc_check_status(struct ptlrpc_request *req)
1331 {
1332         int err;
1333
1334         ENTRY;
1335         err = lustre_msg_get_status(req->rq_repmsg);
1336         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1337                 struct obd_import *imp = req->rq_import;
1338                 lnet_nid_t nid = imp->imp_connection->c_peer.nid;
1339                 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1340
1341                 if (ptlrpc_console_allow(req, opc, err))
1342                         LCONSOLE_ERROR_MSG(0x11,
1343                                            "%s: operation %s to node %s failed: rc = %d\n",
1344                                            imp->imp_obd->obd_name,
1345                                            ll_opcode2str(opc),
1346                                            libcfs_nid2str(nid), err);
1347                 RETURN(err < 0 ? err : -EINVAL);
1348         }
1349
1350         if (err < 0) {
1351                 DEBUG_REQ(D_INFO, req, "status is %d", err);
1352         } else if (err > 0) {
1353                 /* XXX: translate this error from net to host */
1354                 DEBUG_REQ(D_INFO, req, "status is %d", err);
1355         }
1356
1357         RETURN(err);
1358 }
1359
1360 /**
1361  * save pre-versions of objects into request for replay.
1362  * Versions are obtained from server reply.
1363  * used for VBR.
1364  */
1365 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1366 {
1367         struct lustre_msg *repmsg = req->rq_repmsg;
1368         struct lustre_msg *reqmsg = req->rq_reqmsg;
1369         __u64 *versions = lustre_msg_get_versions(repmsg);
1370
1371         ENTRY;
1372         if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1373                 return;
1374
1375         LASSERT(versions);
1376         lustre_msg_set_versions(reqmsg, versions);
1377         CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1378                versions[0], versions[1]);
1379
1380         EXIT;
1381 }
1382
1383 __u64 ptlrpc_known_replied_xid(struct obd_import *imp)
1384 {
1385         struct ptlrpc_request *req;
1386
1387         assert_spin_locked(&imp->imp_lock);
1388         if (list_empty(&imp->imp_unreplied_list))
1389                 return 0;
1390
1391         req = list_entry(imp->imp_unreplied_list.next, struct ptlrpc_request,
1392                          rq_unreplied_list);
1393         LASSERTF(req->rq_xid >= 1, "XID:%llu\n", req->rq_xid);
1394
1395         if (imp->imp_known_replied_xid < req->rq_xid - 1)
1396                 imp->imp_known_replied_xid = req->rq_xid - 1;
1397
1398         return req->rq_xid - 1;
1399 }
1400
1401 /**
1402  * Callback function called when client receives RPC reply for \a req.
1403  * Returns 0 on success or error code.
1404  * The return alue would be assigned to req->rq_status by the caller
1405  * as request processing status.
1406  * This function also decides if the request needs to be saved for later replay.
1407  */
1408 static int after_reply(struct ptlrpc_request *req)
1409 {
1410         struct obd_import *imp = req->rq_import;
1411         struct obd_device *obd = req->rq_import->imp_obd;
1412         ktime_t work_start;
1413         u64 committed;
1414         s64 timediff;
1415         int rc;
1416
1417         ENTRY;
1418         LASSERT(obd != NULL);
1419         /* repbuf must be unlinked */
1420         LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked);
1421
1422         if (req->rq_reply_truncated) {
1423                 if (ptlrpc_no_resend(req)) {
1424                         DEBUG_REQ(D_ERROR, req,
1425                                   "reply buffer overflow, expected: %d, actual size: %d",
1426                                   req->rq_nob_received, req->rq_repbuf_len);
1427                         RETURN(-EOVERFLOW);
1428                 }
1429
1430                 sptlrpc_cli_free_repbuf(req);
1431                 /*
1432                  * Pass the required reply buffer size (include
1433                  * space for early reply).
1434                  * NB: no need to roundup because alloc_repbuf
1435                  * will roundup it
1436                  */
1437                 req->rq_replen = req->rq_nob_received;
1438                 req->rq_nob_received = 0;
1439                 spin_lock(&req->rq_lock);
1440                 req->rq_resend       = 1;
1441                 spin_unlock(&req->rq_lock);
1442                 RETURN(0);
1443         }
1444
1445         work_start = ktime_get_real();
1446         timediff = ktime_us_delta(work_start, req->rq_sent_ns);
1447
1448         /*
1449          * NB Until this point, the whole of the incoming message,
1450          * including buflens, status etc is in the sender's byte order.
1451          */
1452         rc = sptlrpc_cli_unwrap_reply(req);
1453         if (rc) {
1454                 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1455                 RETURN(rc);
1456         }
1457
1458         /*
1459          * Security layer unwrap might ask resend this request.
1460          */
1461         if (req->rq_resend)
1462                 RETURN(0);
1463
1464         rc = unpack_reply(req);
1465         if (rc)
1466                 RETURN(rc);
1467
1468         /* retry indefinitely on EINPROGRESS */
1469         if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1470             ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1471                 time64_t now = ktime_get_real_seconds();
1472
1473                 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1474                 spin_lock(&req->rq_lock);
1475                 req->rq_resend = 1;
1476                 spin_unlock(&req->rq_lock);
1477                 req->rq_nr_resend++;
1478
1479                 /* Readjust the timeout for current conditions */
1480                 ptlrpc_at_set_req_timeout(req);
1481                 /*
1482                  * delay resend to give a chance to the server to get ready.
1483                  * The delay is increased by 1s on every resend and is capped to
1484                  * the current request timeout (i.e. obd_timeout if AT is off,
1485                  * or AT service time x 125% + 5s, see at_est2timeout)
1486                  */
1487                 if (req->rq_nr_resend > req->rq_timeout)
1488                         req->rq_sent = now + req->rq_timeout;
1489                 else
1490                         req->rq_sent = now + req->rq_nr_resend;
1491
1492                 /* Resend for EINPROGRESS will use a new XID */
1493                 spin_lock(&imp->imp_lock);
1494                 list_del_init(&req->rq_unreplied_list);
1495                 spin_unlock(&imp->imp_lock);
1496
1497                 RETURN(0);
1498         }
1499
1500         if (obd->obd_svc_stats) {
1501                 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1502                                     timediff);
1503                 ptlrpc_lprocfs_rpc_sent(req, timediff);
1504         }
1505
1506         if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1507             lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1508                 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1509                           lustre_msg_get_type(req->rq_repmsg));
1510                 RETURN(-EPROTO);
1511         }
1512
1513         if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1514                 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1515         ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1516         ptlrpc_at_adj_net_latency(req,
1517                                   lustre_msg_get_service_time(req->rq_repmsg));
1518
1519         rc = ptlrpc_check_status(req);
1520
1521         if (rc) {
1522                 /*
1523                  * Either we've been evicted, or the server has failed for
1524                  * some reason. Try to reconnect, and if that fails, punt to
1525                  * the upcall.
1526                  */
1527                 if (ptlrpc_recoverable_error(rc)) {
1528                         if (req->rq_send_state != LUSTRE_IMP_FULL ||
1529                             imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1530                                 RETURN(rc);
1531                         }
1532                         ptlrpc_request_handle_notconn(req);
1533                         RETURN(rc);
1534                 }
1535         } else {
1536                 /*
1537                  * Let's look if server sent slv. Do it only for RPC with
1538                  * rc == 0.
1539                  */
1540                 ldlm_cli_update_pool(req);
1541         }
1542
1543         /*
1544          * Store transno in reqmsg for replay.
1545          */
1546         if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1547                 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1548                 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1549         }
1550
1551         if (imp->imp_replayable) {
1552                 spin_lock(&imp->imp_lock);
1553                 /*
1554                  * No point in adding already-committed requests to the replay
1555                  * list, we will just remove them immediately. b=9829
1556                  */
1557                 if (req->rq_transno != 0 &&
1558                     (req->rq_transno >
1559                      lustre_msg_get_last_committed(req->rq_repmsg) ||
1560                      req->rq_replay)) {
1561                         /** version recovery */
1562                         ptlrpc_save_versions(req);
1563                         ptlrpc_retain_replayable_request(req, imp);
1564                 } else if (req->rq_commit_cb &&
1565                            list_empty(&req->rq_replay_list)) {
1566                         /*
1567                          * NB: don't call rq_commit_cb if it's already on
1568                          * rq_replay_list, ptlrpc_free_committed() will call
1569                          * it later, see LU-3618 for details
1570                          */
1571                         spin_unlock(&imp->imp_lock);
1572                         req->rq_commit_cb(req);
1573                         spin_lock(&imp->imp_lock);
1574                 }
1575
1576                 /*
1577                  * Replay-enabled imports return commit-status information.
1578                  */
1579                 committed = lustre_msg_get_last_committed(req->rq_repmsg);
1580                 if (likely(committed > imp->imp_peer_committed_transno))
1581                         imp->imp_peer_committed_transno = committed;
1582
1583                 ptlrpc_free_committed(imp);
1584
1585                 if (!list_empty(&imp->imp_replay_list)) {
1586                         struct ptlrpc_request *last;
1587
1588                         last = list_entry(imp->imp_replay_list.prev,
1589                                           struct ptlrpc_request,
1590                                           rq_replay_list);
1591                         /*
1592                          * Requests with rq_replay stay on the list even if no
1593                          * commit is expected.
1594                          */
1595                         if (last->rq_transno > imp->imp_peer_committed_transno)
1596                                 ptlrpc_pinger_commit_expected(imp);
1597                 }
1598
1599                 spin_unlock(&imp->imp_lock);
1600         }
1601
1602         RETURN(rc);
1603 }
1604
1605 /**
1606  * Helper function to send request \a req over the network for the first time
1607  * Also adjusts request phase.
1608  * Returns 0 on success or error code.
1609  */
1610 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1611 {
1612         struct obd_import *imp = req->rq_import;
1613         __u64 min_xid = 0;
1614         int rc;
1615
1616         ENTRY;
1617         LASSERT(req->rq_phase == RQ_PHASE_NEW);
1618
1619         /* do not try to go further if there is not enough memory in enc_pool */
1620         if (req->rq_sent && req->rq_bulk)
1621                 if (req->rq_bulk->bd_iov_count > get_free_pages_in_pool() &&
1622                     pool_is_at_full_capacity())
1623                         RETURN(-ENOMEM);
1624
1625         if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) &&
1626             (!req->rq_generation_set ||
1627              req->rq_import_generation == imp->imp_generation))
1628                 RETURN(0);
1629
1630         ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1631
1632         spin_lock(&imp->imp_lock);
1633
1634         LASSERT(req->rq_xid != 0);
1635         LASSERT(!list_empty(&req->rq_unreplied_list));
1636
1637         if (!req->rq_generation_set)
1638                 req->rq_import_generation = imp->imp_generation;
1639
1640         if (ptlrpc_import_delay_req(imp, req, &rc)) {
1641                 spin_lock(&req->rq_lock);
1642                 req->rq_waiting = 1;
1643                 spin_unlock(&req->rq_lock);
1644
1645                 DEBUG_REQ(D_HA, req, "req waiting for recovery: (%s != %s)",
1646                           ptlrpc_import_state_name(req->rq_send_state),
1647                           ptlrpc_import_state_name(imp->imp_state));
1648                 LASSERT(list_empty(&req->rq_list));
1649                 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1650                 atomic_inc(&req->rq_import->imp_inflight);
1651                 spin_unlock(&imp->imp_lock);
1652                 RETURN(0);
1653         }
1654
1655         if (rc != 0) {
1656                 spin_unlock(&imp->imp_lock);
1657                 req->rq_status = rc;
1658                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1659                 RETURN(rc);
1660         }
1661
1662         LASSERT(list_empty(&req->rq_list));
1663         list_add_tail(&req->rq_list, &imp->imp_sending_list);
1664         atomic_inc(&req->rq_import->imp_inflight);
1665
1666         /*
1667          * find the known replied XID from the unreplied list, CONNECT
1668          * and DISCONNECT requests are skipped to make the sanity check
1669          * on server side happy. see process_req_last_xid().
1670          *
1671          * For CONNECT: Because replay requests have lower XID, it'll
1672          * break the sanity check if CONNECT bump the exp_last_xid on
1673          * server.
1674          *
1675          * For DISCONNECT: Since client will abort inflight RPC before
1676          * sending DISCONNECT, DISCONNECT may carry an XID which higher
1677          * than the inflight RPC.
1678          */
1679         if (!ptlrpc_req_is_connect(req) && !ptlrpc_req_is_disconnect(req))
1680                 min_xid = ptlrpc_known_replied_xid(imp);
1681         spin_unlock(&imp->imp_lock);
1682
1683         lustre_msg_set_last_xid(req->rq_reqmsg, min_xid);
1684
1685         lustre_msg_set_status(req->rq_reqmsg, current_pid());
1686
1687         rc = sptlrpc_req_refresh_ctx(req, -1);
1688         if (rc) {
1689                 if (req->rq_err) {
1690                         req->rq_status = rc;
1691                         RETURN(1);
1692                 } else {
1693                         spin_lock(&req->rq_lock);
1694                         req->rq_wait_ctx = 1;
1695                         spin_unlock(&req->rq_lock);
1696                         RETURN(0);
1697                 }
1698         }
1699
1700         CDEBUG(D_RPCTRACE,
1701                "Sending RPC req@%p pname:cluuid:pid:xid:nid:opc:job %s:%s:%d:%llu:%s:%d:%s\n",
1702                req, current_comm(),
1703                imp->imp_obd->obd_uuid.uuid,
1704                lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1705                obd_import_nid2str(imp), lustre_msg_get_opc(req->rq_reqmsg),
1706                lustre_msg_get_jobid(req->rq_reqmsg));
1707
1708         rc = ptl_send_rpc(req, 0);
1709         if (rc == -ENOMEM) {
1710                 spin_lock(&imp->imp_lock);
1711                 if (!list_empty(&req->rq_list)) {
1712                         list_del_init(&req->rq_list);
1713                         atomic_dec(&req->rq_import->imp_inflight);
1714                 }
1715                 spin_unlock(&imp->imp_lock);
1716                 ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
1717                 RETURN(rc);
1718         }
1719         if (rc) {
1720                 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1721                 spin_lock(&req->rq_lock);
1722                 req->rq_net_err = 1;
1723                 spin_unlock(&req->rq_lock);
1724                 RETURN(rc);
1725         }
1726         RETURN(0);
1727 }
1728
1729 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1730 {
1731         int remaining, rc;
1732
1733         ENTRY;
1734         LASSERT(set->set_producer != NULL);
1735
1736         remaining = atomic_read(&set->set_remaining);
1737
1738         /*
1739          * populate the ->set_requests list with requests until we
1740          * reach the maximum number of RPCs in flight for this set
1741          */
1742         while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1743                 rc = set->set_producer(set, set->set_producer_arg);
1744                 if (rc == -ENOENT) {
1745                         /* no more RPC to produce */
1746                         set->set_producer     = NULL;
1747                         set->set_producer_arg = NULL;
1748                         RETURN(0);
1749                 }
1750         }
1751
1752         RETURN((atomic_read(&set->set_remaining) - remaining));
1753 }
1754
1755 /**
1756  * this sends any unsent RPCs in \a set and returns 1 if all are sent
1757  * and no more replies are expected.
1758  * (it is possible to get less replies than requests sent e.g. due to timed out
1759  * requests or requests that we had trouble to send out)
1760  *
1761  * NOTE: This function contains a potential schedule point (cond_resched()).
1762  */
1763 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1764 {
1765         struct list_head *tmp, *next;
1766         struct list_head  comp_reqs;
1767         int force_timer_recalc = 0;
1768
1769         ENTRY;
1770         if (atomic_read(&set->set_remaining) == 0)
1771                 RETURN(1);
1772
1773         INIT_LIST_HEAD(&comp_reqs);
1774         list_for_each_safe(tmp, next, &set->set_requests) {
1775                 struct ptlrpc_request *req =
1776                         list_entry(tmp, struct ptlrpc_request,
1777                                    rq_set_chain);
1778                 struct obd_import *imp = req->rq_import;
1779                 int unregistered = 0;
1780                 int async = 1;
1781                 int rc = 0;
1782
1783                 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1784                         list_move_tail(&req->rq_set_chain, &comp_reqs);
1785                         continue;
1786                 }
1787
1788                 /*
1789                  * This schedule point is mainly for the ptlrpcd caller of this
1790                  * function.  Most ptlrpc sets are not long-lived and unbounded
1791                  * in length, but at the least the set used by the ptlrpcd is.
1792                  * Since the processing time is unbounded, we need to insert an
1793                  * explicit schedule point to make the thread well-behaved.
1794                  */
1795                 cond_resched();
1796
1797                 /*
1798                  * If the caller requires to allow to be interpreted by force
1799                  * and it has really been interpreted, then move the request
1800                  * to RQ_PHASE_INTERPRET phase in spite of what the current
1801                  * phase is.
1802                  */
1803                 if (unlikely(req->rq_allow_intr && req->rq_intr)) {
1804                         req->rq_status = -EINTR;
1805                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1806
1807                         /*
1808                          * Since it is interpreted and we have to wait for
1809                          * the reply to be unlinked, then use sync mode.
1810                          */
1811                         async = 0;
1812
1813                         GOTO(interpret, req->rq_status);
1814                 }
1815
1816                 if (req->rq_phase == RQ_PHASE_NEW && ptlrpc_send_new_req(req))
1817                         force_timer_recalc = 1;
1818
1819                 /* delayed send - skip */
1820                 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1821                         continue;
1822
1823                 /* delayed resend - skip */
1824                 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1825                     req->rq_sent > ktime_get_real_seconds())
1826                         continue;
1827
1828                 if (!(req->rq_phase == RQ_PHASE_RPC ||
1829                       req->rq_phase == RQ_PHASE_BULK ||
1830                       req->rq_phase == RQ_PHASE_INTERPRET ||
1831                       req->rq_phase == RQ_PHASE_UNREG_RPC ||
1832                       req->rq_phase == RQ_PHASE_UNREG_BULK)) {
1833                         DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1834                         LBUG();
1835                 }
1836
1837                 if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
1838                     req->rq_phase == RQ_PHASE_UNREG_BULK) {
1839                         LASSERT(req->rq_next_phase != req->rq_phase);
1840                         LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1841
1842                         if (req->rq_req_deadline &&
1843                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
1844                                 req->rq_req_deadline = 0;
1845                         if (req->rq_reply_deadline &&
1846                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
1847                                 req->rq_reply_deadline = 0;
1848                         if (req->rq_bulk_deadline &&
1849                             !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
1850                                 req->rq_bulk_deadline = 0;
1851
1852                         /*
1853                          * Skip processing until reply is unlinked. We
1854                          * can't return to pool before that and we can't
1855                          * call interpret before that. We need to make
1856                          * sure that all rdma transfers finished and will
1857                          * not corrupt any data.
1858                          */
1859                         if (req->rq_phase == RQ_PHASE_UNREG_RPC &&
1860                             ptlrpc_client_recv_or_unlink(req))
1861                                 continue;
1862                         if (req->rq_phase == RQ_PHASE_UNREG_BULK &&
1863                             ptlrpc_client_bulk_active(req))
1864                                 continue;
1865
1866                         /*
1867                          * Turn fail_loc off to prevent it from looping
1868                          * forever.
1869                          */
1870                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1871                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1872                                                      OBD_FAIL_ONCE);
1873                         }
1874                         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1875                                 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1876                                                      OBD_FAIL_ONCE);
1877                         }
1878
1879                         /*
1880                          * Move to next phase if reply was successfully
1881                          * unlinked.
1882                          */
1883                         ptlrpc_rqphase_move(req, req->rq_next_phase);
1884                 }
1885
1886                 if (req->rq_phase == RQ_PHASE_INTERPRET)
1887                         GOTO(interpret, req->rq_status);
1888
1889                 /*
1890                  * Note that this also will start async reply unlink.
1891                  */
1892                 if (req->rq_net_err && !req->rq_timedout) {
1893                         ptlrpc_expire_one_request(req, 1);
1894
1895                         /*
1896                          * Check if we still need to wait for unlink.
1897                          */
1898                         if (ptlrpc_client_recv_or_unlink(req) ||
1899                             ptlrpc_client_bulk_active(req))
1900                                 continue;
1901                         /* If there is no need to resend, fail it now. */
1902                         if (req->rq_no_resend) {
1903                                 if (req->rq_status == 0)
1904                                         req->rq_status = -EIO;
1905                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1906                                 GOTO(interpret, req->rq_status);
1907                         } else {
1908                                 continue;
1909                         }
1910                 }
1911
1912                 if (req->rq_err) {
1913                         spin_lock(&req->rq_lock);
1914                         req->rq_replied = 0;
1915                         spin_unlock(&req->rq_lock);
1916                         if (req->rq_status == 0)
1917                                 req->rq_status = -EIO;
1918                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1919                         GOTO(interpret, req->rq_status);
1920                 }
1921
1922                 /*
1923                  * ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1924                  * so it sets rq_intr regardless of individual rpc
1925                  * timeouts. The synchronous IO waiting path sets
1926                  * rq_intr irrespective of whether ptlrpcd
1927                  * has seen a timeout.  Our policy is to only interpret
1928                  * interrupted rpcs after they have timed out, so we
1929                  * need to enforce that here.
1930                  */
1931
1932                 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1933                                      req->rq_wait_ctx)) {
1934                         req->rq_status = -EINTR;
1935                         ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1936                         GOTO(interpret, req->rq_status);
1937                 }
1938
1939                 if (req->rq_phase == RQ_PHASE_RPC) {
1940                         if (req->rq_timedout || req->rq_resend ||
1941                             req->rq_waiting || req->rq_wait_ctx) {
1942                                 int status;
1943
1944                                 if (!ptlrpc_unregister_reply(req, 1)) {
1945                                         ptlrpc_unregister_bulk(req, 1);
1946                                         continue;
1947                                 }
1948
1949                                 spin_lock(&imp->imp_lock);
1950                                 if (ptlrpc_import_delay_req(imp, req,
1951                                                             &status)) {
1952                                         /*
1953                                          * put on delay list - only if we wait
1954                                          * recovery finished - before send
1955                                          */
1956                                         list_del_init(&req->rq_list);
1957                                         list_add_tail(&req->rq_list,
1958                                                       &imp->imp_delayed_list);
1959                                         spin_unlock(&imp->imp_lock);
1960                                         continue;
1961                                 }
1962
1963                                 if (status != 0)  {
1964                                         req->rq_status = status;
1965                                         ptlrpc_rqphase_move(req,
1966                                                             RQ_PHASE_INTERPRET);
1967                                         spin_unlock(&imp->imp_lock);
1968                                         GOTO(interpret, req->rq_status);
1969                                 }
1970                                 /* ignore on just initiated connections */
1971                                 if (ptlrpc_no_resend(req) &&
1972                                     !req->rq_wait_ctx &&
1973                                     imp->imp_generation !=
1974                                     imp->imp_initiated_at) {
1975                                         req->rq_status = -ENOTCONN;
1976                                         ptlrpc_rqphase_move(req,
1977                                                             RQ_PHASE_INTERPRET);
1978                                         spin_unlock(&imp->imp_lock);
1979                                         GOTO(interpret, req->rq_status);
1980                                 }
1981
1982                                 list_del_init(&req->rq_list);
1983                                 list_add_tail(&req->rq_list,
1984                                               &imp->imp_sending_list);
1985
1986                                 spin_unlock(&imp->imp_lock);
1987
1988                                 spin_lock(&req->rq_lock);
1989                                 req->rq_waiting = 0;
1990                                 spin_unlock(&req->rq_lock);
1991
1992                                 if (req->rq_timedout || req->rq_resend) {
1993                                         /*
1994                                          * This is re-sending anyways,
1995                                          * let's mark req as resend.
1996                                          */
1997                                         spin_lock(&req->rq_lock);
1998                                         req->rq_resend = 1;
1999                                         spin_unlock(&req->rq_lock);
2000                                 }
2001                                 /*
2002                                  * rq_wait_ctx is only touched by ptlrpcd,
2003                                  * so no lock is needed here.
2004                                  */
2005                                 status = sptlrpc_req_refresh_ctx(req, -1);
2006                                 if (status) {
2007                                         if (req->rq_err) {
2008                                                 req->rq_status = status;
2009                                                 spin_lock(&req->rq_lock);
2010                                                 req->rq_wait_ctx = 0;
2011                                                 spin_unlock(&req->rq_lock);
2012                                                 force_timer_recalc = 1;
2013                                         } else {
2014                                                 spin_lock(&req->rq_lock);
2015                                                 req->rq_wait_ctx = 1;
2016                                                 spin_unlock(&req->rq_lock);
2017                                         }
2018
2019                                         continue;
2020                                 } else {
2021                                         spin_lock(&req->rq_lock);
2022                                         req->rq_wait_ctx = 0;
2023                                         spin_unlock(&req->rq_lock);
2024                                 }
2025
2026                                 /*
2027                                  * In any case, the previous bulk should be
2028                                  * cleaned up to prepare for the new sending
2029                                  */
2030                                 if (req->rq_bulk &&
2031                                     !ptlrpc_unregister_bulk(req, 1))
2032                                         continue;
2033
2034                                 rc = ptl_send_rpc(req, 0);
2035                                 if (rc == -ENOMEM) {
2036                                         spin_lock(&imp->imp_lock);
2037                                         if (!list_empty(&req->rq_list))
2038                                                 list_del_init(&req->rq_list);
2039                                         spin_unlock(&imp->imp_lock);
2040                                         ptlrpc_rqphase_move(req, RQ_PHASE_NEW);
2041                                         continue;
2042                                 }
2043                                 if (rc) {
2044                                         DEBUG_REQ(D_HA, req,
2045                                                   "send failed: rc = %d", rc);
2046                                         force_timer_recalc = 1;
2047                                         spin_lock(&req->rq_lock);
2048                                         req->rq_net_err = 1;
2049                                         spin_unlock(&req->rq_lock);
2050                                         continue;
2051                                 }
2052                                 /* need to reset the timeout */
2053                                 force_timer_recalc = 1;
2054                         }
2055
2056                         spin_lock(&req->rq_lock);
2057
2058                         if (ptlrpc_client_early(req)) {
2059                                 ptlrpc_at_recv_early_reply(req);
2060                                 spin_unlock(&req->rq_lock);
2061                                 continue;
2062                         }
2063
2064                         /* Still waiting for a reply? */
2065                         if (ptlrpc_client_recv(req)) {
2066                                 spin_unlock(&req->rq_lock);
2067                                 continue;
2068                         }
2069
2070                         /* Did we actually receive a reply? */
2071                         if (!ptlrpc_client_replied(req)) {
2072                                 spin_unlock(&req->rq_lock);
2073                                 continue;
2074                         }
2075
2076                         spin_unlock(&req->rq_lock);
2077
2078                         /*
2079                          * unlink from net because we are going to
2080                          * swab in-place of reply buffer
2081                          */
2082                         unregistered = ptlrpc_unregister_reply(req, 1);
2083                         if (!unregistered)
2084                                 continue;
2085
2086                         req->rq_status = after_reply(req);
2087                         if (req->rq_resend)
2088                                 continue;
2089
2090                         /*
2091                          * If there is no bulk associated with this request,
2092                          * then we're done and should let the interpreter
2093                          * process the reply. Similarly if the RPC returned
2094                          * an error, and therefore the bulk will never arrive.
2095                          */
2096                         if (!req->rq_bulk || req->rq_status < 0) {
2097                                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
2098                                 GOTO(interpret, req->rq_status);
2099                         }
2100
2101                         ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
2102                 }
2103
2104                 LASSERT(req->rq_phase == RQ_PHASE_BULK);
2105                 if (ptlrpc_client_bulk_active(req))
2106                         continue;
2107
2108                 if (req->rq_bulk->bd_failure) {
2109                         /*
2110                          * The RPC reply arrived OK, but the bulk screwed
2111                          * up!  Dead weird since the server told us the RPC
2112                          * was good after getting the REPLY for her GET or
2113                          * the ACK for her PUT.
2114                          */
2115                         DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
2116                         req->rq_status = -EIO;
2117                 }
2118
2119                 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
2120
2121 interpret:
2122                 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
2123
2124                 /*
2125                  * This moves to "unregistering" phase we need to wait for
2126                  * reply unlink.
2127                  */
2128                 if (!unregistered && !ptlrpc_unregister_reply(req, async)) {
2129                         /* start async bulk unlink too */
2130                         ptlrpc_unregister_bulk(req, 1);
2131                         continue;
2132                 }
2133
2134                 if (!ptlrpc_unregister_bulk(req, async))
2135                         continue;
2136
2137                 /*
2138                  * When calling interpret receiving already should be
2139                  * finished.
2140                  */
2141                 LASSERT(!req->rq_receiving_reply);
2142
2143                 ptlrpc_req_interpret(env, req, req->rq_status);
2144
2145                 if (ptlrpcd_check_work(req)) {
2146                         atomic_dec(&set->set_remaining);
2147                         continue;
2148                 }
2149                 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
2150
2151                 if (req->rq_reqmsg)
2152                         CDEBUG(D_RPCTRACE,
2153                                "Completed RPC req@%p pname:cluuid:pid:xid:nid:opc:job %s:%s:%d:%llu:%s:%d:%s\n",
2154                                req, current_comm(),
2155                                imp->imp_obd->obd_uuid.uuid,
2156                                lustre_msg_get_status(req->rq_reqmsg),
2157                                req->rq_xid,
2158                                obd_import_nid2str(imp),
2159                                lustre_msg_get_opc(req->rq_reqmsg),
2160                                lustre_msg_get_jobid(req->rq_reqmsg));
2161
2162                 spin_lock(&imp->imp_lock);
2163                 /*
2164                  * Request already may be not on sending or delaying list. This
2165                  * may happen in the case of marking it erroneous for the case
2166                  * ptlrpc_import_delay_req(req, status) find it impossible to
2167                  * allow sending this rpc and returns *status != 0.
2168                  */
2169                 if (!list_empty(&req->rq_list)) {
2170                         list_del_init(&req->rq_list);
2171                         atomic_dec(&imp->imp_inflight);
2172                 }
2173                 list_del_init(&req->rq_unreplied_list);
2174                 spin_unlock(&imp->imp_lock);
2175
2176                 atomic_dec(&set->set_remaining);
2177                 wake_up_all(&imp->imp_recovery_waitq);
2178
2179                 if (set->set_producer) {
2180                         /* produce a new request if possible */
2181                         if (ptlrpc_set_producer(set) > 0)
2182                                 force_timer_recalc = 1;
2183
2184                         /*
2185                          * free the request that has just been completed
2186                          * in order not to pollute set->set_requests
2187                          */
2188                         list_del_init(&req->rq_set_chain);
2189                         spin_lock(&req->rq_lock);
2190                         req->rq_set = NULL;
2191                         req->rq_invalid_rqset = 0;
2192                         spin_unlock(&req->rq_lock);
2193
2194                         /* record rq_status to compute the final status later */
2195                         if (req->rq_status != 0)
2196                                 set->set_rc = req->rq_status;
2197                         ptlrpc_req_finished(req);
2198                 } else {
2199                         list_move_tail(&req->rq_set_chain, &comp_reqs);
2200                 }
2201         }
2202
2203         /*
2204          * move completed request at the head of list so it's easier for
2205          * caller to find them
2206          */
2207         list_splice(&comp_reqs, &set->set_requests);
2208
2209         /* If we hit an error, we want to recover promptly. */
2210         RETURN(atomic_read(&set->set_remaining) == 0 || force_timer_recalc);
2211 }
2212 EXPORT_SYMBOL(ptlrpc_check_set);
2213
2214 /**
2215  * Time out request \a req. is \a async_unlink is set, that means do not wait
2216  * until LNet actually confirms network buffer unlinking.
2217  * Return 1 if we should give up further retrying attempts or 0 otherwise.
2218  */
2219 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
2220 {
2221         struct obd_import *imp = req->rq_import;
2222         unsigned int debug_mask = D_RPCTRACE;
2223         int rc = 0;
2224
2225         ENTRY;
2226         spin_lock(&req->rq_lock);
2227         req->rq_timedout = 1;
2228         spin_unlock(&req->rq_lock);
2229
2230         if (ptlrpc_console_allow(req, lustre_msg_get_opc(req->rq_reqmsg),
2231                                  lustre_msg_get_status(req->rq_reqmsg)))
2232                 debug_mask = D_WARNING;
2233         DEBUG_REQ(debug_mask, req, "Request sent has %s: [sent %lld/real %lld]",
2234                   req->rq_net_err ? "failed due to network error" :
2235                      ((req->rq_real_sent == 0 ||
2236                        req->rq_real_sent < req->rq_sent ||
2237                        req->rq_real_sent >= req->rq_deadline) ?
2238                       "timed out for sent delay" : "timed out for slow reply"),
2239                   (s64)req->rq_sent, (s64)req->rq_real_sent);
2240
2241         if (imp && obd_debug_peer_on_timeout)
2242                 LNetDebugPeer(imp->imp_connection->c_peer);
2243
2244         ptlrpc_unregister_reply(req, async_unlink);
2245         ptlrpc_unregister_bulk(req, async_unlink);
2246
2247         if (obd_dump_on_timeout)
2248                 libcfs_debug_dumplog();
2249
2250         if (!imp) {
2251                 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
2252                 RETURN(1);
2253         }
2254
2255         atomic_inc(&imp->imp_timeouts);
2256
2257         /* The DLM server doesn't want recovery run on its imports. */
2258         if (imp->imp_dlm_fake)
2259                 RETURN(1);
2260
2261         /*
2262          * If this request is for recovery or other primordial tasks,
2263          * then error it out here.
2264          */
2265         if (req->rq_ctx_init || req->rq_ctx_fini ||
2266             req->rq_send_state != LUSTRE_IMP_FULL ||
2267             imp->imp_obd->obd_no_recov) {
2268                 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
2269                           ptlrpc_import_state_name(req->rq_send_state),
2270                           ptlrpc_import_state_name(imp->imp_state));
2271                 spin_lock(&req->rq_lock);
2272                 req->rq_status = -ETIMEDOUT;
2273                 req->rq_err = 1;
2274                 spin_unlock(&req->rq_lock);
2275                 RETURN(1);
2276         }
2277
2278         /*
2279          * if a request can't be resent we can't wait for an answer after
2280          * the timeout
2281          */
2282         if (ptlrpc_no_resend(req)) {
2283                 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
2284                 rc = 1;
2285         }
2286
2287         ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
2288
2289         RETURN(rc);
2290 }
2291
2292 /**
2293  * Time out all uncompleted requests in request set pointed by \a data
2294  * Callback used when waiting on sets with l_wait_event.
2295  * Always returns 1.
2296  */
2297 int ptlrpc_expired_set(void *data)
2298 {
2299         struct ptlrpc_request_set *set = data;
2300         struct list_head *tmp;
2301         time64_t now = ktime_get_real_seconds();
2302
2303         ENTRY;
2304         LASSERT(set != NULL);
2305
2306         /*
2307          * A timeout expired. See which reqs it applies to...
2308          */
2309         list_for_each(tmp, &set->set_requests) {
2310                 struct ptlrpc_request *req =
2311                         list_entry(tmp, struct ptlrpc_request,
2312                                    rq_set_chain);
2313
2314                 /* don't expire request waiting for context */
2315                 if (req->rq_wait_ctx)
2316                         continue;
2317
2318                 /* Request in-flight? */
2319                 if (!((req->rq_phase == RQ_PHASE_RPC &&
2320                        !req->rq_waiting && !req->rq_resend) ||
2321                       (req->rq_phase == RQ_PHASE_BULK)))
2322                         continue;
2323
2324                 if (req->rq_timedout ||     /* already dealt with */
2325                     req->rq_deadline > now) /* not expired */
2326                         continue;
2327
2328                 /*
2329                  * Deal with this guy. Do it asynchronously to not block
2330                  * ptlrpcd thread.
2331                  */
2332                 ptlrpc_expire_one_request(req, 1);
2333         }
2334
2335         /*
2336          * When waiting for a whole set, we always break out of the
2337          * sleep so we can recalculate the timeout, or enable interrupts
2338          * if everyone's timed out.
2339          */
2340         RETURN(1);
2341 }
2342
2343 /**
2344  * Sets rq_intr flag in \a req under spinlock.
2345  */
2346 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2347 {
2348         spin_lock(&req->rq_lock);
2349         req->rq_intr = 1;
2350         spin_unlock(&req->rq_lock);
2351 }
2352 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2353
2354 /**
2355  * Interrupts (sets interrupted flag) all uncompleted requests in
2356  * a set \a data. Callback for l_wait_event for interruptible waits.
2357  */
2358 static void ptlrpc_interrupted_set(void *data)
2359 {
2360         struct ptlrpc_request_set *set = data;
2361         struct list_head *tmp;
2362
2363         LASSERT(set != NULL);
2364         CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2365
2366         list_for_each(tmp, &set->set_requests) {
2367                 struct ptlrpc_request *req =
2368                         list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2369
2370                 if (req->rq_intr)
2371                         continue;
2372
2373                 if (req->rq_phase != RQ_PHASE_RPC &&
2374                     req->rq_phase != RQ_PHASE_UNREG_RPC &&
2375                     !req->rq_allow_intr)
2376                         continue;
2377
2378                 ptlrpc_mark_interrupted(req);
2379         }
2380 }
2381
2382 /**
2383  * Get the smallest timeout in the set; this does NOT set a timeout.
2384  */
2385 time64_t ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2386 {
2387         struct list_head *tmp;
2388         time64_t now = ktime_get_real_seconds();
2389         int timeout = 0;
2390         struct ptlrpc_request *req;
2391         time64_t deadline;
2392
2393         ENTRY;
2394         list_for_each(tmp, &set->set_requests) {
2395                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2396
2397                 /* Request in-flight? */
2398                 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2399                       (req->rq_phase == RQ_PHASE_BULK) ||
2400                       (req->rq_phase == RQ_PHASE_NEW)))
2401                         continue;
2402
2403                 /* Already timed out. */
2404                 if (req->rq_timedout)
2405                         continue;
2406
2407                 /* Waiting for ctx. */
2408                 if (req->rq_wait_ctx)
2409                         continue;
2410
2411                 if (req->rq_phase == RQ_PHASE_NEW)
2412                         deadline = req->rq_sent;
2413                 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2414                         deadline = req->rq_sent;
2415                 else
2416                         deadline = req->rq_sent + req->rq_timeout;
2417
2418                 if (deadline <= now)    /* actually expired already */
2419                         timeout = 1;    /* ASAP */
2420                 else if (timeout == 0 || timeout > deadline - now)
2421                         timeout = deadline - now;
2422         }
2423         RETURN(timeout);
2424 }
2425
2426 /**
2427  * Send all unset request from the set and then wait untill all
2428  * requests in the set complete (either get a reply, timeout, get an
2429  * error or otherwise be interrupted).
2430  * Returns 0 on success or error code otherwise.
2431  */
2432 int ptlrpc_set_wait(const struct lu_env *env, struct ptlrpc_request_set *set)
2433 {
2434         struct list_head *tmp;
2435         struct ptlrpc_request *req;
2436         struct l_wait_info lwi;
2437         time64_t timeout;
2438         int rc;
2439
2440         ENTRY;
2441         if (set->set_producer)
2442                 (void)ptlrpc_set_producer(set);
2443         else
2444                 list_for_each(tmp, &set->set_requests) {
2445                         req = list_entry(tmp, struct ptlrpc_request,
2446                                          rq_set_chain);
2447                         if (req->rq_phase == RQ_PHASE_NEW)
2448                                 (void)ptlrpc_send_new_req(req);
2449                 }
2450
2451         if (list_empty(&set->set_requests))
2452                 RETURN(0);
2453
2454         do {
2455                 timeout = ptlrpc_set_next_timeout(set);
2456
2457                 /*
2458                  * wait until all complete, interrupted, or an in-flight
2459                  * req times out
2460                  */
2461                 CDEBUG(D_RPCTRACE, "set %p going to sleep for %lld seconds\n",
2462                        set, timeout);
2463
2464                 if ((timeout == 0 && !signal_pending(current)) ||
2465                     set->set_allow_intr)
2466                         /*
2467                          * No requests are in-flight (ether timed out
2468                          * or delayed), so we can allow interrupts.
2469                          * We still want to block for a limited time,
2470                          * so we allow interrupts during the timeout.
2471                          */
2472                         lwi = LWI_TIMEOUT_INTR_ALL(
2473                                         cfs_time_seconds(timeout ? timeout : 1),
2474                                         ptlrpc_expired_set,
2475                                         ptlrpc_interrupted_set, set);
2476                 else
2477                         /*
2478                          * At least one request is in flight, so no
2479                          * interrupts are allowed. Wait until all
2480                          * complete, or an in-flight req times out.
2481                          */
2482                         lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
2483                                           ptlrpc_expired_set, set);
2484
2485                 rc = l_wait_event(set->set_waitq,
2486                                   ptlrpc_check_set(NULL, set), &lwi);
2487
2488                 /*
2489                  * LU-769 - if we ignored the signal because it was already
2490                  * pending when we started, we need to handle it now or we risk
2491                  * it being ignored forever
2492                  */
2493                 if (rc == -ETIMEDOUT &&
2494                     (!lwi.lwi_allow_intr || set->set_allow_intr) &&
2495                     signal_pending(current)) {
2496                         sigset_t blocked_sigs =
2497                                            cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2498
2499                         /*
2500                          * In fact we only interrupt for the "fatal" signals
2501                          * like SIGINT or SIGKILL. We still ignore less
2502                          * important signals since ptlrpc set is not easily
2503                          * reentrant from userspace again
2504                          */
2505                         if (signal_pending(current))
2506                                 ptlrpc_interrupted_set(set);
2507                         cfs_restore_sigs(blocked_sigs);
2508                 }
2509
2510                 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2511
2512                 /*
2513                  * -EINTR => all requests have been flagged rq_intr so next
2514                  * check completes.
2515                  * -ETIMEDOUT => someone timed out.  When all reqs have
2516                  * timed out, signals are enabled allowing completion with
2517                  * EINTR.
2518                  * I don't really care if we go once more round the loop in
2519                  * the error cases -eeb.
2520                  */
2521                 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2522                         list_for_each(tmp, &set->set_requests) {
2523                                 req = list_entry(tmp, struct ptlrpc_request,
2524                                                  rq_set_chain);
2525                                 spin_lock(&req->rq_lock);
2526                                 req->rq_invalid_rqset = 1;
2527                                 spin_unlock(&req->rq_lock);
2528                         }
2529                 }
2530         } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2531
2532         LASSERT(atomic_read(&set->set_remaining) == 0);
2533
2534         rc = set->set_rc; /* rq_status of already freed requests if any */
2535         list_for_each(tmp, &set->set_requests) {
2536                 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2537
2538                 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2539                 if (req->rq_status != 0)
2540                         rc = req->rq_status;
2541         }
2542
2543         RETURN(rc);
2544 }
2545 EXPORT_SYMBOL(ptlrpc_set_wait);
2546
2547 /**
2548  * Helper fuction for request freeing.
2549  * Called when request count reached zero and request needs to be freed.
2550  * Removes request from all sorts of sending/replay lists it might be on,
2551  * frees network buffers if any are present.
2552  * If \a locked is set, that means caller is already holding import imp_lock
2553  * and so we no longer need to reobtain it (for certain lists manipulations)
2554  */
2555 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2556 {
2557         ENTRY;
2558
2559         if (!request)
2560                 RETURN_EXIT;
2561
2562         LASSERT(!request->rq_srv_req);
2563         LASSERT(request->rq_export == NULL);
2564         LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2565         LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2566         LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2567         LASSERTF(!request->rq_replay, "req %p\n", request);
2568
2569         req_capsule_fini(&request->rq_pill);
2570
2571         /*
2572          * We must take it off the imp_replay_list first.  Otherwise, we'll set
2573          * request->rq_reqmsg to NULL while osc_close is dereferencing it.
2574          */
2575         if (request->rq_import) {
2576                 if (!locked)
2577                         spin_lock(&request->rq_import->imp_lock);
2578                 list_del_init(&request->rq_replay_list);
2579                 list_del_init(&request->rq_unreplied_list);
2580                 if (!locked)
2581                         spin_unlock(&request->rq_import->imp_lock);
2582         }
2583         LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2584
2585         if (atomic_read(&request->rq_refcount) != 0) {
2586                 DEBUG_REQ(D_ERROR, request,
2587                           "freeing request with nonzero refcount");
2588                 LBUG();
2589         }
2590
2591         if (request->rq_repbuf)
2592                 sptlrpc_cli_free_repbuf(request);
2593
2594         if (request->rq_import) {
2595                 class_import_put(request->rq_import);
2596                 request->rq_import = NULL;
2597         }
2598         if (request->rq_bulk)
2599                 ptlrpc_free_bulk(request->rq_bulk);
2600
2601         if (request->rq_reqbuf || request->rq_clrbuf)
2602                 sptlrpc_cli_free_reqbuf(request);
2603
2604         if (request->rq_cli_ctx)
2605                 sptlrpc_req_put_ctx(request, !locked);
2606
2607         if (request->rq_pool)
2608                 __ptlrpc_free_req_to_pool(request);
2609         else
2610                 ptlrpc_request_cache_free(request);
2611         EXIT;
2612 }
2613
2614 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2615 /**
2616  * Drop one request reference. Must be called with import imp_lock held.
2617  * When reference count drops to zero, request is freed.
2618  */
2619 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2620 {
2621         assert_spin_locked(&request->rq_import->imp_lock);
2622         (void)__ptlrpc_req_finished(request, 1);
2623 }
2624
2625 /**
2626  * Helper function
2627  * Drops one reference count for request \a request.
2628  * \a locked set indicates that caller holds import imp_lock.
2629  * Frees the request whe reference count reaches zero.
2630  *
2631  * \retval 1    the request is freed
2632  * \retval 0    some others still hold references on the request
2633  */
2634 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2635 {
2636         int count;
2637
2638         ENTRY;
2639         if (!request)
2640                 RETURN(1);
2641
2642         LASSERT(request != LP_POISON);
2643         LASSERT(request->rq_reqmsg != LP_POISON);
2644
2645         DEBUG_REQ(D_INFO, request, "refcount now %u",
2646                   atomic_read(&request->rq_refcount) - 1);
2647
2648         spin_lock(&request->rq_lock);
2649         count = atomic_dec_return(&request->rq_refcount);
2650         LASSERTF(count >= 0, "Invalid ref count %d\n", count);
2651
2652         /*
2653          * For open RPC, the client does not know the EA size (LOV, ACL, and
2654          * so on) before replied, then the client has to reserve very large
2655          * reply buffer. Such buffer will not be released until the RPC freed.
2656          * Since The open RPC is replayable, we need to keep it in the replay
2657          * list until close. If there are a lot of files opened concurrently,
2658          * then the client may be OOM.
2659          *
2660          * If fact, it is unnecessary to keep reply buffer for open replay,
2661          * related EAs have already been saved via mdc_save_lovea() before
2662          * coming here. So it is safe to free the reply buffer some earlier
2663          * before releasing the RPC to avoid client OOM. LU-9514
2664          */
2665         if (count == 1 && request->rq_early_free_repbuf && request->rq_repbuf) {
2666                 spin_lock(&request->rq_early_free_lock);
2667                 sptlrpc_cli_free_repbuf(request);
2668                 request->rq_repbuf = NULL;
2669                 request->rq_repbuf_len = 0;
2670                 request->rq_repdata = NULL;
2671                 request->rq_reqdata_len = 0;
2672                 spin_unlock(&request->rq_early_free_lock);
2673         }
2674         spin_unlock(&request->rq_lock);
2675
2676         if (!count)
2677                 __ptlrpc_free_req(request, locked);
2678
2679         RETURN(!count);
2680 }
2681
2682 /**
2683  * Drops one reference count for a request.
2684  */
2685 void ptlrpc_req_finished(struct ptlrpc_request *request)
2686 {
2687         __ptlrpc_req_finished(request, 0);
2688 }
2689 EXPORT_SYMBOL(ptlrpc_req_finished);
2690
2691 /**
2692  * Returns xid of a \a request
2693  */
2694 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2695 {
2696         return request->rq_xid;
2697 }
2698 EXPORT_SYMBOL(ptlrpc_req_xid);
2699
2700 /**
2701  * Disengage the client's reply buffer from the network
2702  * NB does _NOT_ unregister any client-side bulk.
2703  * IDEMPOTENT, but _not_ safe against concurrent callers.
2704  * The request owner (i.e. the thread doing the I/O) must call...
2705  * Returns 0 on success or 1 if unregistering cannot be made.
2706  */
2707 static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2708 {
2709         int rc;
2710         struct l_wait_info lwi;
2711
2712         /*
2713          * Might sleep.
2714          */
2715         LASSERT(!in_interrupt());
2716
2717         /* Let's setup deadline for reply unlink. */
2718         if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2719             async && request->rq_reply_deadline == 0 && cfs_fail_val == 0)
2720                 request->rq_reply_deadline = ktime_get_real_seconds() +
2721                                              LONG_UNLINK;
2722
2723         /*
2724          * Nothing left to do.
2725          */
2726         if (!ptlrpc_client_recv_or_unlink(request))
2727                 RETURN(1);
2728
2729         LNetMDUnlink(request->rq_reply_md_h);
2730
2731         /*
2732          * Let's check it once again.
2733          */
2734         if (!ptlrpc_client_recv_or_unlink(request))
2735                 RETURN(1);
2736
2737         /* Move to "Unregistering" phase as reply was not unlinked yet. */
2738         ptlrpc_rqphase_move(request, RQ_PHASE_UNREG_RPC);
2739
2740         /*
2741          * Do not wait for unlink to finish.
2742          */
2743         if (async)
2744                 RETURN(0);
2745
2746         /*
2747          * We have to l_wait_event() whatever the result, to give liblustre
2748          * a chance to run reply_in_callback(), and to make sure we've
2749          * unlinked before returning a req to the pool.
2750          */
2751         for (;;) {
2752                 /* The wq argument is ignored by user-space wait_event macros */
2753                 wait_queue_head_t *wq = (request->rq_set) ?
2754                                         &request->rq_set->set_waitq :
2755                                         &request->rq_reply_waitq;
2756                 /*
2757                  * Network access will complete in finite time but the HUGE
2758                  * timeout lets us CWARN for visibility of sluggish NALs
2759                  */
2760                 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2761                                            cfs_time_seconds(1), NULL, NULL);
2762                 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2763                                   &lwi);
2764                 if (rc == 0) {
2765                         ptlrpc_rqphase_move(request, request->rq_next_phase);
2766                         RETURN(1);
2767                 }
2768
2769                 LASSERT(rc == -ETIMEDOUT);
2770                 DEBUG_REQ(D_WARNING, request,
2771                           "Unexpectedly long timeout receiving_reply=%d req_ulinked=%d reply_unlinked=%d",
2772                           request->rq_receiving_reply,
2773                           request->rq_req_unlinked,
2774                           request->rq_reply_unlinked);
2775         }
2776         RETURN(0);
2777 }
2778
2779 static void ptlrpc_free_request(struct ptlrpc_request *req)
2780 {
2781         spin_lock(&req->rq_lock);
2782         req->rq_replay = 0;
2783         spin_unlock(&req->rq_lock);
2784
2785         if (req->rq_commit_cb)
2786                 req->rq_commit_cb(req);
2787         list_del_init(&req->rq_replay_list);
2788
2789         __ptlrpc_req_finished(req, 1);
2790 }
2791
2792 /**
2793  * the request is committed and dropped from the replay list of its import
2794  */
2795 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2796 {
2797         struct obd_import *imp = req->rq_import;
2798
2799         spin_lock(&imp->imp_lock);
2800         if (list_empty(&req->rq_replay_list)) {
2801                 spin_unlock(&imp->imp_lock);
2802                 return;
2803         }
2804
2805         if (force || req->rq_transno <= imp->imp_peer_committed_transno) {
2806                 if (imp->imp_replay_cursor == &req->rq_replay_list)
2807                         imp->imp_replay_cursor = req->rq_replay_list.next;
2808                 ptlrpc_free_request(req);
2809         }
2810
2811         spin_unlock(&imp->imp_lock);
2812 }
2813 EXPORT_SYMBOL(ptlrpc_request_committed);
2814
2815 /**
2816  * Iterates through replay_list on import and prunes
2817  * all requests have transno smaller than last_committed for the
2818  * import and don't have rq_replay set.
2819  * Since requests are sorted in transno order, stops when meetign first
2820  * transno bigger than last_committed.
2821  * caller must hold imp->imp_lock
2822  */
2823 void ptlrpc_free_committed(struct obd_import *imp)
2824 {
2825         struct ptlrpc_request *req, *saved;
2826         struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
2827         bool skip_committed_list = true;
2828
2829         ENTRY;
2830         LASSERT(imp != NULL);
2831         assert_spin_locked(&imp->imp_lock);
2832
2833         if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2834             imp->imp_generation == imp->imp_last_generation_checked) {
2835                 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2836                        imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2837                 RETURN_EXIT;
2838         }
2839         CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2840                imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2841                imp->imp_generation);
2842
2843         if (imp->imp_generation != imp->imp_last_generation_checked ||
2844             imp->imp_last_transno_checked == 0)
2845                 skip_committed_list = false;
2846
2847         imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2848         imp->imp_last_generation_checked = imp->imp_generation;
2849
2850         list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2851                                  rq_replay_list) {
2852                 /* XXX ok to remove when 1357 resolved - rread 05/29/03  */
2853                 LASSERT(req != last_req);
2854                 last_req = req;
2855
2856                 if (req->rq_transno == 0) {
2857                         DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2858                         LBUG();
2859                 }
2860                 if (req->rq_import_generation < imp->imp_generation) {
2861                         DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2862                         GOTO(free_req, 0);
2863                 }
2864
2865                 /* not yet committed */
2866                 if (req->rq_transno > imp->imp_peer_committed_transno) {
2867                         DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2868                         break;
2869                 }
2870
2871                 if (req->rq_replay) {
2872                         DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2873                         list_move_tail(&req->rq_replay_list,
2874                                        &imp->imp_committed_list);
2875                         continue;
2876                 }
2877
2878                 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2879                           imp->imp_peer_committed_transno);
2880 free_req:
2881                 ptlrpc_free_request(req);
2882         }
2883
2884         if (skip_committed_list)
2885                 GOTO(out, 0);
2886
2887         list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2888                                  rq_replay_list) {
2889                 LASSERT(req->rq_transno != 0);
2890                 if (req->rq_import_generation < imp->imp_generation ||
2891                     !req->rq_replay) {
2892                         DEBUG_REQ(D_RPCTRACE, req, "free %s open request",
2893                                   req->rq_import_generation <
2894                                   imp->imp_generation ? "stale" : "closed");
2895
2896                         if (imp->imp_replay_cursor == &req->rq_replay_list)
2897                                 imp->imp_replay_cursor =
2898                                         req->rq_replay_list.next;
2899
2900                         ptlrpc_free_request(req);
2901                 }
2902         }
2903 out:
2904         EXIT;
2905 }
2906
2907 void ptlrpc_cleanup_client(struct obd_import *imp)
2908 {
2909         ENTRY;
2910         EXIT;
2911 }
2912
2913 /**
2914  * Schedule previously sent request for resend.
2915  * For bulk requests we assign new xid (to avoid problems with
2916  * lost replies and therefore several transfers landing into same buffer
2917  * from different sending attempts).
2918  */
2919 void ptlrpc_resend_req(struct ptlrpc_request *req)
2920 {
2921         DEBUG_REQ(D_HA, req, "going to resend");
2922         spin_lock(&req->rq_lock);
2923
2924         /*
2925          * Request got reply but linked to the import list still.
2926          * Let ptlrpc_check_set() process it.
2927          */
2928         if (ptlrpc_client_replied(req)) {
2929                 spin_unlock(&req->rq_lock);
2930                 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2931                 return;
2932         }
2933
2934         req->rq_status = -EAGAIN;
2935
2936         req->rq_resend = 1;
2937         req->rq_net_err = 0;
2938         req->rq_timedout = 0;
2939
2940         ptlrpc_client_wake_req(req);
2941         spin_unlock(&req->rq_lock);
2942 }
2943
2944 /* XXX: this function and rq_status are currently unused */
2945 void ptlrpc_restart_req(struct ptlrpc_request *req)
2946 {
2947         DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2948         req->rq_status = -ERESTARTSYS;
2949
2950         spin_lock(&req->rq_lock);
2951         req->rq_restart = 1;
2952         req->rq_timedout = 0;
2953         ptlrpc_client_wake_req(req);
2954         spin_unlock(&req->rq_lock);
2955 }
2956
2957 /**
2958  * Grab additional reference on a request \a req
2959  */
2960 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2961 {
2962         ENTRY;
2963         atomic_inc(&req->rq_refcount);
2964         RETURN(req);
2965 }
2966 EXPORT_SYMBOL(ptlrpc_request_addref);
2967
2968 /**
2969  * Add a request to import replay_list.
2970  * Must be called under imp_lock
2971  */
2972 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2973                                       struct obd_import *imp)
2974 {
2975         struct list_head *tmp;
2976
2977         assert_spin_locked(&imp->imp_lock);
2978
2979         if (req->rq_transno == 0) {
2980                 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2981                 LBUG();
2982         }
2983
2984         /*
2985          * clear this for new requests that were resent as well
2986          * as resent replayed requests.
2987          */
2988         lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2989
2990         /* don't re-add requests that have been replayed */
2991         if (!list_empty(&req->rq_replay_list))
2992                 return;
2993
2994         lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2995
2996         spin_lock(&req->rq_lock);
2997         req->rq_resend = 0;
2998         spin_unlock(&req->rq_lock);
2999
3000         LASSERT(imp->imp_replayable);
3001         /* Balanced in ptlrpc_free_committed, usually. */
3002         ptlrpc_request_addref(req);
3003         list_for_each_prev(tmp, &imp->imp_replay_list) {
3004                 struct ptlrpc_request *iter = list_entry(tmp,
3005                                                          struct ptlrpc_request,
3006                                                          rq_replay_list);
3007
3008                 /*
3009                  * We may have duplicate transnos if we create and then
3010                  * open a file, or for closes retained if to match creating
3011                  * opens, so use req->rq_xid as a secondary key.
3012                  * (See bugs 684, 685, and 428.)
3013                  * XXX no longer needed, but all opens need transnos!
3014                  */
3015                 if (iter->rq_transno > req->rq_transno)
3016                         continue;
3017
3018                 if (iter->rq_transno == req->rq_transno) {
3019                         LASSERT(iter->rq_xid != req->rq_xid);
3020                         if (iter->rq_xid > req->rq_xid)
3021                                 continue;
3022                 }
3023
3024                 list_add(&req->rq_replay_list, &iter->rq_replay_list);
3025                 return;
3026         }
3027
3028         list_add(&req->rq_replay_list, &imp->imp_replay_list);
3029 }
3030
3031 /**
3032  * Send request and wait until it completes.
3033  * Returns request processing status.
3034  */
3035 int ptlrpc_queue_wait(struct ptlrpc_request *req)
3036 {
3037         struct ptlrpc_request_set *set;
3038         int rc;
3039
3040         ENTRY;
3041         LASSERT(req->rq_set == NULL);
3042         LASSERT(!req->rq_receiving_reply);
3043
3044         set = ptlrpc_prep_set();
3045         if (!set) {
3046                 CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM);
3047                 RETURN(-ENOMEM);
3048         }
3049
3050         /* for distributed debugging */
3051         lustre_msg_set_status(req->rq_reqmsg, current_pid());
3052
3053         /* add a ref for the set (see comment in ptlrpc_set_add_req) */
3054         ptlrpc_request_addref(req);
3055         ptlrpc_set_add_req(set, req);
3056         rc = ptlrpc_set_wait(NULL, set);
3057         ptlrpc_set_destroy(set);
3058
3059         RETURN(rc);
3060 }
3061 EXPORT_SYMBOL(ptlrpc_queue_wait);
3062
3063 /**
3064  * Callback used for replayed requests reply processing.
3065  * In case of successful reply calls registered request replay callback.
3066  * In case of error restart replay process.
3067  */
3068 static int ptlrpc_replay_interpret(const struct lu_env *env,
3069                                    struct ptlrpc_request *req,
3070                                    void *args, int rc)
3071 {
3072         struct ptlrpc_replay_async_args *aa = args;
3073         struct obd_import *imp = req->rq_import;
3074
3075         ENTRY;
3076         atomic_dec(&imp->imp_replay_inflight);
3077
3078         /*
3079          * Note: if it is bulk replay (MDS-MDS replay), then even if
3080          * server got the request, but bulk transfer timeout, let's
3081          * replay the bulk req again
3082          */
3083         if (!ptlrpc_client_replied(req) ||
3084             (req->rq_bulk &&
3085              lustre_msg_get_status(req->rq_repmsg) == -ETIMEDOUT)) {
3086                 DEBUG_REQ(D_ERROR, req, "request replay timed out.\n");
3087                 GOTO(out, rc = -ETIMEDOUT);
3088         }
3089
3090         if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
3091             (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
3092             lustre_msg_get_status(req->rq_repmsg) == -ENODEV))
3093                 GOTO(out, rc = lustre_msg_get_status(req->rq_repmsg));
3094
3095         /** VBR: check version failure */
3096         if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
3097                 /** replay was failed due to version mismatch */
3098                 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
3099                 spin_lock(&imp->imp_lock);
3100                 imp->imp_vbr_failed = 1;
3101                 spin_unlock(&imp->imp_lock);
3102                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
3103         } else {
3104                 /** The transno had better not change over replay. */
3105                 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
3106                          lustre_msg_get_transno(req->rq_repmsg) ||
3107                          lustre_msg_get_transno(req->rq_repmsg) == 0,
3108                          "%#llx/%#llx\n",
3109                          lustre_msg_get_transno(req->rq_reqmsg),
3110                          lustre_msg_get_transno(req->rq_repmsg));
3111         }
3112
3113         spin_lock(&imp->imp_lock);
3114         imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
3115         spin_unlock(&imp->imp_lock);
3116         LASSERT(imp->imp_last_replay_transno);
3117
3118         /* transaction number shouldn't be bigger than the latest replayed */
3119         if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
3120                 DEBUG_REQ(D_ERROR, req,
3121                           "Reported transno %llu is bigger than the replayed one: %llu",
3122                           req->rq_transno,
3123                           lustre_msg_get_transno(req->rq_reqmsg));
3124                 GOTO(out, rc = -EINVAL);
3125         }
3126
3127         DEBUG_REQ(D_HA, req, "got rep");
3128
3129         /* let the callback do fixups, possibly including in the request */
3130         if (req->rq_replay_cb)
3131                 req->rq_replay_cb(req);
3132
3133         if (ptlrpc_client_replied(req) &&
3134             lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
3135                 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
3136                           lustre_msg_get_status(req->rq_repmsg),
3137                           aa->praa_old_status);
3138
3139                 /*
3140                  * Note: If the replay fails for MDT-MDT recovery, let's
3141                  * abort all of the following requests in the replay
3142                  * and sending list, because MDT-MDT update requests
3143                  * are dependent on each other, see LU-7039
3144                  */
3145                 if (imp->imp_connect_flags_orig & OBD_CONNECT_MDS_MDS) {
3146                         struct ptlrpc_request *free_req;
3147                         struct ptlrpc_request *tmp;
3148
3149                         spin_lock(&imp->imp_lock);
3150                         list_for_each_entry_safe(free_req, tmp,
3151                                                  &imp->imp_replay_list,
3152                                                  rq_replay_list) {
3153                                 ptlrpc_free_request(free_req);
3154                         }
3155
3156                         list_for_each_entry_safe(free_req, tmp,
3157                                                  &imp->imp_committed_list,
3158                                                  rq_replay_list) {
3159                                 ptlrpc_free_request(free_req);
3160                         }
3161
3162                         list_for_each_entry_safe(free_req, tmp,
3163                                                  &imp->imp_delayed_list,
3164                                                  rq_list) {
3165                                 spin_lock(&free_req->rq_lock);
3166                                 free_req->rq_err = 1;
3167                                 free_req->rq_status = -EIO;
3168                                 ptlrpc_client_wake_req(free_req);
3169                                 spin_unlock(&free_req->rq_lock);
3170                         }
3171
3172                         list_for_each_entry_safe(free_req, tmp,
3173                                                  &imp->imp_sending_list,
3174                                                  rq_list) {
3175                                 spin_lock(&free_req->rq_lock);
3176                                 free_req->rq_err = 1;
3177                                 free_req->rq_status = -EIO;
3178                                 ptlrpc_client_wake_req(free_req);
3179                                 spin_unlock(&free_req->rq_lock);
3180                         }
3181                         spin_unlock(&imp->imp_lock);
3182                 }
3183         } else {
3184                 /* Put it back for re-replay. */
3185                 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
3186         }
3187
3188         /*
3189          * Errors while replay can set transno to 0, but
3190          * imp_last_replay_transno shouldn't be set to 0 anyway
3191          */
3192         if (req->rq_transno == 0)
3193                 CERROR("Transno is 0 during replay!\n");
3194
3195         /* continue with recovery */
3196         rc = ptlrpc_import_recovery_state_machine(imp);
3197  out:
3198         req->rq_send_state = aa->praa_old_state;
3199
3200         if (rc != 0)
3201                 /* this replay failed, so restart recovery */
3202                 ptlrpc_connect_import(imp);
3203
3204         RETURN(rc);
3205 }
3206
3207 /**
3208  * Prepares and queues request for replay.
3209  * Adds it to ptlrpcd queue for actual sending.
3210  * Returns 0 on success.
3211  */
3212 int ptlrpc_replay_req(struct ptlrpc_request *req)
3213 {
3214         struct ptlrpc_replay_async_args *aa;
3215
3216         ENTRY;
3217
3218         LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
3219
3220         CLASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
3221         aa = ptlrpc_req_async_args(req);
3222         memset(aa, 0, sizeof(*aa));
3223
3224         /* Prepare request to be resent with ptlrpcd */
3225         aa->praa_old_state = req->rq_send_state;
3226         req->rq_send_state = LUSTRE_IMP_REPLAY;
3227         req->rq_phase = RQ_PHASE_NEW;
3228         req->rq_next_phase = RQ_PHASE_UNDEFINED;
3229         if (req->rq_repmsg)
3230                 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
3231         req->rq_status = 0;
3232         req->rq_interpret_reply = ptlrpc_replay_interpret;
3233         /* Readjust the timeout for current conditions */
3234         ptlrpc_at_set_req_timeout(req);
3235
3236         /* Tell server net_latency to calculate how long to wait for reply. */
3237         lustre_msg_set_service_time(req->rq_reqmsg,
3238                                     ptlrpc_at_get_net_latency(req));
3239         DEBUG_REQ(D_HA, req, "REPLAY");
3240
3241         atomic_inc(&req->rq_import->imp_replay_inflight);
3242         spin_lock(&req->rq_lock);
3243         req->rq_early_free_repbuf = 0;
3244         spin_unlock(&req->rq_lock);
3245         ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
3246
3247         ptlrpcd_add_req(req);
3248         RETURN(0);
3249 }
3250
3251 /**
3252  * Aborts all in-flight request on import \a imp sending and delayed lists
3253  */
3254 void ptlrpc_abort_inflight(struct obd_import *imp)
3255 {
3256         struct list_head *tmp, *n;
3257
3258         ENTRY;
3259         /*
3260          * Make sure that no new requests get processed for this import.
3261          * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
3262          * this flag and then putting requests on sending_list or delayed_list.
3263          */
3264         spin_lock(&imp->imp_lock);
3265
3266         /*
3267          * XXX locking?  Maybe we should remove each request with the list
3268          * locked?  Also, how do we know if the requests on the list are
3269          * being freed at this time?
3270          */
3271         list_for_each_safe(tmp, n, &imp->imp_sending_list) {
3272                 struct ptlrpc_request *req = list_entry(tmp,
3273                                                         struct ptlrpc_request,
3274                                                         rq_list);
3275
3276                 DEBUG_REQ(D_RPCTRACE, req, "inflight");
3277
3278                 spin_lock(&req->rq_lock);
3279                 if (req->rq_import_generation < imp->imp_generation) {
3280                         req->rq_err = 1;
3281                         req->rq_status = -EIO;
3282                         ptlrpc_client_wake_req(req);
3283                 }
3284                 spin_unlock(&req->rq_lock);
3285         }
3286
3287         list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
3288                 struct ptlrpc_request *req =
3289                         list_entry(tmp, struct ptlrpc_request, rq_list);
3290
3291                 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
3292
3293                 spin_lock(&req->rq_lock);
3294                 if (req->rq_import_generation < imp->imp_generation) {
3295                         req->rq_err = 1;
3296                         req->rq_status = -EIO;
3297                         ptlrpc_client_wake_req(req);
3298                 }
3299                 spin_unlock(&req->rq_lock);
3300         }
3301
3302         /*
3303          * Last chance to free reqs left on the replay list, but we
3304          * will still leak reqs that haven't committed.
3305          */
3306         if (imp->imp_replayable)
3307                 ptlrpc_free_committed(imp);
3308
3309         spin_unlock(&imp->imp_lock);
3310
3311         EXIT;
3312 }
3313
3314 /**
3315  * Abort all uncompleted requests in request set \a set
3316  */
3317 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
3318 {
3319         struct list_head *tmp, *pos;
3320
3321         LASSERT(set != NULL);
3322
3323         list_for_each_safe(pos, tmp, &set->set_requests) {
3324                 struct ptlrpc_request *req =
3325                         list_entry(pos, struct ptlrpc_request,
3326                                    rq_set_chain);
3327
3328                 spin_lock(&req->rq_lock);
3329                 if (req->rq_phase != RQ_PHASE_RPC) {
3330                         spin_unlock(&req->rq_lock);
3331                         continue;
3332                 }
3333
3334                 req->rq_err = 1;
3335                 req->rq_status = -EINTR;
3336                 ptlrpc_client_wake_req(req);
3337                 spin_unlock(&req->rq_lock);
3338         }
3339 }
3340
3341 /**
3342  * Initialize the XID for the node.  This is common among all requests on
3343  * this node, and only requires the property that it is monotonically
3344  * increasing.  It does not need to be sequential.  Since this is also used
3345  * as the RDMA match bits, it is important that a single client NOT have
3346  * the same match bits for two different in-flight requests, hence we do
3347  * NOT want to have an XID per target or similar.
3348  *
3349  * To avoid an unlikely collision between match bits after a client reboot
3350  * (which would deliver old data into the wrong RDMA buffer) initialize
3351  * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
3352  * If the time is clearly incorrect, we instead use a 62-bit random number.
3353  * In the worst case the random number will overflow 1M RPCs per second in
3354  * 9133 years, or permutations thereof.
3355  */
3356 #define YEAR_2004 (1ULL << 30)
3357 void ptlrpc_init_xid(void)
3358 {
3359         time64_t now = ktime_get_real_seconds();
3360
3361         spin_lock_init(&ptlrpc_last_xid_lock);
3362         if (now < YEAR_2004) {
3363                 get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
3364                 ptlrpc_last_xid >>= 2;
3365                 ptlrpc_last_xid |= (1ULL << 61);
3366         } else {
3367                 ptlrpc_last_xid = (__u64)now << 20;
3368         }
3369
3370         /* Need to always be aligned to a power-of-two for mutli-bulk BRW */
3371         CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
3372         ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
3373 }
3374
3375 /**
3376  * Increase xid and returns resulting new value to the caller.
3377  *
3378  * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
3379  * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
3380  * itself uses the last bulk xid needed, so the server can determine the
3381  * the number of bulk transfers from the RPC XID and a bitmask.  The starting
3382  * xid must align to a power-of-two value.
3383  *
3384  * This is assumed to be true due to the initial ptlrpc_last_xid
3385  * value also being initialized to a power-of-two value. LU-1431
3386  */
3387 __u64 ptlrpc_next_xid(void)
3388 {
3389         __u64 next;
3390
3391         spin_lock(&ptlrpc_last_xid_lock);
3392         next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3393         ptlrpc_last_xid = next;
3394         spin_unlock(&ptlrpc_last_xid_lock);
3395
3396         return next;
3397 }
3398
3399 /**
3400  * If request has a new allocated XID (new request or EINPROGRESS resend),
3401  * use this XID as matchbits of bulk, otherwise allocate a new matchbits for
3402  * request to ensure previous bulk fails and avoid problems with lost replies
3403  * and therefore several transfers landing into the same buffer from different
3404  * sending attempts.
3405  */
3406 void ptlrpc_set_bulk_mbits(struct ptlrpc_request *req)
3407 {
3408         struct ptlrpc_bulk_desc *bd = req->rq_bulk;
3409
3410         LASSERT(bd != NULL);
3411
3412         /*
3413          * Generate new matchbits for all resend requests, including
3414          * resend replay.
3415          */
3416         if (req->rq_resend) {
3417                 __u64 old_mbits = req->rq_mbits;
3418
3419                 /*
3420                  * First time resend on -EINPROGRESS will generate new xid,
3421                  * so we can actually use the rq_xid as rq_mbits in such case,
3422                  * however, it's bit hard to distinguish such resend with a
3423                  * 'resend for the -EINPROGRESS resend'. To make it simple,
3424                  * we opt to generate mbits for all resend cases.
3425                  */
3426                 if (OCD_HAS_FLAG(&bd->bd_import->imp_connect_data,
3427                                  BULK_MBITS)) {
3428                         req->rq_mbits = ptlrpc_next_xid();
3429                 } else {
3430                         /*
3431                          * Old version transfers rq_xid to peer as
3432                          * matchbits.
3433                          */
3434                         spin_lock(&req->rq_import->imp_lock);
3435                         list_del_init(&req->rq_unreplied_list);
3436                         ptlrpc_assign_next_xid_nolock(req);
3437                         spin_unlock(&req->rq_import->imp_lock);
3438                         req->rq_mbits = req->rq_xid;
3439                 }
3440                 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
3441                        old_mbits, req->rq_mbits);
3442         } else if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
3443                 /* Request being sent first time, use xid as matchbits. */
3444                 if (OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS)
3445                     || req->rq_mbits == 0) {
3446                         req->rq_mbits = req->rq_xid;
3447                 } else {
3448                         int total_md = (bd->bd_iov_count + LNET_MAX_IOV - 1) /
3449                                         LNET_MAX_IOV;
3450                         req->rq_mbits -= total_md - 1;
3451                 }
3452         } else {
3453                 /*
3454                  * Replay request, xid and matchbits have already been
3455                  * correctly assigned.
3456                  */
3457                 return;
3458         }
3459
3460         /*
3461          * For multi-bulk RPCs, rq_mbits is the last mbits needed for bulks so
3462          * that server can infer the number of bulks that were prepared,
3463          * see LU-1431
3464          */
3465         req->rq_mbits += ((bd->bd_iov_count + LNET_MAX_IOV - 1) /
3466                           LNET_MAX_IOV) - 1;
3467
3468         /*
3469          * Set rq_xid as rq_mbits to indicate the final bulk for the old
3470          * server which does not support OBD_CONNECT_BULK_MBITS. LU-6808.
3471          *
3472          * It's ok to directly set the rq_xid here, since this xid bump
3473          * won't affect the request position in unreplied list.
3474          */
3475         if (!OCD_HAS_FLAG(&bd->bd_import->imp_connect_data, BULK_MBITS))
3476                 req->rq_xid = req->rq_mbits;
3477 }
3478
3479 /**
3480  * Get a glimpse at what next xid value might have been.
3481  * Returns possible next xid.
3482  */
3483 __u64 ptlrpc_sample_next_xid(void)
3484 {
3485 #if BITS_PER_LONG == 32
3486         /* need to avoid possible word tearing on 32-bit systems */
3487         __u64 next;
3488
3489         spin_lock(&ptlrpc_last_xid_lock);
3490         next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3491         spin_unlock(&ptlrpc_last_xid_lock);
3492
3493         return next;
3494 #else
3495         /* No need to lock, since returned value is racy anyways */
3496         return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3497 #endif
3498 }
3499 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
3500
3501 /**
3502  * Functions for operating ptlrpc workers.
3503  *
3504  * A ptlrpc work is a function which will be running inside ptlrpc context.
3505  * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
3506  *
3507  * 1. after a work is created, it can be used many times, that is:
3508  *         handler = ptlrpcd_alloc_work();
3509  *         ptlrpcd_queue_work();
3510  *
3511  *    queue it again when necessary:
3512  *         ptlrpcd_queue_work();
3513  *         ptlrpcd_destroy_work();
3514  * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
3515  *    it will only be queued once in any time. Also as its name implies, it may
3516  *    have delay before it really runs by ptlrpcd thread.
3517  */
3518 struct ptlrpc_work_async_args {
3519         int (*cb)(const struct lu_env *, void *);
3520         void *cbdata;
3521 };
3522
3523 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
3524 {
3525         /* re-initialize the req */
3526         req->rq_timeout         = obd_timeout;
3527         req->rq_sent            = ktime_get_real_seconds();
3528         req->rq_deadline        = req->rq_sent + req->rq_timeout;
3529         req->rq_phase           = RQ_PHASE_INTERPRET;
3530         req->rq_next_phase      = RQ_PHASE_COMPLETE;
3531         req->rq_xid             = ptlrpc_next_xid();
3532         req->rq_import_generation = req->rq_import->imp_generation;
3533
3534         ptlrpcd_add_req(req);
3535 }
3536
3537 static int work_interpreter(const struct lu_env *env,
3538                             struct ptlrpc_request *req, void *args, int rc)
3539 {
3540         struct ptlrpc_work_async_args *arg = args;
3541
3542         LASSERT(ptlrpcd_check_work(req));
3543         LASSERT(arg->cb != NULL);
3544
3545         rc = arg->cb(env, arg->cbdata);
3546
3547         list_del_init(&req->rq_set_chain);
3548         req->rq_set = NULL;
3549
3550         if (atomic_dec_return(&req->rq_refcount) > 1) {
3551                 atomic_set(&req->rq_refcount, 2);
3552                 ptlrpcd_add_work_req(req);
3553         }
3554         return rc;
3555 }
3556
3557 static int worker_format;
3558
3559 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3560 {
3561         return req->rq_pill.rc_fmt == (void *)&worker_format;
3562 }
3563
3564 /**
3565  * Create a work for ptlrpc.
3566  */
3567 void *ptlrpcd_alloc_work(struct obd_import *imp,
3568                          int (*cb)(const struct lu_env *, void *), void *cbdata)
3569 {
3570         struct ptlrpc_request *req = NULL;
3571         struct ptlrpc_work_async_args *args;
3572
3573         ENTRY;
3574         might_sleep();
3575
3576         if (!cb)
3577                 RETURN(ERR_PTR(-EINVAL));
3578
3579         /* copy some code from deprecated fakereq. */
3580         req = ptlrpc_request_cache_alloc(GFP_NOFS);
3581         if (!req) {
3582                 CERROR("ptlrpc: run out of memory!\n");
3583                 RETURN(ERR_PTR(-ENOMEM));
3584         }
3585
3586         ptlrpc_cli_req_init(req);
3587
3588         req->rq_send_state = LUSTRE_IMP_FULL;
3589         req->rq_type = PTL_RPC_MSG_REQUEST;
3590         req->rq_import = class_import_get(imp);
3591         req->rq_interpret_reply = work_interpreter;
3592         /* don't want reply */
3593         req->rq_no_delay = req->rq_no_resend = 1;
3594         req->rq_pill.rc_fmt = (void *)&worker_format;
3595
3596         CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3597         args = ptlrpc_req_async_args(req);
3598         args->cb     = cb;
3599         args->cbdata = cbdata;
3600
3601         RETURN(req);
3602 }
3603 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3604
3605 void ptlrpcd_destroy_work(void *handler)
3606 {
3607         struct ptlrpc_request *req = handler;
3608
3609         if (req)
3610                 ptlrpc_req_finished(req);
3611 }
3612 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3613
3614 int ptlrpcd_queue_work(void *handler)
3615 {
3616         struct ptlrpc_request *req = handler;
3617
3618         /*
3619          * Check if the req is already being queued.
3620          *
3621          * Here comes a trick: it lacks a way of checking if a req is being
3622          * processed reliably in ptlrpc. Here I have to use refcount of req
3623          * for this purpose. This is okay because the caller should use this
3624          * req as opaque data. - Jinshan
3625          */
3626         LASSERT(atomic_read(&req->rq_refcount) > 0);
3627         if (atomic_inc_return(&req->rq_refcount) == 2)
3628                 ptlrpcd_add_work_req(req);
3629         return 0;
3630 }
3631 EXPORT_SYMBOL(ptlrpcd_queue_work);