Whamcloud - gitweb
108c3857e61bc406d30987ed81f018114c28a824
[fs/lustre-release.git] / lustre / osp / osp_dev.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2012, 2016, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lustre/osp/osp_dev.c
33  *
34  * Author: Alex Zhuravlev <alexey.zhuravlev@intel.com>
35  * Author: Mikhail Pershin <mike.pershin@intel.com>
36  * Author: Di Wang <di.wang@intel.com>
37  */
38 /*
39  * The Object Storage Proxy (OSP) module provides an implementation of
40  * the DT API for remote MDTs and OSTs. Every local OSP device (or
41  * object) is a proxy for a remote OSD device (or object). Thus OSP
42  * converts DT operations into RPCs, which are sent to the OUT service
43  * on a remote target, converted back to DT operations, and
44  * executed. Of course there are many ways in which this description
45  * is inaccurate but it's a good enough mental model. OSP is used by
46  * the MDT stack in several ways:
47  *
48  * - OSP devices allocate FIDs for the stripe sub-objects of a striped
49  *   file or directory.
50  *
51  * - OSP objects represent the remote MDT and OST objects that are
52  *   the stripes of a striped object.
53  *
54  * - OSP devices log, send, and track synchronous operations (setattr
55  *   and unlink) to remote targets.
56  *
57  * - OSP objects are the bottom slice of the compound LU object
58  *   representing a remote MDT object: MDT/MDD/LOD/OSP.
59  *
60  * - OSP objects are used by LFSCK to represent remote OST objects
61  *   during the verification of MDT-OST consistency.
62  *
63  * - OSP devices batch idempotent requests (declare_attr_get() and
64  *   declare_xattr_get()) to the remote target and cache their results.
65  *
66  * In addition the OSP layer implements a subset of the OBD device API
67  * to support being a client of a remote target, connecting to other
68  * layers, and FID allocation.
69  */
70
71 #define DEBUG_SUBSYSTEM S_MDS
72
73 #include <linux/kthread.h>
74
75 #include <lustre_ioctl.h>
76 #include <lustre_log.h>
77 #include <lustre_obdo.h>
78 #include <lustre_param.h>
79 #include <obd_class.h>
80
81 #include "osp_internal.h"
82
83 /* Slab for OSP object allocation */
84 struct kmem_cache *osp_object_kmem;
85
86 static struct lu_kmem_descr osp_caches[] = {
87         {
88                 .ckd_cache = &osp_object_kmem,
89                 .ckd_name  = "osp_obj",
90                 .ckd_size  = sizeof(struct osp_object)
91         },
92         {
93                 .ckd_cache = NULL
94         }
95 };
96
97 /**
98  * Implementation of lu_device_operations::ldo_object_alloc
99  *
100  * Allocates an OSP object in memory, whose FID is on the remote target.
101  *
102  * \param[in] env       execution environment
103  * \param[in] hdr       The header of the object stack. If it is NULL, it
104  *                      means the object is not built from top device, i.e.
105  *                      it is a sub-stripe object of striped directory or
106  *                      an OST object.
107  * \param[in] d         OSP device
108  *
109  * \retval object       object being created if the creation succeed.
110  * \retval NULL         NULL if the creation failed.
111  */
112 static struct lu_object *osp_object_alloc(const struct lu_env *env,
113                                           const struct lu_object_header *hdr,
114                                           struct lu_device *d)
115 {
116         struct lu_object_header *h = NULL;
117         struct osp_object       *o;
118         struct lu_object        *l;
119
120         OBD_SLAB_ALLOC_PTR_GFP(o, osp_object_kmem, GFP_NOFS);
121         if (o != NULL) {
122                 l = &o->opo_obj.do_lu;
123
124                 /* If hdr is NULL, it means the object is not built
125                  * from the top dev(MDT/OST), usually it happens when
126                  * building striped object, like data object on MDT or
127                  * striped object for directory */
128                 if (hdr == NULL) {
129                         h = &o->opo_header;
130                         lu_object_header_init(h);
131                         dt_object_init(&o->opo_obj, h, d);
132                         lu_object_add_top(h, l);
133                 } else {
134                         dt_object_init(&o->opo_obj, h, d);
135                 }
136
137                 l->lo_ops = &osp_lu_obj_ops;
138
139                 return l;
140         } else {
141                 return NULL;
142         }
143 }
144
145 /**
146  * Find or create the local object
147  *
148  * Finds or creates the local file referenced by \a reg_id and return the
149  * attributes of the local file.
150  *
151  * \param[in] env       execution environment
152  * \param[in] osp       OSP device
153  * \param[out] attr     attributes of the object
154  * \param[in] reg_id    the local object ID of the file. It will be used
155  *                      to compose a local FID{FID_SEQ_LOCAL_FILE, reg_id, 0}
156  *                      to identify the object.
157  *
158  * \retval object               object(dt_object) found or created
159  * \retval ERR_PTR(errno)       ERR_PTR(errno) if not get the object.
160  */
161 static struct dt_object
162 *osp_find_or_create_local_file(const struct lu_env *env, struct osp_device *osp,
163                                struct lu_attr *attr, __u32 reg_id)
164 {
165         struct osp_thread_info *osi = osp_env_info(env);
166         struct dt_object_format dof = { 0 };
167         struct dt_object       *dto;
168         int                  rc;
169         ENTRY;
170
171         lu_local_obj_fid(&osi->osi_fid, reg_id);
172         attr->la_valid = LA_MODE;
173         attr->la_mode = S_IFREG | 0644;
174         dof.dof_type = DFT_REGULAR;
175         /* Find or create the local object by osi_fid. */
176         dto = dt_find_or_create(env, osp->opd_storage, &osi->osi_fid,
177                                 &dof, attr);
178         if (IS_ERR(dto))
179                 RETURN(dto);
180
181         /* Get attributes of the local object. */
182         rc = dt_attr_get(env, dto, attr);
183         if (rc) {
184                 CERROR("%s: can't be initialized: rc = %d\n",
185                        osp->opd_obd->obd_name, rc);
186                 dt_object_put(env, dto);
187                 RETURN(ERR_PTR(rc));
188         }
189         RETURN(dto);
190 }
191
192 /**
193  * Write data buffer to a local file object.
194  *
195  * \param[in] env       execution environment
196  * \param[in] osp       OSP device
197  * \param[in] dt_obj    object written to
198  * \param[in] buf       buffer containing byte array and length
199  * \param[in] offset    write offset in the object in bytes
200  *
201  * \retval 0            0 if write succeed
202  * \retval -EFAULT      -EFAULT if only part of buffer is written.
203  * \retval negative             other negative errno if write failed.
204  */
205 static int osp_write_local_file(const struct lu_env *env,
206                                 struct osp_device *osp,
207                                 struct dt_object *dt_obj,
208                                 struct lu_buf *buf,
209                                 loff_t offset)
210 {
211         struct thandle *th;
212         int rc;
213
214         if (osp->opd_storage->dd_rdonly)
215                 RETURN(0);
216
217         th = dt_trans_create(env, osp->opd_storage);
218         if (IS_ERR(th))
219                 RETURN(PTR_ERR(th));
220
221         rc = dt_declare_record_write(env, dt_obj, buf, offset, th);
222         if (rc)
223                 GOTO(out, rc);
224         rc = dt_trans_start_local(env, osp->opd_storage, th);
225         if (rc)
226                 GOTO(out, rc);
227
228         rc = dt_record_write(env, dt_obj, buf, &offset, th);
229 out:
230         dt_trans_stop(env, osp->opd_storage, th);
231         RETURN(rc);
232 }
233
234 /**
235  * Initialize last ID object.
236  *
237  * This function initializes the LAST_ID file, which stores the current last
238  * used id of data objects. The MDT will use the last used id and the last_seq
239  * (\see osp_init_last_seq()) to synchronize the precreate object cache with
240  * OSTs.
241  *
242  * \param[in] env       execution environment
243  * \param[in] osp       OSP device
244  *
245  * \retval 0            0 if initialization succeed
246  * \retval negative     negative errno if initialization failed
247  */
248 static int osp_init_last_objid(const struct lu_env *env, struct osp_device *osp)
249 {
250         struct osp_thread_info  *osi = osp_env_info(env);
251         struct lu_fid           *fid = &osp->opd_last_used_fid;
252         struct dt_object        *dto;
253         int                     rc = -EFAULT;
254         ENTRY;
255
256         dto = osp_find_or_create_local_file(env, osp, &osi->osi_attr,
257                                             MDD_LOV_OBJ_OID);
258         if (IS_ERR(dto))
259                 RETURN(PTR_ERR(dto));
260
261         /* object will be released in device cleanup path */
262         if (osi->osi_attr.la_size >=
263             sizeof(osi->osi_id) * (osp->opd_index + 1)) {
264                 osp_objid_buf_prep(&osi->osi_lb, &osi->osi_off, &fid->f_oid,
265                                    osp->opd_index);
266                 rc = dt_record_read(env, dto, &osi->osi_lb, &osi->osi_off);
267                 if (rc != 0 && rc != -EFAULT)
268                         GOTO(out, rc);
269         }
270
271         if (rc == -EFAULT) { /* fresh LAST_ID */
272                 fid->f_oid = 0;
273                 osp_objid_buf_prep(&osi->osi_lb, &osi->osi_off, &fid->f_oid,
274                                    osp->opd_index);
275                 rc = osp_write_local_file(env, osp, dto, &osi->osi_lb,
276                                           osi->osi_off);
277                 if (rc != 0)
278                         GOTO(out, rc);
279         }
280         osp->opd_last_used_oid_file = dto;
281         RETURN(0);
282 out:
283         /* object will be released in device cleanup path */
284         CERROR("%s: can't initialize lov_objid: rc = %d\n",
285                osp->opd_obd->obd_name, rc);
286         dt_object_put(env, dto);
287         osp->opd_last_used_oid_file = NULL;
288         RETURN(rc);
289 }
290
291 /**
292  * Initialize last sequence object.
293  *
294  * This function initializes the LAST_SEQ file in the local OSD, which stores
295  * the current last used sequence of data objects. The MDT will use the last
296  * sequence and last id (\see osp_init_last_objid()) to synchronize the
297  * precreate object cache with OSTs.
298  *
299  * \param[in] env       execution environment
300  * \param[in] osp       OSP device
301  *
302  * \retval 0            0 if initialization succeed
303  * \retval negative     negative errno if initialization failed
304  */
305 static int osp_init_last_seq(const struct lu_env *env, struct osp_device *osp)
306 {
307         struct osp_thread_info  *osi = osp_env_info(env);
308         struct lu_fid           *fid = &osp->opd_last_used_fid;
309         struct dt_object        *dto;
310         int                     rc = -EFAULT;
311         ENTRY;
312
313         dto = osp_find_or_create_local_file(env, osp, &osi->osi_attr,
314                                             MDD_LOV_OBJ_OSEQ);
315         if (IS_ERR(dto))
316                 RETURN(PTR_ERR(dto));
317
318         /* object will be released in device cleanup path */
319         if (osi->osi_attr.la_size >=
320             sizeof(osi->osi_id) * (osp->opd_index + 1)) {
321                 osp_objseq_buf_prep(&osi->osi_lb, &osi->osi_off, &fid->f_seq,
322                                    osp->opd_index);
323                 rc = dt_record_read(env, dto, &osi->osi_lb, &osi->osi_off);
324                 if (rc != 0 && rc != -EFAULT)
325                         GOTO(out, rc);
326         }
327
328         if (rc == -EFAULT) { /* fresh OSP */
329                 fid->f_seq = 0;
330                 osp_objseq_buf_prep(&osi->osi_lb, &osi->osi_off, &fid->f_seq,
331                                     osp->opd_index);
332                 rc = osp_write_local_file(env, osp, dto, &osi->osi_lb,
333                                           osi->osi_off);
334                 if (rc != 0)
335                         GOTO(out, rc);
336         }
337         osp->opd_last_used_seq_file = dto;
338         RETURN(0);
339 out:
340         /* object will be released in device cleanup path */
341         CERROR("%s: can't initialize lov_seq: rc = %d\n",
342                osp->opd_obd->obd_name, rc);
343         dt_object_put(env, dto);
344         osp->opd_last_used_seq_file = NULL;
345         RETURN(rc);
346 }
347
348 /**
349  * Initialize last OID and sequence object.
350  *
351  * If the MDT is just upgraded to 2.4 from the lower version, where the
352  * LAST_SEQ file does not exist, the file will be created and IDIF sequence
353  * will be written into the file.
354  *
355  * \param[in] env       execution environment
356  * \param[in] osp       OSP device
357  *
358  * \retval 0            0 if initialization succeed
359  * \retval negative     negative error if initialization failed
360  */
361 static int osp_last_used_init(const struct lu_env *env, struct osp_device *osp)
362 {
363         struct osp_thread_info *osi = osp_env_info(env);
364         int                  rc;
365         ENTRY;
366
367         fid_zero(&osp->opd_last_used_fid);
368         rc = osp_init_last_objid(env, osp);
369         if (rc < 0) {
370                 CERROR("%s: Can not get ids %d from old objid!\n",
371                        osp->opd_obd->obd_name, rc);
372                 RETURN(rc);
373         }
374
375         rc = osp_init_last_seq(env, osp);
376         if (rc < 0) {
377                 CERROR("%s: Can not get ids %d from old objid!\n",
378                        osp->opd_obd->obd_name, rc);
379                 GOTO(out, rc);
380         }
381
382         if (fid_oid(&osp->opd_last_used_fid) != 0 &&
383             fid_seq(&osp->opd_last_used_fid) == 0) {
384                 /* Just upgrade from the old version,
385                  * set the seq to be IDIF */
386                 osp->opd_last_used_fid.f_seq =
387                    fid_idif_seq(fid_oid(&osp->opd_last_used_fid),
388                                 osp->opd_index);
389                 osp_objseq_buf_prep(&osi->osi_lb, &osi->osi_off,
390                                     &osp->opd_last_used_fid.f_seq,
391                                     osp->opd_index);
392                 rc = osp_write_local_file(env, osp, osp->opd_last_used_seq_file,
393                                           &osi->osi_lb, osi->osi_off);
394                 if (rc) {
395                         CERROR("%s : Can not write seq file: rc = %d\n",
396                                osp->opd_obd->obd_name, rc);
397                         GOTO(out, rc);
398                 }
399         }
400
401         if (!fid_is_zero(&osp->opd_last_used_fid) &&
402                  !fid_is_sane(&osp->opd_last_used_fid)) {
403                 CERROR("%s: Got invalid FID "DFID"\n", osp->opd_obd->obd_name,
404                         PFID(&osp->opd_last_used_fid));
405                 GOTO(out, rc = -EINVAL);
406         }
407
408         CDEBUG(D_INFO, "%s: Init last used fid "DFID"\n",
409                osp->opd_obd->obd_name, PFID(&osp->opd_last_used_fid));
410 out:
411         if (rc != 0) {
412                 if (osp->opd_last_used_oid_file != NULL) {
413                         dt_object_put(env, osp->opd_last_used_oid_file);
414                         osp->opd_last_used_oid_file = NULL;
415                 }
416                 if (osp->opd_last_used_seq_file != NULL) {
417                         dt_object_put(env, osp->opd_last_used_seq_file);
418                         osp->opd_last_used_seq_file = NULL;
419                 }
420         }
421
422         RETURN(rc);
423 }
424
425 /**
426  * Release the last sequence and OID file objects in OSP device.
427  *
428  * \param[in] env       execution environment
429  * \param[in] osp       OSP device
430  */
431 static void osp_last_used_fini(const struct lu_env *env, struct osp_device *osp)
432 {
433         /* release last_used file */
434         if (osp->opd_last_used_oid_file != NULL) {
435                 dt_object_put(env, osp->opd_last_used_oid_file);
436                 osp->opd_last_used_oid_file = NULL;
437         }
438
439         if (osp->opd_last_used_seq_file != NULL) {
440                 dt_object_put(env, osp->opd_last_used_seq_file);
441                 osp->opd_last_used_seq_file = NULL;
442         }
443 }
444
445 /**
446  * Disconnects the connection between OSP and its correspondent MDT or OST, and
447  * the import will be marked as inactive. It will only be called during OSP
448  * cleanup process.
449  *
450  * \param[in] d         OSP device being disconnected
451  *
452  * \retval 0            0 if disconnection succeed
453  * \retval negative     negative errno if disconnection failed
454  */
455 static int osp_disconnect(struct osp_device *d)
456 {
457         struct obd_device *obd = d->opd_obd;
458         struct obd_import *imp;
459         int rc = 0;
460
461         imp = obd->u.cli.cl_import;
462
463         /* Mark import deactivated now, so we don't try to reconnect if any
464          * of the cleanup RPCs fails (e.g. ldlm cancel, etc).  We don't
465          * fully deactivate the import, or that would drop all requests. */
466         LASSERT(imp != NULL);
467         spin_lock(&imp->imp_lock);
468         imp->imp_deactive = 1;
469         spin_unlock(&imp->imp_lock);
470
471         ptlrpc_deactivate_import(imp);
472
473         /* Some non-replayable imports (MDS's OSCs) are pinged, so just
474          * delete it regardless.  (It's safe to delete an import that was
475          * never added.) */
476         (void)ptlrpc_pinger_del_import(imp);
477
478         rc = ptlrpc_disconnect_import(imp, 0);
479         if (rc != 0)
480                 CERROR("%s: can't disconnect: rc = %d\n", obd->obd_name, rc);
481
482         ptlrpc_invalidate_import(imp);
483
484         RETURN(rc);
485 }
486
487 /**
488  * Initialize the osp_update structure in OSP device
489  *
490  * Allocate osp update structure and start update thread.
491  *
492  * \param[in] osp       OSP device
493  *
494  * \retval              0 if initialization succeeds.
495  * \retval              negative errno if initialization fails.
496  */
497 static int osp_update_init(struct osp_device *osp)
498 {
499         struct l_wait_info      lwi = { 0 };
500         struct task_struct      *task;
501
502         ENTRY;
503
504         LASSERT(osp->opd_connect_mdt);
505
506         if (osp->opd_storage->dd_rdonly)
507                 RETURN(0);
508
509         OBD_ALLOC_PTR(osp->opd_update);
510         if (osp->opd_update == NULL)
511                 RETURN(-ENOMEM);
512
513         init_waitqueue_head(&osp->opd_update_thread.t_ctl_waitq);
514         init_waitqueue_head(&osp->opd_update->ou_waitq);
515         spin_lock_init(&osp->opd_update->ou_lock);
516         INIT_LIST_HEAD(&osp->opd_update->ou_list);
517         osp->opd_update->ou_rpc_version = 1;
518         osp->opd_update->ou_version = 1;
519         osp->opd_update->ou_generation = 0;
520
521         /* start thread handling sending updates to the remote MDT */
522         task = kthread_run(osp_send_update_thread, osp,
523                            "osp_up%u-%u", osp->opd_index, osp->opd_group);
524         if (IS_ERR(task)) {
525                 int rc = PTR_ERR(task);
526
527                 OBD_FREE_PTR(osp->opd_update);
528                 osp->opd_update = NULL;
529                 CERROR("%s: can't start precreate thread: rc = %d\n",
530                        osp->opd_obd->obd_name, rc);
531                 RETURN(rc);
532         }
533
534         l_wait_event(osp->opd_update_thread.t_ctl_waitq,
535                      osp_send_update_thread_running(osp) ||
536                      osp_send_update_thread_stopped(osp), &lwi);
537
538         RETURN(0);
539 }
540
541 /**
542  * Finialize osp_update structure in OSP device
543  *
544  * Stop the OSP update sending thread, then delete the left
545  * osp thandle in the sending list.
546  *
547  * \param [in] osp      OSP device.
548  */
549 static void osp_update_fini(const struct lu_env *env, struct osp_device *osp)
550 {
551         struct osp_update_request *our;
552         struct osp_update_request *tmp;
553         struct osp_updates *ou = osp->opd_update;
554
555         if (ou == NULL)
556                 return;
557
558         osp->opd_update_thread.t_flags = SVC_STOPPING;
559         wake_up(&ou->ou_waitq);
560
561         wait_event(osp->opd_update_thread.t_ctl_waitq,
562                    osp->opd_update_thread.t_flags & SVC_STOPPED);
563
564         /* Remove the left osp thandle from the list */
565         spin_lock(&ou->ou_lock);
566         list_for_each_entry_safe(our, tmp, &ou->ou_list,
567                                  our_list) {
568                 list_del_init(&our->our_list);
569                 LASSERT(our->our_th != NULL);
570                 osp_trans_callback(env, our->our_th, -EIO);
571                 /* our will be destroyed in osp_thandle_put() */
572                 osp_thandle_put(env, our->our_th);
573         }
574         spin_unlock(&ou->ou_lock);
575
576         OBD_FREE_PTR(ou);
577         osp->opd_update = NULL;
578 }
579
580 /**
581  * Cleanup OSP, which includes disconnect import, cleanup unlink log, stop
582  * precreate threads etc.
583  *
584  * \param[in] env       execution environment.
585  * \param[in] d         OSP device being disconnected.
586  *
587  * \retval 0            0 if cleanup succeed
588  * \retval negative     negative errno if cleanup failed
589  */
590 static int osp_shutdown(const struct lu_env *env, struct osp_device *d)
591 {
592         int                      rc = 0;
593         ENTRY;
594
595         LASSERT(env);
596
597         rc = osp_disconnect(d);
598
599         if (!d->opd_connect_mdt) {
600                 /* stop sync thread */
601                 osp_sync_fini(d);
602
603                 /* stop precreate thread */
604                 osp_precreate_fini(d);
605
606                 /* release last_used file */
607                 osp_last_used_fini(env, d);
608         }
609
610         obd_fid_fini(d->opd_obd);
611
612         RETURN(rc);
613 }
614
615 /**
616  * Implementation of osp_lu_ops::ldo_process_config
617  *
618  * This function processes config log records in OSP layer. It is usually
619  * called from the top layer of MDT stack, and goes through the stack by calling
620  * ldo_process_config of next layer.
621  *
622  * \param[in] env       execution environment
623  * \param[in] dev       lu_device of OSP
624  * \param[in] lcfg      config log
625  *
626  * \retval 0            0 if the config log record is executed correctly.
627  * \retval negative     negative errno if the record execution fails.
628  */
629 static int osp_process_config(const struct lu_env *env,
630                               struct lu_device *dev, struct lustre_cfg *lcfg)
631 {
632         struct osp_device               *d = lu2osp_dev(dev);
633         struct obd_device               *obd = d->opd_obd;
634         int                              rc;
635
636         ENTRY;
637
638         switch (lcfg->lcfg_command) {
639         case LCFG_PRE_CLEANUP:
640                 rc = osp_disconnect(d);
641                 osp_update_fini(env, d);
642                 if (obd->obd_namespace != NULL)
643                         ldlm_namespace_free_prior(obd->obd_namespace, NULL, 1);
644                 break;
645         case LCFG_CLEANUP:
646                 lu_dev_del_linkage(dev->ld_site, dev);
647                 rc = osp_shutdown(env, d);
648                 break;
649         case LCFG_PARAM:
650                 LASSERT(obd);
651                 rc = class_process_proc_param(d->opd_connect_mdt ?
652                                               PARAM_OSP : PARAM_OSC,
653                                               obd->obd_vars, lcfg, obd);
654                 if (rc > 0)
655                         rc = 0;
656                 if (rc == -ENOSYS) {
657                         /* class_process_proc_param() haven't found matching
658                          * parameter and returned ENOSYS so that layer(s)
659                          * below could use that. But OSP is the bottom, so
660                          * just ignore it */
661                         CERROR("%s: unknown param %s\n",
662                                (char *)lustre_cfg_string(lcfg, 0),
663                                (char *)lustre_cfg_string(lcfg, 1));
664                         rc = 0;
665                 }
666                 break;
667         default:
668                 CERROR("%s: unknown command %u\n",
669                        (char *)lustre_cfg_string(lcfg, 0), lcfg->lcfg_command);
670                 rc = 0;
671                 break;
672         }
673
674         RETURN(rc);
675 }
676
677 /**
678  * Implementation of osp_lu_ops::ldo_recovery_complete
679  *
680  * This function is called after recovery is finished, and OSP layer
681  * will wake up precreate thread here.
682  *
683  * \param[in] env       execution environment
684  * \param[in] dev       lu_device of OSP
685  *
686  * \retval 0            0 unconditionally
687  */
688 static int osp_recovery_complete(const struct lu_env *env,
689                                  struct lu_device *dev)
690 {
691         struct osp_device       *osp = lu2osp_dev(dev);
692
693         ENTRY;
694         osp->opd_recovery_completed = 1;
695
696         if (!osp->opd_connect_mdt && osp->opd_pre != NULL)
697                 wake_up(&osp->opd_pre_waitq);
698
699         RETURN(0);
700 }
701
702 const struct lu_device_operations osp_lu_ops = {
703         .ldo_object_alloc       = osp_object_alloc,
704         .ldo_process_config     = osp_process_config,
705         .ldo_recovery_complete  = osp_recovery_complete,
706 };
707
708 /**
709  * Implementation of dt_device_operations::dt_statfs
710  *
711  * This function provides statfs status (for precreation) from
712  * corresponding OST. Note: this function only retrieves the status
713  * from the OSP device, and the real statfs RPC happens inside
714  * precreate thread (\see osp_statfs_update). Note: OSP for MDT does
715  * not need to retrieve statfs data for now.
716  *
717  * \param[in] env       execution environment.
718  * \param[in] dev       dt_device of OSP.
719  * \param[out] sfs      holds the retrieved statfs data.
720  *
721  * \retval 0            0 statfs data was retrieved successfully or
722  *                      retrieval was not needed
723  * \retval negative     negative errno if get statfs failed.
724  */
725 static int osp_statfs(const struct lu_env *env, struct dt_device *dev,
726                       struct obd_statfs *sfs)
727 {
728         struct osp_device *d = dt2osp_dev(dev);
729         struct obd_import *imp = d->opd_obd->u.cli.cl_import;
730
731         ENTRY;
732
733         if (imp->imp_state == LUSTRE_IMP_CLOSED)
734                 RETURN(-ESHUTDOWN);
735
736         if (unlikely(d->opd_imp_active == 0))
737                 RETURN(-ENOTCONN);
738
739         if (d->opd_pre == NULL)
740                 RETURN(0);
741
742         /* return recently updated data */
743         *sfs = d->opd_statfs;
744
745         /*
746          * layer above osp (usually lod) can use ffree to estimate
747          * how many objects are available for immediate creation
748          */
749         spin_lock(&d->opd_pre_lock);
750         LASSERTF(fid_seq(&d->opd_pre_last_created_fid) ==
751                  fid_seq(&d->opd_pre_used_fid),
752                  "last_created "DFID", next_fid "DFID"\n",
753                  PFID(&d->opd_pre_last_created_fid),
754                  PFID(&d->opd_pre_used_fid));
755         sfs->os_fprecreated = fid_oid(&d->opd_pre_last_created_fid) -
756                               fid_oid(&d->opd_pre_used_fid);
757         sfs->os_fprecreated -= d->opd_pre_reserved;
758         LASSERTF(sfs->os_fprecreated <= OST_MAX_PRECREATE * 2,
759                  "last_created "DFID", next_fid "DFID", reserved %llu\n",
760                  PFID(&d->opd_pre_last_created_fid), PFID(&d->opd_pre_used_fid),
761                  d->opd_pre_reserved);
762         spin_unlock(&d->opd_pre_lock);
763
764         CDEBUG(D_OTHER, "%s: %llu blocks, %llu free, %llu avail, "
765                "%llu files, %llu free files\n", d->opd_obd->obd_name,
766                sfs->os_blocks, sfs->os_bfree, sfs->os_bavail,
767                sfs->os_files, sfs->os_ffree);
768         RETURN(0);
769 }
770
771 static int osp_sync_timeout(void *data)
772 {
773         return 1;
774 }
775
776 /**
777  * Implementation of dt_device_operations::dt_sync
778  *
779  * This function synchronizes the OSP cache to the remote target. It wakes
780  * up unlink log threads and sends out unlink records to the remote OST.
781  *
782  * \param[in] env       execution environment
783  * \param[in] dev       dt_device of OSP
784  *
785  * \retval 0            0 if synchronization succeeds
786  * \retval negative     negative errno if synchronization fails
787  */
788 static int osp_sync(const struct lu_env *env, struct dt_device *dev)
789 {
790         struct osp_device *d = dt2osp_dev(dev);
791         cfs_time_t         expire;
792         struct l_wait_info lwi = { 0 };
793         unsigned long      id, old;
794         int                rc = 0;
795         unsigned long      start = cfs_time_current();
796         ENTRY;
797
798         /* No Sync between MDTs yet. */
799         if (d->opd_connect_mdt)
800                 RETURN(0);
801
802         if (unlikely(d->opd_imp_active == 0))
803                 RETURN(-ENOTCONN);
804
805         id = d->opd_syn_last_used_id;
806         down_write(&d->opd_async_updates_rwsem);
807
808         CDEBUG(D_OTHER, "%s: async updates %d\n", d->opd_obd->obd_name,
809                atomic_read(&d->opd_async_updates_count));
810
811         /* make sure the connection is fine */
812         expire = cfs_time_shift(obd_timeout);
813         lwi = LWI_TIMEOUT(expire - cfs_time_current(), osp_sync_timeout, d);
814         rc = l_wait_event(d->opd_syn_barrier_waitq,
815                           atomic_read(&d->opd_async_updates_count) == 0,
816                           &lwi);
817         up_write(&d->opd_async_updates_rwsem);
818         if (rc != 0)
819                 GOTO(out, rc);
820
821         CDEBUG(D_CACHE, "%s: id: used %lu, processed %llu\n",
822                d->opd_obd->obd_name, id, d->opd_syn_last_processed_id);
823
824         /* wait till all-in-line are processed */
825         while (d->opd_syn_last_processed_id < id) {
826
827                 old = d->opd_syn_last_processed_id;
828
829                 /* make sure the connection is fine */
830                 expire = cfs_time_shift(obd_timeout);
831                 lwi = LWI_TIMEOUT(expire - cfs_time_current(),
832                                   osp_sync_timeout, d);
833                 l_wait_event(d->opd_syn_barrier_waitq,
834                              d->opd_syn_last_processed_id >= id,
835                              &lwi);
836
837                 if (d->opd_syn_last_processed_id >= id)
838                         break;
839
840                 if (d->opd_syn_last_processed_id != old) {
841                         /* some progress have been made,
842                          * keep trying... */
843                         continue;
844                 }
845
846                 /* no changes and expired, something is wrong */
847                 GOTO(out, rc = -ETIMEDOUT);
848         }
849
850         /* block new processing (barrier>0 - few callers are possible */
851         atomic_inc(&d->opd_syn_barrier);
852
853         CDEBUG(D_CACHE, "%s: %u in flight\n", d->opd_obd->obd_name,
854                atomic_read(&d->opd_syn_rpc_in_flight));
855
856         /* wait till all-in-flight are replied, so executed by the target */
857         /* XXX: this is used by LFSCK at the moment, which doesn't require
858          *      all the changes to be committed, but in general it'd be
859          *      better to wait till commit */
860         while (atomic_read(&d->opd_syn_rpc_in_flight) > 0) {
861
862                 old = atomic_read(&d->opd_syn_rpc_in_flight);
863
864                 expire = cfs_time_shift(obd_timeout);
865                 lwi = LWI_TIMEOUT(expire - cfs_time_current(),
866                                   osp_sync_timeout, d);
867                 l_wait_event(d->opd_syn_barrier_waitq,
868                              atomic_read(&d->opd_syn_rpc_in_flight) == 0,
869                              &lwi);
870
871                 if (atomic_read(&d->opd_syn_rpc_in_flight) == 0)
872                         break;
873
874                 if (atomic_read(&d->opd_syn_rpc_in_flight) != old) {
875                         /* some progress have been made */
876                         continue;
877                 }
878
879                 /* no changes and expired, something is wrong */
880                 GOTO(out, rc = -ETIMEDOUT);
881         }
882
883 out:
884         /* resume normal processing (barrier=0) */
885         atomic_dec(&d->opd_syn_barrier);
886         __osp_sync_check_for_work(d);
887
888         CDEBUG(D_CACHE, "%s: done in %lu: rc = %d\n", d->opd_obd->obd_name,
889                cfs_time_current() - start, rc);
890
891         RETURN(rc);
892 }
893
894 const struct dt_device_operations osp_dt_ops = {
895         .dt_statfs       = osp_statfs,
896         .dt_sync         = osp_sync,
897         .dt_trans_create = osp_trans_create,
898         .dt_trans_start  = osp_trans_start,
899         .dt_trans_stop   = osp_trans_stop,
900         .dt_trans_cb_add   = osp_trans_cb_add,
901 };
902
903 /**
904  * Connect OSP to local OSD.
905  *
906  * Locate the local OSD referenced by \a nextdev and connect to it. Sometimes,
907  * OSP needs to access the local OSD to store some information. For example,
908  * during precreate, it needs to update last used OID and sequence file
909  * (LAST_SEQ) in local OSD.
910  *
911  * \param[in] env       execution environment
912  * \param[in] osp       OSP device
913  * \param[in] nextdev   the name of local OSD
914  *
915  * \retval 0            0 connection succeeded
916  * \retval negative     negative errno connection failed
917  */
918 static int osp_connect_to_osd(const struct lu_env *env, struct osp_device *osp,
919                               const char *nextdev)
920 {
921         struct obd_connect_data *data = NULL;
922         struct obd_device       *obd;
923         int                      rc;
924
925         ENTRY;
926
927         LASSERT(osp->opd_storage_exp == NULL);
928
929         OBD_ALLOC_PTR(data);
930         if (data == NULL)
931                 RETURN(-ENOMEM);
932
933         obd = class_name2obd(nextdev);
934         if (obd == NULL) {
935                 CERROR("%s: can't locate next device: %s\n",
936                        osp->opd_obd->obd_name, nextdev);
937                 GOTO(out, rc = -ENOTCONN);
938         }
939
940         rc = obd_connect(env, &osp->opd_storage_exp, obd, &obd->obd_uuid, data,
941                          NULL);
942         if (rc) {
943                 CERROR("%s: cannot connect to next dev %s: rc = %d\n",
944                        osp->opd_obd->obd_name, nextdev, rc);
945                 GOTO(out, rc);
946         }
947
948         osp->opd_dt_dev.dd_lu_dev.ld_site =
949                 osp->opd_storage_exp->exp_obd->obd_lu_dev->ld_site;
950         LASSERT(osp->opd_dt_dev.dd_lu_dev.ld_site);
951         osp->opd_storage = lu2dt_dev(osp->opd_storage_exp->exp_obd->obd_lu_dev);
952
953 out:
954         OBD_FREE_PTR(data);
955         RETURN(rc);
956 }
957
958 /**
959  * Determine if the lock needs to be cancelled
960  *
961  * Determine if the unused lock should be cancelled before replay, see
962  * (ldlm_cancel_no_wait_policy()). Currently, only inode bits lock exists
963  * between MDTs.
964  *
965  * \param[in] lock      lock to be checked.
966  *
967  * \retval              1 if the lock needs to be cancelled before replay.
968  * \retval              0 if the lock does not need to be cancelled before
969  *                      replay.
970  */
971 static int osp_cancel_weight(struct ldlm_lock *lock)
972 {
973         if (lock->l_resource->lr_type != LDLM_IBITS)
974                 RETURN(0);
975
976         RETURN(1);
977 }
978
979 /**
980  * Initialize OSP device according to the parameters in the configuration
981  * log \a cfg.
982  *
983  * Reconstruct the local device name from the configuration profile, and
984  * initialize necessary threads and structures according to the OSP type
985  * (MDT or OST).
986  *
987  * Since there is no record in the MDT configuration for the local disk
988  * device, we have to extract this from elsewhere in the profile.
989  * The only information we get at setup is from the OSC records:
990  * setup 0:{fsname}-OSTxxxx-osc[-MDTxxxx] 1:lustre-OST0000_UUID 2:NID
991  *
992  * Note: configs generated by Lustre 1.8 are missing the -MDTxxxx part,
993  * so, we need to reconstruct the name of the underlying OSD from this:
994  * {fsname}-{svname}-osd, for example "lustre-MDT0000-osd".
995  *
996  * \param[in] env       execution environment
997  * \param[in] osp       OSP device
998  * \param[in] ldt       lu device type of OSP
999  * \param[in] cfg       configuration log
1000  *
1001  * \retval 0            0 if OSP initialization succeeded.
1002  * \retval negative     negative errno if OSP initialization failed.
1003  */
1004 static int osp_init0(const struct lu_env *env, struct osp_device *osp,
1005                      struct lu_device_type *ldt, struct lustre_cfg *cfg)
1006 {
1007         struct obd_device       *obd;
1008         struct obd_import       *imp;
1009         class_uuid_t            uuid;
1010         char                    *src, *tgt, *mdt, *osdname = NULL;
1011         int                     rc;
1012         long                    idx;
1013
1014         ENTRY;
1015
1016         mutex_init(&osp->opd_async_requests_mutex);
1017         INIT_LIST_HEAD(&osp->opd_async_updates);
1018         init_rwsem(&osp->opd_async_updates_rwsem);
1019         atomic_set(&osp->opd_async_updates_count, 0);
1020
1021         obd = class_name2obd(lustre_cfg_string(cfg, 0));
1022         if (obd == NULL) {
1023                 CERROR("Cannot find obd with name %s\n",
1024                        lustre_cfg_string(cfg, 0));
1025                 RETURN(-ENODEV);
1026         }
1027         osp->opd_obd = obd;
1028
1029         src = lustre_cfg_string(cfg, 0);
1030         if (src == NULL)
1031                 RETURN(-EINVAL);
1032
1033         tgt = strrchr(src, '-');
1034         if (tgt == NULL) {
1035                 CERROR("%s: invalid target name %s: rc = %d\n",
1036                        osp->opd_obd->obd_name, lustre_cfg_string(cfg, 0),
1037                        -EINVAL);
1038                 RETURN(-EINVAL);
1039         }
1040
1041         if (strncmp(tgt, "-osc", 4) == 0) {
1042                 /* Old OSC name fsname-OSTXXXX-osc */
1043                 for (tgt--; tgt > src && *tgt != '-'; tgt--)
1044                         ;
1045                 if (tgt == src) {
1046                         CERROR("%s: invalid target name %s: rc = %d\n",
1047                                osp->opd_obd->obd_name,
1048                                lustre_cfg_string(cfg, 0), -EINVAL);
1049                         RETURN(-EINVAL);
1050                 }
1051
1052                 if (strncmp(tgt, "-OST", 4) != 0) {
1053                         CERROR("%s: invalid target name %s: rc = %d\n",
1054                                osp->opd_obd->obd_name,
1055                                lustre_cfg_string(cfg, 0), -EINVAL);
1056                         RETURN(-EINVAL);
1057                 }
1058
1059                 idx = simple_strtol(tgt + 4, &mdt, 16);
1060                 if (mdt[0] != '-' || idx > INT_MAX || idx < 0) {
1061                         CERROR("%s: invalid OST index in '%s': rc = %d\n",
1062                                osp->opd_obd->obd_name, src, -EINVAL);
1063                         RETURN(-EINVAL);
1064                 }
1065                 osp->opd_index = idx;
1066                 osp->opd_group = 0;
1067                 idx = tgt - src;
1068         } else {
1069                 /* New OSC name fsname-OSTXXXX-osc-MDTXXXX */
1070                 if (strncmp(tgt, "-MDT", 4) != 0 &&
1071                     strncmp(tgt, "-OST", 4) != 0) {
1072                         CERROR("%s: invalid target name %s: rc = %d\n",
1073                                osp->opd_obd->obd_name,
1074                                lustre_cfg_string(cfg, 0), -EINVAL);
1075                         RETURN(-EINVAL);
1076                 }
1077
1078                 idx = simple_strtol(tgt + 4, &mdt, 16);
1079                 if (*mdt != '\0' || idx > INT_MAX || idx < 0) {
1080                         CERROR("%s: invalid OST index in '%s': rc = %d\n",
1081                                osp->opd_obd->obd_name, src, -EINVAL);
1082                         RETURN(-EINVAL);
1083                 }
1084
1085                 /* Get MDT index from the name and set it to opd_group,
1086                  * which will be used by OSP to connect with OST */
1087                 osp->opd_group = idx;
1088                 if (tgt - src <= 12) {
1089                         CERROR("%s: invalid mdt index from %s: rc =%d\n",
1090                                osp->opd_obd->obd_name,
1091                                lustre_cfg_string(cfg, 0), -EINVAL);
1092                         RETURN(-EINVAL);
1093                 }
1094
1095                 if (strncmp(tgt - 12, "-MDT", 4) == 0)
1096                         osp->opd_connect_mdt = 1;
1097
1098                 idx = simple_strtol(tgt - 8, &mdt, 16);
1099                 if (mdt[0] != '-' || idx > INT_MAX || idx < 0) {
1100                         CERROR("%s: invalid OST index in '%s': rc =%d\n",
1101                                osp->opd_obd->obd_name, src, -EINVAL);
1102                         RETURN(-EINVAL);
1103                 }
1104
1105                 osp->opd_index = idx;
1106                 idx = tgt - src - 12;
1107         }
1108         /* check the fsname length, and after this everything else will fit */
1109         if (idx > MTI_NAME_MAXLEN) {
1110                 CERROR("%s: fsname too long in '%s': rc = %d\n",
1111                        osp->opd_obd->obd_name, src, -EINVAL);
1112                 RETURN(-EINVAL);
1113         }
1114
1115         OBD_ALLOC(osdname, MAX_OBD_NAME);
1116         if (osdname == NULL)
1117                 RETURN(-ENOMEM);
1118
1119         memcpy(osdname, src, idx); /* copy just the fsname part */
1120         osdname[idx] = '\0';
1121
1122         mdt = strstr(mdt, "-MDT");
1123         if (mdt == NULL) /* 1.8 configs don't have "-MDT0000" at the end */
1124                 strcat(osdname, "-MDT0000");
1125         else
1126                 strcat(osdname, mdt);
1127         strcat(osdname, "-osd");
1128         CDEBUG(D_HA, "%s: connect to %s (%s)\n", obd->obd_name, osdname, src);
1129
1130         if (osp->opd_connect_mdt) {
1131                 struct client_obd *cli = &osp->opd_obd->u.cli;
1132
1133                 OBD_ALLOC(cli->cl_rpc_lock, sizeof(*cli->cl_rpc_lock));
1134                 if (!cli->cl_rpc_lock)
1135                         GOTO(out_fini, rc = -ENOMEM);
1136                 osp_init_rpc_lock(cli->cl_rpc_lock);
1137         }
1138
1139         osp->opd_dt_dev.dd_lu_dev.ld_ops = &osp_lu_ops;
1140         osp->opd_dt_dev.dd_ops = &osp_dt_ops;
1141
1142         obd->obd_lu_dev = &osp->opd_dt_dev.dd_lu_dev;
1143
1144         rc = osp_connect_to_osd(env, osp, osdname);
1145         if (rc)
1146                 GOTO(out_fini, rc);
1147
1148         rc = ptlrpcd_addref();
1149         if (rc)
1150                 GOTO(out_disconnect, rc);
1151
1152         rc = client_obd_setup(obd, cfg);
1153         if (rc) {
1154                 CERROR("%s: can't setup obd: rc = %d\n", osp->opd_obd->obd_name,
1155                        rc);
1156                 GOTO(out_ref, rc);
1157         }
1158
1159         osp_lprocfs_init(osp);
1160
1161         rc = obd_fid_init(osp->opd_obd, NULL, osp->opd_connect_mdt ?
1162                           LUSTRE_SEQ_METADATA : LUSTRE_SEQ_DATA);
1163         if (rc) {
1164                 CERROR("%s: fid init error: rc = %d\n",
1165                        osp->opd_obd->obd_name, rc);
1166                 GOTO(out_proc, rc);
1167         }
1168
1169         if (!osp->opd_connect_mdt) {
1170                 /* Initialize last id from the storage - will be
1171                  * used in orphan cleanup. */
1172                 if (!osp->opd_storage->dd_rdonly) {
1173                         rc = osp_last_used_init(env, osp);
1174                         if (rc)
1175                                 GOTO(out_fid, rc);
1176                 }
1177
1178                 /* Initialize precreation thread, it handles new
1179                  * connections as well. */
1180                 rc = osp_init_precreate(osp);
1181                 if (rc)
1182                         GOTO(out_last_used, rc);
1183
1184                 /*
1185                  * Initialize synhronization mechanism taking
1186                  * care of propogating changes to OST in near
1187                  * transactional manner.
1188                  */
1189                 rc = osp_sync_init(env, osp);
1190                 if (rc < 0)
1191                         GOTO(out_precreat, rc);
1192         } else {
1193                 rc = osp_update_init(osp);
1194                 if (rc != 0)
1195                         GOTO(out_fid, rc);
1196         }
1197
1198         ns_register_cancel(obd->obd_namespace, osp_cancel_weight);
1199
1200         /*
1201          * Initiate connect to OST
1202          */
1203         ll_generate_random_uuid(uuid);
1204         class_uuid_unparse(uuid, &osp->opd_cluuid);
1205
1206         imp = obd->u.cli.cl_import;
1207
1208         rc = ptlrpc_init_import(imp);
1209         if (rc)
1210                 GOTO(out, rc);
1211         if (osdname)
1212                 OBD_FREE(osdname, MAX_OBD_NAME);
1213         RETURN(0);
1214
1215 out:
1216         if (!osp->opd_connect_mdt)
1217                 /* stop sync thread */
1218                 osp_sync_fini(osp);
1219 out_precreat:
1220         /* stop precreate thread */
1221         if (!osp->opd_connect_mdt)
1222                 osp_precreate_fini(osp);
1223         else
1224                 osp_update_fini(env, osp);
1225 out_last_used:
1226         if (!osp->opd_connect_mdt)
1227                 osp_last_used_fini(env, osp);
1228 out_fid:
1229         obd_fid_fini(osp->opd_obd);
1230 out_proc:
1231         ptlrpc_lprocfs_unregister_obd(obd);
1232         lprocfs_obd_cleanup(obd);
1233         if (osp->opd_symlink)
1234                 lprocfs_remove(&osp->opd_symlink);
1235         client_obd_cleanup(obd);
1236 out_ref:
1237         ptlrpcd_decref();
1238 out_disconnect:
1239         if (osp->opd_connect_mdt) {
1240                 struct client_obd *cli = &osp->opd_obd->u.cli;
1241                 if (cli->cl_rpc_lock != NULL) {
1242                         OBD_FREE_PTR(cli->cl_rpc_lock);
1243                         cli->cl_rpc_lock = NULL;
1244                 }
1245         }
1246         obd_disconnect(osp->opd_storage_exp);
1247 out_fini:
1248         if (osdname)
1249                 OBD_FREE(osdname, MAX_OBD_NAME);
1250         RETURN(rc);
1251 }
1252
1253 /**
1254  * Implementation of lu_device_type_operations::ldto_device_free
1255  *
1256  * Free the OSP device in memory.  No return value is needed for now,
1257  * so always return NULL to comply with the interface.
1258  *
1259  * \param[in] env       execution environment
1260  * \param[in] lu        lu_device of OSP
1261  *
1262  * \retval NULL         NULL unconditionally
1263  */
1264 static struct lu_device *osp_device_free(const struct lu_env *env,
1265                                          struct lu_device *lu)
1266 {
1267         struct osp_device *osp = lu2osp_dev(lu);
1268
1269         if (atomic_read(&lu->ld_ref) && lu->ld_site) {
1270                 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, D_ERROR, NULL);
1271                 lu_site_print(env, lu->ld_site, &msgdata, lu_cdebug_printer);
1272         }
1273         dt_device_fini(&osp->opd_dt_dev);
1274         OBD_FREE_PTR(osp);
1275
1276         return NULL;
1277 }
1278
1279 /**
1280  * Implementation of lu_device_type_operations::ldto_device_alloc
1281  *
1282  * This function allocates and initializes OSP device in memory according to
1283  * the config log.
1284  *
1285  * \param[in] env       execution environment
1286  * \param[in] type      device type of OSP
1287  * \param[in] lcfg      config log
1288  *
1289  * \retval pointer              the pointer of allocated OSP if succeed.
1290  * \retval ERR_PTR(errno)       ERR_PTR(errno) if failed.
1291  */
1292 static struct lu_device *osp_device_alloc(const struct lu_env *env,
1293                                           struct lu_device_type *type,
1294                                           struct lustre_cfg *lcfg)
1295 {
1296         struct osp_device *osp;
1297         struct lu_device  *ld;
1298
1299         OBD_ALLOC_PTR(osp);
1300         if (osp == NULL) {
1301                 ld = ERR_PTR(-ENOMEM);
1302         } else {
1303                 int rc;
1304
1305                 ld = osp2lu_dev(osp);
1306                 dt_device_init(&osp->opd_dt_dev, type);
1307                 rc = osp_init0(env, osp, type, lcfg);
1308                 if (rc != 0) {
1309                         osp_device_free(env, ld);
1310                         ld = ERR_PTR(rc);
1311                 }
1312         }
1313         return ld;
1314 }
1315
1316 /**
1317  * Implementation of lu_device_type_operations::ldto_device_fini
1318  *
1319  * This function cleans up the OSP device, i.e. release and free those
1320  * attached items in osp_device.
1321  *
1322  * \param[in] env       execution environment
1323  * \param[in] ld        lu_device of OSP
1324  *
1325  * \retval NULL                 NULL if cleanup succeeded.
1326  * \retval ERR_PTR(errno)       ERR_PTR(errno) if cleanup failed.
1327  */
1328 static struct lu_device *osp_device_fini(const struct lu_env *env,
1329                                          struct lu_device *ld)
1330 {
1331         struct osp_device *osp = lu2osp_dev(ld);
1332         int                rc;
1333
1334         ENTRY;
1335
1336         if (osp->opd_async_requests != NULL) {
1337                 osp_update_request_destroy(env, osp->opd_async_requests);
1338                 osp->opd_async_requests = NULL;
1339         }
1340
1341         if (osp->opd_storage_exp)
1342                 obd_disconnect(osp->opd_storage_exp);
1343
1344         if (osp->opd_symlink)
1345                 lprocfs_remove(&osp->opd_symlink);
1346
1347         LASSERT(osp->opd_obd);
1348         ptlrpc_lprocfs_unregister_obd(osp->opd_obd);
1349         lprocfs_obd_cleanup(osp->opd_obd);
1350
1351         if (osp->opd_connect_mdt) {
1352                 struct client_obd *cli = &osp->opd_obd->u.cli;
1353                 if (cli->cl_rpc_lock != NULL) {
1354                         OBD_FREE_PTR(cli->cl_rpc_lock);
1355                         cli->cl_rpc_lock = NULL;
1356                 }
1357         }
1358
1359         rc = client_obd_cleanup(osp->opd_obd);
1360         if (rc != 0) {
1361                 ptlrpcd_decref();
1362                 RETURN(ERR_PTR(rc));
1363         }
1364
1365         ptlrpcd_decref();
1366
1367         RETURN(NULL);
1368 }
1369
1370 /**
1371  * Implementation of obd_ops::o_reconnect
1372  *
1373  * This function is empty and does not need to do anything for now.
1374  */
1375 static int osp_reconnect(const struct lu_env *env,
1376                          struct obd_export *exp, struct obd_device *obd,
1377                          struct obd_uuid *cluuid,
1378                          struct obd_connect_data *data,
1379                          void *localdata)
1380 {
1381         return 0;
1382 }
1383
1384 /*
1385  * Implementation of obd_ops::o_connect
1386  *
1387  * Connect OSP to the remote target (MDT or OST). Allocate the
1388  * export and return it to the LOD, which calls this function
1389  * for each OSP to connect it to the remote target. This function
1390  * is currently only called once per OSP.
1391  *
1392  * \param[in] env       execution environment
1393  * \param[out] exp      export connected to OSP
1394  * \param[in] obd       OSP device
1395  * \param[in] cluuid    OSP device client uuid
1396  * \param[in] data      connect_data to be used to connect to the remote
1397  *                      target
1398  * \param[in] localdata necessary for the API interface, but not used in
1399  *                      this function
1400  *
1401  * \retval 0            0 if the connection succeeded.
1402  * \retval negative     negative errno if the connection failed.
1403  */
1404 static int osp_obd_connect(const struct lu_env *env, struct obd_export **exp,
1405                            struct obd_device *obd, struct obd_uuid *cluuid,
1406                            struct obd_connect_data *data, void *localdata)
1407 {
1408         struct osp_device       *osp = lu2osp_dev(obd->obd_lu_dev);
1409         struct obd_connect_data *ocd;
1410         struct obd_import       *imp;
1411         struct lustre_handle     conn;
1412         int                      rc;
1413
1414         ENTRY;
1415
1416         CDEBUG(D_CONFIG, "connect #%d\n", osp->opd_connects);
1417
1418         rc = class_connect(&conn, obd, cluuid);
1419         if (rc)
1420                 RETURN(rc);
1421
1422         *exp = class_conn2export(&conn);
1423         /* Why should there ever be more than 1 connect? */
1424         osp->opd_connects++;
1425         LASSERT(osp->opd_connects == 1);
1426
1427         osp->opd_exp = *exp;
1428
1429         imp = osp->opd_obd->u.cli.cl_import;
1430         imp->imp_dlm_handle = conn;
1431
1432         LASSERT(data != NULL);
1433         LASSERT(data->ocd_connect_flags & OBD_CONNECT_INDEX);
1434         ocd = &imp->imp_connect_data;
1435         *ocd = *data;
1436
1437         imp->imp_connect_flags_orig = ocd->ocd_connect_flags;
1438         imp->imp_connect_flags2_orig = ocd->ocd_connect_flags2;
1439
1440         ocd->ocd_version = LUSTRE_VERSION_CODE;
1441         ocd->ocd_index = data->ocd_index;
1442
1443         rc = ptlrpc_connect_import(imp);
1444         if (rc) {
1445                 CERROR("%s: can't connect obd: rc = %d\n", obd->obd_name, rc);
1446                 GOTO(out, rc);
1447         } else {
1448                 osp->opd_obd->u.cli.cl_seq->lcs_exp =
1449                                 class_export_get(osp->opd_exp);
1450         }
1451
1452         ptlrpc_pinger_add_import(imp);
1453 out:
1454         RETURN(rc);
1455 }
1456
1457 /**
1458  * Implementation of obd_ops::o_disconnect
1459  *
1460  * Disconnect the export for the OSP.  This is called by LOD to release the
1461  * OSP during cleanup (\see lod_del_device()). The OSP will be released after
1462  * the export is released.
1463  *
1464  * \param[in] exp       export to be disconnected.
1465  *
1466  * \retval 0            0 if disconnection succeed
1467  * \retval negative     negative errno if disconnection failed
1468  */
1469 static int osp_obd_disconnect(struct obd_export *exp)
1470 {
1471         struct obd_device *obd = exp->exp_obd;
1472         struct osp_device *osp = lu2osp_dev(obd->obd_lu_dev);
1473         int                rc;
1474         ENTRY;
1475
1476         /* Only disconnect the underlying layers on the final disconnect. */
1477         LASSERT(osp->opd_connects == 1);
1478         osp->opd_connects--;
1479
1480         rc = class_disconnect(exp);
1481         if (rc) {
1482                 CERROR("%s: class disconnect error: rc = %d\n",
1483                        obd->obd_name, rc);
1484                 RETURN(rc);
1485         }
1486
1487         /* destroy the device */
1488         class_manual_cleanup(obd);
1489
1490         RETURN(rc);
1491 }
1492
1493 /**
1494  * Implementation of obd_ops::o_statfs
1495  *
1496  * Send a RPC to the remote target to get statfs status. This is only used
1497  * in lprocfs helpers by obd_statfs.
1498  *
1499  * \param[in] env       execution environment
1500  * \param[in] exp       connection state from this OSP to the parent (LOD)
1501  *                      device
1502  * \param[out] osfs     hold the statfs result
1503  * \param[in] unused    Not used in this function for now
1504  * \param[in] flags     flags to indicate how OSP will issue the RPC
1505  *
1506  * \retval 0            0 if statfs succeeded.
1507  * \retval negative     negative errno if statfs failed.
1508  */
1509 static int osp_obd_statfs(const struct lu_env *env, struct obd_export *exp,
1510                           struct obd_statfs *osfs, __u64 unused, __u32 flags)
1511 {
1512         struct obd_statfs       *msfs;
1513         struct ptlrpc_request   *req;
1514         struct obd_import       *imp = NULL;
1515         int                      rc;
1516
1517         ENTRY;
1518
1519         /* Since the request might also come from lprocfs, so we need
1520          * sync this with client_disconnect_export Bug15684 */
1521         down_read(&exp->exp_obd->u.cli.cl_sem);
1522         if (exp->exp_obd->u.cli.cl_import)
1523                 imp = class_import_get(exp->exp_obd->u.cli.cl_import);
1524         up_read(&exp->exp_obd->u.cli.cl_sem);
1525         if (!imp)
1526                 RETURN(-ENODEV);
1527
1528         req = ptlrpc_request_alloc(imp, &RQF_OST_STATFS);
1529
1530         class_import_put(imp);
1531
1532         if (req == NULL)
1533                 RETURN(-ENOMEM);
1534
1535         rc = ptlrpc_request_pack(req, LUSTRE_OST_VERSION, OST_STATFS);
1536         if (rc) {
1537                 ptlrpc_request_free(req);
1538                 RETURN(rc);
1539         }
1540         ptlrpc_request_set_replen(req);
1541         req->rq_request_portal = OST_CREATE_PORTAL;
1542         ptlrpc_at_set_req_timeout(req);
1543
1544         if (flags & OBD_STATFS_NODELAY) {
1545                 /* procfs requests not want stat in wait for avoid deadlock */
1546                 req->rq_no_resend = 1;
1547                 req->rq_no_delay = 1;
1548         }
1549
1550         rc = ptlrpc_queue_wait(req);
1551         if (rc)
1552                 GOTO(out, rc);
1553
1554         msfs = req_capsule_server_get(&req->rq_pill, &RMF_OBD_STATFS);
1555         if (msfs == NULL)
1556                 GOTO(out, rc = -EPROTO);
1557
1558         *osfs = *msfs;
1559
1560         EXIT;
1561 out:
1562         ptlrpc_req_finished(req);
1563         return rc;
1564 }
1565
1566 /**
1567  * Implementation of obd_ops::o_import_event
1568  *
1569  * This function is called when some related import event happens. It will
1570  * mark the necessary flags according to the event and notify the necessary
1571  * threads (mainly precreate thread).
1572  *
1573  * \param[in] obd       OSP OBD device
1574  * \param[in] imp       import attached from OSP to remote (OST/MDT) service
1575  * \param[in] event     event related to remote service (IMP_EVENT_*)
1576  *
1577  * \retval 0            0 if the event handling succeeded.
1578  * \retval negative     negative errno if the event handling failed.
1579  */
1580 static int osp_import_event(struct obd_device *obd, struct obd_import *imp,
1581                             enum obd_import_event event)
1582 {
1583         struct osp_device *d = lu2osp_dev(obd->obd_lu_dev);
1584         int rc;
1585
1586         switch (event) {
1587         case IMP_EVENT_DISCON:
1588                 d->opd_got_disconnected = 1;
1589                 d->opd_imp_connected = 0;
1590                 if (d->opd_connect_mdt)
1591                         break;
1592
1593                 if (d->opd_pre != NULL) {
1594                         osp_pre_update_status(d, -ENODEV);
1595                         wake_up(&d->opd_pre_waitq);
1596                 }
1597
1598                 CDEBUG(D_HA, "got disconnected\n");
1599                 break;
1600         case IMP_EVENT_INACTIVE:
1601                 d->opd_imp_active = 0;
1602                 d->opd_imp_connected = 0;
1603                 d->opd_obd->obd_inactive = 1;
1604                 if (d->opd_connect_mdt)
1605                         break;
1606                 if (d->opd_pre != NULL) {
1607                         /* Import is invalid, we can`t get stripes so
1608                          * wakeup waiters */
1609                         rc = imp->imp_deactive ? -ESHUTDOWN : -ENODEV;
1610                         osp_pre_update_status(d, rc);
1611                         wake_up(&d->opd_pre_waitq);
1612                 }
1613
1614                 CDEBUG(D_HA, "got inactive\n");
1615                 break;
1616         case IMP_EVENT_ACTIVE:
1617                 d->opd_imp_active = 1;
1618
1619                 if (d->opd_got_disconnected)
1620                         d->opd_new_connection = 1;
1621                 d->opd_imp_connected = 1;
1622                 d->opd_imp_seen_connected = 1;
1623                 d->opd_obd->obd_inactive = 0;
1624                 if (d->opd_connect_mdt)
1625                         break;
1626
1627                 if (d->opd_pre != NULL)
1628                         wake_up(&d->opd_pre_waitq);
1629
1630                 __osp_sync_check_for_work(d);
1631                 CDEBUG(D_HA, "got connected\n");
1632                 break;
1633         case IMP_EVENT_INVALIDATE:
1634                 if (d->opd_connect_mdt)
1635                         osp_invalidate_request(d);
1636
1637                 if (obd->obd_namespace == NULL)
1638                         break;
1639                 ldlm_namespace_cleanup(obd->obd_namespace, LDLM_FL_LOCAL_ONLY);
1640                 break;
1641         case IMP_EVENT_OCD:
1642         case IMP_EVENT_DEACTIVATE:
1643         case IMP_EVENT_ACTIVATE:
1644                 break;
1645         default:
1646                 CERROR("%s: unsupported import event: %#x\n",
1647                        obd->obd_name, event);
1648         }
1649         return 0;
1650 }
1651
1652 /**
1653  * Implementation of obd_ops: o_iocontrol
1654  *
1655  * This function is the ioctl handler for OSP. Note: lctl will access the OSP
1656  * directly by ioctl, instead of through the MDS stack.
1657  *
1658  * param[in] cmd        ioctl command.
1659  * param[in] exp        export of this OSP.
1660  * param[in] len        data length of \a karg.
1661  * param[in] karg       input argument which is packed as
1662  *                      obd_ioctl_data
1663  * param[out] uarg      pointer to userspace buffer (must access by
1664  *                      copy_to_user()).
1665  *
1666  * \retval 0            0 if the ioctl handling succeeded.
1667  * \retval negative     negative errno if the ioctl handling failed.
1668  */
1669 static int osp_iocontrol(unsigned int cmd, struct obd_export *exp, int len,
1670                          void *karg, void __user *uarg)
1671 {
1672         struct obd_device       *obd = exp->exp_obd;
1673         struct osp_device       *d;
1674         struct obd_ioctl_data   *data = karg;
1675         int                      rc = 0;
1676
1677         ENTRY;
1678
1679         LASSERT(obd->obd_lu_dev);
1680         d = lu2osp_dev(obd->obd_lu_dev);
1681         LASSERT(d->opd_dt_dev.dd_ops == &osp_dt_ops);
1682
1683         if (!try_module_get(THIS_MODULE)) {
1684                 CERROR("%s: cannot get module '%s'\n", obd->obd_name,
1685                        module_name(THIS_MODULE));
1686                 return -EINVAL;
1687         }
1688
1689         switch (cmd) {
1690         case OBD_IOC_CLIENT_RECOVER:
1691                 rc = ptlrpc_recover_import(obd->u.cli.cl_import,
1692                                            data->ioc_inlbuf1, 0);
1693                 if (rc > 0)
1694                         rc = 0;
1695                 break;
1696         case IOC_OSC_SET_ACTIVE:
1697                 rc = ptlrpc_set_import_active(obd->u.cli.cl_import,
1698                                               data->ioc_offset);
1699                 break;
1700         case OBD_IOC_PING_TARGET:
1701                 rc = ptlrpc_obd_ping(obd);
1702                 break;
1703         default:
1704                 CERROR("%s: unrecognized ioctl %#x by %s\n", obd->obd_name,
1705                        cmd, current_comm());
1706                 rc = -ENOTTY;
1707         }
1708         module_put(THIS_MODULE);
1709         return rc;
1710 }
1711
1712
1713 /**
1714  * Implementation of obd_ops::o_get_info
1715  *
1716  * Retrieve information by key. Retrieval starts from the top layer
1717  * (MDT) of the MDS stack and traverses the stack by calling the
1718  * obd_get_info() method of the next sub-layer.
1719  *
1720  * \param[in] env       execution environment
1721  * \param[in] exp       export of this OSP
1722  * \param[in] keylen    length of \a key
1723  * \param[in] key       the key
1724  * \param[out] vallen   length of \a val
1725  * \param[out] val      holds the value returned by the key
1726  *
1727  * \retval 0            0 if getting information succeeded.
1728  * \retval negative     negative errno if getting information failed.
1729  */
1730 static int osp_obd_get_info(const struct lu_env *env, struct obd_export *exp,
1731                             __u32 keylen, void *key, __u32 *vallen, void *val)
1732 {
1733         int rc = -EINVAL;
1734
1735         if (KEY_IS(KEY_OSP_CONNECTED)) {
1736                 struct obd_device       *obd = exp->exp_obd;
1737                 struct osp_device       *osp;
1738
1739                 if (!obd->obd_set_up || obd->obd_stopping)
1740                         RETURN(-EAGAIN);
1741
1742                 osp = lu2osp_dev(obd->obd_lu_dev);
1743                 LASSERT(osp);
1744                 /*
1745                  * 1.8/2.0 behaviour is that OST being connected once at least
1746                  * is considered "healthy". and one "healthy" OST is enough to
1747                  * allow lustre clients to connect to MDS
1748                  */
1749                 RETURN(!osp->opd_imp_seen_connected);
1750         }
1751
1752         RETURN(rc);
1753 }
1754
1755 static int osp_obd_set_info_async(const struct lu_env *env,
1756                                   struct obd_export *exp,
1757                                   u32 keylen, void *key,
1758                                   u32 vallen, void *val,
1759                                   struct ptlrpc_request_set *set)
1760 {
1761         struct obd_device       *obd = exp->exp_obd;
1762         struct obd_import       *imp = obd->u.cli.cl_import;
1763         struct osp_device       *osp;
1764         struct ptlrpc_request   *req;
1765         char                    *tmp;
1766         int                      rc;
1767
1768         if (KEY_IS(KEY_SPTLRPC_CONF)) {
1769                 sptlrpc_conf_client_adapt(exp->exp_obd);
1770                 RETURN(0);
1771         }
1772
1773         LASSERT(set != NULL);
1774         if (!obd->obd_set_up || obd->obd_stopping)
1775                 RETURN(-EAGAIN);
1776         osp = lu2osp_dev(obd->obd_lu_dev);
1777
1778         req = ptlrpc_request_alloc(imp, &RQF_OBD_SET_INFO);
1779         if (req == NULL)
1780                 RETURN(-ENOMEM);
1781
1782         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_KEY,
1783                              RCL_CLIENT, keylen);
1784         req_capsule_set_size(&req->rq_pill, &RMF_SETINFO_VAL,
1785                              RCL_CLIENT, vallen);
1786         if (osp->opd_connect_mdt)
1787                 rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_SET_INFO);
1788         else
1789                 rc = ptlrpc_request_pack(req, LUSTRE_OST_VERSION, OST_SET_INFO);
1790         if (rc) {
1791                 ptlrpc_request_free(req);
1792                 RETURN(rc);
1793         }
1794
1795         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_KEY);
1796         memcpy(tmp, key, keylen);
1797         tmp = req_capsule_client_get(&req->rq_pill, &RMF_SETINFO_VAL);
1798         memcpy(tmp, val, vallen);
1799
1800         ptlrpc_request_set_replen(req);
1801         ptlrpc_set_add_req(set, req);
1802         ptlrpc_check_set(NULL, set);
1803
1804         RETURN(0);
1805 }
1806
1807 /**
1808  * Implementation of obd_ops: o_fid_alloc
1809  *
1810  * Allocate a FID. There are two cases in which OSP performs
1811  * FID allocation.
1812  *
1813  * 1. FID precreation for data objects, which is done in
1814  *    osp_precreate_fids() instead of this function.
1815  * 2. FID allocation for each sub-stripe of a striped directory.
1816  *    Similar to other FID clients, OSP requests the sequence
1817  *    from its corresponding remote MDT, which in turn requests
1818  *    sequences from the sequence controller (MDT0).
1819  *
1820  * \param[in] env       execution environment
1821  * \param[in] exp       export of the OSP
1822  * \param[out] fid      FID being allocated
1823  * \param[in] unused    necessary for the interface but unused.
1824  *
1825  * \retval 0            0 FID allocated successfully.
1826  * \retval 1            1 FID allocated successfully and new sequence
1827  *                      requested from seq meta server
1828  * \retval negative     negative errno if FID allocation failed.
1829  */
1830 static int osp_fid_alloc(const struct lu_env *env, struct obd_export *exp,
1831                          struct lu_fid *fid, struct md_op_data *unused)
1832 {
1833         struct client_obd       *cli = &exp->exp_obd->u.cli;
1834         struct osp_device       *osp = lu2osp_dev(exp->exp_obd->obd_lu_dev);
1835         struct lu_client_seq    *seq = cli->cl_seq;
1836         ENTRY;
1837
1838         LASSERT(osp->opd_obd->u.cli.cl_seq != NULL);
1839         /* Sigh, fid client is not ready yet */
1840         LASSERT(osp->opd_obd->u.cli.cl_seq->lcs_exp != NULL);
1841
1842         RETURN(seq_client_alloc_fid(env, seq, fid));
1843 }
1844
1845 /* context key constructor/destructor: mdt_key_init, mdt_key_fini */
1846 LU_KEY_INIT_FINI(osp, struct osp_thread_info);
1847 static void osp_key_exit(const struct lu_context *ctx,
1848                          struct lu_context_key *key, void *data)
1849 {
1850         struct osp_thread_info *info = data;
1851
1852         info->osi_attr.la_valid = 0;
1853 }
1854
1855 struct lu_context_key osp_thread_key = {
1856         .lct_tags = LCT_MD_THREAD,
1857         .lct_init = osp_key_init,
1858         .lct_fini = osp_key_fini,
1859         .lct_exit = osp_key_exit
1860 };
1861
1862 /* context key constructor/destructor: mdt_txn_key_init, mdt_txn_key_fini */
1863 LU_KEY_INIT_FINI(osp_txn, struct osp_txn_info);
1864
1865 struct lu_context_key osp_txn_key = {
1866         .lct_tags = LCT_OSP_THREAD | LCT_TX_HANDLE,
1867         .lct_init = osp_txn_key_init,
1868         .lct_fini = osp_txn_key_fini
1869 };
1870 LU_TYPE_INIT_FINI(osp, &osp_thread_key, &osp_txn_key);
1871
1872 static struct lu_device_type_operations osp_device_type_ops = {
1873         .ldto_init           = osp_type_init,
1874         .ldto_fini           = osp_type_fini,
1875
1876         .ldto_start          = osp_type_start,
1877         .ldto_stop           = osp_type_stop,
1878
1879         .ldto_device_alloc   = osp_device_alloc,
1880         .ldto_device_free    = osp_device_free,
1881
1882         .ldto_device_fini    = osp_device_fini
1883 };
1884
1885 static struct lu_device_type osp_device_type = {
1886         .ldt_tags     = LU_DEVICE_DT,
1887         .ldt_name     = LUSTRE_OSP_NAME,
1888         .ldt_ops      = &osp_device_type_ops,
1889         .ldt_ctx_tags = LCT_MD_THREAD | LCT_DT_THREAD,
1890 };
1891
1892 static struct obd_ops osp_obd_device_ops = {
1893         .o_owner        = THIS_MODULE,
1894         .o_add_conn     = client_import_add_conn,
1895         .o_del_conn     = client_import_del_conn,
1896         .o_reconnect    = osp_reconnect,
1897         .o_connect      = osp_obd_connect,
1898         .o_disconnect   = osp_obd_disconnect,
1899         .o_get_info     = osp_obd_get_info,
1900         .o_set_info_async = osp_obd_set_info_async,
1901         .o_import_event = osp_import_event,
1902         .o_iocontrol    = osp_iocontrol,
1903         .o_statfs       = osp_obd_statfs,
1904         .o_fid_init     = client_fid_init,
1905         .o_fid_fini     = client_fid_fini,
1906         .o_fid_alloc    = osp_fid_alloc,
1907 };
1908
1909 struct llog_operations osp_mds_ost_orig_logops;
1910
1911 /**
1912  * Initialize OSP module.
1913  *
1914  * Register device types OSP and Light Weight Proxy (LWP) (\see lwp_dev.c)
1915  * in obd_types (\see class_obd.c).  Initialize procfs for the
1916  * the OSP device.  Note: OSP was called OSC before Lustre 2.4,
1917  * so for compatibility it still uses the name "osc" in procfs.
1918  * This is called at module load time.
1919  *
1920  * \retval 0            0 if initialization succeeds.
1921  * \retval negative     negative errno if initialization failed.
1922  */
1923 static int __init osp_init(void)
1924 {
1925         struct obd_type *type;
1926         int rc;
1927
1928         rc = lu_kmem_init(osp_caches);
1929         if (rc)
1930                 return rc;
1931
1932
1933         rc = class_register_type(&osp_obd_device_ops, NULL, true, NULL,
1934                                  LUSTRE_OSP_NAME, &osp_device_type);
1935         if (rc != 0) {
1936                 lu_kmem_fini(osp_caches);
1937                 return rc;
1938         }
1939
1940         rc = class_register_type(&lwp_obd_device_ops, NULL, true, NULL,
1941                                  LUSTRE_LWP_NAME, &lwp_device_type);
1942         if (rc != 0) {
1943                 class_unregister_type(LUSTRE_OSP_NAME);
1944                 lu_kmem_fini(osp_caches);
1945                 return rc;
1946         }
1947
1948         /* Note: add_rec/delcare_add_rec will be only used by catalogs */
1949         osp_mds_ost_orig_logops = llog_osd_ops;
1950         osp_mds_ost_orig_logops.lop_add = llog_cat_add_rec;
1951         osp_mds_ost_orig_logops.lop_declare_add = llog_cat_declare_add_rec;
1952
1953         /* create "osc" entry in procfs for compatibility purposes */
1954         type = class_search_type(LUSTRE_OSC_NAME);
1955         if (type != NULL && type->typ_procroot != NULL)
1956                 return rc;
1957
1958         type = class_search_type(LUSTRE_OSP_NAME);
1959         type->typ_procsym = lprocfs_register("osc", proc_lustre_root,
1960                                              NULL, NULL);
1961         if (IS_ERR(type->typ_procsym)) {
1962                 CERROR("osp: can't create compat entry \"osc\": %d\n",
1963                        (int) PTR_ERR(type->typ_procsym));
1964                 type->typ_procsym = NULL;
1965         }
1966         return rc;
1967 }
1968
1969 /**
1970  * Finalize OSP module.
1971  *
1972  * This callback is called when kernel unloads OSP module from memory, and
1973  * it will deregister OSP and LWP device type from obd_types (\see class_obd.c).
1974  */
1975 static void __exit osp_exit(void)
1976 {
1977         class_unregister_type(LUSTRE_LWP_NAME);
1978         class_unregister_type(LUSTRE_OSP_NAME);
1979         lu_kmem_fini(osp_caches);
1980 }
1981
1982 MODULE_AUTHOR("OpenSFS, Inc. <http://www.lustre.org/>");
1983 MODULE_DESCRIPTION("Lustre OSD Storage Proxy ("LUSTRE_OSP_NAME")");
1984 MODULE_VERSION(LUSTRE_VERSION_STRING);
1985 MODULE_LICENSE("GPL");
1986
1987 module_init(osp_init);
1988 module_exit(osp_exit);