Whamcloud - gitweb
Land b_head_interop_disk on HEAD (20081119_1314)
[fs/lustre-release.git] / lustre / obdclass / lu_object.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright  2008 Sun Microsystems, Inc. All rights reserved
30  * Use is subject to license terms.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/obdclass/lu_object.c
37  *
38  * Lustre Object.
39  * These are the only exported functions, they provide some generic
40  * infrastructure for managing object devices
41  *
42  *   Author: Nikita Danilov <nikita.danilov@sun.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_CLASS
46 #ifndef EXPORT_SYMTAB
47 # define EXPORT_SYMTAB
48 #endif
49
50 #include <libcfs/libcfs.h>
51
52 #ifdef __KERNEL__
53 # include <linux/module.h>
54 #endif
55
56 /* hash_long() */
57 #include <libcfs/libcfs_hash.h>
58 #include <obd_class.h>
59 #include <obd_support.h>
60 #include <lustre_disk.h>
61 #include <lustre_fid.h>
62 #include <lu_object.h>
63 #include <libcfs/list.h>
64 /* lu_time_global_{init,fini}() */
65 #include <lu_time.h>
66
67 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
68
69 /**
70  * Decrease reference counter on object. If last reference is freed, return
71  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
72  * case, free object immediately.
73  */
74 void lu_object_put(const struct lu_env *env, struct lu_object *o)
75 {
76         struct lu_object_header *top;
77         struct lu_site          *site;
78         struct lu_object        *orig;
79         int                      kill_it;
80
81         top = o->lo_header;
82         site = o->lo_dev->ld_site;
83         orig = o;
84         kill_it = 0;
85         write_lock(&site->ls_guard);
86         if (atomic_dec_and_test(&top->loh_ref)) {
87                 /*
88                  * When last reference is released, iterate over object
89                  * layers, and notify them that object is no longer busy.
90                  */
91                 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
92                         if (o->lo_ops->loo_object_release != NULL)
93                                 o->lo_ops->loo_object_release(env, o);
94                 }
95                 -- site->ls_busy;
96                 if (lu_object_is_dying(top)) {
97                         /*
98                          * If object is dying (will not be cached), removed it
99                          * from hash table and LRU.
100                          *
101                          * This is done with hash table and LRU lists
102                          * locked. As the only way to acquire first reference
103                          * to previously unreferenced object is through
104                          * hash-table lookup (lu_object_find()), or LRU
105                          * scanning (lu_site_purge()), that are done under
106                          * hash-table and LRU lock, no race with concurrent
107                          * object lookup is possible and we can safely destroy
108                          * object below.
109                          */
110                         hlist_del_init(&top->loh_hash);
111                         list_del_init(&top->loh_lru);
112                         -- site->ls_total;
113                         kill_it = 1;
114                 }
115         }
116         write_unlock(&site->ls_guard);
117         if (kill_it)
118                 /*
119                  * Object was already removed from hash and lru above, can
120                  * kill it.
121                  */
122                 lu_object_free(env, orig);
123 }
124 EXPORT_SYMBOL(lu_object_put);
125
126 /**
127  * Allocate new object.
128  *
129  * This follows object creation protocol, described in the comment within
130  * struct lu_device_operations definition.
131  */
132 static struct lu_object *lu_object_alloc(const struct lu_env *env,
133                                          struct lu_device *dev,
134                                          const struct lu_fid *f,
135                                          const struct lu_object_conf *conf)
136 {
137         struct lu_object *scan;
138         struct lu_object *top;
139         struct list_head *layers;
140         int clean;
141         int result;
142         ENTRY;
143
144         /*
145          * Create top-level object slice. This will also create
146          * lu_object_header.
147          */
148         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
149         if (top == NULL)
150                 RETURN(ERR_PTR(-ENOMEM));
151         /*
152          * This is the only place where object fid is assigned. It's constant
153          * after this point.
154          */
155         LASSERT(fid_is_igif(f) || fid_ver(f) == 0);
156         top->lo_header->loh_fid  = *f;
157         layers = &top->lo_header->loh_layers;
158         do {
159                 /*
160                  * Call ->loo_object_init() repeatedly, until no more new
161                  * object slices are created.
162                  */
163                 clean = 1;
164                 list_for_each_entry(scan, layers, lo_linkage) {
165                         if (scan->lo_flags & LU_OBJECT_ALLOCATED)
166                                 continue;
167                         clean = 0;
168                         scan->lo_header = top->lo_header;
169                         result = scan->lo_ops->loo_object_init(env, scan, conf);
170                         if (result != 0) {
171                                 lu_object_free(env, top);
172                                 RETURN(ERR_PTR(result));
173                         }
174                         scan->lo_flags |= LU_OBJECT_ALLOCATED;
175                 }
176         } while (!clean);
177
178         list_for_each_entry_reverse(scan, layers, lo_linkage) {
179                 if (scan->lo_ops->loo_object_start != NULL) {
180                         result = scan->lo_ops->loo_object_start(env, scan);
181                         if (result != 0) {
182                                 lu_object_free(env, top);
183                                 RETURN(ERR_PTR(result));
184                         }
185                 }
186         }
187
188         dev->ld_site->ls_stats.s_created ++;
189         RETURN(top);
190 }
191
192 /**
193  * Free an object.
194  */
195 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
196 {
197         struct list_head  splice;
198         struct lu_object *scan;
199         struct lu_site   *site;
200         struct list_head *layers;
201
202         site   = o->lo_dev->ld_site;
203         layers = &o->lo_header->loh_layers;
204         /*
205          * First call ->loo_object_delete() method to release all resources.
206          */
207         list_for_each_entry_reverse(scan, layers, lo_linkage) {
208                 if (scan->lo_ops->loo_object_delete != NULL)
209                         scan->lo_ops->loo_object_delete(env, scan);
210         }
211
212         /*
213          * Then, splice object layers into stand-alone list, and call
214          * ->loo_object_free() on all layers to free memory. Splice is
215          * necessary, because lu_object_header is freed together with the
216          * top-level slice.
217          */
218         CFS_INIT_LIST_HEAD(&splice);
219         list_splice_init(layers, &splice);
220         while (!list_empty(&splice)) {
221                 /*
222                  * Free layers in bottom-to-top order, so that object header
223                  * lives as long as possible and ->loo_object_free() methods
224                  * can look at its contents.
225                  */
226                 o = container_of0(splice.prev, struct lu_object, lo_linkage);
227                 list_del_init(&o->lo_linkage);
228                 LASSERT(o->lo_ops->loo_object_free != NULL);
229                 o->lo_ops->loo_object_free(env, o);
230         }
231         cfs_waitq_broadcast(&site->ls_marche_funebre);
232 }
233
234 /**
235  * Free \a nr objects from the cold end of the site LRU list.
236  */
237 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
238 {
239         struct list_head         dispose;
240         struct lu_object_header *h;
241         struct lu_object_header *temp;
242
243         CFS_INIT_LIST_HEAD(&dispose);
244         /*
245          * Under LRU list lock, scan LRU list and move unreferenced objects to
246          * the dispose list, removing them from LRU and hash table.
247          */
248         write_lock(&s->ls_guard);
249         list_for_each_entry_safe(h, temp, &s->ls_lru, loh_lru) {
250                 /*
251                  * Objects are sorted in lru order, and "busy" objects (ones
252                  * with h->loh_ref > 0) naturally tend to live near hot end
253                  * that we scan last. Unfortunately, sites usually have small
254                  * (less then ten) number of busy yet rarely accessed objects
255                  * (some global objects, accessed directly through pointers,
256                  * bypassing hash table). Currently algorithm scans them over
257                  * and over again. Probably we should move busy objects out of
258                  * LRU, or we can live with that.
259                  */
260                 if (nr-- == 0)
261                         break;
262                 if (atomic_read(&h->loh_ref) > 0)
263                         continue;
264                 hlist_del_init(&h->loh_hash);
265                 list_move(&h->loh_lru, &dispose);
266                 s->ls_total --;
267         }
268         write_unlock(&s->ls_guard);
269         /*
270          * Free everything on the dispose list. This is safe against races due
271          * to the reasons described in lu_object_put().
272          */
273         while (!list_empty(&dispose)) {
274                 h = container_of0(dispose.next,
275                                  struct lu_object_header, loh_lru);
276                 list_del_init(&h->loh_lru);
277                 lu_object_free(env, lu_object_top(h));
278                 s->ls_stats.s_lru_purged ++;
279         }
280         return nr;
281 }
282 EXPORT_SYMBOL(lu_site_purge);
283
284 /*
285  * Object printing.
286  *
287  * Code below has to jump through certain loops to output object description
288  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
289  * composes object description from strings that are parts of _lines_ of
290  * output (i.e., strings that are not terminated by newline). This doesn't fit
291  * very well into libcfs_debug_msg() interface that assumes that each message
292  * supplied to it is a self-contained output line.
293  *
294  * To work around this, strings are collected in a temporary buffer
295  * (implemented as a value of lu_cdebug_key key), until terminating newline
296  * character is detected.
297  *
298  */
299
300 enum {
301         /**
302          * Maximal line size.
303          *
304          * XXX overflow is not handled correctly.
305          */
306         LU_CDEBUG_LINE = 256
307 };
308
309 struct lu_cdebug_data {
310         /**
311          * Temporary buffer.
312          */
313         char lck_area[LU_CDEBUG_LINE];
314 };
315
316 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
317 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
318
319 /**
320  * Key, holding temporary buffer. This key is registered very early by
321  * lu_global_init().
322  */
323 struct lu_context_key lu_global_key = {
324         .lct_tags = LCT_MD_THREAD|LCT_DT_THREAD|LCT_CL_THREAD,
325         .lct_init = lu_global_key_init,
326         .lct_fini = lu_global_key_fini
327 };
328
329 /**
330  * Printer function emitting messages through libcfs_debug_msg().
331  */
332 int lu_cdebug_printer(const struct lu_env *env,
333                       void *cookie, const char *format, ...)
334 {
335         struct lu_cdebug_print_info *info = cookie;
336         struct lu_cdebug_data       *key;
337         int used;
338         int complete;
339         va_list args;
340
341         va_start(args, format);
342
343         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
344         LASSERT(key != NULL);
345
346         used = strlen(key->lck_area);
347         complete = format[strlen(format) - 1] == '\n';
348         /*
349          * Append new chunk to the buffer.
350          */
351         vsnprintf(key->lck_area + used,
352                   ARRAY_SIZE(key->lck_area) - used, format, args);
353         if (complete) {
354                 if (cdebug_show(info->lpi_mask, info->lpi_subsys))
355                         libcfs_debug_msg(NULL, info->lpi_subsys, info->lpi_mask,
356                                          (char *)info->lpi_file, info->lpi_fn,
357                                          info->lpi_line, "%s", key->lck_area);
358                 key->lck_area[0] = 0;
359         }
360         va_end(args);
361         return 0;
362 }
363 EXPORT_SYMBOL(lu_cdebug_printer);
364
365 /**
366  * Print object header.
367  */
368 void lu_object_header_print(const struct lu_env *env, void *cookie,
369                             lu_printer_t printer,
370                             const struct lu_object_header *hdr)
371 {
372         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
373                    hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
374                    PFID(&hdr->loh_fid),
375                    hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
376                    list_empty((struct list_head *)&hdr->loh_lru) ? "" : " lru",
377                    hdr->loh_attr & LOHA_EXISTS ? " exist":"");
378 }
379 EXPORT_SYMBOL(lu_object_header_print);
380
381 /**
382  * Print human readable representation of the \a o to the \a printer.
383  */
384 void lu_object_print(const struct lu_env *env, void *cookie,
385                      lu_printer_t printer, const struct lu_object *o)
386 {
387         static const char ruler[] = "........................................";
388         struct lu_object_header *top;
389         int depth;
390
391         top = o->lo_header;
392         lu_object_header_print(env, cookie, printer, top);
393         (*printer)(env, cookie, "{ \n");
394         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
395                 depth = o->lo_depth + 4;
396
397                 /*
398                  * print `.' \a depth times followed by type name and address
399                  */
400                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
401                            o->lo_dev->ld_type->ldt_name, o);
402                 if (o->lo_ops->loo_object_print != NULL)
403                         o->lo_ops->loo_object_print(env, cookie, printer, o);
404                 (*printer)(env, cookie, "\n");
405         }
406         (*printer)(env, cookie, "} header@%p\n", top);
407 }
408 EXPORT_SYMBOL(lu_object_print);
409
410 /**
411  * Check object consistency.
412  */
413 int lu_object_invariant(const struct lu_object *o)
414 {
415         struct lu_object_header *top;
416
417         top = o->lo_header;
418         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
419                 if (o->lo_ops->loo_object_invariant != NULL &&
420                     !o->lo_ops->loo_object_invariant(o))
421                         return 0;
422         }
423         return 1;
424 }
425 EXPORT_SYMBOL(lu_object_invariant);
426
427 static struct lu_object *htable_lookup(struct lu_site *s,
428                                        const struct hlist_head *bucket,
429                                        const struct lu_fid *f,
430                                        cfs_waitlink_t *waiter)
431 {
432         struct lu_object_header *h;
433         struct hlist_node *scan;
434
435         hlist_for_each_entry(h, scan, bucket, loh_hash) {
436                 s->ls_stats.s_cache_check ++;
437                 if (likely(lu_fid_eq(&h->loh_fid, f))) {
438                         if (unlikely(lu_object_is_dying(h))) {
439                                 /*
440                                  * Lookup found an object being destroyed;
441                                  * this object cannot be returned (to assure
442                                  * that references to dying objects are
443                                  * eventually drained), and moreover, lookup
444                                  * has to wait until object is freed.
445                                  */
446                                 cfs_waitlink_init(waiter);
447                                 cfs_waitq_add(&s->ls_marche_funebre, waiter);
448                                 set_current_state(CFS_TASK_UNINT);
449                                 s->ls_stats.s_cache_death_race ++;
450                                 return ERR_PTR(-EAGAIN);
451                         }
452                         /* bump reference count... */
453                         if (atomic_add_return(1, &h->loh_ref) == 1)
454                                 ++ s->ls_busy;
455                         /* and move to the head of the LRU */
456                         /*
457                          * XXX temporary disable this to measure effects of
458                          * read-write locking.
459                          */
460                         /* list_move_tail(&h->loh_lru, &s->ls_lru); */
461                         s->ls_stats.s_cache_hit ++;
462                         return lu_object_top(h);
463                 }
464         }
465         s->ls_stats.s_cache_miss ++;
466         return NULL;
467 }
468
469 static __u32 fid_hash(const struct lu_fid *f, int bits)
470 {
471         /* all objects with same id and different versions will belong to same
472          * collisions list. */
473         return hash_long(fid_flatten(f), bits);
474 }
475
476 /**
477  * Search cache for an object with the fid \a f. If such object is found,
478  * return it. Otherwise, create new object, insert it into cache and return
479  * it. In any case, additional reference is acquired on the returned object.
480  */
481 struct lu_object *lu_object_find(const struct lu_env *env,
482                                  struct lu_device *dev, const struct lu_fid *f,
483                                  const struct lu_object_conf *conf)
484 {
485         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
486 }
487 EXPORT_SYMBOL(lu_object_find);
488
489 /**
490  * Core logic of lu_object_find*() functions.
491  */
492 static struct lu_object *lu_object_find_try(const struct lu_env *env,
493                                             struct lu_device *dev,
494                                             const struct lu_fid *f,
495                                             const struct lu_object_conf *conf,
496                                             cfs_waitlink_t *waiter)
497 {
498         struct lu_site    *s;
499         struct lu_object  *o;
500         struct lu_object  *shadow;
501         struct hlist_head *bucket;
502
503         /*
504          * This uses standard index maintenance protocol:
505          *
506          *     - search index under lock, and return object if found;
507          *     - otherwise, unlock index, allocate new object;
508          *     - lock index and search again;
509          *     - if nothing is found (usual case), insert newly created
510          *       object into index;
511          *     - otherwise (race: other thread inserted object), free
512          *       object just allocated.
513          *     - unlock index;
514          *     - return object.
515          *
516          * If dying object is found during index search, add @waiter to the
517          * site wait-queue and return ERR_PTR(-EAGAIN).
518          */
519
520         s = dev->ld_site;
521         bucket = s->ls_hash + fid_hash(f, s->ls_hash_bits);
522
523         read_lock(&s->ls_guard);
524         o = htable_lookup(s, bucket, f, waiter);
525         read_unlock(&s->ls_guard);
526
527         if (o != NULL)
528                 return o;
529
530         /*
531          * Allocate new object. This may result in rather complicated
532          * operations, including fld queries, inode loading, etc.
533          */
534         o = lu_object_alloc(env, dev, f, conf);
535         if (unlikely(IS_ERR(o)))
536                 return o;
537
538         LASSERT(lu_fid_eq(lu_object_fid(o), f));
539
540         write_lock(&s->ls_guard);
541         shadow = htable_lookup(s, bucket, f, waiter);
542         if (likely(shadow == NULL)) {
543                 hlist_add_head(&o->lo_header->loh_hash, bucket);
544                 list_add_tail(&o->lo_header->loh_lru, &s->ls_lru);
545                 ++ s->ls_busy;
546                 ++ s->ls_total;
547                 shadow = o;
548                 o = NULL;
549         } else
550                 s->ls_stats.s_cache_race ++;
551         write_unlock(&s->ls_guard);
552         if (o != NULL)
553                 lu_object_free(env, o);
554         return shadow;
555 }
556
557 /**
558  * Much like lu_object_find(), but top level device of object is specifically
559  * \a dev rather than top level device of the site. This interface allows
560  * objects of different "stacking" to be created within the same site.
561  */
562 struct lu_object *lu_object_find_at(const struct lu_env *env,
563                                     struct lu_device *dev,
564                                     const struct lu_fid *f,
565                                     const struct lu_object_conf *conf)
566 {
567         struct lu_object *obj;
568         cfs_waitlink_t    wait;
569
570         while (1) {
571                 obj = lu_object_find_try(env, dev, f, conf, &wait);
572                 if (obj == ERR_PTR(-EAGAIN)) {
573                         /*
574                          * lu_object_find_try() already added waiter into the
575                          * wait queue.
576                          */
577                         cfs_waitq_wait(&wait, CFS_TASK_UNINT);
578                         cfs_waitq_del(&dev->ld_site->ls_marche_funebre, &wait);
579                 } else
580                         break;
581         }
582         return obj;
583 }
584 EXPORT_SYMBOL(lu_object_find_at);
585
586 /**
587  * Find object with given fid, and return its slice belonging to given device.
588  */
589 struct lu_object *lu_object_find_slice(const struct lu_env *env,
590                                        struct lu_device *dev,
591                                        const struct lu_fid *f,
592                                        const struct lu_object_conf *conf)
593 {
594         struct lu_object *top;
595         struct lu_object *obj;
596
597         top = lu_object_find(env, dev, f, conf);
598         if (!IS_ERR(top)) {
599                 obj = lu_object_locate(top->lo_header, dev->ld_type);
600                 if (obj == NULL)
601                         lu_object_put(env, top);
602         } else
603                 obj = top;
604         return obj;
605 }
606 EXPORT_SYMBOL(lu_object_find_slice);
607
608 /**
609  * Global list of all device types.
610  */
611 static CFS_LIST_HEAD(lu_device_types);
612
613 int lu_device_type_init(struct lu_device_type *ldt)
614 {
615         int result;
616
617         CFS_INIT_LIST_HEAD(&ldt->ldt_linkage);
618         result = ldt->ldt_ops->ldto_init(ldt);
619         if (result == 0)
620                 list_add(&ldt->ldt_linkage, &lu_device_types);
621         return result;
622 }
623 EXPORT_SYMBOL(lu_device_type_init);
624
625 void lu_device_type_fini(struct lu_device_type *ldt)
626 {
627         list_del_init(&ldt->ldt_linkage);
628         ldt->ldt_ops->ldto_fini(ldt);
629 }
630 EXPORT_SYMBOL(lu_device_type_fini);
631
632 void lu_types_stop(void)
633 {
634         struct lu_device_type *ldt;
635
636         list_for_each_entry(ldt, &lu_device_types, ldt_linkage) {
637                 if (ldt->ldt_device_nr == 0)
638                         ldt->ldt_ops->ldto_stop(ldt);
639         }
640 }
641 EXPORT_SYMBOL(lu_types_stop);
642
643 /**
644  * Global list of all sites on this node
645  */
646 static CFS_LIST_HEAD(lu_sites);
647 static DECLARE_MUTEX(lu_sites_guard);
648
649 /**
650  * Global environment used by site shrinker.
651  */
652 static struct lu_env lu_shrink_env;
653
654 /**
655  * Print all objects in \a s.
656  */
657 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
658                    lu_printer_t printer)
659 {
660         int i;
661
662         for (i = 0; i < s->ls_hash_size; ++i) {
663                 struct lu_object_header *h;
664                 struct hlist_node       *scan;
665
666                 read_lock(&s->ls_guard);
667                 hlist_for_each_entry(h, scan, &s->ls_hash[i], loh_hash) {
668
669                         if (!list_empty(&h->loh_layers)) {
670                                 const struct lu_object *obj;
671
672                                 obj = lu_object_top(h);
673                                 lu_object_print(env, cookie, printer, obj);
674                         } else
675                                 lu_object_header_print(env, cookie, printer, h);
676                 }
677                 read_unlock(&s->ls_guard);
678         }
679 }
680 EXPORT_SYMBOL(lu_site_print);
681
682 enum {
683         LU_CACHE_PERCENT   = 20,
684 };
685
686 /**
687  * Return desired hash table order.
688  */
689 static int lu_htable_order(void)
690 {
691         unsigned long cache_size;
692         int bits;
693
694         /*
695          * Calculate hash table size, assuming that we want reasonable
696          * performance when 20% of total memory is occupied by cache of
697          * lu_objects.
698          *
699          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
700          */
701         cache_size = num_physpages;
702
703 #if BITS_PER_LONG == 32
704         /* limit hashtable size for lowmem systems to low RAM */
705         if (cache_size > 1 << (30 - CFS_PAGE_SHIFT))
706                 cache_size = 1 << (30 - CFS_PAGE_SHIFT) * 3 / 4;
707 #endif
708
709         cache_size = cache_size / 100 * LU_CACHE_PERCENT *
710                 (CFS_PAGE_SIZE / 1024);
711
712         for (bits = 1; (1 << bits) < cache_size; ++bits) {
713                 ;
714         }
715         return bits;
716 }
717
718 static struct lock_class_key lu_site_guard_class;
719
720 /**
721  * Initialize site \a s, with \a d as the top level device.
722  */
723 int lu_site_init(struct lu_site *s, struct lu_device *top)
724 {
725         int bits;
726         int size;
727         int i;
728         ENTRY;
729
730         memset(s, 0, sizeof *s);
731         rwlock_init(&s->ls_guard);
732         lockdep_set_class(&s->ls_guard, &lu_site_guard_class);
733         CFS_INIT_LIST_HEAD(&s->ls_lru);
734         CFS_INIT_LIST_HEAD(&s->ls_linkage);
735         cfs_waitq_init(&s->ls_marche_funebre);
736         s->ls_top_dev = top;
737         top->ld_site = s;
738         lu_device_get(top);
739         lu_ref_add(&top->ld_reference, "site-top", s);
740
741         for (bits = lu_htable_order(), size = 1 << bits;
742              (s->ls_hash =
743               cfs_alloc_large(size * sizeof s->ls_hash[0])) == NULL;
744              --bits, size >>= 1) {
745                 /*
746                  * Scale hash table down, until allocation succeeds.
747                  */
748                 ;
749         }
750
751         s->ls_hash_size = size;
752         s->ls_hash_bits = bits;
753         s->ls_hash_mask = size - 1;
754
755         for (i = 0; i < size; i++)
756                 INIT_HLIST_HEAD(&s->ls_hash[i]);
757
758         RETURN(0);
759 }
760 EXPORT_SYMBOL(lu_site_init);
761
762 /**
763  * Finalize \a s and release its resources.
764  */
765 void lu_site_fini(struct lu_site *s)
766 {
767         LASSERT(list_empty(&s->ls_lru));
768         LASSERT(s->ls_total == 0);
769
770         down(&lu_sites_guard);
771         list_del_init(&s->ls_linkage);
772         up(&lu_sites_guard);
773
774         if (s->ls_hash != NULL) {
775                 int i;
776                 for (i = 0; i < s->ls_hash_size; i++)
777                         LASSERT(hlist_empty(&s->ls_hash[i]));
778                 cfs_free_large(s->ls_hash);
779                 s->ls_hash = NULL;
780         }
781         if (s->ls_top_dev != NULL) {
782                 s->ls_top_dev->ld_site = NULL;
783                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
784                 lu_device_put(s->ls_top_dev);
785                 s->ls_top_dev = NULL;
786         }
787 }
788 EXPORT_SYMBOL(lu_site_fini);
789
790 /**
791  * Called when initialization of stack for this site is completed.
792  */
793 int lu_site_init_finish(struct lu_site *s)
794 {
795         int result;
796         down(&lu_sites_guard);
797         result = lu_context_refill(&lu_shrink_env.le_ctx);
798         if (result == 0)
799                 list_add(&s->ls_linkage, &lu_sites);
800         up(&lu_sites_guard);
801         return result;
802 }
803 EXPORT_SYMBOL(lu_site_init_finish);
804
805 /**
806  * Acquire additional reference on device \a d
807  */
808 void lu_device_get(struct lu_device *d)
809 {
810         atomic_inc(&d->ld_ref);
811 }
812 EXPORT_SYMBOL(lu_device_get);
813
814 /**
815  * Release reference on device \a d.
816  */
817 void lu_device_put(struct lu_device *d)
818 {
819         LASSERT(atomic_read(&d->ld_ref) > 0);
820         atomic_dec(&d->ld_ref);
821 }
822 EXPORT_SYMBOL(lu_device_put);
823
824 /**
825  * Initialize device \a d of type \a t.
826  */
827 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
828 {
829         if (t->ldt_device_nr++ == 0 && t->ldt_ops->ldto_start != NULL)
830                 t->ldt_ops->ldto_start(t);
831         memset(d, 0, sizeof *d);
832         atomic_set(&d->ld_ref, 0);
833         d->ld_type = t;
834         lu_ref_init(&d->ld_reference);
835         return 0;
836 }
837 EXPORT_SYMBOL(lu_device_init);
838
839 /**
840  * Finalize device \a d.
841  */
842 void lu_device_fini(struct lu_device *d)
843 {
844         struct lu_device_type *t;
845
846         t = d->ld_type;
847         if (d->ld_obd != NULL) {
848                 /* finish lprocfs */
849                 lprocfs_obd_cleanup(d->ld_obd);
850                 d->ld_obd->obd_lu_dev = NULL;
851                 d->ld_obd = NULL;
852         }
853
854         lu_ref_fini(&d->ld_reference);
855         LASSERTF(atomic_read(&d->ld_ref) == 0,
856                  "Refcount is %u\n", atomic_read(&d->ld_ref));
857         LASSERT(t->ldt_device_nr > 0);
858         if (--t->ldt_device_nr == 0 && t->ldt_ops->ldto_stop != NULL)
859                 t->ldt_ops->ldto_stop(t);
860 }
861 EXPORT_SYMBOL(lu_device_fini);
862
863 /**
864  * Initialize object \a o that is part of compound object \a h and was created
865  * by device \a d.
866  */
867 int lu_object_init(struct lu_object *o,
868                    struct lu_object_header *h, struct lu_device *d)
869 {
870         memset(o, 0, sizeof *o);
871         o->lo_header = h;
872         o->lo_dev    = d;
873         lu_device_get(d);
874         o->lo_dev_ref = lu_ref_add(&d->ld_reference, "lu_object", o);
875         CFS_INIT_LIST_HEAD(&o->lo_linkage);
876         return 0;
877 }
878 EXPORT_SYMBOL(lu_object_init);
879
880 /**
881  * Finalize object and release its resources.
882  */
883 void lu_object_fini(struct lu_object *o)
884 {
885         struct lu_device *dev = o->lo_dev;
886
887         LASSERT(list_empty(&o->lo_linkage));
888
889         if (dev != NULL) {
890                 lu_ref_del_at(&dev->ld_reference,
891                               o->lo_dev_ref , "lu_object", o);
892                 lu_device_put(dev);
893                 o->lo_dev = NULL;
894         }
895 }
896 EXPORT_SYMBOL(lu_object_fini);
897
898 /**
899  * Add object \a o as first layer of compound object \a h
900  *
901  * This is typically called by the ->ldo_object_alloc() method of top-level
902  * device.
903  */
904 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
905 {
906         list_move(&o->lo_linkage, &h->loh_layers);
907 }
908 EXPORT_SYMBOL(lu_object_add_top);
909
910 /**
911  * Add object \a o as a layer of compound object, going after \a before.
912  *
913  * This is typically called by the ->ldo_object_alloc() method of \a
914  * before->lo_dev.
915  */
916 void lu_object_add(struct lu_object *before, struct lu_object *o)
917 {
918         list_move(&o->lo_linkage, &before->lo_linkage);
919 }
920 EXPORT_SYMBOL(lu_object_add);
921
922 /**
923  * Initialize compound object.
924  */
925 int lu_object_header_init(struct lu_object_header *h)
926 {
927         memset(h, 0, sizeof *h);
928         atomic_set(&h->loh_ref, 1);
929         INIT_HLIST_NODE(&h->loh_hash);
930         CFS_INIT_LIST_HEAD(&h->loh_lru);
931         CFS_INIT_LIST_HEAD(&h->loh_layers);
932         lu_ref_init(&h->loh_reference);
933         return 0;
934 }
935 EXPORT_SYMBOL(lu_object_header_init);
936
937 /**
938  * Finalize compound object.
939  */
940 void lu_object_header_fini(struct lu_object_header *h)
941 {
942         LASSERT(list_empty(&h->loh_layers));
943         LASSERT(list_empty(&h->loh_lru));
944         LASSERT(hlist_unhashed(&h->loh_hash));
945         lu_ref_fini(&h->loh_reference);
946 }
947 EXPORT_SYMBOL(lu_object_header_fini);
948
949 /**
950  * Given a compound object, find its slice, corresponding to the device type
951  * \a dtype.
952  */
953 struct lu_object *lu_object_locate(struct lu_object_header *h,
954                                    const struct lu_device_type *dtype)
955 {
956         struct lu_object *o;
957
958         list_for_each_entry(o, &h->loh_layers, lo_linkage) {
959                 if (o->lo_dev->ld_type == dtype)
960                         return o;
961         }
962         return NULL;
963 }
964 EXPORT_SYMBOL(lu_object_locate);
965
966
967
968 /**
969  * Finalize and free devices in the device stack.
970  *
971  * Finalize device stack by purging object cache, and calling
972  * lu_device_type_operations::ldto_device_fini() and
973  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
974  */
975 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
976 {
977         struct lu_site   *site = top->ld_site;
978         struct lu_device *scan;
979         struct lu_device *next;
980
981         lu_site_purge(env, site, ~0);
982         for (scan = top; scan != NULL; scan = next) {
983                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
984                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
985                 lu_device_put(scan);
986         }
987
988         /* purge again. */
989         lu_site_purge(env, site, ~0);
990
991         if (!list_empty(&site->ls_lru) || site->ls_total != 0) {
992                 /*
993                  * Uh-oh, objects still exist.
994                  */
995                 static DECLARE_LU_CDEBUG_PRINT_INFO(cookie, D_ERROR);
996
997                 lu_site_print(env, site, &cookie, lu_cdebug_printer);
998         }
999
1000         for (scan = top; scan != NULL; scan = next) {
1001                 const struct lu_device_type *ldt = scan->ld_type;
1002                 struct obd_type             *type;
1003
1004                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1005                 type = ldt->ldt_obd_type;
1006                 if (type != NULL) {
1007                         type->typ_refcnt--;
1008                         class_put_type(type);
1009                 }
1010         }
1011 }
1012 EXPORT_SYMBOL(lu_stack_fini);
1013
1014 enum {
1015         /**
1016          * Maximal number of tld slots.
1017          */
1018         LU_CONTEXT_KEY_NR = 32
1019 };
1020
1021 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1022
1023 static spinlock_t lu_keys_guard = SPIN_LOCK_UNLOCKED;
1024
1025 /**
1026  * Global counter incremented whenever key is registered, unregistered,
1027  * revived or quiesced. This is used to void unnecessary calls to
1028  * lu_context_refill(). No locking is provided, as initialization and shutdown
1029  * are supposed to be externally serialized.
1030  */
1031 static unsigned key_set_version = 0;
1032
1033 /**
1034  * Register new key.
1035  */
1036 int lu_context_key_register(struct lu_context_key *key)
1037 {
1038         int result;
1039         int i;
1040
1041         LASSERT(key->lct_init != NULL);
1042         LASSERT(key->lct_fini != NULL);
1043         LASSERT(key->lct_tags != 0);
1044         LASSERT(key->lct_owner != NULL);
1045
1046         result = -ENFILE;
1047         spin_lock(&lu_keys_guard);
1048         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1049                 if (lu_keys[i] == NULL) {
1050                         key->lct_index = i;
1051                         atomic_set(&key->lct_used, 1);
1052                         lu_keys[i] = key;
1053                         lu_ref_init(&key->lct_reference);
1054                         result = 0;
1055                         ++key_set_version;
1056                         break;
1057                 }
1058         }
1059         spin_unlock(&lu_keys_guard);
1060         return result;
1061 }
1062 EXPORT_SYMBOL(lu_context_key_register);
1063
1064 static void key_fini(struct lu_context *ctx, int index)
1065 {
1066         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1067                 struct lu_context_key *key;
1068
1069                 key = lu_keys[index];
1070                 LASSERT(key != NULL);
1071                 LASSERT(key->lct_fini != NULL);
1072                 LASSERT(atomic_read(&key->lct_used) > 1);
1073
1074                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1075                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1076                 atomic_dec(&key->lct_used);
1077                 LASSERT(key->lct_owner != NULL);
1078                 if (!(ctx->lc_tags & LCT_NOREF)) {
1079                         LASSERT(module_refcount(key->lct_owner) > 0);
1080                         module_put(key->lct_owner);
1081                 }
1082                 ctx->lc_value[index] = NULL;
1083         }
1084 }
1085
1086 /**
1087  * Deregister key.
1088  */
1089 void lu_context_key_degister(struct lu_context_key *key)
1090 {
1091         LASSERT(atomic_read(&key->lct_used) >= 1);
1092         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1093
1094         lu_context_key_quiesce(key);
1095
1096         ++key_set_version;
1097         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1098
1099         if (atomic_read(&key->lct_used) > 1)
1100                 CERROR("key has instances.\n");
1101         spin_lock(&lu_keys_guard);
1102         lu_keys[key->lct_index] = NULL;
1103         spin_unlock(&lu_keys_guard);
1104 }
1105 EXPORT_SYMBOL(lu_context_key_degister);
1106
1107 /**
1108  * Register a number of keys. This has to be called after all keys have been
1109  * initialized by a call to LU_CONTEXT_KEY_INIT().
1110  */
1111 int lu_context_key_register_many(struct lu_context_key *k, ...)
1112 {
1113         struct lu_context_key *key = k;
1114         va_list args;
1115         int result;
1116
1117         va_start(args, k);
1118         do {
1119                 result = lu_context_key_register(key);
1120                 if (result)
1121                         break;
1122                 key = va_arg(args, struct lu_context_key *);
1123         } while (key != NULL);
1124         va_end(args);
1125
1126         if (result != 0) {
1127                 va_start(args, k);
1128                 while (k != key) {
1129                         lu_context_key_degister(k);
1130                         k = va_arg(args, struct lu_context_key *);
1131                 }
1132                 va_end(args);
1133         }
1134
1135         return result;
1136 }
1137 EXPORT_SYMBOL(lu_context_key_register_many);
1138
1139 /**
1140  * De-register a number of keys. This is a dual to
1141  * lu_context_key_register_many().
1142  */
1143 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1144 {
1145         va_list args;
1146
1147         va_start(args, k);
1148         do {
1149                 lu_context_key_degister(k);
1150                 k = va_arg(args, struct lu_context_key*);
1151         } while (k != NULL);
1152         va_end(args);
1153 }
1154 EXPORT_SYMBOL(lu_context_key_degister_many);
1155
1156 /**
1157  * Revive a number of keys.
1158  */
1159 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1160 {
1161         va_list args;
1162
1163         va_start(args, k);
1164         do {
1165                 lu_context_key_revive(k);
1166                 k = va_arg(args, struct lu_context_key*);
1167         } while (k != NULL);
1168         va_end(args);
1169 }
1170 EXPORT_SYMBOL(lu_context_key_revive_many);
1171
1172 /**
1173  * Quiescent a number of keys.
1174  */
1175 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1176 {
1177         va_list args;
1178
1179         va_start(args, k);
1180         do {
1181                 lu_context_key_quiesce(k);
1182                 k = va_arg(args, struct lu_context_key*);
1183         } while (k != NULL);
1184         va_end(args);
1185 }
1186 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1187
1188 /**
1189  * Return value associated with key \a key in context \a ctx.
1190  */
1191 void *lu_context_key_get(const struct lu_context *ctx,
1192                          const struct lu_context_key *key)
1193 {
1194         LINVRNT(ctx->lc_state == LCS_ENTERED);
1195         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1196         return ctx->lc_value[key->lct_index];
1197 }
1198 EXPORT_SYMBOL(lu_context_key_get);
1199
1200 /**
1201  * List of remembered contexts. XXX document me.
1202  */
1203 static CFS_LIST_HEAD(lu_context_remembered);
1204
1205 /**
1206  * Destroy \a key in all remembered contexts. This is used to destroy key
1207  * values in "shared" contexts (like service threads), when a module owning
1208  * the key is about to be unloaded.
1209  */
1210 void lu_context_key_quiesce(struct lu_context_key *key)
1211 {
1212         struct lu_context *ctx;
1213         extern unsigned cl_env_cache_purge(unsigned nr);
1214
1215         if (!(key->lct_tags & LCT_QUIESCENT)) {
1216                 /*
1217                  * XXX layering violation.
1218                  */
1219                 cl_env_cache_purge(~0);
1220                 key->lct_tags |= LCT_QUIESCENT;
1221                 /*
1222                  * XXX memory barrier has to go here.
1223                  */
1224                 spin_lock(&lu_keys_guard);
1225                 list_for_each_entry(ctx, &lu_context_remembered, lc_remember)
1226                         key_fini(ctx, key->lct_index);
1227                 spin_unlock(&lu_keys_guard);
1228                 ++key_set_version;
1229         }
1230 }
1231 EXPORT_SYMBOL(lu_context_key_quiesce);
1232
1233 void lu_context_key_revive(struct lu_context_key *key)
1234 {
1235         key->lct_tags &= ~LCT_QUIESCENT;
1236         ++key_set_version;
1237 }
1238 EXPORT_SYMBOL(lu_context_key_revive);
1239
1240 static void keys_fini(struct lu_context *ctx)
1241 {
1242         int i;
1243
1244         if (ctx->lc_value != NULL) {
1245                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1246                         key_fini(ctx, i);
1247                 OBD_FREE(ctx->lc_value,
1248                          ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1249                 ctx->lc_value = NULL;
1250         }
1251 }
1252
1253 static int keys_fill(struct lu_context *ctx)
1254 {
1255         int i;
1256
1257         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1258                 struct lu_context_key *key;
1259
1260                 key = lu_keys[i];
1261                 if (ctx->lc_value[i] == NULL && key != NULL &&
1262                     (key->lct_tags & ctx->lc_tags) &&
1263                     /*
1264                      * Don't create values for a LCT_QUIESCENT key, as this
1265                      * will pin module owning a key.
1266                      */
1267                     !(key->lct_tags & LCT_QUIESCENT)) {
1268                         void *value;
1269
1270                         LINVRNT(key->lct_init != NULL);
1271                         LINVRNT(key->lct_index == i);
1272
1273                         value = key->lct_init(ctx, key);
1274                         if (unlikely(IS_ERR(value)))
1275                                 return PTR_ERR(value);
1276
1277                         LASSERT(key->lct_owner != NULL);
1278                         if (!(ctx->lc_tags & LCT_NOREF))
1279                                 try_module_get(key->lct_owner);
1280                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1281                         atomic_inc(&key->lct_used);
1282                         /*
1283                          * This is the only place in the code, where an
1284                          * element of ctx->lc_value[] array is set to non-NULL
1285                          * value.
1286                          */
1287                         ctx->lc_value[i] = value;
1288                         if (key->lct_exit != NULL)
1289                                 ctx->lc_tags |= LCT_HAS_EXIT;
1290                 }
1291                 ctx->lc_version = key_set_version;
1292         }
1293         return 0;
1294 }
1295
1296 static int keys_init(struct lu_context *ctx)
1297 {
1298         int result;
1299
1300         OBD_ALLOC(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1301         if (likely(ctx->lc_value != NULL))
1302                 result = keys_fill(ctx);
1303         else
1304                 result = -ENOMEM;
1305
1306         if (result != 0)
1307                 keys_fini(ctx);
1308         return result;
1309 }
1310
1311 /**
1312  * Initialize context data-structure. Create values for all keys.
1313  */
1314 int lu_context_init(struct lu_context *ctx, __u32 tags)
1315 {
1316         memset(ctx, 0, sizeof *ctx);
1317         ctx->lc_state = LCS_INITIALIZED;
1318         ctx->lc_tags = tags;
1319         if (tags & LCT_REMEMBER) {
1320                 spin_lock(&lu_keys_guard);
1321                 list_add(&ctx->lc_remember, &lu_context_remembered);
1322                 spin_unlock(&lu_keys_guard);
1323         } else
1324                 CFS_INIT_LIST_HEAD(&ctx->lc_remember);
1325         return keys_init(ctx);
1326 }
1327 EXPORT_SYMBOL(lu_context_init);
1328
1329 /**
1330  * Finalize context data-structure. Destroy key values.
1331  */
1332 void lu_context_fini(struct lu_context *ctx)
1333 {
1334         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1335         ctx->lc_state = LCS_FINALIZED;
1336         keys_fini(ctx);
1337         spin_lock(&lu_keys_guard);
1338         list_del_init(&ctx->lc_remember);
1339         spin_unlock(&lu_keys_guard);
1340 }
1341 EXPORT_SYMBOL(lu_context_fini);
1342
1343 /**
1344  * Called before entering context.
1345  */
1346 void lu_context_enter(struct lu_context *ctx)
1347 {
1348         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1349         ctx->lc_state = LCS_ENTERED;
1350 }
1351 EXPORT_SYMBOL(lu_context_enter);
1352
1353 /**
1354  * Called after exiting from \a ctx
1355  */
1356 void lu_context_exit(struct lu_context *ctx)
1357 {
1358         int i;
1359
1360         LINVRNT(ctx->lc_state == LCS_ENTERED);
1361         ctx->lc_state = LCS_LEFT;
1362         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1363                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1364                         if (ctx->lc_value[i] != NULL) {
1365                                 struct lu_context_key *key;
1366
1367                                 key = lu_keys[i];
1368                                 LASSERT(key != NULL);
1369                                 if (key->lct_exit != NULL)
1370                                         key->lct_exit(ctx,
1371                                                       key, ctx->lc_value[i]);
1372                         }
1373                 }
1374         }
1375 }
1376 EXPORT_SYMBOL(lu_context_exit);
1377
1378 /**
1379  * Allocate for context all missing keys that were registered after context
1380  * creation.
1381  */
1382 int lu_context_refill(struct lu_context *ctx)
1383 {
1384         LINVRNT(ctx->lc_value != NULL);
1385         return ctx->lc_version == key_set_version ? 0 : keys_fill(ctx);
1386 }
1387 EXPORT_SYMBOL(lu_context_refill);
1388
1389 int lu_env_init(struct lu_env *env, __u32 tags)
1390 {
1391         int result;
1392
1393         env->le_ses = NULL;
1394         result = lu_context_init(&env->le_ctx, tags);
1395         if (likely(result == 0))
1396                 lu_context_enter(&env->le_ctx);
1397         return result;
1398 }
1399 EXPORT_SYMBOL(lu_env_init);
1400
1401 void lu_env_fini(struct lu_env *env)
1402 {
1403         lu_context_exit(&env->le_ctx);
1404         lu_context_fini(&env->le_ctx);
1405         env->le_ses = NULL;
1406 }
1407 EXPORT_SYMBOL(lu_env_fini);
1408
1409 int lu_env_refill(struct lu_env *env)
1410 {
1411         int result;
1412
1413         result = lu_context_refill(&env->le_ctx);
1414         if (result == 0 && env->le_ses != NULL)
1415                 result = lu_context_refill(env->le_ses);
1416         return result;
1417 }
1418 EXPORT_SYMBOL(lu_env_refill);
1419
1420 static struct shrinker *lu_site_shrinker = NULL;
1421
1422 #ifdef __KERNEL__
1423 static int lu_cache_shrink(int nr, unsigned int gfp_mask)
1424 {
1425         struct lu_site *s;
1426         struct lu_site *tmp;
1427         int cached = 0;
1428         int remain = nr;
1429         CFS_LIST_HEAD(splice);
1430
1431         if (nr != 0 && !(gfp_mask & __GFP_FS))
1432                 return -1;
1433
1434         down(&lu_sites_guard);
1435         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1436                 if (nr != 0) {
1437                         remain = lu_site_purge(&lu_shrink_env, s, remain);
1438                         /*
1439                          * Move just shrunk site to the tail of site list to
1440                          * assure shrinking fairness.
1441                          */
1442                         list_move_tail(&s->ls_linkage, &splice);
1443                 }
1444                 read_lock(&s->ls_guard);
1445                 cached += s->ls_total - s->ls_busy;
1446                 read_unlock(&s->ls_guard);
1447                 if (remain <= 0)
1448                         break;
1449         }
1450         list_splice(&splice, lu_sites.prev);
1451         up(&lu_sites_guard);
1452         return cached;
1453 }
1454
1455 /*
1456  * Debugging stuff.
1457  */
1458
1459 /**
1460  * Environment to be used in debugger, contains all tags.
1461  */
1462 struct lu_env lu_debugging_env;
1463
1464 /**
1465  * Debugging printer function using printk().
1466  */
1467 int lu_printk_printer(const struct lu_env *env,
1468                       void *_, const char *format, ...)
1469 {
1470         va_list args;
1471
1472         va_start(args, format);
1473         vprintk(format, args);
1474         va_end(args);
1475         return 0;
1476 }
1477
1478 void lu_debugging_setup(void)
1479 {
1480         lu_env_init(&lu_debugging_env, ~0);
1481 }
1482
1483 void lu_context_keys_dump(void)
1484 {
1485         int i;
1486
1487         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1488                 struct lu_context_key *key;
1489
1490                 key = lu_keys[i];
1491                 if (key != NULL) {
1492                         CERROR("[%i]: %p %x (%p,%p,%p) %i %i \"%s\"@%p\n",
1493                                i, key, key->lct_tags,
1494                                key->lct_init, key->lct_fini, key->lct_exit,
1495                                key->lct_index, atomic_read(&key->lct_used),
1496                                key->lct_owner ? key->lct_owner->name : "",
1497                                key->lct_owner);
1498                         lu_ref_print(&key->lct_reference);
1499                 }
1500         }
1501 }
1502 EXPORT_SYMBOL(lu_context_keys_dump);
1503 #else  /* !__KERNEL__ */
1504 static int lu_cache_shrink(int nr, unsigned int gfp_mask)
1505 {
1506         return 0;
1507 }
1508 #endif /* __KERNEL__ */
1509
1510 int  cl_global_init(void);
1511 void cl_global_fini(void);
1512 int  lu_ref_global_init(void);
1513 void lu_ref_global_fini(void);
1514
1515 int dt_global_init(void);
1516 void dt_global_fini(void);
1517
1518 int llo_global_init(void);
1519 void llo_global_fini(void);
1520
1521 /**
1522  * Initialization of global lu_* data.
1523  */
1524 int lu_global_init(void)
1525 {
1526         int result;
1527
1528         CDEBUG(D_CONSOLE, "Lustre LU module (%p).\n", &lu_keys);
1529
1530         LU_CONTEXT_KEY_INIT(&lu_global_key);
1531         result = lu_context_key_register(&lu_global_key);
1532         if (result != 0)
1533                 return result;
1534         /*
1535          * At this level, we don't know what tags are needed, so allocate them
1536          * conservatively. This should not be too bad, because this
1537          * environment is global.
1538          */
1539         down(&lu_sites_guard);
1540         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
1541         up(&lu_sites_guard);
1542         if (result != 0)
1543                 return result;
1544
1545         result = lu_ref_global_init();
1546         if (result != 0)
1547                 return result;
1548         /*
1549          * seeks estimation: 3 seeks to read a record from oi, one to read
1550          * inode, one for ea. Unfortunately setting this high value results in
1551          * lu_object/inode cache consuming all the memory.
1552          */
1553         lu_site_shrinker = set_shrinker(DEFAULT_SEEKS, lu_cache_shrink);
1554         if (lu_site_shrinker == NULL)
1555                 return -ENOMEM;
1556
1557         result = lu_time_global_init();
1558         if (result)
1559                 GOTO(out, result);
1560
1561 #ifdef __KERNEL__
1562         result = dt_global_init();
1563         if (result)
1564                 GOTO(out, result);
1565
1566         result = llo_global_init();
1567         if (result)
1568                 GOTO(out, result);
1569 #endif
1570         result = cl_global_init();
1571 out:
1572
1573         return result;
1574 }
1575
1576 /**
1577  * Dual to lu_global_init().
1578  */
1579 void lu_global_fini(void)
1580 {
1581         cl_global_fini();
1582 #ifdef __KERNEL__
1583         llo_global_fini();
1584         dt_global_fini();
1585 #endif
1586         lu_time_global_fini();
1587         if (lu_site_shrinker != NULL) {
1588                 remove_shrinker(lu_site_shrinker);
1589                 lu_site_shrinker = NULL;
1590         }
1591
1592         lu_context_key_degister(&lu_global_key);
1593
1594         /*
1595          * Tear shrinker environment down _after_ de-registering
1596          * lu_global_key, because the latter has a value in the former.
1597          */
1598         down(&lu_sites_guard);
1599         lu_env_fini(&lu_shrink_env);
1600         up(&lu_sites_guard);
1601
1602         lu_ref_global_fini();
1603 }
1604
1605 struct lu_buf LU_BUF_NULL = {
1606         .lb_buf = NULL,
1607         .lb_len = 0
1608 };
1609 EXPORT_SYMBOL(LU_BUF_NULL);
1610
1611 /**
1612  * Output site statistical counters into a buffer. Suitable for
1613  * lprocfs_rd_*()-style functions.
1614  */
1615 int lu_site_stats_print(const struct lu_site *s, char *page, int count)
1616 {
1617         int i;
1618         int populated;
1619
1620         /*
1621          * How many hash buckets are not-empty? Don't bother with locks: it's
1622          * an estimation anyway.
1623          */
1624         for (i = 0, populated = 0; i < s->ls_hash_size; i++)
1625                 populated += !hlist_empty(&s->ls_hash[i]);
1626
1627         return snprintf(page, count, "%d %d %d/%d %d %d %d %d %d %d %d\n",
1628                         s->ls_total,
1629                         s->ls_busy,
1630                         populated,
1631                         s->ls_hash_size,
1632                         s->ls_stats.s_created,
1633                         s->ls_stats.s_cache_hit,
1634                         s->ls_stats.s_cache_miss,
1635                         s->ls_stats.s_cache_check,
1636                         s->ls_stats.s_cache_race,
1637                         s->ls_stats.s_cache_death_race,
1638                         s->ls_stats.s_lru_purged);
1639 }
1640 EXPORT_SYMBOL(lu_site_stats_print);
1641
1642 #ifdef __KERNEL__
1643 /*
1644  * XXX: Functions below logically belong to the fid module, but they are used
1645  * by dt_store_open(). Put them here until better place is found.
1646  */
1647
1648 void fid_pack(struct lu_fid_pack *pack, const struct lu_fid *fid,
1649               struct lu_fid *befider)
1650 {
1651         int recsize;
1652         __u64 seq;
1653         __u32 oid;
1654
1655         seq = fid_seq(fid);
1656         oid = fid_oid(fid);
1657
1658         /*
1659          * Two cases: compact 6 bytes representation for a common case, and
1660          * full 17 byte representation for "unusual" fid.
1661          */
1662
1663         /*
1664          * Check that usual case is really usual.
1665          */
1666         CLASSERT(LUSTRE_SEQ_MAX_WIDTH < 0xffffull);
1667
1668         if (fid_is_igif(fid) ||
1669             seq > 0xffffffull || oid > 0xffff || fid_ver(fid) != 0) {
1670                 fid_cpu_to_be(befider, fid);
1671                 recsize = sizeof *befider;
1672         } else {
1673                 unsigned char *small_befider;
1674
1675                 small_befider = (unsigned char *)befider;
1676
1677                 small_befider[0] = seq >> 16;
1678                 small_befider[1] = seq >> 8;
1679                 small_befider[2] = seq;
1680
1681                 small_befider[3] = oid >> 8;
1682                 small_befider[4] = oid;
1683
1684                 recsize = 5;
1685         }
1686         memcpy(pack->fp_area, befider, recsize);
1687         pack->fp_len = recsize + 1;
1688 }
1689 EXPORT_SYMBOL(fid_pack);
1690
1691 int fid_unpack(const struct lu_fid_pack *pack, struct lu_fid *fid)
1692 {
1693         int result;
1694
1695         result = 0;
1696         switch (pack->fp_len) {
1697         case sizeof *fid + 1:
1698                 memcpy(fid, pack->fp_area, sizeof *fid);
1699                 fid_be_to_cpu(fid, fid);
1700                 break;
1701         case 6: {
1702                 const unsigned char *area;
1703
1704                 area = (unsigned char *)pack->fp_area;
1705                 fid->f_seq = (area[0] << 16) | (area[1] << 8) | area[2];
1706                 fid->f_oid = (area[3] << 8) | area[4];
1707                 fid->f_ver = 0;
1708                 break;
1709         }
1710         default:
1711                 CERROR("Unexpected packed fid size: %d\n", pack->fp_len);
1712                 result = -EIO;
1713         }
1714         return result;
1715 }
1716 EXPORT_SYMBOL(fid_unpack);
1717 #endif  /* #ifdef __KERNEL__ */
1718
1719 const char *lu_time_names[LU_TIME_NR] = {
1720         [LU_TIME_FIND_LOOKUP] = "find_lookup",
1721         [LU_TIME_FIND_ALLOC]  = "find_alloc",
1722         [LU_TIME_FIND_INSERT] = "find_insert"
1723 };
1724 EXPORT_SYMBOL(lu_time_names);
1725
1726 /**
1727  * Helper function to initialize a number of kmem slab caches at once.
1728  */
1729 int lu_kmem_init(struct lu_kmem_descr *caches)
1730 {
1731         int result;
1732
1733         for (result = 0; caches->ckd_cache != NULL; ++caches) {
1734                 *caches->ckd_cache = cfs_mem_cache_create(caches->ckd_name,
1735                                                           caches->ckd_size,
1736                                                           0, 0);
1737                 if (*caches->ckd_cache == NULL) {
1738                         result = -ENOMEM;
1739                         break;
1740                 }
1741         }
1742         return result;
1743 }
1744 EXPORT_SYMBOL(lu_kmem_init);
1745
1746 /**
1747  * Helper function to finalize a number of kmem slab cached at once. Dual to
1748  * lu_kmem_init().
1749  */
1750 void lu_kmem_fini(struct lu_kmem_descr *caches)
1751 {
1752         int rc;
1753
1754         for (; caches->ckd_cache != NULL; ++caches) {
1755                 if (*caches->ckd_cache != NULL) {
1756                         rc = cfs_mem_cache_destroy(*caches->ckd_cache);
1757                         LASSERTF(rc == 0, "couldn't destroy %s slab\n",
1758                                  caches->ckd_name);
1759                         *caches->ckd_cache = NULL;
1760                 }
1761         }
1762 }
1763 EXPORT_SYMBOL(lu_kmem_fini);