Whamcloud - gitweb
LU-7997 obd: RCU stalls in lu_cache_shrink_count()
[fs/lustre-release.git] / lustre / obdclass / lu_object.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2015, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/obdclass/lu_object.c
37  *
38  * Lustre Object.
39  * These are the only exported functions, they provide some generic
40  * infrastructure for managing object devices
41  *
42  *   Author: Nikita Danilov <nikita.danilov@sun.com>
43  */
44
45 #define DEBUG_SUBSYSTEM S_CLASS
46
47 #include <libcfs/libcfs.h>
48 #include <linux/module.h>
49 #include <libcfs/libcfs_hash.h> /* hash_long() */
50 #include <obd_class.h>
51 #include <obd_support.h>
52 #include <lustre_disk.h>
53 #include <lustre_fid.h>
54 #include <lu_object.h>
55 #include <lu_ref.h>
56 #include <libcfs/list.h>
57
58 enum {
59         LU_CACHE_PERCENT_MAX     = 50,
60         LU_CACHE_PERCENT_DEFAULT = 20
61 };
62
63 #define LU_CACHE_NR_MAX_ADJUST          128
64 #define LU_CACHE_NR_UNLIMITED           -1
65 #define LU_CACHE_NR_DEFAULT             LU_CACHE_NR_UNLIMITED
66 #define LU_CACHE_NR_LDISKFS_LIMIT       LU_CACHE_NR_UNLIMITED
67 /** This is set to roughly (20 * OSS_NTHRS_MAX) to prevent thrashing */
68 #define LU_CACHE_NR_ZFS_LIMIT           10240
69
70 #define LU_SITE_BITS_MIN    12
71 #define LU_SITE_BITS_MAX    24
72 #define LU_SITE_BITS_MAX_CL 19
73 /**
74  * total 256 buckets, we don't want too many buckets because:
75  * - consume too much memory
76  * - avoid unbalanced LRU list
77  */
78 #define LU_SITE_BKT_BITS    8
79
80
81 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
82 module_param(lu_cache_percent, int, 0644);
83 MODULE_PARM_DESC(lu_cache_percent, "Percentage of memory to be used as lu_object cache");
84
85 static long lu_cache_nr = LU_CACHE_NR_DEFAULT;
86 module_param(lu_cache_nr, long, 0644);
87 MODULE_PARM_DESC(lu_cache_nr, "Maximum number of objects in lu_object cache");
88
89 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
90 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx);
91
92 /**
93  * Decrease reference counter on object. If last reference is freed, return
94  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
95  * case, free object immediately.
96  */
97 void lu_object_put(const struct lu_env *env, struct lu_object *o)
98 {
99         struct lu_site_bkt_data *bkt;
100         struct lu_object_header *top;
101         struct lu_site          *site;
102         struct lu_object        *orig;
103         struct cfs_hash_bd            bd;
104         const struct lu_fid     *fid;
105
106         top  = o->lo_header;
107         site = o->lo_dev->ld_site;
108         orig = o;
109
110         /*
111          * till we have full fids-on-OST implemented anonymous objects
112          * are possible in OSP. such an object isn't listed in the site
113          * so we should not remove it from the site.
114          */
115         fid = lu_object_fid(o);
116         if (fid_is_zero(fid)) {
117                 LASSERT(top->loh_hash.next == NULL
118                         && top->loh_hash.pprev == NULL);
119                 LASSERT(list_empty(&top->loh_lru));
120                 if (!atomic_dec_and_test(&top->loh_ref))
121                         return;
122                 list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
123                         if (o->lo_ops->loo_object_release != NULL)
124                                 o->lo_ops->loo_object_release(env, o);
125                 }
126                 lu_object_free(env, orig);
127                 return;
128         }
129
130         cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
131         bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
132
133         if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
134                 if (lu_object_is_dying(top)) {
135
136                         /*
137                          * somebody may be waiting for this, currently only
138                          * used for cl_object, see cl_object_put_last().
139                          */
140                         wake_up_all(&bkt->lsb_marche_funebre);
141                 }
142                 return;
143         }
144
145         /*
146          * When last reference is released, iterate over object
147          * layers, and notify them that object is no longer busy.
148          */
149         list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
150                 if (o->lo_ops->loo_object_release != NULL)
151                         o->lo_ops->loo_object_release(env, o);
152         }
153
154         if (!lu_object_is_dying(top) &&
155             (lu_object_exists(orig) || lu_object_is_cl(orig))) {
156                 LASSERT(list_empty(&top->loh_lru));
157                 list_add_tail(&top->loh_lru, &bkt->lsb_lru);
158                 bkt->lsb_lru_len++;
159                 percpu_counter_inc(&site->ls_lru_len_counter);
160                 CDEBUG(D_INODE, "Add %p to site lru. hash: %p, bkt: %p, "
161                        "lru_len: %ld\n",
162                        o, site->ls_obj_hash, bkt, bkt->lsb_lru_len);
163                 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
164                 return;
165         }
166
167         /*
168          * If object is dying (will not be cached) then remove it
169          * from hash table and LRU.
170          *
171          * This is done with hash table and LRU lists locked. As the only
172          * way to acquire first reference to previously unreferenced
173          * object is through hash-table lookup (lu_object_find()),
174          * or LRU scanning (lu_site_purge()), that are done under hash-table
175          * and LRU lock, no race with concurrent object lookup is possible
176          * and we can safely destroy object below.
177          */
178         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags))
179                 cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
180         cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
181         /*
182          * Object was already removed from hash and lru above, can
183          * kill it.
184          */
185         lu_object_free(env, orig);
186 }
187 EXPORT_SYMBOL(lu_object_put);
188
189 /**
190  * Put object and don't keep in cache. This is temporary solution for
191  * multi-site objects when its layering is not constant.
192  */
193 void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o)
194 {
195         set_bit(LU_OBJECT_HEARD_BANSHEE, &o->lo_header->loh_flags);
196         return lu_object_put(env, o);
197 }
198 EXPORT_SYMBOL(lu_object_put_nocache);
199
200 /**
201  * Kill the object and take it out of LRU cache.
202  * Currently used by client code for layout change.
203  */
204 void lu_object_unhash(const struct lu_env *env, struct lu_object *o)
205 {
206         struct lu_object_header *top;
207
208         top = o->lo_header;
209         set_bit(LU_OBJECT_HEARD_BANSHEE, &top->loh_flags);
210         if (!test_and_set_bit(LU_OBJECT_UNHASHED, &top->loh_flags)) {
211                 struct lu_site *site = o->lo_dev->ld_site;
212                 struct cfs_hash *obj_hash = site->ls_obj_hash;
213                 struct cfs_hash_bd bd;
214
215                 cfs_hash_bd_get_and_lock(obj_hash, &top->loh_fid, &bd, 1);
216                 if (!list_empty(&top->loh_lru)) {
217                         struct lu_site_bkt_data *bkt;
218
219                         list_del_init(&top->loh_lru);
220                         bkt = cfs_hash_bd_extra_get(obj_hash, &bd);
221                         bkt->lsb_lru_len--;
222                         percpu_counter_dec(&site->ls_lru_len_counter);
223                 }
224                 cfs_hash_bd_del_locked(obj_hash, &bd, &top->loh_hash);
225                 cfs_hash_bd_unlock(obj_hash, &bd, 1);
226         }
227 }
228 EXPORT_SYMBOL(lu_object_unhash);
229
230 /**
231  * Allocate new object.
232  *
233  * This follows object creation protocol, described in the comment within
234  * struct lu_device_operations definition.
235  */
236 static struct lu_object *lu_object_alloc(const struct lu_env *env,
237                                          struct lu_device *dev,
238                                          const struct lu_fid *f,
239                                          const struct lu_object_conf *conf)
240 {
241         struct lu_object *scan;
242         struct lu_object *top;
243         struct list_head *layers;
244         unsigned int init_mask = 0;
245         unsigned int init_flag;
246         int clean;
247         int result;
248         ENTRY;
249
250         /*
251          * Create top-level object slice. This will also create
252          * lu_object_header.
253          */
254         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
255         if (top == NULL)
256                 RETURN(ERR_PTR(-ENOMEM));
257         if (IS_ERR(top))
258                 RETURN(top);
259         /*
260          * This is the only place where object fid is assigned. It's constant
261          * after this point.
262          */
263         top->lo_header->loh_fid = *f;
264         layers = &top->lo_header->loh_layers;
265
266         do {
267                 /*
268                  * Call ->loo_object_init() repeatedly, until no more new
269                  * object slices are created.
270                  */
271                 clean = 1;
272                 init_flag = 1;
273                 list_for_each_entry(scan, layers, lo_linkage) {
274                         if (init_mask & init_flag)
275                                 goto next;
276                         clean = 0;
277                         scan->lo_header = top->lo_header;
278                         result = scan->lo_ops->loo_object_init(env, scan, conf);
279                         if (result != 0) {
280                                 lu_object_free(env, top);
281                                 RETURN(ERR_PTR(result));
282                         }
283                         init_mask |= init_flag;
284 next:
285                         init_flag <<= 1;
286                 }
287         } while (!clean);
288
289         list_for_each_entry_reverse(scan, layers, lo_linkage) {
290                 if (scan->lo_ops->loo_object_start != NULL) {
291                         result = scan->lo_ops->loo_object_start(env, scan);
292                         if (result != 0) {
293                                 lu_object_free(env, top);
294                                 RETURN(ERR_PTR(result));
295                         }
296                 }
297         }
298
299         lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
300         RETURN(top);
301 }
302
303 /**
304  * Free an object.
305  */
306 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
307 {
308         struct lu_site_bkt_data *bkt;
309         struct lu_site          *site;
310         struct lu_object        *scan;
311         struct list_head        *layers;
312         struct list_head         splice;
313
314         site   = o->lo_dev->ld_site;
315         layers = &o->lo_header->loh_layers;
316         bkt    = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
317         /*
318          * First call ->loo_object_delete() method to release all resources.
319          */
320         list_for_each_entry_reverse(scan, layers, lo_linkage) {
321                 if (scan->lo_ops->loo_object_delete != NULL)
322                         scan->lo_ops->loo_object_delete(env, scan);
323         }
324
325         /*
326          * Then, splice object layers into stand-alone list, and call
327          * ->loo_object_free() on all layers to free memory. Splice is
328          * necessary, because lu_object_header is freed together with the
329          * top-level slice.
330          */
331         INIT_LIST_HEAD(&splice);
332         list_splice_init(layers, &splice);
333         while (!list_empty(&splice)) {
334                 /*
335                  * Free layers in bottom-to-top order, so that object header
336                  * lives as long as possible and ->loo_object_free() methods
337                  * can look at its contents.
338                  */
339                 o = container_of0(splice.prev, struct lu_object, lo_linkage);
340                 list_del_init(&o->lo_linkage);
341                 LASSERT(o->lo_ops->loo_object_free != NULL);
342                 o->lo_ops->loo_object_free(env, o);
343         }
344
345         if (waitqueue_active(&bkt->lsb_marche_funebre))
346                 wake_up_all(&bkt->lsb_marche_funebre);
347 }
348
349 /**
350  * Free \a nr objects from the cold end of the site LRU list.
351  */
352 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
353 {
354         struct lu_object_header *h;
355         struct lu_object_header *temp;
356         struct lu_site_bkt_data *bkt;
357         struct cfs_hash_bd            bd;
358         struct cfs_hash_bd            bd2;
359         struct list_head         dispose;
360         int                      did_sth;
361         unsigned int             start = 0;
362         int                      count;
363         int                      bnr;
364         unsigned int             i;
365
366         if (OBD_FAIL_CHECK(OBD_FAIL_OBD_NO_LRU))
367                 RETURN(0);
368
369         INIT_LIST_HEAD(&dispose);
370         /*
371          * Under LRU list lock, scan LRU list and move unreferenced objects to
372          * the dispose list, removing them from LRU and hash table.
373          */
374         if (nr != ~0)
375                 start = s->ls_purge_start;
376         bnr = (nr == ~0) ? -1 : nr / (int)CFS_HASH_NBKT(s->ls_obj_hash) + 1;
377  again:
378         /*
379          * It doesn't make any sense to make purge threads parallel, that can
380          * only bring troubles to us. See LU-5331.
381          */
382         mutex_lock(&s->ls_purge_mutex);
383         did_sth = 0;
384         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
385                 if (i < start)
386                         continue;
387                 count = bnr;
388                 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
389                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
390
391                 list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
392                         LASSERT(atomic_read(&h->loh_ref) == 0);
393
394                         cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
395                         LASSERT(bd.bd_bucket == bd2.bd_bucket);
396
397                         cfs_hash_bd_del_locked(s->ls_obj_hash,
398                                                &bd2, &h->loh_hash);
399                         list_move(&h->loh_lru, &dispose);
400                         bkt->lsb_lru_len--;
401                         percpu_counter_dec(&s->ls_lru_len_counter);
402                         if (did_sth == 0)
403                                 did_sth = 1;
404
405                         if (nr != ~0 && --nr == 0)
406                                 break;
407
408                         if (count > 0 && --count == 0)
409                                 break;
410
411                 }
412                 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
413                 cond_resched();
414                 /*
415                  * Free everything on the dispose list. This is safe against
416                  * races due to the reasons described in lu_object_put().
417                  */
418                 while (!list_empty(&dispose)) {
419                         h = container_of0(dispose.next,
420                                           struct lu_object_header, loh_lru);
421                         list_del_init(&h->loh_lru);
422                         lu_object_free(env, lu_object_top(h));
423                         lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
424                 }
425
426                 if (nr == 0)
427                         break;
428         }
429         mutex_unlock(&s->ls_purge_mutex);
430
431         if (nr != 0 && did_sth && start != 0) {
432                 start = 0; /* restart from the first bucket */
433                 goto again;
434         }
435         /* race on s->ls_purge_start, but nobody cares */
436         s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
437
438         return nr;
439 }
440 EXPORT_SYMBOL(lu_site_purge);
441
442 /*
443  * Object printing.
444  *
445  * Code below has to jump through certain loops to output object description
446  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
447  * composes object description from strings that are parts of _lines_ of
448  * output (i.e., strings that are not terminated by newline). This doesn't fit
449  * very well into libcfs_debug_msg() interface that assumes that each message
450  * supplied to it is a self-contained output line.
451  *
452  * To work around this, strings are collected in a temporary buffer
453  * (implemented as a value of lu_cdebug_key key), until terminating newline
454  * character is detected.
455  *
456  */
457
458 enum {
459         /**
460          * Maximal line size.
461          *
462          * XXX overflow is not handled correctly.
463          */
464         LU_CDEBUG_LINE = 512
465 };
466
467 struct lu_cdebug_data {
468         /**
469          * Temporary buffer.
470          */
471         char lck_area[LU_CDEBUG_LINE];
472 };
473
474 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
475 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
476
477 /**
478  * Key, holding temporary buffer. This key is registered very early by
479  * lu_global_init().
480  */
481 static struct lu_context_key lu_global_key = {
482         .lct_tags = LCT_MD_THREAD | LCT_DT_THREAD |
483                     LCT_MG_THREAD | LCT_CL_THREAD | LCT_LOCAL,
484         .lct_init = lu_global_key_init,
485         .lct_fini = lu_global_key_fini
486 };
487
488 /**
489  * Printer function emitting messages through libcfs_debug_msg().
490  */
491 int lu_cdebug_printer(const struct lu_env *env,
492                       void *cookie, const char *format, ...)
493 {
494         struct libcfs_debug_msg_data *msgdata = cookie;
495         struct lu_cdebug_data        *key;
496         int used;
497         int complete;
498         va_list args;
499
500         va_start(args, format);
501
502         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
503         LASSERT(key != NULL);
504
505         used = strlen(key->lck_area);
506         complete = format[strlen(format) - 1] == '\n';
507         /*
508          * Append new chunk to the buffer.
509          */
510         vsnprintf(key->lck_area + used,
511                   ARRAY_SIZE(key->lck_area) - used, format, args);
512         if (complete) {
513                 if (cfs_cdebug_show(msgdata->msg_mask, msgdata->msg_subsys))
514                         libcfs_debug_msg(msgdata, "%s\n", key->lck_area);
515                 key->lck_area[0] = 0;
516         }
517         va_end(args);
518         return 0;
519 }
520 EXPORT_SYMBOL(lu_cdebug_printer);
521
522 /**
523  * Print object header.
524  */
525 void lu_object_header_print(const struct lu_env *env, void *cookie,
526                             lu_printer_t printer,
527                             const struct lu_object_header *hdr)
528 {
529         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
530                    hdr, hdr->loh_flags, atomic_read(&hdr->loh_ref),
531                    PFID(&hdr->loh_fid),
532                    hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
533                    list_empty((struct list_head *)&hdr->loh_lru) ? \
534                    "" : " lru",
535                    hdr->loh_attr & LOHA_EXISTS ? " exist" : "");
536 }
537 EXPORT_SYMBOL(lu_object_header_print);
538
539 /**
540  * Print human readable representation of the \a o to the \a printer.
541  */
542 void lu_object_print(const struct lu_env *env, void *cookie,
543                      lu_printer_t printer, const struct lu_object *o)
544 {
545         static const char ruler[] = "........................................";
546         struct lu_object_header *top;
547         int depth = 4;
548
549         top = o->lo_header;
550         lu_object_header_print(env, cookie, printer, top);
551         (*printer)(env, cookie, "{\n");
552
553         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
554                 /*
555                  * print `.' \a depth times followed by type name and address
556                  */
557                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
558                            o->lo_dev->ld_type->ldt_name, o);
559
560                 if (o->lo_ops->loo_object_print != NULL)
561                         (*o->lo_ops->loo_object_print)(env, cookie, printer, o);
562
563                 (*printer)(env, cookie, "\n");
564         }
565
566         (*printer)(env, cookie, "} header@%p\n", top);
567 }
568 EXPORT_SYMBOL(lu_object_print);
569
570 /**
571  * Check object consistency.
572  */
573 int lu_object_invariant(const struct lu_object *o)
574 {
575         struct lu_object_header *top;
576
577         top = o->lo_header;
578         list_for_each_entry(o, &top->loh_layers, lo_linkage) {
579                 if (o->lo_ops->loo_object_invariant != NULL &&
580                     !o->lo_ops->loo_object_invariant(o))
581                         return 0;
582         }
583         return 1;
584 }
585
586 static struct lu_object *htable_lookup(struct lu_site *s,
587                                        struct cfs_hash_bd *bd,
588                                        const struct lu_fid *f,
589                                        wait_queue_t *waiter,
590                                        __u64 *version)
591 {
592         struct lu_site_bkt_data *bkt;
593         struct lu_object_header *h;
594         struct hlist_node       *hnode;
595         __u64  ver = cfs_hash_bd_version_get(bd);
596
597         if (*version == ver)
598                 return ERR_PTR(-ENOENT);
599
600         *version = ver;
601         bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
602         /* cfs_hash_bd_peek_locked is a somehow "internal" function
603          * of cfs_hash, it doesn't add refcount on object. */
604         hnode = cfs_hash_bd_peek_locked(s->ls_obj_hash, bd, (void *)f);
605         if (hnode == NULL) {
606                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
607                 return ERR_PTR(-ENOENT);
608         }
609
610         h = container_of0(hnode, struct lu_object_header, loh_hash);
611         if (likely(!lu_object_is_dying(h))) {
612                 cfs_hash_get(s->ls_obj_hash, hnode);
613                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
614                 if (!list_empty(&h->loh_lru)) {
615                         list_del_init(&h->loh_lru);
616                         bkt->lsb_lru_len--;
617                         percpu_counter_dec(&s->ls_lru_len_counter);
618                 }
619                 return lu_object_top(h);
620         }
621
622         /*
623          * Lookup found an object being destroyed this object cannot be
624          * returned (to assure that references to dying objects are eventually
625          * drained), and moreover, lookup has to wait until object is freed.
626          */
627
628         if (likely(waiter != NULL)) {
629                 init_waitqueue_entry(waiter, current);
630                 add_wait_queue(&bkt->lsb_marche_funebre, waiter);
631                 set_current_state(TASK_UNINTERRUPTIBLE);
632                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
633         }
634
635         return ERR_PTR(-EAGAIN);
636 }
637
638 /**
639  * Search cache for an object with the fid \a f. If such object is found,
640  * return it. Otherwise, create new object, insert it into cache and return
641  * it. In any case, additional reference is acquired on the returned object.
642  */
643 struct lu_object *lu_object_find(const struct lu_env *env,
644                                  struct lu_device *dev, const struct lu_fid *f,
645                                  const struct lu_object_conf *conf)
646 {
647         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
648 }
649 EXPORT_SYMBOL(lu_object_find);
650
651 /*
652  * Limit the lu_object cache to a maximum of lu_cache_nr objects.  Because
653  * the calculation for the number of objects to reclaim is not covered by
654  * a lock the maximum number of objects is capped by LU_CACHE_MAX_ADJUST.
655  * This ensures that many concurrent threads will not accidentally purge
656  * the entire cache.
657  */
658 static void lu_object_limit(const struct lu_env *env,
659                             struct lu_device *dev)
660 {
661         __u64 size, nr;
662
663         if (lu_cache_nr == LU_CACHE_NR_UNLIMITED)
664                 return;
665
666         size = cfs_hash_size_get(dev->ld_site->ls_obj_hash);
667         nr = (__u64)lu_cache_nr;
668         if (size > nr)
669                 lu_site_purge(env, dev->ld_site,
670                               MIN(size - nr, LU_CACHE_NR_MAX_ADJUST));
671
672         return;
673 }
674
675 static struct lu_object *lu_object_new(const struct lu_env *env,
676                                        struct lu_device *dev,
677                                        const struct lu_fid *f,
678                                        const struct lu_object_conf *conf)
679 {
680         struct lu_object        *o;
681         struct cfs_hash              *hs;
682         struct cfs_hash_bd            bd;
683
684         o = lu_object_alloc(env, dev, f, conf);
685         if (unlikely(IS_ERR(o)))
686                 return o;
687
688         hs = dev->ld_site->ls_obj_hash;
689         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
690         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
691         cfs_hash_bd_unlock(hs, &bd, 1);
692
693         lu_object_limit(env, dev);
694
695         return o;
696 }
697
698 /**
699  * Core logic of lu_object_find*() functions.
700  */
701 static struct lu_object *lu_object_find_try(const struct lu_env *env,
702                                             struct lu_device *dev,
703                                             const struct lu_fid *f,
704                                             const struct lu_object_conf *conf,
705                                             wait_queue_t *waiter)
706 {
707         struct lu_object      *o;
708         struct lu_object      *shadow;
709         struct lu_site        *s;
710         struct cfs_hash            *hs;
711         struct cfs_hash_bd          bd;
712         __u64                  version = 0;
713
714         /*
715          * This uses standard index maintenance protocol:
716          *
717          *     - search index under lock, and return object if found;
718          *     - otherwise, unlock index, allocate new object;
719          *     - lock index and search again;
720          *     - if nothing is found (usual case), insert newly created
721          *       object into index;
722          *     - otherwise (race: other thread inserted object), free
723          *       object just allocated.
724          *     - unlock index;
725          *     - return object.
726          *
727          * For "LOC_F_NEW" case, we are sure the object is new established.
728          * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
729          * just alloc and insert directly.
730          *
731          * If dying object is found during index search, add @waiter to the
732          * site wait-queue and return ERR_PTR(-EAGAIN).
733          */
734         if (conf != NULL && conf->loc_flags & LOC_F_NEW)
735                 return lu_object_new(env, dev, f, conf);
736
737         s  = dev->ld_site;
738         hs = s->ls_obj_hash;
739         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
740         o = htable_lookup(s, &bd, f, waiter, &version);
741         cfs_hash_bd_unlock(hs, &bd, 1);
742         if (!IS_ERR(o) || PTR_ERR(o) != -ENOENT)
743                 return o;
744
745         /*
746          * Allocate new object. This may result in rather complicated
747          * operations, including fld queries, inode loading, etc.
748          */
749         o = lu_object_alloc(env, dev, f, conf);
750         if (unlikely(IS_ERR(o)))
751                 return o;
752
753         LASSERT(lu_fid_eq(lu_object_fid(o), f));
754
755         cfs_hash_bd_lock(hs, &bd, 1);
756
757         shadow = htable_lookup(s, &bd, f, waiter, &version);
758         if (likely(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT)) {
759                 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
760                 cfs_hash_bd_unlock(hs, &bd, 1);
761
762                 lu_object_limit(env, dev);
763
764                 return o;
765         }
766
767         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
768         cfs_hash_bd_unlock(hs, &bd, 1);
769         lu_object_free(env, o);
770         return shadow;
771 }
772
773 /**
774  * Much like lu_object_find(), but top level device of object is specifically
775  * \a dev rather than top level device of the site. This interface allows
776  * objects of different "stacking" to be created within the same site.
777  */
778 struct lu_object *lu_object_find_at(const struct lu_env *env,
779                                     struct lu_device *dev,
780                                     const struct lu_fid *f,
781                                     const struct lu_object_conf *conf)
782 {
783         struct lu_site_bkt_data *bkt;
784         struct lu_object        *obj;
785         wait_queue_t           wait;
786
787         if (conf != NULL && conf->loc_flags & LOC_F_NOWAIT)
788                 return lu_object_find_try(env, dev, f, conf, NULL);
789
790         while (1) {
791                 obj = lu_object_find_try(env, dev, f, conf, &wait);
792                 if (obj != ERR_PTR(-EAGAIN))
793                         return obj;
794                 /*
795                  * lu_object_find_try() already added waiter into the
796                  * wait queue.
797                  */
798                 schedule();
799                 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
800                 remove_wait_queue(&bkt->lsb_marche_funebre, &wait);
801         }
802 }
803 EXPORT_SYMBOL(lu_object_find_at);
804
805 /**
806  * Find object with given fid, and return its slice belonging to given device.
807  */
808 struct lu_object *lu_object_find_slice(const struct lu_env *env,
809                                        struct lu_device *dev,
810                                        const struct lu_fid *f,
811                                        const struct lu_object_conf *conf)
812 {
813         struct lu_object *top;
814         struct lu_object *obj;
815
816         top = lu_object_find(env, dev, f, conf);
817         if (IS_ERR(top))
818                 return top;
819
820         obj = lu_object_locate(top->lo_header, dev->ld_type);
821         if (unlikely(obj == NULL)) {
822                 lu_object_put(env, top);
823                 obj = ERR_PTR(-ENOENT);
824         }
825
826         return obj;
827 }
828 EXPORT_SYMBOL(lu_object_find_slice);
829
830 /**
831  * Global list of all device types.
832  */
833 static struct list_head lu_device_types;
834
835 int lu_device_type_init(struct lu_device_type *ldt)
836 {
837         int result = 0;
838
839         atomic_set(&ldt->ldt_device_nr, 0);
840         INIT_LIST_HEAD(&ldt->ldt_linkage);
841         if (ldt->ldt_ops->ldto_init)
842                 result = ldt->ldt_ops->ldto_init(ldt);
843
844         if (result == 0) {
845                 spin_lock(&obd_types_lock);
846                 list_add(&ldt->ldt_linkage, &lu_device_types);
847                 spin_unlock(&obd_types_lock);
848         }
849
850         return result;
851 }
852 EXPORT_SYMBOL(lu_device_type_init);
853
854 void lu_device_type_fini(struct lu_device_type *ldt)
855 {
856         spin_lock(&obd_types_lock);
857         list_del_init(&ldt->ldt_linkage);
858         spin_unlock(&obd_types_lock);
859         if (ldt->ldt_ops->ldto_fini)
860                 ldt->ldt_ops->ldto_fini(ldt);
861 }
862 EXPORT_SYMBOL(lu_device_type_fini);
863
864 /**
865  * Global list of all sites on this node
866  */
867 static struct list_head lu_sites;
868 static struct rw_semaphore lu_sites_guard;
869
870 /**
871  * Global environment used by site shrinker.
872  */
873 static struct lu_env lu_shrink_env;
874
875 struct lu_site_print_arg {
876         struct lu_env   *lsp_env;
877         void            *lsp_cookie;
878         lu_printer_t     lsp_printer;
879 };
880
881 static int
882 lu_site_obj_print(struct cfs_hash *hs, struct cfs_hash_bd *bd,
883                   struct hlist_node *hnode, void *data)
884 {
885         struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
886         struct lu_object_header  *h;
887
888         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
889         if (!list_empty(&h->loh_layers)) {
890                 const struct lu_object *o;
891
892                 o = lu_object_top(h);
893                 lu_object_print(arg->lsp_env, arg->lsp_cookie,
894                                 arg->lsp_printer, o);
895         } else {
896                 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
897                                        arg->lsp_printer, h);
898         }
899         return 0;
900 }
901
902 /**
903  * Print all objects in \a s.
904  */
905 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
906                    lu_printer_t printer)
907 {
908         struct lu_site_print_arg arg = {
909                 .lsp_env     = (struct lu_env *)env,
910                 .lsp_cookie  = cookie,
911                 .lsp_printer = printer,
912         };
913
914         cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
915 }
916 EXPORT_SYMBOL(lu_site_print);
917
918 /**
919  * Return desired hash table order.
920  */
921 static unsigned long lu_htable_order(struct lu_device *top)
922 {
923         unsigned long cache_size;
924         unsigned long bits;
925         unsigned long bits_max = LU_SITE_BITS_MAX;
926
927         /*
928          * For ZFS based OSDs the cache should be disabled by default.  This
929          * allows the ZFS ARC maximum flexibility in determining what buffers
930          * to cache.  If Lustre has objects or buffer which it wants to ensure
931          * always stay cached it must maintain a hold on them.
932          */
933         if (strcmp(top->ld_type->ldt_name, LUSTRE_OSD_ZFS_NAME) == 0) {
934                 lu_cache_percent = 1;
935                 lu_cache_nr = LU_CACHE_NR_ZFS_LIMIT;
936                 return LU_SITE_BITS_MIN;
937         }
938
939         if (strcmp(top->ld_type->ldt_name, LUSTRE_VVP_NAME) == 0)
940                 bits_max = LU_SITE_BITS_MAX_CL;
941
942         /*
943          * Calculate hash table size, assuming that we want reasonable
944          * performance when 20% of total memory is occupied by cache of
945          * lu_objects.
946          *
947          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
948          */
949         cache_size = totalram_pages;
950
951 #if BITS_PER_LONG == 32
952         /* limit hashtable size for lowmem systems to low RAM */
953         if (cache_size > 1 << (30 - PAGE_CACHE_SHIFT))
954                 cache_size = 1 << (30 - PAGE_CACHE_SHIFT) * 3 / 4;
955 #endif
956
957         /* clear off unreasonable cache setting. */
958         if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
959                 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in"
960                       " the range of (0, %u]. Will use default value: %u.\n",
961                       lu_cache_percent, LU_CACHE_PERCENT_MAX,
962                       LU_CACHE_PERCENT_DEFAULT);
963
964                 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
965         }
966         cache_size = cache_size / 100 * lu_cache_percent *
967                 (PAGE_CACHE_SIZE / 1024);
968
969         for (bits = 1; (1 << bits) < cache_size; ++bits) {
970                 ;
971         }
972
973         return clamp_t(typeof(bits), bits, LU_SITE_BITS_MIN, bits_max);
974 }
975
976 static unsigned lu_obj_hop_hash(struct cfs_hash *hs,
977                                 const void *key, unsigned mask)
978 {
979         struct lu_fid  *fid = (struct lu_fid *)key;
980         __u32           hash;
981
982         hash = fid_flatten32(fid);
983         hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
984         hash = hash_long(hash, hs->hs_bkt_bits);
985
986         /* give me another random factor */
987         hash -= hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
988
989         hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
990         hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
991
992         return hash & mask;
993 }
994
995 static void *lu_obj_hop_object(struct hlist_node *hnode)
996 {
997         return hlist_entry(hnode, struct lu_object_header, loh_hash);
998 }
999
1000 static void *lu_obj_hop_key(struct hlist_node *hnode)
1001 {
1002         struct lu_object_header *h;
1003
1004         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
1005         return &h->loh_fid;
1006 }
1007
1008 static int lu_obj_hop_keycmp(const void *key, struct hlist_node *hnode)
1009 {
1010         struct lu_object_header *h;
1011
1012         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
1013         return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
1014 }
1015
1016 static void lu_obj_hop_get(struct cfs_hash *hs, struct hlist_node *hnode)
1017 {
1018         struct lu_object_header *h;
1019
1020         h = hlist_entry(hnode, struct lu_object_header, loh_hash);
1021         atomic_inc(&h->loh_ref);
1022 }
1023
1024 static void lu_obj_hop_put_locked(struct cfs_hash *hs, struct hlist_node *hnode)
1025 {
1026         LBUG(); /* we should never called it */
1027 }
1028
1029 static struct cfs_hash_ops lu_site_hash_ops = {
1030         .hs_hash        = lu_obj_hop_hash,
1031         .hs_key         = lu_obj_hop_key,
1032         .hs_keycmp      = lu_obj_hop_keycmp,
1033         .hs_object      = lu_obj_hop_object,
1034         .hs_get         = lu_obj_hop_get,
1035         .hs_put_locked  = lu_obj_hop_put_locked,
1036 };
1037
1038 void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d)
1039 {
1040         spin_lock(&s->ls_ld_lock);
1041         if (list_empty(&d->ld_linkage))
1042                 list_add(&d->ld_linkage, &s->ls_ld_linkage);
1043         spin_unlock(&s->ls_ld_lock);
1044 }
1045 EXPORT_SYMBOL(lu_dev_add_linkage);
1046
1047 void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d)
1048 {
1049         spin_lock(&s->ls_ld_lock);
1050         list_del_init(&d->ld_linkage);
1051         spin_unlock(&s->ls_ld_lock);
1052 }
1053 EXPORT_SYMBOL(lu_dev_del_linkage);
1054
1055 /**
1056   * Initialize site \a s, with \a d as the top level device.
1057   */
1058 int lu_site_init(struct lu_site *s, struct lu_device *top)
1059 {
1060         struct lu_site_bkt_data *bkt;
1061         struct cfs_hash_bd bd;
1062         char name[16];
1063         unsigned long bits;
1064         unsigned int i;
1065         int rc;
1066         ENTRY;
1067
1068         memset(s, 0, sizeof *s);
1069         mutex_init(&s->ls_purge_mutex);
1070
1071 #ifdef HAVE_PERCPU_COUNTER_INIT_GFP_FLAG
1072         rc = percpu_counter_init(&s->ls_lru_len_counter, 0, GFP_NOFS);
1073 #else
1074         rc = percpu_counter_init(&s->ls_lru_len_counter, 0);
1075 #endif
1076         if (rc)
1077                 return -ENOMEM;
1078
1079         snprintf(name, sizeof(name), "lu_site_%s", top->ld_type->ldt_name);
1080         for (bits = lu_htable_order(top);
1081              bits >= LU_SITE_BITS_MIN; bits--) {
1082                 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
1083                                                  bits - LU_SITE_BKT_BITS,
1084                                                  sizeof(*bkt), 0, 0,
1085                                                  &lu_site_hash_ops,
1086                                                  CFS_HASH_SPIN_BKTLOCK |
1087                                                  CFS_HASH_NO_ITEMREF |
1088                                                  CFS_HASH_DEPTH |
1089                                                  CFS_HASH_ASSERT_EMPTY |
1090                                                  CFS_HASH_COUNTER);
1091                 if (s->ls_obj_hash != NULL)
1092                         break;
1093         }
1094
1095         if (s->ls_obj_hash == NULL) {
1096                 CERROR("failed to create lu_site hash with bits: %lu\n", bits);
1097                 return -ENOMEM;
1098         }
1099
1100         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
1101                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
1102                 INIT_LIST_HEAD(&bkt->lsb_lru);
1103                 init_waitqueue_head(&bkt->lsb_marche_funebre);
1104         }
1105
1106         s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
1107         if (s->ls_stats == NULL) {
1108                 cfs_hash_putref(s->ls_obj_hash);
1109                 s->ls_obj_hash = NULL;
1110                 return -ENOMEM;
1111         }
1112
1113         lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
1114                              0, "created", "created");
1115         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
1116                              0, "cache_hit", "cache_hit");
1117         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
1118                              0, "cache_miss", "cache_miss");
1119         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
1120                              0, "cache_race", "cache_race");
1121         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
1122                              0, "cache_death_race", "cache_death_race");
1123         lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
1124                              0, "lru_purged", "lru_purged");
1125
1126         INIT_LIST_HEAD(&s->ls_linkage);
1127         s->ls_top_dev = top;
1128         top->ld_site = s;
1129         lu_device_get(top);
1130         lu_ref_add(&top->ld_reference, "site-top", s);
1131
1132         INIT_LIST_HEAD(&s->ls_ld_linkage);
1133         spin_lock_init(&s->ls_ld_lock);
1134
1135         lu_dev_add_linkage(s, top);
1136
1137         RETURN(0);
1138 }
1139 EXPORT_SYMBOL(lu_site_init);
1140
1141 /**
1142  * Finalize \a s and release its resources.
1143  */
1144 void lu_site_fini(struct lu_site *s)
1145 {
1146         down_write(&lu_sites_guard);
1147         list_del_init(&s->ls_linkage);
1148         up_write(&lu_sites_guard);
1149
1150         percpu_counter_destroy(&s->ls_lru_len_counter);
1151
1152         if (s->ls_obj_hash != NULL) {
1153                 cfs_hash_putref(s->ls_obj_hash);
1154                 s->ls_obj_hash = NULL;
1155         }
1156
1157         if (s->ls_top_dev != NULL) {
1158                 s->ls_top_dev->ld_site = NULL;
1159                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1160                 lu_device_put(s->ls_top_dev);
1161                 s->ls_top_dev = NULL;
1162         }
1163
1164         if (s->ls_stats != NULL)
1165                 lprocfs_free_stats(&s->ls_stats);
1166 }
1167 EXPORT_SYMBOL(lu_site_fini);
1168
1169 /**
1170  * Called when initialization of stack for this site is completed.
1171  */
1172 int lu_site_init_finish(struct lu_site *s)
1173 {
1174         int result;
1175         down_write(&lu_sites_guard);
1176         result = lu_context_refill(&lu_shrink_env.le_ctx);
1177         if (result == 0)
1178                 list_add(&s->ls_linkage, &lu_sites);
1179         up_write(&lu_sites_guard);
1180         return result;
1181 }
1182 EXPORT_SYMBOL(lu_site_init_finish);
1183
1184 /**
1185  * Acquire additional reference on device \a d
1186  */
1187 void lu_device_get(struct lu_device *d)
1188 {
1189         atomic_inc(&d->ld_ref);
1190 }
1191 EXPORT_SYMBOL(lu_device_get);
1192
1193 /**
1194  * Release reference on device \a d.
1195  */
1196 void lu_device_put(struct lu_device *d)
1197 {
1198         LASSERT(atomic_read(&d->ld_ref) > 0);
1199         atomic_dec(&d->ld_ref);
1200 }
1201 EXPORT_SYMBOL(lu_device_put);
1202
1203 /**
1204  * Initialize device \a d of type \a t.
1205  */
1206 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1207 {
1208         if (atomic_inc_return(&t->ldt_device_nr) == 1 &&
1209             t->ldt_ops->ldto_start != NULL)
1210                 t->ldt_ops->ldto_start(t);
1211
1212         memset(d, 0, sizeof *d);
1213         d->ld_type = t;
1214         lu_ref_init(&d->ld_reference);
1215         INIT_LIST_HEAD(&d->ld_linkage);
1216
1217         return 0;
1218 }
1219 EXPORT_SYMBOL(lu_device_init);
1220
1221 /**
1222  * Finalize device \a d.
1223  */
1224 void lu_device_fini(struct lu_device *d)
1225 {
1226         struct lu_device_type *t = d->ld_type;
1227
1228         if (d->ld_obd != NULL) {
1229                 d->ld_obd->obd_lu_dev = NULL;
1230                 d->ld_obd = NULL;
1231         }
1232
1233         lu_ref_fini(&d->ld_reference);
1234         LASSERTF(atomic_read(&d->ld_ref) == 0,
1235                  "Refcount is %u\n", atomic_read(&d->ld_ref));
1236         LASSERT(atomic_read(&t->ldt_device_nr) > 0);
1237
1238         if (atomic_dec_and_test(&t->ldt_device_nr) &&
1239             t->ldt_ops->ldto_stop != NULL)
1240                 t->ldt_ops->ldto_stop(t);
1241 }
1242 EXPORT_SYMBOL(lu_device_fini);
1243
1244 /**
1245  * Initialize object \a o that is part of compound object \a h and was created
1246  * by device \a d.
1247  */
1248 int lu_object_init(struct lu_object *o, struct lu_object_header *h,
1249                    struct lu_device *d)
1250 {
1251         memset(o, 0, sizeof(*o));
1252         o->lo_header = h;
1253         o->lo_dev = d;
1254         lu_device_get(d);
1255         lu_ref_add_at(&d->ld_reference, &o->lo_dev_ref, "lu_object", o);
1256         INIT_LIST_HEAD(&o->lo_linkage);
1257
1258         return 0;
1259 }
1260 EXPORT_SYMBOL(lu_object_init);
1261
1262 /**
1263  * Finalize object and release its resources.
1264  */
1265 void lu_object_fini(struct lu_object *o)
1266 {
1267         struct lu_device *dev = o->lo_dev;
1268
1269         LASSERT(list_empty(&o->lo_linkage));
1270
1271         if (dev != NULL) {
1272                 lu_ref_del_at(&dev->ld_reference, &o->lo_dev_ref,
1273                               "lu_object", o);
1274                 lu_device_put(dev);
1275                 o->lo_dev = NULL;
1276         }
1277 }
1278 EXPORT_SYMBOL(lu_object_fini);
1279
1280 /**
1281  * Add object \a o as first layer of compound object \a h
1282  *
1283  * This is typically called by the ->ldo_object_alloc() method of top-level
1284  * device.
1285  */
1286 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1287 {
1288         list_move(&o->lo_linkage, &h->loh_layers);
1289 }
1290 EXPORT_SYMBOL(lu_object_add_top);
1291
1292 /**
1293  * Add object \a o as a layer of compound object, going after \a before.
1294  *
1295  * This is typically called by the ->ldo_object_alloc() method of \a
1296  * before->lo_dev.
1297  */
1298 void lu_object_add(struct lu_object *before, struct lu_object *o)
1299 {
1300         list_move(&o->lo_linkage, &before->lo_linkage);
1301 }
1302 EXPORT_SYMBOL(lu_object_add);
1303
1304 /**
1305  * Initialize compound object.
1306  */
1307 int lu_object_header_init(struct lu_object_header *h)
1308 {
1309         memset(h, 0, sizeof *h);
1310         atomic_set(&h->loh_ref, 1);
1311         INIT_HLIST_NODE(&h->loh_hash);
1312         INIT_LIST_HEAD(&h->loh_lru);
1313         INIT_LIST_HEAD(&h->loh_layers);
1314         lu_ref_init(&h->loh_reference);
1315         return 0;
1316 }
1317 EXPORT_SYMBOL(lu_object_header_init);
1318
1319 /**
1320  * Finalize compound object.
1321  */
1322 void lu_object_header_fini(struct lu_object_header *h)
1323 {
1324         LASSERT(list_empty(&h->loh_layers));
1325         LASSERT(list_empty(&h->loh_lru));
1326         LASSERT(hlist_unhashed(&h->loh_hash));
1327         lu_ref_fini(&h->loh_reference);
1328 }
1329 EXPORT_SYMBOL(lu_object_header_fini);
1330
1331 /**
1332  * Given a compound object, find its slice, corresponding to the device type
1333  * \a dtype.
1334  */
1335 struct lu_object *lu_object_locate(struct lu_object_header *h,
1336                                    const struct lu_device_type *dtype)
1337 {
1338         struct lu_object *o;
1339
1340         list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1341                 if (o->lo_dev->ld_type == dtype)
1342                         return o;
1343         }
1344         return NULL;
1345 }
1346 EXPORT_SYMBOL(lu_object_locate);
1347
1348 /**
1349  * Finalize and free devices in the device stack.
1350  *
1351  * Finalize device stack by purging object cache, and calling
1352  * lu_device_type_operations::ldto_device_fini() and
1353  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1354  */
1355 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1356 {
1357         struct lu_site   *site = top->ld_site;
1358         struct lu_device *scan;
1359         struct lu_device *next;
1360
1361         lu_site_purge(env, site, ~0);
1362         for (scan = top; scan != NULL; scan = next) {
1363                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1364                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1365                 lu_device_put(scan);
1366         }
1367
1368         /* purge again. */
1369         lu_site_purge(env, site, ~0);
1370
1371         for (scan = top; scan != NULL; scan = next) {
1372                 const struct lu_device_type *ldt = scan->ld_type;
1373                 struct obd_type             *type;
1374
1375                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1376                 type = ldt->ldt_obd_type;
1377                 if (type != NULL) {
1378                         type->typ_refcnt--;
1379                         class_put_type(type);
1380                 }
1381         }
1382 }
1383
1384 enum {
1385         /**
1386          * Maximal number of tld slots.
1387          */
1388         LU_CONTEXT_KEY_NR = 40
1389 };
1390
1391 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1392
1393 DEFINE_RWLOCK(lu_keys_guard);
1394 static atomic_t lu_key_initing_cnt = ATOMIC_INIT(0);
1395
1396 /**
1397  * Global counter incremented whenever key is registered, unregistered,
1398  * revived or quiesced. This is used to void unnecessary calls to
1399  * lu_context_refill(). No locking is provided, as initialization and shutdown
1400  * are supposed to be externally serialized.
1401  */
1402 static unsigned key_set_version = 0;
1403
1404 /**
1405  * Register new key.
1406  */
1407 int lu_context_key_register(struct lu_context_key *key)
1408 {
1409         int result;
1410         unsigned int i;
1411
1412         LASSERT(key->lct_init != NULL);
1413         LASSERT(key->lct_fini != NULL);
1414         LASSERT(key->lct_tags != 0);
1415         LASSERT(key->lct_owner != NULL);
1416
1417         result = -ENFILE;
1418         write_lock(&lu_keys_guard);
1419         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1420                 if (lu_keys[i] == NULL) {
1421                         key->lct_index = i;
1422                         atomic_set(&key->lct_used, 1);
1423                         lu_keys[i] = key;
1424                         lu_ref_init(&key->lct_reference);
1425                         result = 0;
1426                         ++key_set_version;
1427                         break;
1428                 }
1429         }
1430         write_unlock(&lu_keys_guard);
1431         return result;
1432 }
1433 EXPORT_SYMBOL(lu_context_key_register);
1434
1435 static void key_fini(struct lu_context *ctx, int index)
1436 {
1437         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1438                 struct lu_context_key *key;
1439
1440                 key = lu_keys[index];
1441                 LASSERT(key != NULL);
1442                 LASSERT(key->lct_fini != NULL);
1443                 LASSERT(atomic_read(&key->lct_used) > 1);
1444
1445                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1446                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1447                 atomic_dec(&key->lct_used);
1448
1449                 LASSERT(key->lct_owner != NULL);
1450                 if ((ctx->lc_tags & LCT_NOREF) == 0) {
1451                         LINVRNT(module_refcount(key->lct_owner) > 0);
1452                         module_put(key->lct_owner);
1453                 }
1454                 ctx->lc_value[index] = NULL;
1455         }
1456 }
1457
1458 /**
1459  * Deregister key.
1460  */
1461 void lu_context_key_degister(struct lu_context_key *key)
1462 {
1463         LASSERT(atomic_read(&key->lct_used) >= 1);
1464         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1465
1466         lu_context_key_quiesce(key);
1467
1468         ++key_set_version;
1469         write_lock(&lu_keys_guard);
1470         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1471
1472         /**
1473          * Wait until all transient contexts referencing this key have
1474          * run lu_context_key::lct_fini() method.
1475          */
1476         while (atomic_read(&key->lct_used) > 1) {
1477                 write_unlock(&lu_keys_guard);
1478                 CDEBUG(D_INFO, "lu_context_key_degister: \"%s\" %p, %d\n",
1479                        key->lct_owner ? key->lct_owner->name : "", key,
1480                        atomic_read(&key->lct_used));
1481                 schedule();
1482                 write_lock(&lu_keys_guard);
1483         }
1484         if (lu_keys[key->lct_index]) {
1485                 lu_keys[key->lct_index] = NULL;
1486                 lu_ref_fini(&key->lct_reference);
1487         }
1488         write_unlock(&lu_keys_guard);
1489
1490         LASSERTF(atomic_read(&key->lct_used) == 1,
1491                  "key has instances: %d\n",
1492                  atomic_read(&key->lct_used));
1493 }
1494 EXPORT_SYMBOL(lu_context_key_degister);
1495
1496 /**
1497  * Register a number of keys. This has to be called after all keys have been
1498  * initialized by a call to LU_CONTEXT_KEY_INIT().
1499  */
1500 int lu_context_key_register_many(struct lu_context_key *k, ...)
1501 {
1502         struct lu_context_key *key = k;
1503         va_list args;
1504         int result;
1505
1506         va_start(args, k);
1507         do {
1508                 result = lu_context_key_register(key);
1509                 if (result)
1510                         break;
1511                 key = va_arg(args, struct lu_context_key *);
1512         } while (key != NULL);
1513         va_end(args);
1514
1515         if (result != 0) {
1516                 va_start(args, k);
1517                 while (k != key) {
1518                         lu_context_key_degister(k);
1519                         k = va_arg(args, struct lu_context_key *);
1520                 }
1521                 va_end(args);
1522         }
1523
1524         return result;
1525 }
1526 EXPORT_SYMBOL(lu_context_key_register_many);
1527
1528 /**
1529  * De-register a number of keys. This is a dual to
1530  * lu_context_key_register_many().
1531  */
1532 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1533 {
1534         va_list args;
1535
1536         va_start(args, k);
1537         do {
1538                 lu_context_key_degister(k);
1539                 k = va_arg(args, struct lu_context_key*);
1540         } while (k != NULL);
1541         va_end(args);
1542 }
1543 EXPORT_SYMBOL(lu_context_key_degister_many);
1544
1545 /**
1546  * Revive a number of keys.
1547  */
1548 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1549 {
1550         va_list args;
1551
1552         va_start(args, k);
1553         do {
1554                 lu_context_key_revive(k);
1555                 k = va_arg(args, struct lu_context_key*);
1556         } while (k != NULL);
1557         va_end(args);
1558 }
1559 EXPORT_SYMBOL(lu_context_key_revive_many);
1560
1561 /**
1562  * Quiescent a number of keys.
1563  */
1564 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1565 {
1566         va_list args;
1567
1568         va_start(args, k);
1569         do {
1570                 lu_context_key_quiesce(k);
1571                 k = va_arg(args, struct lu_context_key*);
1572         } while (k != NULL);
1573         va_end(args);
1574 }
1575 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1576
1577 /**
1578  * Return value associated with key \a key in context \a ctx.
1579  */
1580 void *lu_context_key_get(const struct lu_context *ctx,
1581                          const struct lu_context_key *key)
1582 {
1583         LINVRNT(ctx->lc_state == LCS_ENTERED);
1584         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1585         LASSERT(lu_keys[key->lct_index] == key);
1586         return ctx->lc_value[key->lct_index];
1587 }
1588 EXPORT_SYMBOL(lu_context_key_get);
1589
1590 /**
1591  * List of remembered contexts. XXX document me.
1592  */
1593 static struct list_head lu_context_remembered;
1594
1595 /**
1596  * Destroy \a key in all remembered contexts. This is used to destroy key
1597  * values in "shared" contexts (like service threads), when a module owning
1598  * the key is about to be unloaded.
1599  */
1600 void lu_context_key_quiesce(struct lu_context_key *key)
1601 {
1602         struct lu_context *ctx;
1603
1604         if (!(key->lct_tags & LCT_QUIESCENT)) {
1605                 /*
1606                  * XXX memory barrier has to go here.
1607                  */
1608                 write_lock(&lu_keys_guard);
1609                 key->lct_tags |= LCT_QUIESCENT;
1610
1611                 /**
1612                  * Wait until all lu_context_key::lct_init() methods
1613                  * have completed.
1614                  */
1615                 while (atomic_read(&lu_key_initing_cnt) > 0) {
1616                         write_unlock(&lu_keys_guard);
1617                         CDEBUG(D_INFO, "lu_context_key_quiesce: \"%s\""
1618                                " %p, %d (%d)\n",
1619                                key->lct_owner ? key->lct_owner->name : "",
1620                                key, atomic_read(&key->lct_used),
1621                                atomic_read(&lu_key_initing_cnt));
1622                         schedule();
1623                         write_lock(&lu_keys_guard);
1624                 }
1625
1626                 list_for_each_entry(ctx, &lu_context_remembered,
1627                                     lc_remember)
1628                         key_fini(ctx, key->lct_index);
1629                 write_unlock(&lu_keys_guard);
1630                 ++key_set_version;
1631         }
1632 }
1633
1634 void lu_context_key_revive(struct lu_context_key *key)
1635 {
1636         key->lct_tags &= ~LCT_QUIESCENT;
1637         ++key_set_version;
1638 }
1639
1640 static void keys_fini(struct lu_context *ctx)
1641 {
1642         unsigned int i;
1643
1644         if (ctx->lc_value == NULL)
1645                 return;
1646
1647         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1648                 key_fini(ctx, i);
1649
1650         OBD_FREE(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1651         ctx->lc_value = NULL;
1652 }
1653
1654 static int keys_fill(struct lu_context *ctx)
1655 {
1656         unsigned int i;
1657
1658         /*
1659          * A serialisation with lu_context_key_quiesce() is needed, but some
1660          * "key->lct_init()" are calling kernel memory allocation routine and
1661          * can't be called while holding a spin_lock.
1662          * "lu_keys_guard" is held while incrementing "lu_key_initing_cnt"
1663          * to ensure the start of the serialisation.
1664          * An atomic_t variable is still used, in order not to reacquire the
1665          * lock when decrementing the counter.
1666          */
1667         read_lock(&lu_keys_guard);
1668         atomic_inc(&lu_key_initing_cnt);
1669         read_unlock(&lu_keys_guard);
1670
1671         LINVRNT(ctx->lc_value != NULL);
1672         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1673                 struct lu_context_key *key;
1674
1675                 key = lu_keys[i];
1676                 if (ctx->lc_value[i] == NULL && key != NULL &&
1677                     (key->lct_tags & ctx->lc_tags) &&
1678                     /*
1679                      * Don't create values for a LCT_QUIESCENT key, as this
1680                      * will pin module owning a key.
1681                      */
1682                     !(key->lct_tags & LCT_QUIESCENT)) {
1683                         void *value;
1684
1685                         LINVRNT(key->lct_init != NULL);
1686                         LINVRNT(key->lct_index == i);
1687
1688                         LASSERT(key->lct_owner != NULL);
1689                         if (!(ctx->lc_tags & LCT_NOREF) &&
1690                             try_module_get(key->lct_owner) == 0) {
1691                                 /* module is unloading, skip this key */
1692                                 continue;
1693                         }
1694
1695                         value = key->lct_init(ctx, key);
1696                         if (unlikely(IS_ERR(value))) {
1697                                 atomic_dec(&lu_key_initing_cnt);
1698                                 return PTR_ERR(value);
1699                         }
1700
1701                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1702                         atomic_inc(&key->lct_used);
1703                         /*
1704                          * This is the only place in the code, where an
1705                          * element of ctx->lc_value[] array is set to non-NULL
1706                          * value.
1707                          */
1708                         ctx->lc_value[i] = value;
1709                         if (key->lct_exit != NULL)
1710                                 ctx->lc_tags |= LCT_HAS_EXIT;
1711                 }
1712                 ctx->lc_version = key_set_version;
1713         }
1714         atomic_dec(&lu_key_initing_cnt);
1715         return 0;
1716 }
1717
1718 static int keys_init(struct lu_context *ctx)
1719 {
1720         OBD_ALLOC(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1721         if (likely(ctx->lc_value != NULL))
1722                 return keys_fill(ctx);
1723
1724         return -ENOMEM;
1725 }
1726
1727 /**
1728  * Initialize context data-structure. Create values for all keys.
1729  */
1730 int lu_context_init(struct lu_context *ctx, __u32 tags)
1731 {
1732         int     rc;
1733
1734         memset(ctx, 0, sizeof *ctx);
1735         ctx->lc_state = LCS_INITIALIZED;
1736         ctx->lc_tags = tags;
1737         if (tags & LCT_REMEMBER) {
1738                 write_lock(&lu_keys_guard);
1739                 list_add(&ctx->lc_remember, &lu_context_remembered);
1740                 write_unlock(&lu_keys_guard);
1741         } else {
1742                 INIT_LIST_HEAD(&ctx->lc_remember);
1743         }
1744
1745         rc = keys_init(ctx);
1746         if (rc != 0)
1747                 lu_context_fini(ctx);
1748
1749         return rc;
1750 }
1751 EXPORT_SYMBOL(lu_context_init);
1752
1753 /**
1754  * Finalize context data-structure. Destroy key values.
1755  */
1756 void lu_context_fini(struct lu_context *ctx)
1757 {
1758         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1759         ctx->lc_state = LCS_FINALIZED;
1760
1761         if ((ctx->lc_tags & LCT_REMEMBER) == 0) {
1762                 LASSERT(list_empty(&ctx->lc_remember));
1763                 keys_fini(ctx);
1764
1765         } else { /* could race with key degister */
1766                 write_lock(&lu_keys_guard);
1767                 keys_fini(ctx);
1768                 list_del_init(&ctx->lc_remember);
1769                 write_unlock(&lu_keys_guard);
1770         }
1771 }
1772 EXPORT_SYMBOL(lu_context_fini);
1773
1774 /**
1775  * Called before entering context.
1776  */
1777 void lu_context_enter(struct lu_context *ctx)
1778 {
1779         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1780         ctx->lc_state = LCS_ENTERED;
1781 }
1782 EXPORT_SYMBOL(lu_context_enter);
1783
1784 /**
1785  * Called after exiting from \a ctx
1786  */
1787 void lu_context_exit(struct lu_context *ctx)
1788 {
1789         unsigned int i;
1790
1791         LINVRNT(ctx->lc_state == LCS_ENTERED);
1792         ctx->lc_state = LCS_LEFT;
1793         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1794                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1795                         /* could race with key quiescency */
1796                         if (ctx->lc_tags & LCT_REMEMBER)
1797                                 read_lock(&lu_keys_guard);
1798                         if (ctx->lc_value[i] != NULL) {
1799                                 struct lu_context_key *key;
1800
1801                                 key = lu_keys[i];
1802                                 LASSERT(key != NULL);
1803                                 if (key->lct_exit != NULL)
1804                                         key->lct_exit(ctx,
1805                                                       key, ctx->lc_value[i]);
1806                         }
1807                         if (ctx->lc_tags & LCT_REMEMBER)
1808                                 read_unlock(&lu_keys_guard);
1809                 }
1810         }
1811 }
1812 EXPORT_SYMBOL(lu_context_exit);
1813
1814 /**
1815  * Allocate for context all missing keys that were registered after context
1816  * creation. key_set_version is only changed in rare cases when modules
1817  * are loaded and removed.
1818  */
1819 int lu_context_refill(struct lu_context *ctx)
1820 {
1821         return likely(ctx->lc_version == key_set_version) ? 0 : keys_fill(ctx);
1822 }
1823
1824 /**
1825  * lu_ctx_tags/lu_ses_tags will be updated if there are new types of
1826  * obd being added. Currently, this is only used on client side, specifically
1827  * for echo device client, for other stack (like ptlrpc threads), context are
1828  * predefined when the lu_device type are registered, during the module probe
1829  * phase.
1830  */
1831 __u32 lu_context_tags_default = 0;
1832 __u32 lu_session_tags_default = 0;
1833
1834 void lu_context_tags_update(__u32 tags)
1835 {
1836         write_lock(&lu_keys_guard);
1837         lu_context_tags_default |= tags;
1838         key_set_version++;
1839         write_unlock(&lu_keys_guard);
1840 }
1841 EXPORT_SYMBOL(lu_context_tags_update);
1842
1843 void lu_context_tags_clear(__u32 tags)
1844 {
1845         write_lock(&lu_keys_guard);
1846         lu_context_tags_default &= ~tags;
1847         key_set_version++;
1848         write_unlock(&lu_keys_guard);
1849 }
1850 EXPORT_SYMBOL(lu_context_tags_clear);
1851
1852 void lu_session_tags_update(__u32 tags)
1853 {
1854         write_lock(&lu_keys_guard);
1855         lu_session_tags_default |= tags;
1856         key_set_version++;
1857         write_unlock(&lu_keys_guard);
1858 }
1859 EXPORT_SYMBOL(lu_session_tags_update);
1860
1861 void lu_session_tags_clear(__u32 tags)
1862 {
1863         write_lock(&lu_keys_guard);
1864         lu_session_tags_default &= ~tags;
1865         key_set_version++;
1866         write_unlock(&lu_keys_guard);
1867 }
1868 EXPORT_SYMBOL(lu_session_tags_clear);
1869
1870 int lu_env_init(struct lu_env *env, __u32 tags)
1871 {
1872         int result;
1873
1874         env->le_ses = NULL;
1875         result = lu_context_init(&env->le_ctx, tags);
1876         if (likely(result == 0))
1877                 lu_context_enter(&env->le_ctx);
1878         return result;
1879 }
1880 EXPORT_SYMBOL(lu_env_init);
1881
1882 void lu_env_fini(struct lu_env *env)
1883 {
1884         lu_context_exit(&env->le_ctx);
1885         lu_context_fini(&env->le_ctx);
1886         env->le_ses = NULL;
1887 }
1888 EXPORT_SYMBOL(lu_env_fini);
1889
1890 int lu_env_refill(struct lu_env *env)
1891 {
1892         int result;
1893
1894         result = lu_context_refill(&env->le_ctx);
1895         if (result == 0 && env->le_ses != NULL)
1896                 result = lu_context_refill(env->le_ses);
1897         return result;
1898 }
1899 EXPORT_SYMBOL(lu_env_refill);
1900
1901 /**
1902  * Currently, this API will only be used by echo client.
1903  * Because echo client and normal lustre client will share
1904  * same cl_env cache. So echo client needs to refresh
1905  * the env context after it get one from the cache, especially
1906  * when normal client and echo client co-exist in the same client.
1907  */
1908 int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags,
1909                           __u32 stags)
1910 {
1911         int    result;
1912
1913         if ((env->le_ctx.lc_tags & ctags) != ctags) {
1914                 env->le_ctx.lc_version = 0;
1915                 env->le_ctx.lc_tags |= ctags;
1916         }
1917
1918         if (env->le_ses && (env->le_ses->lc_tags & stags) != stags) {
1919                 env->le_ses->lc_version = 0;
1920                 env->le_ses->lc_tags |= stags;
1921         }
1922
1923         result = lu_env_refill(env);
1924
1925         return result;
1926 }
1927 EXPORT_SYMBOL(lu_env_refill_by_tags);
1928
1929 static struct shrinker *lu_site_shrinker;
1930
1931 typedef struct lu_site_stats{
1932         unsigned        lss_populated;
1933         unsigned        lss_max_search;
1934         unsigned        lss_total;
1935         unsigned        lss_busy;
1936 } lu_site_stats_t;
1937
1938 static void lu_site_stats_get(struct cfs_hash *hs,
1939                               lu_site_stats_t *stats, int populated)
1940 {
1941         struct cfs_hash_bd bd;
1942         unsigned int  i;
1943
1944         cfs_hash_for_each_bucket(hs, &bd, i) {
1945                 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1946                 struct hlist_head       *hhead;
1947
1948                 cfs_hash_bd_lock(hs, &bd, 1);
1949                 stats->lss_busy  +=
1950                         cfs_hash_bd_count_get(&bd) - bkt->lsb_lru_len;
1951                 stats->lss_total += cfs_hash_bd_count_get(&bd);
1952                 stats->lss_max_search = max((int)stats->lss_max_search,
1953                                             cfs_hash_bd_depmax_get(&bd));
1954                 if (!populated) {
1955                         cfs_hash_bd_unlock(hs, &bd, 1);
1956                         continue;
1957                 }
1958
1959                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1960                         if (!hlist_empty(hhead))
1961                                 stats->lss_populated++;
1962                 }
1963                 cfs_hash_bd_unlock(hs, &bd, 1);
1964         }
1965 }
1966
1967
1968 /*
1969  * lu_cache_shrink_count() returns an approximate number of cached objects
1970  * that can be freed by shrink_slab(). A counter, which tracks the
1971  * number of items in the site's lru, is maintained in a percpu_counter
1972  * for each site. The percpu values are incremented and decremented as
1973  * objects are added or removed from the lru. The percpu values are summed
1974  * and saved whenever a percpu value exceeds a threshold. Thus the saved,
1975  * summed value at any given time may not accurately reflect the current
1976  * lru length. But this value is sufficiently accurate for the needs of
1977  * a shrinker.
1978  *
1979  * Using a per cpu counter is a compromise solution to concurrent access:
1980  * lu_object_put() can update the counter without locking the site and
1981  * lu_cache_shrink_count can sum the counters without locking each
1982  * ls_obj_hash bucket.
1983  */
1984 static unsigned long lu_cache_shrink_count(struct shrinker *sk,
1985                                            struct shrink_control *sc)
1986 {
1987         struct lu_site *s;
1988         struct lu_site *tmp;
1989         unsigned long cached = 0;
1990
1991         if (!(sc->gfp_mask & __GFP_FS))
1992                 return 0;
1993
1994         down_read(&lu_sites_guard);
1995         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage)
1996                 cached += percpu_counter_read_positive(&s->ls_lru_len_counter);
1997         up_read(&lu_sites_guard);
1998
1999         cached = (cached / 100) * sysctl_vfs_cache_pressure;
2000         CDEBUG(D_INODE, "%ld objects cached, cache pressure %d\n",
2001                cached, sysctl_vfs_cache_pressure);
2002
2003         return cached;
2004 }
2005
2006 static unsigned long lu_cache_shrink_scan(struct shrinker *sk,
2007                                           struct shrink_control *sc)
2008 {
2009         struct lu_site *s;
2010         struct lu_site *tmp;
2011         unsigned long remain = sc->nr_to_scan;
2012         LIST_HEAD(splice);
2013
2014         if (!(sc->gfp_mask & __GFP_FS))
2015                 /* We must not take the lu_sites_guard lock when
2016                  * __GFP_FS is *not* set because of the deadlock
2017                  * possibility detailed above. Additionally,
2018                  * since we cannot determine the number of
2019                  * objects in the cache without taking this
2020                  * lock, we're in a particularly tough spot. As
2021                  * a result, we'll just lie and say our cache is
2022                  * empty. This _should_ be ok, as we can't
2023                  * reclaim objects when __GFP_FS is *not* set
2024                  * anyways.
2025                  */
2026                 return SHRINK_STOP;
2027
2028         down_write(&lu_sites_guard);
2029         list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
2030                 remain = lu_site_purge(&lu_shrink_env, s, remain);
2031                 /*
2032                  * Move just shrunk site to the tail of site list to
2033                  * assure shrinking fairness.
2034                  */
2035                 list_move_tail(&s->ls_linkage, &splice);
2036         }
2037         list_splice(&splice, lu_sites.prev);
2038         up_write(&lu_sites_guard);
2039
2040         return sc->nr_to_scan - remain;
2041 }
2042
2043 #ifndef HAVE_SHRINKER_COUNT
2044 /*
2045  * There exists a potential lock inversion deadlock scenario when using
2046  * Lustre on top of ZFS. This occurs between one of ZFS's
2047  * buf_hash_table.ht_lock's, and Lustre's lu_sites_guard lock. Essentially,
2048  * thread A will take the lu_sites_guard lock and sleep on the ht_lock,
2049  * while thread B will take the ht_lock and sleep on the lu_sites_guard
2050  * lock. Obviously neither thread will wake and drop their respective hold
2051  * on their lock.
2052  *
2053  * To prevent this from happening we must ensure the lu_sites_guard lock is
2054  * not taken while down this code path. ZFS reliably does not set the
2055  * __GFP_FS bit in its code paths, so this can be used to determine if it
2056  * is safe to take the lu_sites_guard lock.
2057  *
2058  * Ideally we should accurately return the remaining number of cached
2059  * objects without taking the lu_sites_guard lock, but this is not
2060  * possible in the current implementation.
2061  */
2062 static int lu_cache_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
2063 {
2064         int cached = 0;
2065         struct shrink_control scv = {
2066                  .nr_to_scan = shrink_param(sc, nr_to_scan),
2067                  .gfp_mask   = shrink_param(sc, gfp_mask)
2068         };
2069 #if !defined(HAVE_SHRINKER_WANT_SHRINK_PTR) && !defined(HAVE_SHRINK_CONTROL)
2070         struct shrinker* shrinker = NULL;
2071 #endif
2072
2073
2074         CDEBUG(D_INODE, "Shrink %lu objects\n", scv.nr_to_scan);
2075
2076         if (scv.nr_to_scan != 0)
2077                 lu_cache_shrink_scan(shrinker, &scv);
2078
2079         cached = lu_cache_shrink_count(shrinker, &scv);
2080         return cached;
2081 }
2082
2083 #endif /* HAVE_SHRINKER_COUNT */
2084
2085
2086 /*
2087  * Debugging stuff.
2088  */
2089
2090 /**
2091  * Environment to be used in debugger, contains all tags.
2092  */
2093 static struct lu_env lu_debugging_env;
2094
2095 /**
2096  * Debugging printer function using printk().
2097  */
2098 int lu_printk_printer(const struct lu_env *env,
2099                       void *unused, const char *format, ...)
2100 {
2101         va_list args;
2102
2103         va_start(args, format);
2104         vprintk(format, args);
2105         va_end(args);
2106         return 0;
2107 }
2108
2109 int lu_debugging_setup(void)
2110 {
2111         return lu_env_init(&lu_debugging_env, ~0);
2112 }
2113
2114 void lu_context_keys_dump(void)
2115 {
2116         unsigned int i;
2117
2118         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
2119                 struct lu_context_key *key;
2120
2121                 key = lu_keys[i];
2122                 if (key != NULL) {
2123                         CERROR("[%d]: %p %x (%p,%p,%p) %d %d \"%s\"@%p\n",
2124                                i, key, key->lct_tags,
2125                                key->lct_init, key->lct_fini, key->lct_exit,
2126                                key->lct_index, atomic_read(&key->lct_used),
2127                                key->lct_owner ? key->lct_owner->name : "",
2128                                key->lct_owner);
2129                         lu_ref_print(&key->lct_reference);
2130                 }
2131         }
2132 }
2133
2134 /**
2135  * Initialization of global lu_* data.
2136  */
2137 int lu_global_init(void)
2138 {
2139         int result;
2140         DEF_SHRINKER_VAR(shvar, lu_cache_shrink,
2141                          lu_cache_shrink_count, lu_cache_shrink_scan);
2142
2143         CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
2144
2145         INIT_LIST_HEAD(&lu_device_types);
2146         INIT_LIST_HEAD(&lu_context_remembered);
2147         INIT_LIST_HEAD(&lu_sites);
2148         init_rwsem(&lu_sites_guard);
2149
2150         result = lu_ref_global_init();
2151         if (result != 0)
2152                 return result;
2153
2154         LU_CONTEXT_KEY_INIT(&lu_global_key);
2155         result = lu_context_key_register(&lu_global_key);
2156         if (result != 0)
2157                 return result;
2158
2159         /*
2160          * At this level, we don't know what tags are needed, so allocate them
2161          * conservatively. This should not be too bad, because this
2162          * environment is global.
2163          */
2164         down_write(&lu_sites_guard);
2165         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
2166         up_write(&lu_sites_guard);
2167         if (result != 0)
2168                 return result;
2169
2170         /*
2171          * seeks estimation: 3 seeks to read a record from oi, one to read
2172          * inode, one for ea. Unfortunately setting this high value results in
2173          * lu_object/inode cache consuming all the memory.
2174          */
2175         lu_site_shrinker = set_shrinker(DEFAULT_SEEKS, &shvar);
2176         if (lu_site_shrinker == NULL)
2177                 return -ENOMEM;
2178
2179         return result;
2180 }
2181
2182 /**
2183  * Dual to lu_global_init().
2184  */
2185 void lu_global_fini(void)
2186 {
2187         if (lu_site_shrinker != NULL) {
2188                 remove_shrinker(lu_site_shrinker);
2189                 lu_site_shrinker = NULL;
2190         }
2191
2192         lu_context_key_degister(&lu_global_key);
2193
2194         /*
2195          * Tear shrinker environment down _after_ de-registering
2196          * lu_global_key, because the latter has a value in the former.
2197          */
2198         down_write(&lu_sites_guard);
2199         lu_env_fini(&lu_shrink_env);
2200         up_write(&lu_sites_guard);
2201
2202         lu_ref_global_fini();
2203 }
2204
2205 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
2206 {
2207 #ifdef CONFIG_PROC_FS
2208         struct lprocfs_counter ret;
2209
2210         lprocfs_stats_collect(stats, idx, &ret);
2211         return (__u32)ret.lc_count;
2212 #else
2213         return 0;
2214 #endif
2215 }
2216
2217 /**
2218  * Output site statistical counters into a buffer. Suitable for
2219  * lprocfs_rd_*()-style functions.
2220  */
2221 int lu_site_stats_seq_print(const struct lu_site *s, struct seq_file *m)
2222 {
2223         lu_site_stats_t stats;
2224
2225         memset(&stats, 0, sizeof(stats));
2226         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
2227
2228         seq_printf(m, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
2229                    stats.lss_busy,
2230                    stats.lss_total,
2231                    stats.lss_populated,
2232                    CFS_HASH_NHLIST(s->ls_obj_hash),
2233                    stats.lss_max_search,
2234                    ls_stats_read(s->ls_stats, LU_SS_CREATED),
2235                    ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
2236                    ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
2237                    ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
2238                    ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
2239                    ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
2240         return 0;
2241 }
2242 EXPORT_SYMBOL(lu_site_stats_seq_print);
2243
2244 /**
2245  * Helper function to initialize a number of kmem slab caches at once.
2246  */
2247 int lu_kmem_init(struct lu_kmem_descr *caches)
2248 {
2249         int result;
2250         struct lu_kmem_descr *iter = caches;
2251
2252         for (result = 0; iter->ckd_cache != NULL; ++iter) {
2253                 *iter->ckd_cache = kmem_cache_create(iter->ckd_name,
2254                                                      iter->ckd_size,
2255                                                      0, 0, NULL);
2256                 if (*iter->ckd_cache == NULL) {
2257                         result = -ENOMEM;
2258                         /* free all previously allocated caches */
2259                         lu_kmem_fini(caches);
2260                         break;
2261                 }
2262         }
2263         return result;
2264 }
2265 EXPORT_SYMBOL(lu_kmem_init);
2266
2267 /**
2268  * Helper function to finalize a number of kmem slab cached at once. Dual to
2269  * lu_kmem_init().
2270  */
2271 void lu_kmem_fini(struct lu_kmem_descr *caches)
2272 {
2273         for (; caches->ckd_cache != NULL; ++caches) {
2274                 if (*caches->ckd_cache != NULL) {
2275                         kmem_cache_destroy(*caches->ckd_cache);
2276                         *caches->ckd_cache = NULL;
2277                 }
2278         }
2279 }
2280 EXPORT_SYMBOL(lu_kmem_fini);
2281
2282 /**
2283  * Temporary solution to be able to assign fid in ->do_create()
2284  * till we have fully-functional OST fids
2285  */
2286 void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
2287                           const struct lu_fid *fid)
2288 {
2289         struct lu_site          *s = o->lo_dev->ld_site;
2290         struct lu_fid           *old = &o->lo_header->loh_fid;
2291         struct lu_object        *shadow;
2292         wait_queue_t             waiter;
2293         struct cfs_hash         *hs;
2294         struct cfs_hash_bd       bd;
2295         __u64                    version = 0;
2296
2297         LASSERT(fid_is_zero(old));
2298
2299         hs = s->ls_obj_hash;
2300         cfs_hash_bd_get_and_lock(hs, (void *)fid, &bd, 1);
2301         shadow = htable_lookup(s, &bd, fid, &waiter, &version);
2302         /* supposed to be unique */
2303         LASSERT(IS_ERR(shadow) && PTR_ERR(shadow) == -ENOENT);
2304         *old = *fid;
2305         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
2306         cfs_hash_bd_unlock(hs, &bd, 1);
2307 }
2308 EXPORT_SYMBOL(lu_object_assign_fid);
2309
2310 /**
2311  * allocates object with 0 (non-assiged) fid
2312  * XXX: temporary solution to be able to assign fid in ->do_create()
2313  *      till we have fully-functional OST fids
2314  */
2315 struct lu_object *lu_object_anon(const struct lu_env *env,
2316                                  struct lu_device *dev,
2317                                  const struct lu_object_conf *conf)
2318 {
2319         struct lu_fid     fid;
2320         struct lu_object *o;
2321
2322         fid_zero(&fid);
2323         o = lu_object_alloc(env, dev, &fid, conf);
2324
2325         return o;
2326 }
2327 EXPORT_SYMBOL(lu_object_anon);
2328
2329 struct lu_buf LU_BUF_NULL = {
2330         .lb_buf = NULL,
2331         .lb_len = 0
2332 };
2333 EXPORT_SYMBOL(LU_BUF_NULL);
2334
2335 void lu_buf_free(struct lu_buf *buf)
2336 {
2337         LASSERT(buf);
2338         if (buf->lb_buf) {
2339                 LASSERT(buf->lb_len > 0);
2340                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2341                 buf->lb_buf = NULL;
2342                 buf->lb_len = 0;
2343         }
2344 }
2345 EXPORT_SYMBOL(lu_buf_free);
2346
2347 void lu_buf_alloc(struct lu_buf *buf, size_t size)
2348 {
2349         LASSERT(buf);
2350         LASSERT(buf->lb_buf == NULL);
2351         LASSERT(buf->lb_len == 0);
2352         OBD_ALLOC_LARGE(buf->lb_buf, size);
2353         if (likely(buf->lb_buf))
2354                 buf->lb_len = size;
2355 }
2356 EXPORT_SYMBOL(lu_buf_alloc);
2357
2358 void lu_buf_realloc(struct lu_buf *buf, size_t size)
2359 {
2360         lu_buf_free(buf);
2361         lu_buf_alloc(buf, size);
2362 }
2363 EXPORT_SYMBOL(lu_buf_realloc);
2364
2365 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, size_t len)
2366 {
2367         if (buf->lb_buf == NULL && buf->lb_len == 0)
2368                 lu_buf_alloc(buf, len);
2369
2370         if ((len > buf->lb_len) && (buf->lb_buf != NULL))
2371                 lu_buf_realloc(buf, len);
2372
2373         return buf;
2374 }
2375 EXPORT_SYMBOL(lu_buf_check_and_alloc);
2376
2377 /**
2378  * Increase the size of the \a buf.
2379  * preserves old data in buffer
2380  * old buffer remains unchanged on error
2381  * \retval 0 or -ENOMEM
2382  */
2383 int lu_buf_check_and_grow(struct lu_buf *buf, size_t len)
2384 {
2385         char *ptr;
2386
2387         if (len <= buf->lb_len)
2388                 return 0;
2389
2390         OBD_ALLOC_LARGE(ptr, len);
2391         if (ptr == NULL)
2392                 return -ENOMEM;
2393
2394         /* Free the old buf */
2395         if (buf->lb_buf != NULL) {
2396                 memcpy(ptr, buf->lb_buf, buf->lb_len);
2397                 OBD_FREE_LARGE(buf->lb_buf, buf->lb_len);
2398         }
2399
2400         buf->lb_buf = ptr;
2401         buf->lb_len = len;
2402         return 0;
2403 }