Whamcloud - gitweb
2ad22f0e32a27f2add8ac88e344fea44a1e6e6b1
[fs/lustre-release.git] / lustre / obdclass / lu_object.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
30  * Use is subject to license terms.
31  */
32 /*
33  * Copyright (c) 2011 Whamcloud, Inc.
34  */
35 /*
36  * This file is part of Lustre, http://www.lustre.org/
37  * Lustre is a trademark of Sun Microsystems, Inc.
38  *
39  * lustre/obdclass/lu_object.c
40  *
41  * Lustre Object.
42  * These are the only exported functions, they provide some generic
43  * infrastructure for managing object devices
44  *
45  *   Author: Nikita Danilov <nikita.danilov@sun.com>
46  */
47
48 #define DEBUG_SUBSYSTEM S_CLASS
49 #ifndef EXPORT_SYMTAB
50 # define EXPORT_SYMTAB
51 #endif
52
53 #include <libcfs/libcfs.h>
54
55 #ifdef __KERNEL__
56 # include <linux/module.h>
57 #endif
58
59 /* hash_long() */
60 #include <libcfs/libcfs_hash.h>
61 #include <obd_class.h>
62 #include <obd_support.h>
63 #include <lustre_disk.h>
64 #include <lustre_fid.h>
65 #include <lu_object.h>
66 #include <libcfs/list.h>
67 /* lu_time_global_{init,fini}() */
68 #include <lu_time.h>
69
70 static void lu_object_free(const struct lu_env *env, struct lu_object *o);
71
72 /**
73  * Decrease reference counter on object. If last reference is freed, return
74  * object to the cache, unless lu_object_is_dying(o) holds. In the latter
75  * case, free object immediately.
76  */
77 void lu_object_put(const struct lu_env *env, struct lu_object *o)
78 {
79         struct lu_site_bkt_data *bkt;
80         struct lu_object_header *top;
81         struct lu_site          *site;
82         struct lu_object        *orig;
83         cfs_hash_bd_t            bd;
84
85         top  = o->lo_header;
86         site = o->lo_dev->ld_site;
87         orig = o;
88
89         cfs_hash_bd_get(site->ls_obj_hash, &top->loh_fid, &bd);
90         bkt = cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
91
92         if (!cfs_hash_bd_dec_and_lock(site->ls_obj_hash, &bd, &top->loh_ref)) {
93                 if (lu_object_is_dying(top)) {
94
95                         /*
96                          * somebody may be waiting for this, currently only
97                          * used for cl_object, see cl_object_put_last().
98                          */
99                         cfs_waitq_broadcast(&bkt->lsb_marche_funebre);
100                 }
101                 return;
102         }
103
104         LASSERT(bkt->lsb_busy > 0);
105         bkt->lsb_busy--;
106         /*
107          * When last reference is released, iterate over object
108          * layers, and notify them that object is no longer busy.
109          */
110         cfs_list_for_each_entry_reverse(o, &top->loh_layers, lo_linkage) {
111                 if (o->lo_ops->loo_object_release != NULL)
112                         o->lo_ops->loo_object_release(env, o);
113         }
114
115         if (!lu_object_is_dying(top)) {
116                 LASSERT(cfs_list_empty(&top->loh_lru));
117                 cfs_list_add_tail(&top->loh_lru, &bkt->lsb_lru);
118                 cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
119                 return;
120         }
121
122         /*
123          * If object is dying (will not be cached), removed it
124          * from hash table and LRU.
125          *
126          * This is done with hash table and LRU lists locked. As the only
127          * way to acquire first reference to previously unreferenced
128          * object is through hash-table lookup (lu_object_find()),
129          * or LRU scanning (lu_site_purge()), that are done under hash-table
130          * and LRU lock, no race with concurrent object lookup is possible
131          * and we can safely destroy object below.
132          */
133         cfs_hash_bd_del_locked(site->ls_obj_hash, &bd, &top->loh_hash);
134         cfs_hash_bd_unlock(site->ls_obj_hash, &bd, 1);
135         /*
136          * Object was already removed from hash and lru above, can
137          * kill it.
138          */
139         lu_object_free(env, orig);
140 }
141 EXPORT_SYMBOL(lu_object_put);
142
143 /**
144  * Allocate new object.
145  *
146  * This follows object creation protocol, described in the comment within
147  * struct lu_device_operations definition.
148  */
149 static struct lu_object *lu_object_alloc(const struct lu_env *env,
150                                          struct lu_device *dev,
151                                          const struct lu_fid *f,
152                                          const struct lu_object_conf *conf)
153 {
154         struct lu_object *scan;
155         struct lu_object *top;
156         cfs_list_t *layers;
157         int clean;
158         int result;
159         ENTRY;
160
161         /*
162          * Create top-level object slice. This will also create
163          * lu_object_header.
164          */
165         top = dev->ld_ops->ldo_object_alloc(env, NULL, dev);
166         if (top == NULL)
167                 RETURN(ERR_PTR(-ENOMEM));
168         /*
169          * This is the only place where object fid is assigned. It's constant
170          * after this point.
171          */
172         LASSERT(fid_is_igif(f) || fid_ver(f) == 0);
173         top->lo_header->loh_fid = *f;
174         layers = &top->lo_header->loh_layers;
175         do {
176                 /*
177                  * Call ->loo_object_init() repeatedly, until no more new
178                  * object slices are created.
179                  */
180                 clean = 1;
181                 cfs_list_for_each_entry(scan, layers, lo_linkage) {
182                         if (scan->lo_flags & LU_OBJECT_ALLOCATED)
183                                 continue;
184                         clean = 0;
185                         scan->lo_header = top->lo_header;
186                         result = scan->lo_ops->loo_object_init(env, scan, conf);
187                         if (result != 0) {
188                                 lu_object_free(env, top);
189                                 RETURN(ERR_PTR(result));
190                         }
191                         scan->lo_flags |= LU_OBJECT_ALLOCATED;
192                 }
193         } while (!clean);
194
195         cfs_list_for_each_entry_reverse(scan, layers, lo_linkage) {
196                 if (scan->lo_ops->loo_object_start != NULL) {
197                         result = scan->lo_ops->loo_object_start(env, scan);
198                         if (result != 0) {
199                                 lu_object_free(env, top);
200                                 RETURN(ERR_PTR(result));
201                         }
202                 }
203         }
204
205         lprocfs_counter_incr(dev->ld_site->ls_stats, LU_SS_CREATED);
206         RETURN(top);
207 }
208
209 /**
210  * Free an object.
211  */
212 static void lu_object_free(const struct lu_env *env, struct lu_object *o)
213 {
214         struct lu_site_bkt_data *bkt;
215         struct lu_site          *site;
216         struct lu_object        *scan;
217         cfs_list_t              *layers;
218         cfs_list_t               splice;
219
220         site   = o->lo_dev->ld_site;
221         layers = &o->lo_header->loh_layers;
222         bkt    = lu_site_bkt_from_fid(site, &o->lo_header->loh_fid);
223         /*
224          * First call ->loo_object_delete() method to release all resources.
225          */
226         cfs_list_for_each_entry_reverse(scan, layers, lo_linkage) {
227                 if (scan->lo_ops->loo_object_delete != NULL)
228                         scan->lo_ops->loo_object_delete(env, scan);
229         }
230
231         /*
232          * Then, splice object layers into stand-alone list, and call
233          * ->loo_object_free() on all layers to free memory. Splice is
234          * necessary, because lu_object_header is freed together with the
235          * top-level slice.
236          */
237         CFS_INIT_LIST_HEAD(&splice);
238         cfs_list_splice_init(layers, &splice);
239         while (!cfs_list_empty(&splice)) {
240                 /*
241                  * Free layers in bottom-to-top order, so that object header
242                  * lives as long as possible and ->loo_object_free() methods
243                  * can look at its contents.
244                  */
245                 o = container_of0(splice.prev, struct lu_object, lo_linkage);
246                 cfs_list_del_init(&o->lo_linkage);
247                 LASSERT(o->lo_ops->loo_object_free != NULL);
248                 o->lo_ops->loo_object_free(env, o);
249         }
250
251         if (cfs_waitq_active(&bkt->lsb_marche_funebre))
252                 cfs_waitq_broadcast(&bkt->lsb_marche_funebre);
253 }
254
255 /**
256  * Free \a nr objects from the cold end of the site LRU list.
257  */
258 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr)
259 {
260         struct lu_object_header *h;
261         struct lu_object_header *temp;
262         struct lu_site_bkt_data *bkt;
263         cfs_hash_bd_t            bd;
264         cfs_hash_bd_t            bd2;
265         cfs_list_t               dispose;
266         int                      did_sth;
267         int                      start;
268         int                      count;
269         int                      bnr;
270         int                      i;
271
272         CFS_INIT_LIST_HEAD(&dispose);
273         /*
274          * Under LRU list lock, scan LRU list and move unreferenced objects to
275          * the dispose list, removing them from LRU and hash table.
276          */
277         start = s->ls_purge_start;
278         bnr = (nr == ~0) ? -1 : nr / CFS_HASH_NBKT(s->ls_obj_hash) + 1;
279  again:
280         did_sth = 0;
281         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
282                 if (i < start)
283                         continue;
284                 count = bnr;
285                 cfs_hash_bd_lock(s->ls_obj_hash, &bd, 1);
286                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
287
288                 cfs_list_for_each_entry_safe(h, temp, &bkt->lsb_lru, loh_lru) {
289                         LASSERT(cfs_atomic_read(&h->loh_ref) == 0);
290
291                         cfs_hash_bd_get(s->ls_obj_hash, &h->loh_fid, &bd2);
292                         LASSERT(bd.bd_bucket == bd2.bd_bucket);
293
294                         cfs_hash_bd_del_locked(s->ls_obj_hash,
295                                                &bd2, &h->loh_hash);
296                         cfs_list_move(&h->loh_lru, &dispose);
297                         if (did_sth == 0)
298                                 did_sth = 1;
299
300                         if (nr != ~0 && --nr == 0)
301                                 break;
302
303                         if (count > 0 && --count == 0)
304                                 break;
305
306                 }
307                 cfs_hash_bd_unlock(s->ls_obj_hash, &bd, 1);
308                 cfs_cond_resched();
309                 /*
310                  * Free everything on the dispose list. This is safe against
311                  * races due to the reasons described in lu_object_put().
312                  */
313                 while (!cfs_list_empty(&dispose)) {
314                         h = container_of0(dispose.next,
315                                           struct lu_object_header, loh_lru);
316                         cfs_list_del_init(&h->loh_lru);
317                         lu_object_free(env, lu_object_top(h));
318                         lprocfs_counter_incr(s->ls_stats, LU_SS_LRU_PURGED);
319                 }
320
321                 if (nr == 0)
322                         break;
323         }
324
325         if (nr != 0 && did_sth && start != 0) {
326                 start = 0; /* restart from the first bucket */
327                 goto again;
328         }
329         /* race on s->ls_purge_start, but nobody cares */
330         s->ls_purge_start = i % CFS_HASH_NBKT(s->ls_obj_hash);
331
332         return nr;
333 }
334 EXPORT_SYMBOL(lu_site_purge);
335
336 /*
337  * Object printing.
338  *
339  * Code below has to jump through certain loops to output object description
340  * into libcfs_debug_msg-based log. The problem is that lu_object_print()
341  * composes object description from strings that are parts of _lines_ of
342  * output (i.e., strings that are not terminated by newline). This doesn't fit
343  * very well into libcfs_debug_msg() interface that assumes that each message
344  * supplied to it is a self-contained output line.
345  *
346  * To work around this, strings are collected in a temporary buffer
347  * (implemented as a value of lu_cdebug_key key), until terminating newline
348  * character is detected.
349  *
350  */
351
352 enum {
353         /**
354          * Maximal line size.
355          *
356          * XXX overflow is not handled correctly.
357          */
358         LU_CDEBUG_LINE = 512
359 };
360
361 struct lu_cdebug_data {
362         /**
363          * Temporary buffer.
364          */
365         char lck_area[LU_CDEBUG_LINE];
366 };
367
368 /* context key constructor/destructor: lu_global_key_init, lu_global_key_fini */
369 LU_KEY_INIT_FINI(lu_global, struct lu_cdebug_data);
370
371 /**
372  * Key, holding temporary buffer. This key is registered very early by
373  * lu_global_init().
374  */
375 struct lu_context_key lu_global_key = {
376         .lct_tags = LCT_MD_THREAD|LCT_DT_THREAD|LCT_CL_THREAD,
377         .lct_init = lu_global_key_init,
378         .lct_fini = lu_global_key_fini
379 };
380
381 /**
382  * Printer function emitting messages through libcfs_debug_msg().
383  */
384 int lu_cdebug_printer(const struct lu_env *env,
385                       void *cookie, const char *format, ...)
386 {
387         struct lu_cdebug_print_info *info = cookie;
388         struct lu_cdebug_data       *key;
389         int used;
390         int complete;
391         va_list args;
392
393         va_start(args, format);
394
395         key = lu_context_key_get(&env->le_ctx, &lu_global_key);
396         LASSERT(key != NULL);
397
398         used = strlen(key->lck_area);
399         complete = format[strlen(format) - 1] == '\n';
400         /*
401          * Append new chunk to the buffer.
402          */
403         vsnprintf(key->lck_area + used,
404                   ARRAY_SIZE(key->lck_area) - used, format, args);
405         if (complete) {
406                 if (cfs_cdebug_show(info->lpi_mask, info->lpi_subsys))
407                         libcfs_debug_msg(NULL, info->lpi_subsys, info->lpi_mask,
408                                          (char *)info->lpi_file, info->lpi_fn,
409                                          info->lpi_line, "%s", key->lck_area);
410                 key->lck_area[0] = 0;
411         }
412         va_end(args);
413         return 0;
414 }
415 EXPORT_SYMBOL(lu_cdebug_printer);
416
417 /**
418  * Print object header.
419  */
420 void lu_object_header_print(const struct lu_env *env, void *cookie,
421                             lu_printer_t printer,
422                             const struct lu_object_header *hdr)
423 {
424         (*printer)(env, cookie, "header@%p[%#lx, %d, "DFID"%s%s%s]",
425                    hdr, hdr->loh_flags, cfs_atomic_read(&hdr->loh_ref),
426                    PFID(&hdr->loh_fid),
427                    cfs_hlist_unhashed(&hdr->loh_hash) ? "" : " hash",
428                    cfs_list_empty((cfs_list_t *)&hdr->loh_lru) ? \
429                    "" : " lru",
430                    hdr->loh_attr & LOHA_EXISTS ? " exist":"");
431 }
432 EXPORT_SYMBOL(lu_object_header_print);
433
434 /**
435  * Print human readable representation of the \a o to the \a printer.
436  */
437 void lu_object_print(const struct lu_env *env, void *cookie,
438                      lu_printer_t printer, const struct lu_object *o)
439 {
440         static const char ruler[] = "........................................";
441         struct lu_object_header *top;
442         int depth;
443
444         top = o->lo_header;
445         lu_object_header_print(env, cookie, printer, top);
446         (*printer)(env, cookie, "{ \n");
447         cfs_list_for_each_entry(o, &top->loh_layers, lo_linkage) {
448                 depth = o->lo_depth + 4;
449
450                 /*
451                  * print `.' \a depth times followed by type name and address
452                  */
453                 (*printer)(env, cookie, "%*.*s%s@%p", depth, depth, ruler,
454                            o->lo_dev->ld_type->ldt_name, o);
455                 if (o->lo_ops->loo_object_print != NULL)
456                         o->lo_ops->loo_object_print(env, cookie, printer, o);
457                 (*printer)(env, cookie, "\n");
458         }
459         (*printer)(env, cookie, "} header@%p\n", top);
460 }
461 EXPORT_SYMBOL(lu_object_print);
462
463 /**
464  * Check object consistency.
465  */
466 int lu_object_invariant(const struct lu_object *o)
467 {
468         struct lu_object_header *top;
469
470         top = o->lo_header;
471         cfs_list_for_each_entry(o, &top->loh_layers, lo_linkage) {
472                 if (o->lo_ops->loo_object_invariant != NULL &&
473                     !o->lo_ops->loo_object_invariant(o))
474                         return 0;
475         }
476         return 1;
477 }
478 EXPORT_SYMBOL(lu_object_invariant);
479
480 static struct lu_object *htable_lookup(struct lu_site *s,
481                                        cfs_hash_bd_t *bd,
482                                        const struct lu_fid *f,
483                                        cfs_waitlink_t *waiter,
484                                        __u64 *version)
485 {
486         struct lu_site_bkt_data *bkt;
487         struct lu_object_header *h;
488         cfs_hlist_node_t        *hnode;
489         __u64  ver = cfs_hash_bd_version_get(bd);
490
491         if (*version == ver)
492                 return NULL;
493
494         *version = ver;
495         bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, bd);
496         /* cfs_hash_bd_lookup_intent is a somehow "internal" function
497          * of cfs_hash, but we don't want refcount on object right now */
498         hnode = cfs_hash_bd_lookup_locked(s->ls_obj_hash, bd, (void *)f);
499         if (hnode == NULL) {
500                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_MISS);
501                 return NULL;
502         }
503
504         h = container_of0(hnode, struct lu_object_header, loh_hash);
505         if (likely(!lu_object_is_dying(h))) {
506                 lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_HIT);
507                 return lu_object_top(h);
508         }
509
510         /*
511          * Lookup found an object being destroyed this object cannot be
512          * returned (to assure that references to dying objects are eventually
513          * drained), and moreover, lookup has to wait until object is freed.
514          */
515         cfs_atomic_dec(&h->loh_ref);
516
517         cfs_waitlink_init(waiter);
518         cfs_waitq_add(&bkt->lsb_marche_funebre, waiter);
519         cfs_set_current_state(CFS_TASK_UNINT);
520         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_DEATH_RACE);
521         return ERR_PTR(-EAGAIN);
522 }
523
524 /**
525  * Search cache for an object with the fid \a f. If such object is found,
526  * return it. Otherwise, create new object, insert it into cache and return
527  * it. In any case, additional reference is acquired on the returned object.
528  */
529 struct lu_object *lu_object_find(const struct lu_env *env,
530                                  struct lu_device *dev, const struct lu_fid *f,
531                                  const struct lu_object_conf *conf)
532 {
533         return lu_object_find_at(env, dev->ld_site->ls_top_dev, f, conf);
534 }
535 EXPORT_SYMBOL(lu_object_find);
536
537 static struct lu_object *lu_object_new(const struct lu_env *env,
538                                        struct lu_device *dev,
539                                        const struct lu_fid *f,
540                                        const struct lu_object_conf *conf)
541 {
542         struct lu_object        *o;
543         cfs_hash_t              *hs;
544         cfs_hash_bd_t            bd;
545         struct lu_site_bkt_data *bkt;
546
547         o = lu_object_alloc(env, dev, f, conf);
548         if (unlikely(IS_ERR(o)))
549                 return o;
550
551         hs = dev->ld_site->ls_obj_hash;
552         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
553         bkt = cfs_hash_bd_extra_get(hs, &bd);
554         cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
555         bkt->lsb_busy++;
556         cfs_hash_bd_unlock(hs, &bd, 1);
557         return o;
558 }
559
560 /**
561  * Core logic of lu_object_find*() functions.
562  */
563 static struct lu_object *lu_object_find_try(const struct lu_env *env,
564                                             struct lu_device *dev,
565                                             const struct lu_fid *f,
566                                             const struct lu_object_conf *conf,
567                                             cfs_waitlink_t *waiter)
568 {
569         struct lu_object      *o;
570         struct lu_object      *shadow;
571         struct lu_site        *s;
572         cfs_hash_t            *hs;
573         cfs_hash_bd_t          bd;
574         __u64                  version = 0;
575
576         /*
577          * This uses standard index maintenance protocol:
578          *
579          *     - search index under lock, and return object if found;
580          *     - otherwise, unlock index, allocate new object;
581          *     - lock index and search again;
582          *     - if nothing is found (usual case), insert newly created
583          *       object into index;
584          *     - otherwise (race: other thread inserted object), free
585          *       object just allocated.
586          *     - unlock index;
587          *     - return object.
588          *
589          * For "LOC_F_NEW" case, we are sure the object is new established.
590          * It is unnecessary to perform lookup-alloc-lookup-insert, instead,
591          * just alloc and insert directly.
592          *
593          * If dying object is found during index search, add @waiter to the
594          * site wait-queue and return ERR_PTR(-EAGAIN).
595          */
596         if (conf != NULL && conf->loc_flags & LOC_F_NEW)
597                 return lu_object_new(env, dev, f, conf);
598
599         s  = dev->ld_site;
600         hs = s->ls_obj_hash;
601         cfs_hash_bd_get_and_lock(hs, (void *)f, &bd, 1);
602         o = htable_lookup(s, &bd, f, waiter, &version);
603         if (o != NULL && !cfs_list_empty(&o->lo_header->loh_lru))
604                 cfs_list_del_init(&o->lo_header->loh_lru);
605         cfs_hash_bd_unlock(hs, &bd, 1);
606         if (o != NULL)
607                 return o;
608
609         /*
610          * Allocate new object. This may result in rather complicated
611          * operations, including fld queries, inode loading, etc.
612          */
613         o = lu_object_alloc(env, dev, f, conf);
614         if (unlikely(IS_ERR(o)))
615                 return o;
616
617         LASSERT(lu_fid_eq(lu_object_fid(o), f));
618
619         cfs_hash_bd_lock(hs, &bd, 1);
620
621         shadow = htable_lookup(s, &bd, f, waiter, &version);
622         if (likely(shadow == NULL)) {
623                 struct lu_site_bkt_data *bkt;
624
625                 bkt = cfs_hash_bd_extra_get(hs, &bd);
626                 cfs_hash_bd_add_locked(hs, &bd, &o->lo_header->loh_hash);
627                 bkt->lsb_busy++;
628                 cfs_hash_bd_unlock(hs, &bd, 1);
629                 return o;
630         }
631
632         lprocfs_counter_incr(s->ls_stats, LU_SS_CACHE_RACE);
633         cfs_hash_bd_unlock(hs, &bd, 1);
634         lu_object_free(env, o);
635         return shadow;
636 }
637
638 /**
639  * Much like lu_object_find(), but top level device of object is specifically
640  * \a dev rather than top level device of the site. This interface allows
641  * objects of different "stacking" to be created within the same site.
642  */
643 struct lu_object *lu_object_find_at(const struct lu_env *env,
644                                     struct lu_device *dev,
645                                     const struct lu_fid *f,
646                                     const struct lu_object_conf *conf)
647 {
648         struct lu_site_bkt_data *bkt;
649         struct lu_object        *obj;
650         cfs_waitlink_t           wait;
651
652         while (1) {
653                 obj = lu_object_find_try(env, dev, f, conf, &wait);
654                 if (obj != ERR_PTR(-EAGAIN))
655                         return obj;
656                 /*
657                  * lu_object_find_try() already added waiter into the
658                  * wait queue.
659                  */
660                 cfs_waitq_wait(&wait, CFS_TASK_UNINT);
661                 bkt = lu_site_bkt_from_fid(dev->ld_site, (void *)f);
662                 cfs_waitq_del(&bkt->lsb_marche_funebre, &wait);
663         }
664 }
665 EXPORT_SYMBOL(lu_object_find_at);
666
667 /**
668  * Find object with given fid, and return its slice belonging to given device.
669  */
670 struct lu_object *lu_object_find_slice(const struct lu_env *env,
671                                        struct lu_device *dev,
672                                        const struct lu_fid *f,
673                                        const struct lu_object_conf *conf)
674 {
675         struct lu_object *top;
676         struct lu_object *obj;
677
678         top = lu_object_find(env, dev, f, conf);
679         if (!IS_ERR(top)) {
680                 obj = lu_object_locate(top->lo_header, dev->ld_type);
681                 if (obj == NULL)
682                         lu_object_put(env, top);
683         } else
684                 obj = top;
685         return obj;
686 }
687 EXPORT_SYMBOL(lu_object_find_slice);
688
689 /**
690  * Global list of all device types.
691  */
692 static CFS_LIST_HEAD(lu_device_types);
693
694 int lu_device_type_init(struct lu_device_type *ldt)
695 {
696         int result;
697
698         CFS_INIT_LIST_HEAD(&ldt->ldt_linkage);
699         result = ldt->ldt_ops->ldto_init(ldt);
700         if (result == 0)
701                 cfs_list_add(&ldt->ldt_linkage, &lu_device_types);
702         return result;
703 }
704 EXPORT_SYMBOL(lu_device_type_init);
705
706 void lu_device_type_fini(struct lu_device_type *ldt)
707 {
708         cfs_list_del_init(&ldt->ldt_linkage);
709         ldt->ldt_ops->ldto_fini(ldt);
710 }
711 EXPORT_SYMBOL(lu_device_type_fini);
712
713 void lu_types_stop(void)
714 {
715         struct lu_device_type *ldt;
716
717         cfs_list_for_each_entry(ldt, &lu_device_types, ldt_linkage) {
718                 if (ldt->ldt_device_nr == 0)
719                         ldt->ldt_ops->ldto_stop(ldt);
720         }
721 }
722 EXPORT_SYMBOL(lu_types_stop);
723
724 /**
725  * Global list of all sites on this node
726  */
727 static CFS_LIST_HEAD(lu_sites);
728 static CFS_DECLARE_MUTEX(lu_sites_guard);
729
730 /**
731  * Global environment used by site shrinker.
732  */
733 static struct lu_env lu_shrink_env;
734
735 struct lu_site_print_arg {
736         struct lu_env   *lsp_env;
737         void            *lsp_cookie;
738         lu_printer_t     lsp_printer;
739 };
740
741 static int
742 lu_site_obj_print(cfs_hash_t *hs, cfs_hash_bd_t *bd,
743                   cfs_hlist_node_t *hnode, void *data)
744 {
745         struct lu_site_print_arg *arg = (struct lu_site_print_arg *)data;
746         struct lu_object_header  *h;
747
748         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
749         if (!cfs_list_empty(&h->loh_layers)) {
750                 const struct lu_object *o;
751
752                 o = lu_object_top(h);
753                 lu_object_print(arg->lsp_env, arg->lsp_cookie,
754                                 arg->lsp_printer, o);
755         } else {
756                 lu_object_header_print(arg->lsp_env, arg->lsp_cookie,
757                                        arg->lsp_printer, h);
758         }
759         return 0;
760 }
761
762 /**
763  * Print all objects in \a s.
764  */
765 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
766                    lu_printer_t printer)
767 {
768         struct lu_site_print_arg arg = {
769                 .lsp_env     = (struct lu_env *)env,
770                 .lsp_cookie  = cookie,
771                 .lsp_printer = printer,
772         };
773
774         cfs_hash_for_each(s->ls_obj_hash, lu_site_obj_print, &arg);
775 }
776 EXPORT_SYMBOL(lu_site_print);
777
778 enum {
779         LU_CACHE_PERCENT_MAX     = 50,
780         LU_CACHE_PERCENT_DEFAULT = 20
781 };
782
783 static unsigned int lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
784 CFS_MODULE_PARM(lu_cache_percent, "i", int, 0644,
785                 "Percentage of memory to be used as lu_object cache");
786
787 /**
788  * Return desired hash table order.
789  */
790 static int lu_htable_order(void)
791 {
792         unsigned long cache_size;
793         int bits;
794
795         /*
796          * Calculate hash table size, assuming that we want reasonable
797          * performance when 20% of total memory is occupied by cache of
798          * lu_objects.
799          *
800          * Size of lu_object is (arbitrary) taken as 1K (together with inode).
801          */
802         cache_size = cfs_num_physpages;
803
804 #if BITS_PER_LONG == 32
805         /* limit hashtable size for lowmem systems to low RAM */
806         if (cache_size > 1 << (30 - CFS_PAGE_SHIFT))
807                 cache_size = 1 << (30 - CFS_PAGE_SHIFT) * 3 / 4;
808 #endif
809
810         /* clear off unreasonable cache setting. */
811         if (lu_cache_percent == 0 || lu_cache_percent > LU_CACHE_PERCENT_MAX) {
812                 CWARN("obdclass: invalid lu_cache_percent: %u, it must be in"
813                       " the range of (0, %u]. Will use default value: %u.\n",
814                       lu_cache_percent, LU_CACHE_PERCENT_MAX,
815                       LU_CACHE_PERCENT_DEFAULT);
816
817                 lu_cache_percent = LU_CACHE_PERCENT_DEFAULT;
818         }
819         cache_size = cache_size / 100 * lu_cache_percent *
820                 (CFS_PAGE_SIZE / 1024);
821
822         for (bits = 1; (1 << bits) < cache_size; ++bits) {
823                 ;
824         }
825         return bits;
826 }
827
828 static unsigned lu_obj_hop_hash(cfs_hash_t *hs,
829                                 const void *key, unsigned mask)
830 {
831         struct lu_fid  *fid = (struct lu_fid *)key;
832         __u32           hash;
833
834         hash = fid_flatten32(fid);
835         hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */
836         hash = cfs_hash_long(hash, hs->hs_bkt_bits);
837
838         /* give me another random factor */
839         hash -= cfs_hash_long((unsigned long)hs, fid_oid(fid) % 11 + 3);
840
841         hash <<= hs->hs_cur_bits - hs->hs_bkt_bits;
842         hash |= (fid_seq(fid) + fid_oid(fid)) & (CFS_HASH_NBKT(hs) - 1);
843
844         return hash & mask;
845 }
846
847 static void *lu_obj_hop_object(cfs_hlist_node_t *hnode)
848 {
849         return cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
850 }
851
852 static void *lu_obj_hop_key(cfs_hlist_node_t *hnode)
853 {
854         struct lu_object_header *h;
855
856         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
857         return &h->loh_fid;
858 }
859
860 static int lu_obj_hop_keycmp(const void *key, cfs_hlist_node_t *hnode)
861 {
862         struct lu_object_header *h;
863
864         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
865         return lu_fid_eq(&h->loh_fid, (struct lu_fid *)key);
866 }
867
868 static void lu_obj_hop_get(cfs_hash_t *hs, cfs_hlist_node_t *hnode)
869 {
870         struct lu_object_header *h;
871
872         h = cfs_hlist_entry(hnode, struct lu_object_header, loh_hash);
873         if (cfs_atomic_add_return(1, &h->loh_ref) == 1) {
874                 struct lu_site_bkt_data *bkt;
875                 cfs_hash_bd_t            bd;
876
877                 cfs_hash_bd_get(hs, &h->loh_fid, &bd);
878                 bkt = cfs_hash_bd_extra_get(hs, &bd);
879                 bkt->lsb_busy++;
880         }
881 }
882
883 static void lu_obj_hop_put_locked(cfs_hash_t *hs, cfs_hlist_node_t *hnode)
884 {
885         LBUG(); /* we should never called it */
886 }
887
888 cfs_hash_ops_t lu_site_hash_ops = {
889         .hs_hash        = lu_obj_hop_hash,
890         .hs_key         = lu_obj_hop_key,
891         .hs_keycmp      = lu_obj_hop_keycmp,
892         .hs_object      = lu_obj_hop_object,
893         .hs_get         = lu_obj_hop_get,
894         .hs_put_locked  = lu_obj_hop_put_locked,
895 };
896
897 /**
898  * Initialize site \a s, with \a d as the top level device.
899  */
900 #define LU_SITE_BITS_MIN    12
901 #define LU_SITE_BITS_MAX    24
902 /**
903  * total 256 buckets, we don't want too many buckets because:
904  * - consume too much memory
905  * - avoid unbalanced LRU list
906  */
907 #define LU_SITE_BKT_BITS    8
908
909 int lu_site_init(struct lu_site *s, struct lu_device *top)
910 {
911         struct lu_site_bkt_data *bkt;
912         cfs_hash_bd_t bd;
913         char name[16];
914         int bits;
915         int i;
916         ENTRY;
917
918         memset(s, 0, sizeof *s);
919         bits = lu_htable_order();
920         snprintf(name, 16, "lu_site_%s", top->ld_type->ldt_name);
921         for (bits = min(max(LU_SITE_BITS_MIN, bits), LU_SITE_BITS_MAX);
922              bits >= LU_SITE_BITS_MIN; bits--) {
923                 s->ls_obj_hash = cfs_hash_create(name, bits, bits,
924                                                  bits - LU_SITE_BKT_BITS,
925                                                  sizeof(*bkt), 0, 0,
926                                                  &lu_site_hash_ops,
927                                                  CFS_HASH_SPIN_BKTLOCK |
928                                                  CFS_HASH_NO_ITEMREF |
929                                                  CFS_HASH_DEPTH |
930                                                  CFS_HASH_ASSERT_EMPTY);
931                 if (s->ls_obj_hash != NULL)
932                         break;
933         }
934
935         if (s->ls_obj_hash == NULL) {
936                 CERROR("failed to create lu_site hash with bits: %d\n", bits);
937                 return -ENOMEM;
938         }
939
940         cfs_hash_for_each_bucket(s->ls_obj_hash, &bd, i) {
941                 bkt = cfs_hash_bd_extra_get(s->ls_obj_hash, &bd);
942                 CFS_INIT_LIST_HEAD(&bkt->lsb_lru);
943                 cfs_waitq_init(&bkt->lsb_marche_funebre);
944         }
945
946         s->ls_stats = lprocfs_alloc_stats(LU_SS_LAST_STAT, 0);
947         if (s->ls_stats == NULL) {
948                 cfs_hash_putref(s->ls_obj_hash);
949                 s->ls_obj_hash = NULL;
950                 return -ENOMEM;
951         }
952
953         lprocfs_counter_init(s->ls_stats, LU_SS_CREATED,
954                              0, "created", "created");
955         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_HIT,
956                              0, "cache_hit", "cache_hit");
957         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_MISS,
958                              0, "cache_miss", "cache_miss");
959         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_RACE,
960                              0, "cache_race", "cache_race");
961         lprocfs_counter_init(s->ls_stats, LU_SS_CACHE_DEATH_RACE,
962                              0, "cache_death_race", "cache_death_race");
963         lprocfs_counter_init(s->ls_stats, LU_SS_LRU_PURGED,
964                              0, "lru_purged", "lru_purged");
965
966         CFS_INIT_LIST_HEAD(&s->ls_linkage);
967         s->ls_top_dev = top;
968         top->ld_site = s;
969         lu_device_get(top);
970         lu_ref_add(&top->ld_reference, "site-top", s);
971
972         CFS_INIT_LIST_HEAD(&s->ls_ld_linkage);
973         cfs_spin_lock_init(&s->ls_ld_lock);
974
975         cfs_spin_lock(&s->ls_ld_lock);
976         cfs_list_add(&top->ld_linkage, &s->ls_ld_linkage);
977         cfs_spin_unlock(&s->ls_ld_lock);
978
979         RETURN(0);
980 }
981 EXPORT_SYMBOL(lu_site_init);
982
983 /**
984  * Finalize \a s and release its resources.
985  */
986 void lu_site_fini(struct lu_site *s)
987 {
988         cfs_down(&lu_sites_guard);
989         cfs_list_del_init(&s->ls_linkage);
990         cfs_up(&lu_sites_guard);
991
992         if (s->ls_obj_hash != NULL) {
993                 cfs_hash_putref(s->ls_obj_hash);
994                 s->ls_obj_hash = NULL;
995         }
996
997         if (s->ls_top_dev != NULL) {
998                 s->ls_top_dev->ld_site = NULL;
999                 lu_ref_del(&s->ls_top_dev->ld_reference, "site-top", s);
1000                 lu_device_put(s->ls_top_dev);
1001                 s->ls_top_dev = NULL;
1002         }
1003
1004         if (s->ls_stats != NULL)
1005                 lprocfs_free_stats(&s->ls_stats);
1006 }
1007 EXPORT_SYMBOL(lu_site_fini);
1008
1009 /**
1010  * Called when initialization of stack for this site is completed.
1011  */
1012 int lu_site_init_finish(struct lu_site *s)
1013 {
1014         int result;
1015         cfs_down(&lu_sites_guard);
1016         result = lu_context_refill(&lu_shrink_env.le_ctx);
1017         if (result == 0)
1018                 cfs_list_add(&s->ls_linkage, &lu_sites);
1019         cfs_up(&lu_sites_guard);
1020         return result;
1021 }
1022 EXPORT_SYMBOL(lu_site_init_finish);
1023
1024 /**
1025  * Acquire additional reference on device \a d
1026  */
1027 void lu_device_get(struct lu_device *d)
1028 {
1029         cfs_atomic_inc(&d->ld_ref);
1030 }
1031 EXPORT_SYMBOL(lu_device_get);
1032
1033 /**
1034  * Release reference on device \a d.
1035  */
1036 void lu_device_put(struct lu_device *d)
1037 {
1038         LASSERT(cfs_atomic_read(&d->ld_ref) > 0);
1039         cfs_atomic_dec(&d->ld_ref);
1040 }
1041 EXPORT_SYMBOL(lu_device_put);
1042
1043 /**
1044  * Initialize device \a d of type \a t.
1045  */
1046 int lu_device_init(struct lu_device *d, struct lu_device_type *t)
1047 {
1048         if (t->ldt_device_nr++ == 0 && t->ldt_ops->ldto_start != NULL)
1049                 t->ldt_ops->ldto_start(t);
1050         memset(d, 0, sizeof *d);
1051         cfs_atomic_set(&d->ld_ref, 0);
1052         d->ld_type = t;
1053         lu_ref_init(&d->ld_reference);
1054         CFS_INIT_LIST_HEAD(&d->ld_linkage);
1055         return 0;
1056 }
1057 EXPORT_SYMBOL(lu_device_init);
1058
1059 /**
1060  * Finalize device \a d.
1061  */
1062 void lu_device_fini(struct lu_device *d)
1063 {
1064         struct lu_device_type *t;
1065
1066         t = d->ld_type;
1067         if (d->ld_obd != NULL) {
1068                 d->ld_obd->obd_lu_dev = NULL;
1069                 d->ld_obd = NULL;
1070         }
1071
1072         lu_ref_fini(&d->ld_reference);
1073         LASSERTF(cfs_atomic_read(&d->ld_ref) == 0,
1074                  "Refcount is %u\n", cfs_atomic_read(&d->ld_ref));
1075         LASSERT(t->ldt_device_nr > 0);
1076         if (--t->ldt_device_nr == 0 && t->ldt_ops->ldto_stop != NULL)
1077                 t->ldt_ops->ldto_stop(t);
1078 }
1079 EXPORT_SYMBOL(lu_device_fini);
1080
1081 /**
1082  * Initialize object \a o that is part of compound object \a h and was created
1083  * by device \a d.
1084  */
1085 int lu_object_init(struct lu_object *o,
1086                    struct lu_object_header *h, struct lu_device *d)
1087 {
1088         memset(o, 0, sizeof *o);
1089         o->lo_header = h;
1090         o->lo_dev    = d;
1091         lu_device_get(d);
1092         o->lo_dev_ref = lu_ref_add(&d->ld_reference, "lu_object", o);
1093         CFS_INIT_LIST_HEAD(&o->lo_linkage);
1094         return 0;
1095 }
1096 EXPORT_SYMBOL(lu_object_init);
1097
1098 /**
1099  * Finalize object and release its resources.
1100  */
1101 void lu_object_fini(struct lu_object *o)
1102 {
1103         struct lu_device *dev = o->lo_dev;
1104
1105         LASSERT(cfs_list_empty(&o->lo_linkage));
1106
1107         if (dev != NULL) {
1108                 lu_ref_del_at(&dev->ld_reference,
1109                               o->lo_dev_ref , "lu_object", o);
1110                 lu_device_put(dev);
1111                 o->lo_dev = NULL;
1112         }
1113 }
1114 EXPORT_SYMBOL(lu_object_fini);
1115
1116 /**
1117  * Add object \a o as first layer of compound object \a h
1118  *
1119  * This is typically called by the ->ldo_object_alloc() method of top-level
1120  * device.
1121  */
1122 void lu_object_add_top(struct lu_object_header *h, struct lu_object *o)
1123 {
1124         cfs_list_move(&o->lo_linkage, &h->loh_layers);
1125 }
1126 EXPORT_SYMBOL(lu_object_add_top);
1127
1128 /**
1129  * Add object \a o as a layer of compound object, going after \a before.
1130  *
1131  * This is typically called by the ->ldo_object_alloc() method of \a
1132  * before->lo_dev.
1133  */
1134 void lu_object_add(struct lu_object *before, struct lu_object *o)
1135 {
1136         cfs_list_move(&o->lo_linkage, &before->lo_linkage);
1137 }
1138 EXPORT_SYMBOL(lu_object_add);
1139
1140 /**
1141  * Initialize compound object.
1142  */
1143 int lu_object_header_init(struct lu_object_header *h)
1144 {
1145         memset(h, 0, sizeof *h);
1146         cfs_atomic_set(&h->loh_ref, 1);
1147         CFS_INIT_HLIST_NODE(&h->loh_hash);
1148         CFS_INIT_LIST_HEAD(&h->loh_lru);
1149         CFS_INIT_LIST_HEAD(&h->loh_layers);
1150         lu_ref_init(&h->loh_reference);
1151         return 0;
1152 }
1153 EXPORT_SYMBOL(lu_object_header_init);
1154
1155 /**
1156  * Finalize compound object.
1157  */
1158 void lu_object_header_fini(struct lu_object_header *h)
1159 {
1160         LASSERT(cfs_list_empty(&h->loh_layers));
1161         LASSERT(cfs_list_empty(&h->loh_lru));
1162         LASSERT(cfs_hlist_unhashed(&h->loh_hash));
1163         lu_ref_fini(&h->loh_reference);
1164 }
1165 EXPORT_SYMBOL(lu_object_header_fini);
1166
1167 /**
1168  * Given a compound object, find its slice, corresponding to the device type
1169  * \a dtype.
1170  */
1171 struct lu_object *lu_object_locate(struct lu_object_header *h,
1172                                    const struct lu_device_type *dtype)
1173 {
1174         struct lu_object *o;
1175
1176         cfs_list_for_each_entry(o, &h->loh_layers, lo_linkage) {
1177                 if (o->lo_dev->ld_type == dtype)
1178                         return o;
1179         }
1180         return NULL;
1181 }
1182 EXPORT_SYMBOL(lu_object_locate);
1183
1184
1185
1186 /**
1187  * Finalize and free devices in the device stack.
1188  *
1189  * Finalize device stack by purging object cache, and calling
1190  * lu_device_type_operations::ldto_device_fini() and
1191  * lu_device_type_operations::ldto_device_free() on all devices in the stack.
1192  */
1193 void lu_stack_fini(const struct lu_env *env, struct lu_device *top)
1194 {
1195         struct lu_site   *site = top->ld_site;
1196         struct lu_device *scan;
1197         struct lu_device *next;
1198
1199         lu_site_purge(env, site, ~0);
1200         for (scan = top; scan != NULL; scan = next) {
1201                 next = scan->ld_type->ldt_ops->ldto_device_fini(env, scan);
1202                 lu_ref_del(&scan->ld_reference, "lu-stack", &lu_site_init);
1203                 lu_device_put(scan);
1204         }
1205
1206         /* purge again. */
1207         lu_site_purge(env, site, ~0);
1208
1209         if (!cfs_hash_is_empty(site->ls_obj_hash)) {
1210                 /*
1211                  * Uh-oh, objects still exist.
1212                  */
1213                 static DECLARE_LU_CDEBUG_PRINT_INFO(cookie, D_ERROR);
1214
1215                 lu_site_print(env, site, &cookie, lu_cdebug_printer);
1216         }
1217
1218         for (scan = top; scan != NULL; scan = next) {
1219                 const struct lu_device_type *ldt = scan->ld_type;
1220                 struct obd_type             *type;
1221
1222                 next = ldt->ldt_ops->ldto_device_free(env, scan);
1223                 type = ldt->ldt_obd_type;
1224                 if (type != NULL) {
1225                         type->typ_refcnt--;
1226                         class_put_type(type);
1227                 }
1228         }
1229 }
1230 EXPORT_SYMBOL(lu_stack_fini);
1231
1232 enum {
1233         /**
1234          * Maximal number of tld slots.
1235          */
1236         LU_CONTEXT_KEY_NR = 32
1237 };
1238
1239 static struct lu_context_key *lu_keys[LU_CONTEXT_KEY_NR] = { NULL, };
1240
1241 static cfs_spinlock_t lu_keys_guard = CFS_SPIN_LOCK_UNLOCKED;
1242
1243 /**
1244  * Global counter incremented whenever key is registered, unregistered,
1245  * revived or quiesced. This is used to void unnecessary calls to
1246  * lu_context_refill(). No locking is provided, as initialization and shutdown
1247  * are supposed to be externally serialized.
1248  */
1249 static unsigned key_set_version = 0;
1250
1251 /**
1252  * Register new key.
1253  */
1254 int lu_context_key_register(struct lu_context_key *key)
1255 {
1256         int result;
1257         int i;
1258
1259         LASSERT(key->lct_init != NULL);
1260         LASSERT(key->lct_fini != NULL);
1261         LASSERT(key->lct_tags != 0);
1262         LASSERT(key->lct_owner != NULL);
1263
1264         result = -ENFILE;
1265         cfs_spin_lock(&lu_keys_guard);
1266         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1267                 if (lu_keys[i] == NULL) {
1268                         key->lct_index = i;
1269                         cfs_atomic_set(&key->lct_used, 1);
1270                         lu_keys[i] = key;
1271                         lu_ref_init(&key->lct_reference);
1272                         result = 0;
1273                         ++key_set_version;
1274                         break;
1275                 }
1276         }
1277         cfs_spin_unlock(&lu_keys_guard);
1278         return result;
1279 }
1280 EXPORT_SYMBOL(lu_context_key_register);
1281
1282 static void key_fini(struct lu_context *ctx, int index)
1283 {
1284         if (ctx->lc_value != NULL && ctx->lc_value[index] != NULL) {
1285                 struct lu_context_key *key;
1286
1287                 key = lu_keys[index];
1288                 LASSERT(key != NULL);
1289                 LASSERT(key->lct_fini != NULL);
1290                 LASSERT(cfs_atomic_read(&key->lct_used) > 1);
1291
1292                 key->lct_fini(ctx, key, ctx->lc_value[index]);
1293                 lu_ref_del(&key->lct_reference, "ctx", ctx);
1294                 cfs_atomic_dec(&key->lct_used);
1295                 LASSERT(key->lct_owner != NULL);
1296                 if (!(ctx->lc_tags & LCT_NOREF)) {
1297                         LASSERT(cfs_module_refcount(key->lct_owner) > 0);
1298                         cfs_module_put(key->lct_owner);
1299                 }
1300                 ctx->lc_value[index] = NULL;
1301         }
1302 }
1303
1304 /**
1305  * Deregister key.
1306  */
1307 void lu_context_key_degister(struct lu_context_key *key)
1308 {
1309         LASSERT(cfs_atomic_read(&key->lct_used) >= 1);
1310         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1311
1312         lu_context_key_quiesce(key);
1313
1314         ++key_set_version;
1315         cfs_spin_lock(&lu_keys_guard);
1316         key_fini(&lu_shrink_env.le_ctx, key->lct_index);
1317         if (lu_keys[key->lct_index]) {
1318                 lu_keys[key->lct_index] = NULL;
1319                 lu_ref_fini(&key->lct_reference);
1320         }
1321         cfs_spin_unlock(&lu_keys_guard);
1322
1323         LASSERTF(cfs_atomic_read(&key->lct_used) == 1,
1324                  "key has instances: %d\n",
1325                  cfs_atomic_read(&key->lct_used));
1326 }
1327 EXPORT_SYMBOL(lu_context_key_degister);
1328
1329 /**
1330  * Register a number of keys. This has to be called after all keys have been
1331  * initialized by a call to LU_CONTEXT_KEY_INIT().
1332  */
1333 int lu_context_key_register_many(struct lu_context_key *k, ...)
1334 {
1335         struct lu_context_key *key = k;
1336         va_list args;
1337         int result;
1338
1339         va_start(args, k);
1340         do {
1341                 result = lu_context_key_register(key);
1342                 if (result)
1343                         break;
1344                 key = va_arg(args, struct lu_context_key *);
1345         } while (key != NULL);
1346         va_end(args);
1347
1348         if (result != 0) {
1349                 va_start(args, k);
1350                 while (k != key) {
1351                         lu_context_key_degister(k);
1352                         k = va_arg(args, struct lu_context_key *);
1353                 }
1354                 va_end(args);
1355         }
1356
1357         return result;
1358 }
1359 EXPORT_SYMBOL(lu_context_key_register_many);
1360
1361 /**
1362  * De-register a number of keys. This is a dual to
1363  * lu_context_key_register_many().
1364  */
1365 void lu_context_key_degister_many(struct lu_context_key *k, ...)
1366 {
1367         va_list args;
1368
1369         va_start(args, k);
1370         do {
1371                 lu_context_key_degister(k);
1372                 k = va_arg(args, struct lu_context_key*);
1373         } while (k != NULL);
1374         va_end(args);
1375 }
1376 EXPORT_SYMBOL(lu_context_key_degister_many);
1377
1378 /**
1379  * Revive a number of keys.
1380  */
1381 void lu_context_key_revive_many(struct lu_context_key *k, ...)
1382 {
1383         va_list args;
1384
1385         va_start(args, k);
1386         do {
1387                 lu_context_key_revive(k);
1388                 k = va_arg(args, struct lu_context_key*);
1389         } while (k != NULL);
1390         va_end(args);
1391 }
1392 EXPORT_SYMBOL(lu_context_key_revive_many);
1393
1394 /**
1395  * Quiescent a number of keys.
1396  */
1397 void lu_context_key_quiesce_many(struct lu_context_key *k, ...)
1398 {
1399         va_list args;
1400
1401         va_start(args, k);
1402         do {
1403                 lu_context_key_quiesce(k);
1404                 k = va_arg(args, struct lu_context_key*);
1405         } while (k != NULL);
1406         va_end(args);
1407 }
1408 EXPORT_SYMBOL(lu_context_key_quiesce_many);
1409
1410 /**
1411  * Return value associated with key \a key in context \a ctx.
1412  */
1413 void *lu_context_key_get(const struct lu_context *ctx,
1414                          const struct lu_context_key *key)
1415 {
1416         LINVRNT(ctx->lc_state == LCS_ENTERED);
1417         LINVRNT(0 <= key->lct_index && key->lct_index < ARRAY_SIZE(lu_keys));
1418         LASSERT(lu_keys[key->lct_index] == key);
1419         return ctx->lc_value[key->lct_index];
1420 }
1421 EXPORT_SYMBOL(lu_context_key_get);
1422
1423 /**
1424  * List of remembered contexts. XXX document me.
1425  */
1426 static CFS_LIST_HEAD(lu_context_remembered);
1427
1428 /**
1429  * Destroy \a key in all remembered contexts. This is used to destroy key
1430  * values in "shared" contexts (like service threads), when a module owning
1431  * the key is about to be unloaded.
1432  */
1433 void lu_context_key_quiesce(struct lu_context_key *key)
1434 {
1435         struct lu_context *ctx;
1436         extern unsigned cl_env_cache_purge(unsigned nr);
1437
1438         if (!(key->lct_tags & LCT_QUIESCENT)) {
1439                 /*
1440                  * XXX layering violation.
1441                  */
1442                 cl_env_cache_purge(~0);
1443                 key->lct_tags |= LCT_QUIESCENT;
1444                 /*
1445                  * XXX memory barrier has to go here.
1446                  */
1447                 cfs_spin_lock(&lu_keys_guard);
1448                 cfs_list_for_each_entry(ctx, &lu_context_remembered,
1449                                         lc_remember)
1450                         key_fini(ctx, key->lct_index);
1451                 cfs_spin_unlock(&lu_keys_guard);
1452                 ++key_set_version;
1453         }
1454 }
1455 EXPORT_SYMBOL(lu_context_key_quiesce);
1456
1457 void lu_context_key_revive(struct lu_context_key *key)
1458 {
1459         key->lct_tags &= ~LCT_QUIESCENT;
1460         ++key_set_version;
1461 }
1462 EXPORT_SYMBOL(lu_context_key_revive);
1463
1464 static void keys_fini(struct lu_context *ctx)
1465 {
1466         int i;
1467
1468         cfs_spin_lock(&lu_keys_guard);
1469         if (ctx->lc_value != NULL) {
1470                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i)
1471                         key_fini(ctx, i);
1472                 OBD_FREE(ctx->lc_value,
1473                          ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1474                 ctx->lc_value = NULL;
1475         }
1476         cfs_spin_unlock(&lu_keys_guard);
1477 }
1478
1479 static int keys_fill(struct lu_context *ctx)
1480 {
1481         int i;
1482
1483         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1484                 struct lu_context_key *key;
1485
1486                 key = lu_keys[i];
1487                 if (ctx->lc_value[i] == NULL && key != NULL &&
1488                     (key->lct_tags & ctx->lc_tags) &&
1489                     /*
1490                      * Don't create values for a LCT_QUIESCENT key, as this
1491                      * will pin module owning a key.
1492                      */
1493                     !(key->lct_tags & LCT_QUIESCENT)) {
1494                         void *value;
1495
1496                         LINVRNT(key->lct_init != NULL);
1497                         LINVRNT(key->lct_index == i);
1498
1499                         value = key->lct_init(ctx, key);
1500                         if (unlikely(IS_ERR(value)))
1501                                 return PTR_ERR(value);
1502
1503                         LASSERT(key->lct_owner != NULL);
1504                         if (!(ctx->lc_tags & LCT_NOREF))
1505                                 cfs_try_module_get(key->lct_owner);
1506                         lu_ref_add_atomic(&key->lct_reference, "ctx", ctx);
1507                         cfs_atomic_inc(&key->lct_used);
1508                         /*
1509                          * This is the only place in the code, where an
1510                          * element of ctx->lc_value[] array is set to non-NULL
1511                          * value.
1512                          */
1513                         ctx->lc_value[i] = value;
1514                         if (key->lct_exit != NULL)
1515                                 ctx->lc_tags |= LCT_HAS_EXIT;
1516                 }
1517                 ctx->lc_version = key_set_version;
1518         }
1519         return 0;
1520 }
1521
1522 static int keys_init(struct lu_context *ctx)
1523 {
1524         int result;
1525
1526         OBD_ALLOC(ctx->lc_value, ARRAY_SIZE(lu_keys) * sizeof ctx->lc_value[0]);
1527         if (likely(ctx->lc_value != NULL))
1528                 result = keys_fill(ctx);
1529         else
1530                 result = -ENOMEM;
1531
1532         if (result != 0)
1533                 keys_fini(ctx);
1534         return result;
1535 }
1536
1537 /**
1538  * Initialize context data-structure. Create values for all keys.
1539  */
1540 int lu_context_init(struct lu_context *ctx, __u32 tags)
1541 {
1542         memset(ctx, 0, sizeof *ctx);
1543         ctx->lc_state = LCS_INITIALIZED;
1544         ctx->lc_tags = tags;
1545         if (tags & LCT_REMEMBER) {
1546                 cfs_spin_lock(&lu_keys_guard);
1547                 cfs_list_add(&ctx->lc_remember, &lu_context_remembered);
1548                 cfs_spin_unlock(&lu_keys_guard);
1549         } else
1550                 CFS_INIT_LIST_HEAD(&ctx->lc_remember);
1551         return keys_init(ctx);
1552 }
1553 EXPORT_SYMBOL(lu_context_init);
1554
1555 /**
1556  * Finalize context data-structure. Destroy key values.
1557  */
1558 void lu_context_fini(struct lu_context *ctx)
1559 {
1560         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1561         ctx->lc_state = LCS_FINALIZED;
1562         keys_fini(ctx);
1563         cfs_spin_lock(&lu_keys_guard);
1564         cfs_list_del_init(&ctx->lc_remember);
1565         cfs_spin_unlock(&lu_keys_guard);
1566 }
1567 EXPORT_SYMBOL(lu_context_fini);
1568
1569 /**
1570  * Called before entering context.
1571  */
1572 void lu_context_enter(struct lu_context *ctx)
1573 {
1574         LINVRNT(ctx->lc_state == LCS_INITIALIZED || ctx->lc_state == LCS_LEFT);
1575         ctx->lc_state = LCS_ENTERED;
1576 }
1577 EXPORT_SYMBOL(lu_context_enter);
1578
1579 /**
1580  * Called after exiting from \a ctx
1581  */
1582 void lu_context_exit(struct lu_context *ctx)
1583 {
1584         int i;
1585
1586         LINVRNT(ctx->lc_state == LCS_ENTERED);
1587         ctx->lc_state = LCS_LEFT;
1588         if (ctx->lc_tags & LCT_HAS_EXIT && ctx->lc_value != NULL) {
1589                 for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1590                         if (ctx->lc_value[i] != NULL) {
1591                                 struct lu_context_key *key;
1592
1593                                 key = lu_keys[i];
1594                                 LASSERT(key != NULL);
1595                                 if (key->lct_exit != NULL)
1596                                         key->lct_exit(ctx,
1597                                                       key, ctx->lc_value[i]);
1598                         }
1599                 }
1600         }
1601 }
1602 EXPORT_SYMBOL(lu_context_exit);
1603
1604 /**
1605  * Allocate for context all missing keys that were registered after context
1606  * creation.
1607  */
1608 int lu_context_refill(struct lu_context *ctx)
1609 {
1610         LINVRNT(ctx->lc_value != NULL);
1611         return ctx->lc_version == key_set_version ? 0 : keys_fill(ctx);
1612 }
1613 EXPORT_SYMBOL(lu_context_refill);
1614
1615 int lu_env_init(struct lu_env *env, __u32 tags)
1616 {
1617         int result;
1618
1619         env->le_ses = NULL;
1620         result = lu_context_init(&env->le_ctx, tags);
1621         if (likely(result == 0))
1622                 lu_context_enter(&env->le_ctx);
1623         return result;
1624 }
1625 EXPORT_SYMBOL(lu_env_init);
1626
1627 void lu_env_fini(struct lu_env *env)
1628 {
1629         lu_context_exit(&env->le_ctx);
1630         lu_context_fini(&env->le_ctx);
1631         env->le_ses = NULL;
1632 }
1633 EXPORT_SYMBOL(lu_env_fini);
1634
1635 int lu_env_refill(struct lu_env *env)
1636 {
1637         int result;
1638
1639         result = lu_context_refill(&env->le_ctx);
1640         if (result == 0 && env->le_ses != NULL)
1641                 result = lu_context_refill(env->le_ses);
1642         return result;
1643 }
1644 EXPORT_SYMBOL(lu_env_refill);
1645
1646 static struct cfs_shrinker *lu_site_shrinker = NULL;
1647
1648 typedef struct lu_site_stats{
1649         unsigned        lss_populated;
1650         unsigned        lss_max_search;
1651         unsigned        lss_total;
1652         unsigned        lss_busy;
1653 } lu_site_stats_t;
1654
1655 static void lu_site_stats_get(cfs_hash_t *hs,
1656                               lu_site_stats_t *stats, int populated)
1657 {
1658         cfs_hash_bd_t bd;
1659         int           i;
1660
1661         cfs_hash_for_each_bucket(hs, &bd, i) {
1662                 struct lu_site_bkt_data *bkt = cfs_hash_bd_extra_get(hs, &bd);
1663                 cfs_hlist_head_t        *hhead;
1664
1665                 cfs_hash_bd_lock(hs, &bd, 1);
1666                 stats->lss_busy  += bkt->lsb_busy;
1667                 stats->lss_total += cfs_hash_bd_count_get(&bd);
1668                 stats->lss_max_search = max((int)stats->lss_max_search,
1669                                             cfs_hash_bd_depmax_get(&bd));
1670                 if (!populated) {
1671                         cfs_hash_bd_unlock(hs, &bd, 1);
1672                         continue;
1673                 }
1674
1675                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1676                         if (!cfs_hlist_empty(hhead))
1677                                 stats->lss_populated++;
1678                 }
1679                 cfs_hash_bd_unlock(hs, &bd, 1);
1680         }
1681 }
1682
1683 #ifdef __KERNEL__
1684
1685 static int lu_cache_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1686 {
1687         lu_site_stats_t stats;
1688         struct lu_site *s;
1689         struct lu_site *tmp;
1690         int cached = 0;
1691         int remain = shrink_param(sc, nr_to_scan);
1692         CFS_LIST_HEAD(splice);
1693
1694         if (remain != 0) {
1695                 if (!(shrink_param(sc, gfp_mask) & __GFP_FS))
1696                         return -1;
1697                 CDEBUG(D_INODE, "Shrink %d objects\n", remain);
1698         }
1699
1700         cfs_down(&lu_sites_guard);
1701         cfs_list_for_each_entry_safe(s, tmp, &lu_sites, ls_linkage) {
1702                 if (shrink_param(sc, nr_to_scan) != 0) {
1703                         remain = lu_site_purge(&lu_shrink_env, s, remain);
1704                         /*
1705                          * Move just shrunk site to the tail of site list to
1706                          * assure shrinking fairness.
1707                          */
1708                         cfs_list_move_tail(&s->ls_linkage, &splice);
1709                 }
1710
1711                 memset(&stats, 0, sizeof(stats));
1712                 lu_site_stats_get(s->ls_obj_hash, &stats, 0);
1713                 cached += stats.lss_total - stats.lss_busy;
1714                 if (shrink_param(sc, nr_to_scan) && remain <= 0)
1715                         break;
1716         }
1717         cfs_list_splice(&splice, lu_sites.prev);
1718         cfs_up(&lu_sites_guard);
1719
1720         cached = (cached / 100) * sysctl_vfs_cache_pressure;
1721         if (shrink_param(sc, nr_to_scan) == 0)
1722                 CDEBUG(D_INODE, "%d objects cached\n", cached);
1723         return cached;
1724 }
1725
1726 /*
1727  * Debugging stuff.
1728  */
1729
1730 /**
1731  * Environment to be used in debugger, contains all tags.
1732  */
1733 struct lu_env lu_debugging_env;
1734
1735 /**
1736  * Debugging printer function using printk().
1737  */
1738 int lu_printk_printer(const struct lu_env *env,
1739                       void *unused, const char *format, ...)
1740 {
1741         va_list args;
1742
1743         va_start(args, format);
1744         vprintk(format, args);
1745         va_end(args);
1746         return 0;
1747 }
1748
1749 void lu_debugging_setup(void)
1750 {
1751         lu_env_init(&lu_debugging_env, ~0);
1752 }
1753
1754 void lu_context_keys_dump(void)
1755 {
1756         int i;
1757
1758         for (i = 0; i < ARRAY_SIZE(lu_keys); ++i) {
1759                 struct lu_context_key *key;
1760
1761                 key = lu_keys[i];
1762                 if (key != NULL) {
1763                         CERROR("[%d]: %p %x (%p,%p,%p) %d %d \"%s\"@%p\n",
1764                                i, key, key->lct_tags,
1765                                key->lct_init, key->lct_fini, key->lct_exit,
1766                                key->lct_index, cfs_atomic_read(&key->lct_used),
1767                                key->lct_owner ? key->lct_owner->name : "",
1768                                key->lct_owner);
1769                         lu_ref_print(&key->lct_reference);
1770                 }
1771         }
1772 }
1773 EXPORT_SYMBOL(lu_context_keys_dump);
1774 #else  /* !__KERNEL__ */
1775 static int lu_cache_shrink(int nr, unsigned int gfp_mask)
1776 {
1777         return 0;
1778 }
1779 #endif /* __KERNEL__ */
1780
1781 int  cl_global_init(void);
1782 void cl_global_fini(void);
1783 int  lu_ref_global_init(void);
1784 void lu_ref_global_fini(void);
1785
1786 int dt_global_init(void);
1787 void dt_global_fini(void);
1788
1789 int llo_global_init(void);
1790 void llo_global_fini(void);
1791
1792 /**
1793  * Initialization of global lu_* data.
1794  */
1795 int lu_global_init(void)
1796 {
1797         int result;
1798
1799         CDEBUG(D_INFO, "Lustre LU module (%p).\n", &lu_keys);
1800
1801         result = lu_ref_global_init();
1802         if (result != 0)
1803                 return result;
1804
1805         LU_CONTEXT_KEY_INIT(&lu_global_key);
1806         result = lu_context_key_register(&lu_global_key);
1807         if (result != 0)
1808                 return result;
1809         /*
1810          * At this level, we don't know what tags are needed, so allocate them
1811          * conservatively. This should not be too bad, because this
1812          * environment is global.
1813          */
1814         cfs_down(&lu_sites_guard);
1815         result = lu_env_init(&lu_shrink_env, LCT_SHRINKER);
1816         cfs_up(&lu_sites_guard);
1817         if (result != 0)
1818                 return result;
1819
1820         /*
1821          * seeks estimation: 3 seeks to read a record from oi, one to read
1822          * inode, one for ea. Unfortunately setting this high value results in
1823          * lu_object/inode cache consuming all the memory.
1824          */
1825         lu_site_shrinker = cfs_set_shrinker(CFS_DEFAULT_SEEKS, lu_cache_shrink);
1826         if (lu_site_shrinker == NULL)
1827                 return -ENOMEM;
1828
1829         result = lu_time_global_init();
1830         if (result)
1831                 GOTO(out, result);
1832
1833 #ifdef __KERNEL__
1834         result = dt_global_init();
1835         if (result)
1836                 GOTO(out, result);
1837
1838         result = llo_global_init();
1839         if (result)
1840                 GOTO(out, result);
1841 #endif
1842         result = cl_global_init();
1843 out:
1844
1845         return result;
1846 }
1847
1848 /**
1849  * Dual to lu_global_init().
1850  */
1851 void lu_global_fini(void)
1852 {
1853         cl_global_fini();
1854 #ifdef __KERNEL__
1855         llo_global_fini();
1856         dt_global_fini();
1857 #endif
1858         lu_time_global_fini();
1859         if (lu_site_shrinker != NULL) {
1860                 cfs_remove_shrinker(lu_site_shrinker);
1861                 lu_site_shrinker = NULL;
1862         }
1863
1864         lu_context_key_degister(&lu_global_key);
1865
1866         /*
1867          * Tear shrinker environment down _after_ de-registering
1868          * lu_global_key, because the latter has a value in the former.
1869          */
1870         cfs_down(&lu_sites_guard);
1871         lu_env_fini(&lu_shrink_env);
1872         cfs_up(&lu_sites_guard);
1873
1874         lu_ref_global_fini();
1875 }
1876
1877 struct lu_buf LU_BUF_NULL = {
1878         .lb_buf = NULL,
1879         .lb_len = 0
1880 };
1881 EXPORT_SYMBOL(LU_BUF_NULL);
1882
1883 static __u32 ls_stats_read(struct lprocfs_stats *stats, int idx)
1884 {
1885 #ifdef LPROCFS
1886         struct lprocfs_counter ret;
1887
1888         lprocfs_stats_collect(stats, idx, &ret);
1889         return (__u32)ret.lc_count;
1890 #else
1891         return 0;
1892 #endif
1893 }
1894
1895 /**
1896  * Output site statistical counters into a buffer. Suitable for
1897  * lprocfs_rd_*()-style functions.
1898  */
1899 int lu_site_stats_print(const struct lu_site *s, char *page, int count)
1900 {
1901         lu_site_stats_t stats;
1902
1903         memset(&stats, 0, sizeof(stats));
1904         lu_site_stats_get(s->ls_obj_hash, &stats, 1);
1905
1906         return snprintf(page, count, "%d/%d %d/%d %d %d %d %d %d %d %d\n",
1907                         stats.lss_busy,
1908                         stats.lss_total,
1909                         stats.lss_populated,
1910                         CFS_HASH_NHLIST(s->ls_obj_hash),
1911                         stats.lss_max_search,
1912                         ls_stats_read(s->ls_stats, LU_SS_CREATED),
1913                         ls_stats_read(s->ls_stats, LU_SS_CACHE_HIT),
1914                         ls_stats_read(s->ls_stats, LU_SS_CACHE_MISS),
1915                         ls_stats_read(s->ls_stats, LU_SS_CACHE_RACE),
1916                         ls_stats_read(s->ls_stats, LU_SS_CACHE_DEATH_RACE),
1917                         ls_stats_read(s->ls_stats, LU_SS_LRU_PURGED));
1918 }
1919 EXPORT_SYMBOL(lu_site_stats_print);
1920
1921 const char *lu_time_names[LU_TIME_NR] = {
1922         [LU_TIME_FIND_LOOKUP] = "find_lookup",
1923         [LU_TIME_FIND_ALLOC]  = "find_alloc",
1924         [LU_TIME_FIND_INSERT] = "find_insert"
1925 };
1926 EXPORT_SYMBOL(lu_time_names);
1927
1928 /**
1929  * Helper function to initialize a number of kmem slab caches at once.
1930  */
1931 int lu_kmem_init(struct lu_kmem_descr *caches)
1932 {
1933         int result;
1934         struct lu_kmem_descr *iter = caches;
1935
1936         for (result = 0; iter->ckd_cache != NULL; ++iter) {
1937                 *iter->ckd_cache = cfs_mem_cache_create(iter->ckd_name,
1938                                                         iter->ckd_size,
1939                                                         0, 0);
1940                 if (*iter->ckd_cache == NULL) {
1941                         result = -ENOMEM;
1942                         /* free all previously allocated caches */
1943                         lu_kmem_fini(caches);
1944                         break;
1945                 }
1946         }
1947         return result;
1948 }
1949 EXPORT_SYMBOL(lu_kmem_init);
1950
1951 /**
1952  * Helper function to finalize a number of kmem slab cached at once. Dual to
1953  * lu_kmem_init().
1954  */
1955 void lu_kmem_fini(struct lu_kmem_descr *caches)
1956 {
1957         int rc;
1958
1959         for (; caches->ckd_cache != NULL; ++caches) {
1960                 if (*caches->ckd_cache != NULL) {
1961                         rc = cfs_mem_cache_destroy(*caches->ckd_cache);
1962                         LASSERTF(rc == 0, "couldn't destroy %s slab\n",
1963                                  caches->ckd_name);
1964                         *caches->ckd_cache = NULL;
1965                 }
1966         }
1967 }
1968 EXPORT_SYMBOL(lu_kmem_fini);