Whamcloud - gitweb
b=22980 improve obdfilter-survey performance on multi-core system
[fs/lustre-release.git] / lustre / lov / lov_lock.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
30  * Use is subject to license terms.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * Implementation of cl_lock for LOV layer.
37  *
38  *   Author: Nikita Danilov <nikita.danilov@sun.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_LOV
42
43 #include "lov_cl_internal.h"
44
45 /** \addtogroup lov
46  *  @{
47  */
48
49 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
50                                                struct cl_lock *parent);
51
52 static int lov_lock_unuse(const struct lu_env *env,
53                           const struct cl_lock_slice *slice);
54 /*****************************************************************************
55  *
56  * Lov lock operations.
57  *
58  */
59
60 static struct lov_sublock_env *lov_sublock_env_get(const struct lu_env *env,
61                                                    struct cl_lock *parent,
62                                                    struct lov_lock_sub *lls)
63 {
64         struct lov_sublock_env *subenv;
65         struct lov_io          *lio    = lov_env_io(env);
66         struct cl_io           *io     = lio->lis_cl.cis_io;
67         struct lov_io_sub      *sub;
68
69         subenv = &lov_env_session(env)->ls_subenv;
70
71         /*
72          * FIXME: We tend to use the subio's env & io to call the sublock
73          * lock operations because osc lock sometimes stores some control
74          * variables in thread's IO infomation(Now only lockless information).
75          * However, if the lock's host(object) is different from the object
76          * for current IO, we have no way to get the subenv and subio because
77          * they are not initialized at all. As a temp fix, in this case,
78          * we still borrow the parent's env to call sublock operations.
79          */
80         if (!io || !cl_object_same(io->ci_obj, parent->cll_descr.cld_obj)) {
81                 subenv->lse_env = env;
82                 subenv->lse_io  = io;
83                 subenv->lse_sub = NULL;
84         } else {
85                 sub = lov_sub_get(env, lio, lls->sub_stripe);
86                 if (!IS_ERR(sub)) {
87                         subenv->lse_env = sub->sub_env;
88                         subenv->lse_io  = sub->sub_io;
89                         subenv->lse_sub = sub;
90                 } else {
91                         subenv = (void*)sub;
92                 }
93         }
94         return subenv;
95 }
96
97 static void lov_sublock_env_put(struct lov_sublock_env *subenv)
98 {
99         if (subenv && subenv->lse_sub)
100                 lov_sub_put(subenv->lse_sub);
101 }
102
103 static void lov_sublock_adopt(const struct lu_env *env, struct lov_lock *lck,
104                               struct cl_lock *sublock, int idx,
105                               struct lov_lock_link *link)
106 {
107         struct lovsub_lock *lsl;
108         struct cl_lock     *parent = lck->lls_cl.cls_lock;
109         int                 rc;
110
111         LASSERT(cl_lock_is_mutexed(parent));
112         LASSERT(cl_lock_is_mutexed(sublock));
113         ENTRY;
114
115         lsl = cl2sub_lock(sublock);
116         /*
117          * check that sub-lock doesn't have lock link to this top-lock.
118          */
119         LASSERT(lov_lock_link_find(env, lck, lsl) == NULL);
120         LASSERT(idx < lck->lls_nr);
121
122         lck->lls_sub[idx].sub_lock = lsl;
123         lck->lls_nr_filled++;
124         LASSERT(lck->lls_nr_filled <= lck->lls_nr);
125         cfs_list_add_tail(&link->lll_list, &lsl->lss_parents);
126         link->lll_idx = idx;
127         link->lll_super = lck;
128         cl_lock_get(parent);
129         lu_ref_add(&parent->cll_reference, "lov-child", sublock);
130         lck->lls_sub[idx].sub_flags |= LSF_HELD;
131         cl_lock_user_add(env, sublock);
132
133         rc = lov_sublock_modify(env, lck, lsl, &sublock->cll_descr, idx);
134         LASSERT(rc == 0); /* there is no way this can fail, currently */
135         EXIT;
136 }
137
138 static struct cl_lock *lov_sublock_alloc(const struct lu_env *env,
139                                          const struct cl_io *io,
140                                          struct lov_lock *lck,
141                                          int idx, struct lov_lock_link **out)
142 {
143         struct cl_lock       *sublock;
144         struct cl_lock       *parent;
145         struct lov_lock_link *link;
146
147         LASSERT(idx < lck->lls_nr);
148         ENTRY;
149
150         OBD_SLAB_ALLOC_PTR_GFP(link, lov_lock_link_kmem, CFS_ALLOC_IO);
151         if (link != NULL) {
152                 struct lov_sublock_env *subenv;
153                 struct lov_lock_sub  *lls;
154                 struct cl_lock_descr *descr;
155
156                 parent = lck->lls_cl.cls_lock;
157                 lls    = &lck->lls_sub[idx];
158                 descr  = &lls->sub_descr;
159
160                 subenv = lov_sublock_env_get(env, parent, lls);
161                 if (!IS_ERR(subenv)) {
162                         /* CAVEAT: Don't try to add a field in lov_lock_sub
163                          * to remember the subio. This is because lock is able
164                          * to be cached, but this is not true for IO. This
165                          * further means a sublock might be referenced in
166                          * different io context. -jay */
167
168                         sublock = cl_lock_hold(subenv->lse_env, subenv->lse_io,
169                                                descr, "lov-parent", parent);
170                         lov_sublock_env_put(subenv);
171                 } else {
172                         /* error occurs. */
173                         sublock = (void*)subenv;
174                 }
175
176                 if (!IS_ERR(sublock))
177                         *out = link;
178                 else
179                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
180         } else
181                 sublock = ERR_PTR(-ENOMEM);
182         RETURN(sublock);
183 }
184
185 static void lov_sublock_unlock(const struct lu_env *env,
186                                struct lovsub_lock *lsl,
187                                struct cl_lock_closure *closure,
188                                struct lov_sublock_env *subenv)
189 {
190         ENTRY;
191         lov_sublock_env_put(subenv);
192         lsl->lss_active = NULL;
193         cl_lock_disclosure(env, closure);
194         EXIT;
195 }
196
197 static int lov_sublock_lock(const struct lu_env *env,
198                             struct lov_lock *lck,
199                             struct lov_lock_sub *lls,
200                             struct cl_lock_closure *closure,
201                             struct lov_sublock_env **lsep)
202 {
203         struct lovsub_lock *sublock;
204         struct cl_lock     *child;
205         int                 result = 0;
206         ENTRY;
207
208         LASSERT(cfs_list_empty(&closure->clc_list));
209
210         sublock = lls->sub_lock;
211         child = sublock->lss_cl.cls_lock;
212         result = cl_lock_closure_build(env, child, closure);
213         if (result == 0) {
214                 struct cl_lock *parent = closure->clc_origin;
215
216                 LASSERT(cl_lock_is_mutexed(child));
217                 sublock->lss_active = parent;
218
219                 if (unlikely((child->cll_state == CLS_FREEING) ||
220                              (child->cll_flags & CLF_CANCELLED))) {
221                         struct lov_lock_link *link;
222                         /*
223                          * we could race with lock deletion which temporarily
224                          * put the lock in freeing state, bug 19080.
225                          */
226                         LASSERT(!(lls->sub_flags & LSF_HELD));
227
228                         link = lov_lock_link_find(env, lck, sublock);
229                         LASSERT(link != NULL);
230                         lov_lock_unlink(env, link, sublock);
231                         lov_sublock_unlock(env, sublock, closure, NULL);
232                         lck->lls_cancel_race = 1;
233                         result = CLO_REPEAT;
234                 } else if (lsep) {
235                         struct lov_sublock_env *subenv;
236                         subenv = lov_sublock_env_get(env, parent, lls);
237                         if (IS_ERR(subenv)) {
238                                 lov_sublock_unlock(env, sublock,
239                                                    closure, NULL);
240                                 result = PTR_ERR(subenv);
241                         } else {
242                                 *lsep = subenv;
243                         }
244                 }
245         }
246         RETURN(result);
247 }
248
249 /**
250  * Updates the result of a top-lock operation from a result of sub-lock
251  * sub-operations. Top-operations like lov_lock_{enqueue,use,unuse}() iterate
252  * over sub-locks and lov_subresult() is used to calculate return value of a
253  * top-operation. To this end, possible return values of sub-operations are
254  * ordered as
255  *
256  *     - 0                  success
257  *     - CLO_WAIT           wait for event
258  *     - CLO_REPEAT         repeat top-operation
259  *     - -ne                fundamental error
260  *
261  * Top-level return code can only go down through this list. CLO_REPEAT
262  * overwrites CLO_WAIT, because lock mutex was released and sleeping condition
263  * has to be rechecked by the upper layer.
264  */
265 static int lov_subresult(int result, int rc)
266 {
267         int result_rank;
268         int rc_rank;
269
270         LASSERT(result <= 0 || result == CLO_REPEAT || result == CLO_WAIT);
271         LASSERT(rc <= 0 || rc == CLO_REPEAT || rc == CLO_WAIT);
272         CLASSERT(CLO_WAIT < CLO_REPEAT);
273
274         ENTRY;
275
276         /* calculate ranks in the ordering above */
277         result_rank = result < 0 ? 1 + CLO_REPEAT : result;
278         rc_rank = rc < 0 ? 1 + CLO_REPEAT : rc;
279
280         if (result_rank < rc_rank)
281                 result = rc;
282         RETURN(result);
283 }
284
285 /**
286  * Creates sub-locks for a given lov_lock for the first time.
287  *
288  * Goes through all sub-objects of top-object, and creates sub-locks on every
289  * sub-object intersecting with top-lock extent. This is complicated by the
290  * fact that top-lock (that is being created) can be accessed concurrently
291  * through already created sub-locks (possibly shared with other top-locks).
292  */
293 static int lov_lock_sub_init(const struct lu_env *env,
294                              struct lov_lock *lck, const struct cl_io *io)
295 {
296         int result = 0;
297         int i;
298         int nr;
299         obd_off start;
300         obd_off end;
301         obd_off file_start;
302         obd_off file_end;
303
304         struct lov_object       *loo    = cl2lov(lck->lls_cl.cls_obj);
305         struct lov_layout_raid0 *r0     = lov_r0(loo);
306         struct cl_lock          *parent = lck->lls_cl.cls_lock;
307
308         ENTRY;
309
310         lck->lls_orig = parent->cll_descr;
311         file_start = cl_offset(lov2cl(loo), parent->cll_descr.cld_start);
312         file_end   = cl_offset(lov2cl(loo), parent->cll_descr.cld_end + 1) - 1;
313
314         for (i = 0, nr = 0; i < r0->lo_nr; i++) {
315                 /*
316                  * XXX for wide striping smarter algorithm is desirable,
317                  * breaking out of the loop, early.
318                  */
319                 if (lov_stripe_intersects(r0->lo_lsm, i,
320                                           file_start, file_end, &start, &end))
321                         nr++;
322         }
323         LASSERT(nr > 0);
324         OBD_ALLOC_LARGE(lck->lls_sub, nr * sizeof lck->lls_sub[0]);
325         if (lck->lls_sub == NULL)
326                 RETURN(-ENOMEM);
327
328         lck->lls_nr = nr;
329         /*
330          * First, fill in sub-lock descriptions in
331          * lck->lls_sub[].sub_descr. They are used by lov_sublock_alloc()
332          * (called below in this function, and by lov_lock_enqueue()) to
333          * create sub-locks. At this moment, no other thread can access
334          * top-lock.
335          */
336         for (i = 0, nr = 0; i < r0->lo_nr; ++i) {
337                 if (lov_stripe_intersects(r0->lo_lsm, i,
338                                           file_start, file_end, &start, &end)) {
339                         struct cl_lock_descr *descr;
340
341                         descr = &lck->lls_sub[nr].sub_descr;
342
343                         LASSERT(descr->cld_obj == NULL);
344                         descr->cld_obj   = lovsub2cl(r0->lo_sub[i]);
345                         descr->cld_start = cl_index(descr->cld_obj, start);
346                         descr->cld_end   = cl_index(descr->cld_obj, end);
347                         descr->cld_mode  = parent->cll_descr.cld_mode;
348                         descr->cld_gid   = parent->cll_descr.cld_gid;
349                         descr->cld_enq_flags   = parent->cll_descr.cld_enq_flags;
350                         /* XXX has no effect */
351                         lck->lls_sub[nr].sub_got = *descr;
352                         lck->lls_sub[nr].sub_stripe = i;
353                         nr++;
354                 }
355         }
356         LASSERT(nr == lck->lls_nr);
357         /*
358          * Then, create sub-locks. Once at least one sub-lock was created,
359          * top-lock can be reached by other threads.
360          */
361         for (i = 0; i < lck->lls_nr; ++i) {
362                 struct cl_lock       *sublock;
363                 struct lov_lock_link *link;
364
365                 if (lck->lls_sub[i].sub_lock == NULL) {
366                         sublock = lov_sublock_alloc(env, io, lck, i, &link);
367                         if (IS_ERR(sublock)) {
368                                 result = PTR_ERR(sublock);
369                                 break;
370                         }
371                         cl_lock_get_trust(sublock);
372                         cl_lock_mutex_get(env, sublock);
373                         cl_lock_mutex_get(env, parent);
374                         /*
375                          * recheck under mutex that sub-lock wasn't created
376                          * concurrently, and that top-lock is still alive.
377                          */
378                         if (lck->lls_sub[i].sub_lock == NULL &&
379                             parent->cll_state < CLS_FREEING) {
380                                 lov_sublock_adopt(env, lck, sublock, i, link);
381                                 cl_lock_mutex_put(env, parent);
382                         } else {
383                                 OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
384                                 cl_lock_mutex_put(env, parent);
385                                 cl_lock_unhold(env, sublock,
386                                                "lov-parent", parent);
387                         }
388                         cl_lock_mutex_put(env, sublock);
389                         cl_lock_put(env, sublock);
390                 }
391         }
392         /*
393          * Some sub-locks can be missing at this point. This is not a problem,
394          * because enqueue will create them anyway. Main duty of this function
395          * is to fill in sub-lock descriptions in a race free manner.
396          */
397         RETURN(result);
398 }
399
400 static int lov_sublock_release(const struct lu_env *env, struct lov_lock *lck,
401                                int i, int deluser, int rc)
402 {
403         struct cl_lock *parent = lck->lls_cl.cls_lock;
404
405         LASSERT(cl_lock_is_mutexed(parent));
406         ENTRY;
407
408         if (lck->lls_sub[i].sub_flags & LSF_HELD) {
409                 struct cl_lock    *sublock;
410                 int dying;
411
412                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
413                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
414                 LASSERT(cl_lock_is_mutexed(sublock));
415
416                 lck->lls_sub[i].sub_flags &= ~LSF_HELD;
417                 if (deluser)
418                         cl_lock_user_del(env, sublock);
419                 /*
420                  * If the last hold is released, and cancellation is pending
421                  * for a sub-lock, release parent mutex, to avoid keeping it
422                  * while sub-lock is being paged out.
423                  */
424                 dying = (sublock->cll_descr.cld_mode == CLM_PHANTOM ||
425                          sublock->cll_descr.cld_mode == CLM_GROUP ||
426                          (sublock->cll_flags & (CLF_CANCELPEND|CLF_DOOMED))) &&
427                         sublock->cll_holds == 1;
428                 if (dying)
429                         cl_lock_mutex_put(env, parent);
430                 cl_lock_unhold(env, sublock, "lov-parent", parent);
431                 if (dying) {
432                         cl_lock_mutex_get(env, parent);
433                         rc = lov_subresult(rc, CLO_REPEAT);
434                 }
435                 /*
436                  * From now on lck->lls_sub[i].sub_lock is a "weak" pointer,
437                  * not backed by a reference on a
438                  * sub-lock. lovsub_lock_delete() will clear
439                  * lck->lls_sub[i].sub_lock under semaphores, just before
440                  * sub-lock is destroyed.
441                  */
442         }
443         RETURN(rc);
444 }
445
446 static void lov_sublock_hold(const struct lu_env *env, struct lov_lock *lck,
447                              int i)
448 {
449         struct cl_lock *parent = lck->lls_cl.cls_lock;
450
451         LASSERT(cl_lock_is_mutexed(parent));
452         ENTRY;
453
454         if (!(lck->lls_sub[i].sub_flags & LSF_HELD)) {
455                 struct cl_lock *sublock;
456
457                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
458                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
459                 LASSERT(cl_lock_is_mutexed(sublock));
460                 LASSERT(sublock->cll_state != CLS_FREEING);
461
462                 lck->lls_sub[i].sub_flags |= LSF_HELD;
463
464                 cl_lock_get_trust(sublock);
465                 cl_lock_hold_add(env, sublock, "lov-parent", parent);
466                 cl_lock_user_add(env, sublock);
467                 cl_lock_put(env, sublock);
468         }
469         EXIT;
470 }
471
472 static void lov_lock_fini(const struct lu_env *env,
473                           struct cl_lock_slice *slice)
474 {
475         struct lov_lock *lck;
476         int i;
477
478         ENTRY;
479         lck = cl2lov_lock(slice);
480         LASSERT(lck->lls_nr_filled == 0);
481         if (lck->lls_sub != NULL) {
482                 for (i = 0; i < lck->lls_nr; ++i)
483                         /*
484                          * No sub-locks exists at this point, as sub-lock has
485                          * a reference on its parent.
486                          */
487                         LASSERT(lck->lls_sub[i].sub_lock == NULL);
488                 OBD_FREE_LARGE(lck->lls_sub,
489                                lck->lls_nr * sizeof lck->lls_sub[0]);
490         }
491         OBD_SLAB_FREE_PTR(lck, lov_lock_kmem);
492         EXIT;
493 }
494
495 static int lov_lock_enqueue_wait(const struct lu_env *env,
496                                  struct lov_lock *lck,
497                                  struct cl_lock *sublock)
498 {
499         struct cl_lock *lock = lck->lls_cl.cls_lock;
500         int             result;
501         ENTRY;
502
503         LASSERT(cl_lock_is_mutexed(lock));
504
505         cl_lock_mutex_put(env, lock);
506         result = cl_lock_enqueue_wait(env, sublock, 0);
507         cl_lock_mutex_get(env, lock);
508         RETURN(result ?: CLO_REPEAT);
509 }
510
511 /**
512  * Tries to advance a state machine of a given sub-lock toward enqueuing of
513  * the top-lock.
514  *
515  * \retval 0 if state-transition can proceed
516  * \retval -ve otherwise.
517  */
518 static int lov_lock_enqueue_one(const struct lu_env *env, struct lov_lock *lck,
519                                 struct cl_lock *sublock,
520                                 struct cl_io *io, __u32 enqflags, int last)
521 {
522         int result;
523         ENTRY;
524
525         /* first, try to enqueue a sub-lock ... */
526         result = cl_enqueue_try(env, sublock, io, enqflags);
527         if (sublock->cll_state == CLS_ENQUEUED)
528                 /* if it is enqueued, try to `wait' on it---maybe it's already
529                  * granted */
530                 result = cl_wait_try(env, sublock);
531         /*
532          * If CEF_ASYNC flag is set, then all sub-locks can be enqueued in
533          * parallel, otherwise---enqueue has to wait until sub-lock is granted
534          * before proceeding to the next one.
535          */
536         if (result == CLO_WAIT && sublock->cll_state <= CLS_HELD &&
537             enqflags & CEF_ASYNC && !last)
538                 result = 0;
539         RETURN(result);
540 }
541
542 /**
543  * Helper function for lov_lock_enqueue() that creates missing sub-lock.
544  */
545 static int lov_sublock_fill(const struct lu_env *env, struct cl_lock *parent,
546                             struct cl_io *io, struct lov_lock *lck, int idx)
547 {
548         struct lov_lock_link *link;
549         struct cl_lock       *sublock;
550         int                   result;
551
552         LASSERT(parent->cll_depth == 1);
553         cl_lock_mutex_put(env, parent);
554         sublock = lov_sublock_alloc(env, io, lck, idx, &link);
555         if (!IS_ERR(sublock))
556                 cl_lock_mutex_get(env, sublock);
557         cl_lock_mutex_get(env, parent);
558
559         if (!IS_ERR(sublock)) {
560                 cl_lock_get_trust(sublock);
561                 if (parent->cll_state == CLS_QUEUING &&
562                     lck->lls_sub[idx].sub_lock == NULL) {
563                         lov_sublock_adopt(env, lck, sublock, idx, link);
564                 } else {
565                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
566                         /* other thread allocated sub-lock, or enqueue is no
567                          * longer going on */
568                         cl_lock_mutex_put(env, parent);
569                         cl_lock_unhold(env, sublock, "lov-parent", parent);
570                         cl_lock_mutex_get(env, parent);
571                 }
572                 cl_lock_mutex_put(env, sublock);
573                 cl_lock_put(env, sublock);
574                 result = CLO_REPEAT;
575         } else
576                 result = PTR_ERR(sublock);
577         return result;
578 }
579
580 /**
581  * Implementation of cl_lock_operations::clo_enqueue() for lov layer. This
582  * function is rather subtle, as it enqueues top-lock (i.e., advances top-lock
583  * state machine from CLS_QUEUING to CLS_ENQUEUED states) by juggling sub-lock
584  * state machines in the face of sub-locks sharing (by multiple top-locks),
585  * and concurrent sub-lock cancellations.
586  */
587 static int lov_lock_enqueue(const struct lu_env *env,
588                             const struct cl_lock_slice *slice,
589                             struct cl_io *io, __u32 enqflags)
590 {
591         struct cl_lock         *lock    = slice->cls_lock;
592         struct lov_lock        *lck     = cl2lov_lock(slice);
593         struct cl_lock_closure *closure = lov_closure_get(env, lock);
594         int i;
595         int result;
596         enum cl_lock_state minstate;
597
598         ENTRY;
599
600         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
601                 int rc;
602                 struct lovsub_lock     *sub;
603                 struct lov_lock_sub    *lls;
604                 struct cl_lock         *sublock;
605                 struct lov_sublock_env *subenv;
606
607                 if (lock->cll_state != CLS_QUEUING) {
608                         /*
609                          * Lock might have left QUEUING state if previous
610                          * iteration released its mutex. Stop enqueing in this
611                          * case and let the upper layer to decide what to do.
612                          */
613                         LASSERT(i > 0 && result != 0);
614                         break;
615                 }
616
617                 lls = &lck->lls_sub[i];
618                 sub = lls->sub_lock;
619                 /*
620                  * Sub-lock might have been canceled, while top-lock was
621                  * cached.
622                  */
623                 if (sub == NULL) {
624                         result = lov_sublock_fill(env, lock, io, lck, i);
625                         /* lov_sublock_fill() released @lock mutex,
626                          * restart. */
627                         break;
628                 }
629                 sublock = sub->lss_cl.cls_lock;
630                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
631                 if (rc == 0) {
632                         lov_sublock_hold(env, lck, i);
633                         rc = lov_lock_enqueue_one(subenv->lse_env, lck, sublock,
634                                                   subenv->lse_io, enqflags,
635                                                   i == lck->lls_nr - 1);
636                         minstate = min(minstate, sublock->cll_state);
637                         if (rc == CLO_WAIT) {
638                                 switch (sublock->cll_state) {
639                                 case CLS_QUEUING:
640                                         /* take recursive mutex, the lock is
641                                          * released in lov_lock_enqueue_wait.
642                                          */
643                                         cl_lock_mutex_get(env, sublock);
644                                         lov_sublock_unlock(env, sub, closure,
645                                                            subenv);
646                                         rc = lov_lock_enqueue_wait(env, lck,
647                                                                    sublock);
648                                         break;
649                                 case CLS_CACHED:
650                                         rc = lov_sublock_release(env, lck, i,
651                                                                  1, rc);
652                                 default:
653                                         lov_sublock_unlock(env, sub, closure,
654                                                            subenv);
655                                         break;
656                                 }
657                         } else {
658                                 LASSERT(sublock->cll_conflict == NULL);
659                                 lov_sublock_unlock(env, sub, closure, subenv);
660                         }
661                 }
662                 result = lov_subresult(result, rc);
663                 if (result != 0)
664                         break;
665         }
666         cl_lock_closure_fini(closure);
667         RETURN(result ?: minstate >= CLS_ENQUEUED ? 0 : CLO_WAIT);
668 }
669
670 static int lov_lock_unuse(const struct lu_env *env,
671                           const struct cl_lock_slice *slice)
672 {
673         struct lov_lock        *lck     = cl2lov_lock(slice);
674         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
675         int i;
676         int result;
677
678         ENTRY;
679
680         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
681                 int rc;
682                 struct lovsub_lock     *sub;
683                 struct cl_lock         *sublock;
684                 struct lov_lock_sub    *lls;
685                 struct lov_sublock_env *subenv;
686
687                 /* top-lock state cannot change concurrently, because single
688                  * thread (one that released the last hold) carries unlocking
689                  * to the completion. */
690                 LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
691                 lls = &lck->lls_sub[i];
692                 sub = lls->sub_lock;
693                 if (sub == NULL)
694                         continue;
695
696                 sublock = sub->lss_cl.cls_lock;
697                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
698                 if (rc == 0) {
699                         if (lls->sub_flags & LSF_HELD) {
700                                 LASSERT(sublock->cll_state == CLS_HELD);
701                                 rc = cl_unuse_try(subenv->lse_env, sublock);
702                                 rc = lov_sublock_release(env, lck, i, 0, rc);
703                         }
704                         lov_sublock_unlock(env, sub, closure, subenv);
705                 }
706                 result = lov_subresult(result, rc);
707         }
708
709         if (result == 0 && lck->lls_cancel_race) {
710                 lck->lls_cancel_race = 0;
711                 result = -ESTALE;
712         }
713         cl_lock_closure_fini(closure);
714         RETURN(result);
715 }
716
717
718 static void lov_lock_cancel(const struct lu_env *env,
719                            const struct cl_lock_slice *slice)
720 {
721         struct lov_lock        *lck     = cl2lov_lock(slice);
722         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
723         int i;
724         int result;
725
726         ENTRY;
727
728         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
729                 int rc;
730                 struct lovsub_lock     *sub;
731                 struct cl_lock         *sublock;
732                 struct lov_lock_sub    *lls;
733                 struct lov_sublock_env *subenv;
734
735                 /* top-lock state cannot change concurrently, because single
736                  * thread (one that released the last hold) carries unlocking
737                  * to the completion. */
738                 lls = &lck->lls_sub[i];
739                 sub = lls->sub_lock;
740                 if (sub == NULL)
741                         continue;
742
743                 sublock = sub->lss_cl.cls_lock;
744                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
745                 if (rc == 0) {
746                         if (!(lls->sub_flags & LSF_HELD)) {
747                                 lov_sublock_unlock(env, sub, closure, subenv);
748                                 continue;
749                         }
750
751                         switch(sublock->cll_state) {
752                         case CLS_HELD:
753                                 rc = cl_unuse_try(subenv->lse_env,
754                                                   sublock);
755                                 lov_sublock_release(env, lck, i, 0, 0);
756                                 break;
757                         case CLS_ENQUEUED:
758                                 /* TODO: it's not a good idea to cancel this
759                                  * lock because it's innocent. But it's
760                                  * acceptable. The better way would be to
761                                  * define a new lock method to unhold the
762                                  * dlm lock. */
763                                 cl_lock_cancel(env, sublock);
764                         default:
765                                 lov_sublock_release(env, lck, i, 1, 0);
766                                 break;
767                         }
768                         lov_sublock_unlock(env, sub, closure, subenv);
769                 }
770
771                 if (rc == CLO_REPEAT) {
772                         --i;
773                         continue;
774                 }
775
776                 result = lov_subresult(result, rc);
777         }
778
779         if (result)
780                 CL_LOCK_DEBUG(D_ERROR, env, slice->cls_lock,
781                               "lov_lock_cancel fails with %d.\n", result);
782
783         cl_lock_closure_fini(closure);
784 }
785
786 static int lov_lock_wait(const struct lu_env *env,
787                          const struct cl_lock_slice *slice)
788 {
789         struct lov_lock        *lck     = cl2lov_lock(slice);
790         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
791         enum cl_lock_state      minstate;
792         int                     result;
793         int                     i;
794
795         ENTRY;
796
797         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
798                 int rc;
799                 struct lovsub_lock     *sub;
800                 struct cl_lock         *sublock;
801                 struct lov_lock_sub    *lls;
802                 struct lov_sublock_env *subenv;
803
804                 lls = &lck->lls_sub[i];
805                 sub = lls->sub_lock;
806                 LASSERT(sub != NULL);
807                 sublock = sub->lss_cl.cls_lock;
808                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
809                 if (rc == 0) {
810                         LASSERT(sublock->cll_state >= CLS_ENQUEUED);
811                         if (sublock->cll_state < CLS_HELD)
812                                 rc = cl_wait_try(env, sublock);
813
814                         minstate = min(minstate, sublock->cll_state);
815                         lov_sublock_unlock(env, sub, closure, subenv);
816                 }
817                 result = lov_subresult(result, rc);
818                 if (result != 0)
819                         break;
820         }
821         cl_lock_closure_fini(closure);
822         RETURN(result ?: minstate >= CLS_HELD ? 0 : CLO_WAIT);
823 }
824
825 static int lov_lock_use(const struct lu_env *env,
826                         const struct cl_lock_slice *slice)
827 {
828         struct lov_lock        *lck     = cl2lov_lock(slice);
829         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
830         int                     result;
831         int                     i;
832
833         LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
834         ENTRY;
835
836         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
837                 int rc;
838                 struct lovsub_lock     *sub;
839                 struct cl_lock         *sublock;
840                 struct lov_lock_sub    *lls;
841                 struct lov_sublock_env *subenv;
842
843                 LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
844
845                 lls = &lck->lls_sub[i];
846                 sub = lls->sub_lock;
847                 if (sub == NULL) {
848                         /*
849                          * Sub-lock might have been canceled, while top-lock was
850                          * cached.
851                          */
852                         result = -ESTALE;
853                         break;
854                 }
855
856                 sublock = sub->lss_cl.cls_lock;
857                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
858                 if (rc == 0) {
859                         LASSERT(sublock->cll_state != CLS_FREEING);
860                         lov_sublock_hold(env, lck, i);
861                         if (sublock->cll_state == CLS_CACHED) {
862                                 rc = cl_use_try(subenv->lse_env, sublock, 0);
863                                 if (rc != 0)
864                                         rc = lov_sublock_release(env, lck,
865                                                                  i, 1, rc);
866                         }
867                         lov_sublock_unlock(env, sub, closure, subenv);
868                 }
869                 result = lov_subresult(result, rc);
870                 if (result != 0)
871                         break;
872         }
873
874         if (lck->lls_cancel_race) {
875                 /*
876                  * If there is unlocking happened at the same time, then
877                  * sublock_lock state should be FREEING, and lov_sublock_lock
878                  * should return CLO_REPEAT. In this case, it should return
879                  * ESTALE, and up layer should reset the lock state to be NEW.
880                  */
881                 lck->lls_cancel_race = 0;
882                 LASSERT(result != 0);
883                 result = -ESTALE;
884         }
885         cl_lock_closure_fini(closure);
886         RETURN(result);
887 }
888
889 #if 0
890 static int lock_lock_multi_match()
891 {
892         struct cl_lock          *lock    = slice->cls_lock;
893         struct cl_lock_descr    *subneed = &lov_env_info(env)->lti_ldescr;
894         struct lov_object       *loo     = cl2lov(lov->lls_cl.cls_obj);
895         struct lov_layout_raid0 *r0      = lov_r0(loo);
896         struct lov_lock_sub     *sub;
897         struct cl_object        *subobj;
898         obd_off  fstart;
899         obd_off  fend;
900         obd_off  start;
901         obd_off  end;
902         int i;
903
904         fstart = cl_offset(need->cld_obj, need->cld_start);
905         fend   = cl_offset(need->cld_obj, need->cld_end + 1) - 1;
906         subneed->cld_mode = need->cld_mode;
907         cl_lock_mutex_get(env, lock);
908         for (i = 0; i < lov->lls_nr; ++i) {
909                 sub = &lov->lls_sub[i];
910                 if (sub->sub_lock == NULL)
911                         continue;
912                 subobj = sub->sub_descr.cld_obj;
913                 if (!lov_stripe_intersects(r0->lo_lsm, sub->sub_stripe,
914                                            fstart, fend, &start, &end))
915                         continue;
916                 subneed->cld_start = cl_index(subobj, start);
917                 subneed->cld_end   = cl_index(subobj, end);
918                 subneed->cld_obj   = subobj;
919                 if (!cl_lock_ext_match(&sub->sub_got, subneed)) {
920                         result = 0;
921                         break;
922                 }
923         }
924         cl_lock_mutex_put(env, lock);
925 }
926 #endif
927
928 /**
929  * Check if the extent region \a descr is covered by \a child against the
930  * specific \a stripe.
931  */
932 static int lov_lock_stripe_is_matching(const struct lu_env *env,
933                                        struct lov_object *lov, int stripe,
934                                        const struct cl_lock_descr *child,
935                                        const struct cl_lock_descr *descr)
936 {
937         struct lov_stripe_md *lsm = lov_r0(lov)->lo_lsm;
938         obd_off start;
939         obd_off end;
940         int result;
941
942         if (lov_r0(lov)->lo_nr == 1)
943                 return cl_lock_ext_match(child, descr);
944
945         /*
946          * For a multi-stripes object:
947          * - make sure the descr only covers child's stripe, and
948          * - check if extent is matching.
949          */
950         start = cl_offset(&lov->lo_cl, descr->cld_start);
951         end   = cl_offset(&lov->lo_cl, descr->cld_end + 1) - 1;
952         result = end - start <= lsm->lsm_stripe_size &&
953                  stripe == lov_stripe_number(lsm, start) &&
954                  stripe == lov_stripe_number(lsm, end);
955         if (result) {
956                 struct cl_lock_descr *subd = &lov_env_info(env)->lti_ldescr;
957                 obd_off sub_start;
958                 obd_off sub_end;
959
960                 subd->cld_obj  = NULL;   /* don't need sub object at all */
961                 subd->cld_mode = descr->cld_mode;
962                 subd->cld_gid  = descr->cld_gid;
963                 result = lov_stripe_intersects(lsm, stripe, start, end,
964                                                &sub_start, &sub_end);
965                 LASSERT(result);
966                 subd->cld_start = cl_index(child->cld_obj, sub_start);
967                 subd->cld_end   = cl_index(child->cld_obj, sub_end);
968                 result = cl_lock_ext_match(child, subd);
969         }
970         return result;
971 }
972
973 /**
974  * An implementation of cl_lock_operations::clo_fits_into() method.
975  *
976  * Checks whether a lock (given by \a slice) is suitable for \a
977  * io. Multi-stripe locks can be used only for "quick" io, like truncate, or
978  * O_APPEND write.
979  *
980  * \see ccc_lock_fits_into().
981  */
982 static int lov_lock_fits_into(const struct lu_env *env,
983                               const struct cl_lock_slice *slice,
984                               const struct cl_lock_descr *need,
985                               const struct cl_io *io)
986 {
987         struct lov_lock   *lov = cl2lov_lock(slice);
988         struct lov_object *obj = cl2lov(slice->cls_obj);
989         int result;
990
991         LASSERT(cl_object_same(need->cld_obj, slice->cls_obj));
992         LASSERT(lov->lls_nr > 0);
993
994         ENTRY;
995
996         if (need->cld_mode == CLM_GROUP)
997                 /*
998                  * always allow to match group lock.
999                  */
1000                 result = cl_lock_ext_match(&lov->lls_orig, need);
1001         else if (lov->lls_nr == 1) {
1002                 struct cl_lock_descr *got = &lov->lls_sub[0].sub_got;
1003                 result = lov_lock_stripe_is_matching(env,
1004                                                      cl2lov(slice->cls_obj),
1005                                                      lov->lls_sub[0].sub_stripe,
1006                                                      got, need);
1007         } else if (io->ci_type != CIT_SETATTR && io->ci_type != CIT_MISC &&
1008                    !cl_io_is_append(io) && need->cld_mode != CLM_PHANTOM)
1009                 /*
1010                  * Multi-stripe locks are only suitable for `quick' IO and for
1011                  * glimpse.
1012                  */
1013                 result = 0;
1014         else
1015                 /*
1016                  * Most general case: multi-stripe existing lock, and
1017                  * (potentially) multi-stripe @need lock. Check that @need is
1018                  * covered by @lov's sub-locks.
1019                  *
1020                  * For now, ignore lock expansions made by the server, and
1021                  * match against original lock extent.
1022                  */
1023                 result = cl_lock_ext_match(&lov->lls_orig, need);
1024         CDEBUG(D_DLMTRACE, DDESCR"/"DDESCR" %d %d/%d: %d\n",
1025                PDESCR(&lov->lls_orig), PDESCR(&lov->lls_sub[0].sub_got),
1026                lov->lls_sub[0].sub_stripe, lov->lls_nr, lov_r0(obj)->lo_nr,
1027                result);
1028         RETURN(result);
1029 }
1030
1031 void lov_lock_unlink(const struct lu_env *env,
1032                      struct lov_lock_link *link, struct lovsub_lock *sub)
1033 {
1034         struct lov_lock *lck    = link->lll_super;
1035         struct cl_lock  *parent = lck->lls_cl.cls_lock;
1036
1037         LASSERT(cl_lock_is_mutexed(parent));
1038         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
1039         ENTRY;
1040
1041         cfs_list_del_init(&link->lll_list);
1042         LASSERT(lck->lls_sub[link->lll_idx].sub_lock == sub);
1043         /* yank this sub-lock from parent's array */
1044         lck->lls_sub[link->lll_idx].sub_lock = NULL;
1045         LASSERT(lck->lls_nr_filled > 0);
1046         lck->lls_nr_filled--;
1047         lu_ref_del(&parent->cll_reference, "lov-child", sub->lss_cl.cls_lock);
1048         cl_lock_put(env, parent);
1049         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
1050         EXIT;
1051 }
1052
1053 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
1054                                          struct lov_lock *lck,
1055                                          struct lovsub_lock *sub)
1056 {
1057         struct lov_lock_link *scan;
1058
1059         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
1060         ENTRY;
1061
1062         cfs_list_for_each_entry(scan, &sub->lss_parents, lll_list) {
1063                 if (scan->lll_super == lck)
1064                         RETURN(scan);
1065         }
1066         RETURN(NULL);
1067 }
1068
1069 /**
1070  * An implementation of cl_lock_operations::clo_delete() method. This is
1071  * invoked for "top-to-bottom" delete, when lock destruction starts from the
1072  * top-lock, e.g., as a result of inode destruction.
1073  *
1074  * Unlinks top-lock from all its sub-locks. Sub-locks are not deleted there:
1075  * this is done separately elsewhere:
1076  *
1077  *     - for inode destruction, lov_object_delete() calls cl_object_kill() for
1078  *       each sub-object, purging its locks;
1079  *
1080  *     - in other cases (e.g., a fatal error with a top-lock) sub-locks are
1081  *       left in the cache.
1082  */
1083 static void lov_lock_delete(const struct lu_env *env,
1084                             const struct cl_lock_slice *slice)
1085 {
1086         struct lov_lock        *lck     = cl2lov_lock(slice);
1087         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
1088         struct lov_lock_link   *link;
1089         int                     rc;
1090         int                     i;
1091
1092         LASSERT(slice->cls_lock->cll_state == CLS_FREEING);
1093         ENTRY;
1094
1095         for (i = 0; i < lck->lls_nr; ++i) {
1096                 struct lov_lock_sub *lls = &lck->lls_sub[i];
1097                 struct lovsub_lock  *lsl = lls->sub_lock;
1098
1099                 if (lsl == NULL) /* already removed */
1100                         continue;
1101
1102                 rc = lov_sublock_lock(env, lck, lls, closure, NULL);
1103                 if (rc == CLO_REPEAT) {
1104                         --i;
1105                         continue;
1106                 }
1107
1108                 LASSERT(rc == 0);
1109                 LASSERT(lsl->lss_cl.cls_lock->cll_state < CLS_FREEING);
1110
1111                 if (lls->sub_flags & LSF_HELD)
1112                         lov_sublock_release(env, lck, i, 1, 0);
1113
1114                 link = lov_lock_link_find(env, lck, lsl);
1115                 LASSERT(link != NULL);
1116                 lov_lock_unlink(env, link, lsl);
1117                 LASSERT(lck->lls_sub[i].sub_lock == NULL);
1118
1119                 lov_sublock_unlock(env, lsl, closure, NULL);
1120         }
1121
1122         cl_lock_closure_fini(closure);
1123         EXIT;
1124 }
1125
1126 static int lov_lock_print(const struct lu_env *env, void *cookie,
1127                           lu_printer_t p, const struct cl_lock_slice *slice)
1128 {
1129         struct lov_lock *lck = cl2lov_lock(slice);
1130         int              i;
1131
1132         (*p)(env, cookie, "%d\n", lck->lls_nr);
1133         for (i = 0; i < lck->lls_nr; ++i) {
1134                 struct lov_lock_sub *sub;
1135
1136                 sub = &lck->lls_sub[i];
1137                 (*p)(env, cookie, "    %d %x: ", i, sub->sub_flags);
1138                 if (sub->sub_lock != NULL)
1139                         cl_lock_print(env, cookie, p,
1140                                       sub->sub_lock->lss_cl.cls_lock);
1141                 else
1142                         (*p)(env, cookie, "---\n");
1143         }
1144         return 0;
1145 }
1146
1147 static const struct cl_lock_operations lov_lock_ops = {
1148         .clo_fini      = lov_lock_fini,
1149         .clo_enqueue   = lov_lock_enqueue,
1150         .clo_wait      = lov_lock_wait,
1151         .clo_use       = lov_lock_use,
1152         .clo_unuse     = lov_lock_unuse,
1153         .clo_cancel    = lov_lock_cancel,
1154         .clo_fits_into = lov_lock_fits_into,
1155         .clo_delete    = lov_lock_delete,
1156         .clo_print     = lov_lock_print
1157 };
1158
1159 int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
1160                         struct cl_lock *lock, const struct cl_io *io)
1161 {
1162         struct lov_lock *lck;
1163         int result;
1164
1165         ENTRY;
1166         OBD_SLAB_ALLOC_PTR_GFP(lck, lov_lock_kmem, CFS_ALLOC_IO);
1167         if (lck != NULL) {
1168                 cl_lock_slice_add(lock, &lck->lls_cl, obj, &lov_lock_ops);
1169                 result = lov_lock_sub_init(env, lck, io);
1170         } else
1171                 result = -ENOMEM;
1172         RETURN(result);
1173 }
1174
1175 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
1176                                                struct cl_lock *parent)
1177 {
1178         struct cl_lock_closure *closure;
1179
1180         closure = &lov_env_info(env)->lti_closure;
1181         LASSERT(cfs_list_empty(&closure->clc_list));
1182         cl_lock_closure_init(env, closure, parent, 1);
1183         return closure;
1184 }
1185
1186
1187 /** @} lov */