Whamcloud - gitweb
Don't leak lov_lock at lov_add_target
[fs/lustre-release.git] / lustre / lov / lov_lock.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
30  * Use is subject to license terms.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * Implementation of cl_lock for LOV layer.
37  *
38  *   Author: Nikita Danilov <nikita.danilov@sun.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_LOV
42
43 #include "lov_cl_internal.h"
44
45 /** \addtogroup lov lov @{ */
46
47 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
48                                                struct cl_lock *parent);
49
50 /*****************************************************************************
51  *
52  * Lov lock operations.
53  *
54  */
55
56 static struct lov_sublock_env *lov_sublock_env_get(const struct lu_env *env,
57                                                    struct cl_lock *parent,
58                                                    struct lov_lock_sub *lls)
59 {
60         struct lov_sublock_env *subenv;
61         struct lov_io          *lio    = lov_env_io(env);
62         struct cl_io           *io     = lio->lis_cl.cis_io;
63         struct lov_io_sub      *sub;
64
65         subenv = &lov_env_session(env)->ls_subenv;
66
67         /*
68          * FIXME: We tend to use the subio's env & io to call the sublock
69          * lock operations because osc lock sometimes stores some control
70          * variables in thread's IO infomation(Now only lockless information).
71          * However, if the lock's host(object) is different from the object
72          * for current IO, we have no way to get the subenv and subio because
73          * they are not initialized at all. As a temp fix, in this case,
74          * we still borrow the parent's env to call sublock operations.
75          */
76         if (!cl_object_same(io->ci_obj, parent->cll_descr.cld_obj)) {
77                 subenv->lse_env = env;
78                 subenv->lse_io  = io;
79                 subenv->lse_sub = NULL;
80         } else {
81                 LASSERT(io != NULL);
82                 sub = lov_sub_get(env, lio, lls->sub_stripe);
83                 if (!IS_ERR(sub)) {
84                         subenv->lse_env = sub->sub_env;
85                         subenv->lse_io  = sub->sub_io;
86                         subenv->lse_sub = sub;
87                 } else {
88                         subenv = (void*)sub;
89                 }
90         }
91         return subenv;
92 }
93
94 static void lov_sublock_env_put(struct lov_sublock_env *subenv)
95 {
96         if (subenv && subenv->lse_sub)
97                 lov_sub_put(subenv->lse_sub);
98 }
99
100 static void lov_sublock_adopt(const struct lu_env *env, struct lov_lock *lck,
101                               struct cl_lock *sublock, int idx,
102                               struct lov_lock_link *link)
103 {
104         struct lovsub_lock *lsl;
105         struct cl_lock     *parent = lck->lls_cl.cls_lock;
106         int                 rc;
107
108         LASSERT(cl_lock_is_mutexed(parent));
109         LASSERT(cl_lock_is_mutexed(sublock));
110         ENTRY;
111
112         lsl = cl2sub_lock(sublock);
113         /*
114          * check that sub-lock doesn't have lock link to this top-lock.
115          */
116         LASSERT(lov_lock_link_find(env, lck, lsl) == NULL);
117         LASSERT(idx < lck->lls_nr);
118
119         lck->lls_sub[idx].sub_lock = lsl;
120         lck->lls_nr_filled++;
121         LASSERT(lck->lls_nr_filled <= lck->lls_nr);
122         list_add_tail(&link->lll_list, &lsl->lss_parents);
123         link->lll_idx = idx;
124         link->lll_super = lck;
125         cl_lock_get(parent);
126         lu_ref_add(&parent->cll_reference, "lov-child", sublock);
127         lck->lls_sub[idx].sub_flags |= LSF_HELD;
128         cl_lock_user_add(env, sublock);
129
130         rc = lov_sublock_modify(env, lck, lsl, &sublock->cll_descr, idx);
131         LASSERT(rc == 0); /* there is no way this can fail, currently */
132         EXIT;
133 }
134
135 static struct cl_lock *lov_sublock_alloc(const struct lu_env *env,
136                                          const struct cl_io *io,
137                                          struct lov_lock *lck,
138                                          int idx, struct lov_lock_link **out)
139 {
140         struct cl_lock       *sublock;
141         struct cl_lock       *parent;
142         struct lov_lock_link *link;
143
144         LASSERT(idx < lck->lls_nr);
145         ENTRY;
146
147         OBD_SLAB_ALLOC_PTR_GFP(link, lov_lock_link_kmem, CFS_ALLOC_IO);
148         if (link != NULL) {
149                 struct lov_sublock_env *subenv;
150                 struct lov_lock_sub  *lls;
151                 struct cl_lock_descr *descr;
152
153                 parent = lck->lls_cl.cls_lock;
154                 lls    = &lck->lls_sub[idx];
155                 descr  = &lls->sub_descr;
156
157                 subenv = lov_sublock_env_get(env, parent, lls);
158                 if (!IS_ERR(subenv)) {
159                         /* CAVEAT: Don't try to add a field in lov_lock_sub
160                          * to remember the subio. This is because lock is able
161                          * to be cached, but this is not true for IO. This
162                          * further means a sublock might be referenced in
163                          * different io context. -jay */
164
165                         sublock = cl_lock_hold(subenv->lse_env, subenv->lse_io,
166                                                descr, "lov-parent", parent);
167                         lov_sublock_env_put(subenv);
168                 } else {
169                         /* error occurs. */
170                         sublock = (void*)subenv;
171                 }
172
173                 if (!IS_ERR(sublock))
174                         *out = link;
175                 else
176                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
177         } else
178                 sublock = ERR_PTR(-ENOMEM);
179         RETURN(sublock);
180 }
181
182 static void lov_sublock_unlock(const struct lu_env *env,
183                                struct lovsub_lock *lsl,
184                                struct cl_lock_closure *closure,
185                                struct lov_sublock_env *subenv)
186 {
187         ENTRY;
188         lov_sublock_env_put(subenv);
189         lsl->lss_active = NULL;
190         cl_lock_disclosure(env, closure);
191         EXIT;
192 }
193
194 static int lov_sublock_lock(const struct lu_env *env,
195                             struct lov_lock_sub *lls,
196                             struct cl_lock_closure *closure,
197                             struct lov_sublock_env **lsep)
198 {
199         struct cl_lock *child;
200         int             result = 0;
201         ENTRY;
202
203         LASSERT(list_empty(&closure->clc_list));
204
205         child = lls->sub_lock->lss_cl.cls_lock;
206         result = cl_lock_closure_build(env, child, closure);
207         if (result == 0) {
208                 struct cl_lock *parent = closure->clc_origin;
209
210                 LASSERT(cl_lock_is_mutexed(child));
211                 lls->sub_lock->lss_active = parent;
212
213                 if (lsep) {
214                         struct lov_sublock_env *subenv;
215                         subenv = lov_sublock_env_get(env, parent, lls);
216                         if (IS_ERR(subenv)) {
217                                 lov_sublock_unlock(env, lls->sub_lock,
218                                                    closure, NULL);
219                                 result = PTR_ERR(subenv);
220                         } else {
221                                 *lsep = subenv;
222                         }
223                 }
224         }
225         RETURN(result);
226 }
227
228 /**
229  * Updates the result of a top-lock operation from a result of sub-lock
230  * sub-operations. Top-operations like lov_lock_{enqueue,use,unuse}() iterate
231  * over sub-locks and lov_subresult() is used to calculate return value of a
232  * top-operation. To this end, possible return values of sub-operations are
233  * ordered as
234  *
235  *     - 0                  success
236  *     - CLO_WAIT           wait for event
237  *     - CLO_REPEAT         repeat top-operation
238  *     - -ne                fundamental error
239  *
240  * Top-level return code can only go down through this list. CLO_REPEAT
241  * overwrites CLO_WAIT, because lock mutex was released and sleeping condition
242  * has to be rechecked by the upper layer.
243  */
244 static int lov_subresult(int result, int rc)
245 {
246         int result_rank;
247         int rc_rank;
248
249         LASSERT(result <= 0 || result == CLO_REPEAT || result == CLO_WAIT);
250         LASSERT(rc <= 0 || rc == CLO_REPEAT || rc == CLO_WAIT);
251         CLASSERT(CLO_WAIT < CLO_REPEAT);
252
253         ENTRY;
254
255         /* calculate ranks in the ordering above */
256         result_rank = result < 0 ? 1 + CLO_REPEAT : result;
257         rc_rank = rc < 0 ? 1 + CLO_REPEAT : rc;
258
259         if (result_rank < rc_rank)
260                 result = rc;
261         RETURN(result);
262 }
263
264 /**
265  * Creates sub-locks for a given lov_lock for the first time.
266  *
267  * Goes through all sub-objects of top-object, and creates sub-locks on every
268  * sub-object intersecting with top-lock extent. This is complicated by the
269  * fact that top-lock (that is being created) can be accessed concurrently
270  * through already created sub-locks (possibly shared with other top-locks).
271  */
272 static int lov_lock_sub_init(const struct lu_env *env,
273                              struct lov_lock *lck, const struct cl_io *io)
274 {
275         int result = 0;
276         int i;
277         int j;
278         int nr;
279         int stripe;
280         int start_stripe;
281         obd_off start;
282         obd_off end;
283         obd_off file_start;
284         obd_off file_end;
285
286         struct lov_object       *loo    = cl2lov(lck->lls_cl.cls_obj);
287         struct lov_layout_raid0 *r0     = lov_r0(loo);
288         struct cl_lock          *parent = lck->lls_cl.cls_lock;
289
290         ENTRY;
291
292         lck->lls_orig = parent->cll_descr;
293         file_start = cl_offset(lov2cl(loo), parent->cll_descr.cld_start);
294         file_end   = cl_offset(lov2cl(loo), parent->cll_descr.cld_end + 1) - 1;
295
296         start_stripe = lov_stripe_number(r0->lo_lsm, file_start);
297         for (i = 0, nr = 0; i < r0->lo_nr; i++) {
298                 /*
299                  * XXX for wide striping smarter algorithm is desirable,
300                  * breaking out of the loop, early.
301                  */
302                 stripe = (start_stripe + i) % r0->lo_nr;
303                 if (lov_stripe_intersects(r0->lo_lsm, stripe,
304                                           file_start, file_end, &start, &end))
305                         nr++;
306         }
307         LASSERT(nr > 0);
308         OBD_ALLOC(lck->lls_sub, nr * sizeof lck->lls_sub[0]);
309         if (lck->lls_sub == NULL)
310                 RETURN(-ENOMEM);
311
312         lck->lls_nr = nr;
313         /*
314          * First, fill in sub-lock descriptions in
315          * lck->lls_sub[].sub_descr. They are used by lov_sublock_alloc()
316          * (called below in this function, and by lov_lock_enqueue()) to
317          * create sub-locks. At this moment, no other thread can access
318          * top-lock.
319          */
320         for (j = 0, nr = 0; j < i; ++j) {
321                 stripe = (start_stripe + j) % r0->lo_nr;
322                 if (lov_stripe_intersects(r0->lo_lsm, stripe,
323                                           file_start, file_end, &start, &end)) {
324                         struct cl_lock_descr *descr;
325
326                         descr = &lck->lls_sub[nr].sub_descr;
327
328                         LASSERT(descr->cld_obj == NULL);
329                         descr->cld_obj   = lovsub2cl(r0->lo_sub[stripe]);
330                         descr->cld_start = cl_index(descr->cld_obj, start);
331                         descr->cld_end   = cl_index(descr->cld_obj, end);
332                         descr->cld_mode  = parent->cll_descr.cld_mode;
333                         descr->cld_gid   = parent->cll_descr.cld_gid;
334                         /* XXX has no effect */
335                         lck->lls_sub[nr].sub_got = *descr;
336                         lck->lls_sub[nr].sub_stripe = stripe;
337                         nr++;
338                 }
339         }
340         LASSERT(nr == lck->lls_nr);
341         /*
342          * Then, create sub-locks. Once at least one sub-lock was created,
343          * top-lock can be reached by other threads.
344          */
345         for (i = 0; i < lck->lls_nr; ++i) {
346                 struct cl_lock       *sublock;
347                 struct lov_lock_link *link;
348
349                 if (lck->lls_sub[i].sub_lock == NULL) {
350                         sublock = lov_sublock_alloc(env, io, lck, i, &link);
351                         if (IS_ERR(sublock)) {
352                                 result = PTR_ERR(sublock);
353                                 break;
354                         }
355                         cl_lock_mutex_get(env, sublock);
356                         cl_lock_mutex_get(env, parent);
357                         /*
358                          * recheck under mutex that sub-lock wasn't created
359                          * concurrently, and that top-lock is still alive.
360                          */
361                         if (lck->lls_sub[i].sub_lock == NULL &&
362                             parent->cll_state < CLS_FREEING) {
363                                 lov_sublock_adopt(env, lck, sublock, i, link);
364                                 cl_lock_mutex_put(env, parent);
365                         } else {
366                                 cl_lock_mutex_put(env, parent);
367                                 cl_lock_unhold(env, sublock,
368                                                "lov-parent", parent);
369                         }
370                         cl_lock_mutex_put(env, sublock);
371                 }
372         }
373         /*
374          * Some sub-locks can be missing at this point. This is not a problem,
375          * because enqueue will create them anyway. Main duty of this function
376          * is to fill in sub-lock descriptions in a race free manner.
377          */
378         RETURN(result);
379 }
380
381 static int lov_sublock_release(const struct lu_env *env, struct lov_lock *lck,
382                                int i, int deluser, int rc)
383 {
384         struct cl_lock *parent = lck->lls_cl.cls_lock;
385
386         LASSERT(cl_lock_is_mutexed(parent));
387         ENTRY;
388
389         if (lck->lls_sub[i].sub_flags & LSF_HELD) {
390                 struct cl_lock    *sublock;
391                 int dying;
392
393                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
394                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
395                 LASSERT(cl_lock_is_mutexed(sublock));
396
397                 lck->lls_sub[i].sub_flags &= ~LSF_HELD;
398                 if (deluser)
399                         cl_lock_user_del(env, sublock);
400                 /*
401                  * If the last hold is released, and cancellation is pending
402                  * for a sub-lock, release parent mutex, to avoid keeping it
403                  * while sub-lock is being paged out.
404                  */
405                 dying = (sublock->cll_descr.cld_mode == CLM_PHANTOM ||
406                          sublock->cll_descr.cld_mode == CLM_GROUP ||
407                          (sublock->cll_flags & (CLF_CANCELPEND|CLF_DOOMED))) &&
408                         sublock->cll_holds == 1;
409                 if (dying)
410                         cl_lock_mutex_put(env, parent);
411                 cl_lock_unhold(env, sublock, "lov-parent", parent);
412                 if (dying) {
413                         cl_lock_mutex_get(env, parent);
414                         rc = lov_subresult(rc, CLO_REPEAT);
415                 }
416                 /*
417                  * From now on lck->lls_sub[i].sub_lock is a "weak" pointer,
418                  * not backed by a reference on a
419                  * sub-lock. lovsub_lock_delete() will clear
420                  * lck->lls_sub[i].sub_lock under semaphores, just before
421                  * sub-lock is destroyed.
422                  */
423         }
424         RETURN(rc);
425 }
426
427 static void lov_sublock_hold(const struct lu_env *env, struct lov_lock *lck,
428                              int i)
429 {
430         struct cl_lock *parent = lck->lls_cl.cls_lock;
431
432         LASSERT(cl_lock_is_mutexed(parent));
433         ENTRY;
434
435         if (!(lck->lls_sub[i].sub_flags & LSF_HELD)) {
436                 struct cl_lock *sublock;
437
438                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
439                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
440                 LASSERT(cl_lock_is_mutexed(sublock));
441                 LASSERT(sublock->cll_state != CLS_FREEING);
442
443                 lck->lls_sub[i].sub_flags |= LSF_HELD;
444
445                 cl_lock_get_trust(sublock);
446                 cl_lock_hold_add(env, sublock, "lov-parent", parent);
447                 cl_lock_user_add(env, sublock);
448                 cl_lock_put(env, sublock);
449         }
450         EXIT;
451 }
452
453 static void lov_lock_fini(const struct lu_env *env,
454                           struct cl_lock_slice *slice)
455 {
456         struct lov_lock *lck;
457         int i;
458
459         ENTRY;
460         lck = cl2lov_lock(slice);
461         LASSERT(lck->lls_nr_filled == 0);
462         if (lck->lls_sub != NULL) {
463                 for (i = 0; i < lck->lls_nr; ++i)
464                         /*
465                          * No sub-locks exists at this point, as sub-lock has
466                          * a reference on its parent.
467                          */
468                         LASSERT(lck->lls_sub[i].sub_lock == NULL);
469                 OBD_FREE(lck->lls_sub, lck->lls_nr * sizeof lck->lls_sub[0]);
470         }
471         OBD_SLAB_FREE_PTR(lck, lov_lock_kmem);
472         EXIT;
473 }
474
475 /**
476  * Tries to advance a state machine of a given sub-lock toward enqueuing of
477  * the top-lock.
478  *
479  * \retval 0 if state-transition can proceed
480  * \retval -ve otherwise.
481  */
482 static int lov_lock_enqueue_one(const struct lu_env *env, struct lov_lock *lck,
483                                 struct cl_lock *sublock,
484                                 struct cl_io *io, __u32 enqflags, int last)
485 {
486         int result;
487         ENTRY;
488
489         /* first, try to enqueue a sub-lock ... */
490         result = cl_enqueue_try(env, sublock, io, enqflags);
491         if (sublock->cll_state == CLS_ENQUEUED)
492                 /* if it is enqueued, try to `wait' on it---maybe it's already
493                  * granted */
494                 result = cl_wait_try(env, sublock);
495         /*
496          * If CEF_ASYNC flag is set, then all sub-locks can be enqueued in
497          * parallel, otherwise---enqueue has to wait until sub-lock is granted
498          * before proceeding to the next one.
499          */
500         if (result == CLO_WAIT && sublock->cll_state <= CLS_HELD &&
501             enqflags & CEF_ASYNC && !last)
502                 result = 0;
503         RETURN(result);
504 }
505
506 /**
507  * Helper function for lov_lock_enqueue() that creates missing sub-lock.
508  */
509 static int lov_sublock_fill(const struct lu_env *env, struct cl_lock *parent,
510                             struct cl_io *io, struct lov_lock *lck, int idx)
511 {
512         struct lov_lock_link *link;
513         struct cl_lock       *sublock;
514         int                   result;
515
516         LASSERT(parent->cll_depth == 1);
517         cl_lock_mutex_put(env, parent);
518         sublock = lov_sublock_alloc(env, io, lck, idx, &link);
519         if (!IS_ERR(sublock))
520                 cl_lock_mutex_get(env, sublock);
521         cl_lock_mutex_get(env, parent);
522
523         if (!IS_ERR(sublock)) {
524                 if (parent->cll_state == CLS_QUEUING &&
525                     lck->lls_sub[idx].sub_lock == NULL)
526                         lov_sublock_adopt(env, lck, sublock, idx, link);
527                 else {
528                         /* other thread allocated sub-lock, or enqueue is no
529                          * longer going on */
530                         cl_lock_mutex_put(env, parent);
531                         cl_lock_unhold(env, sublock, "lov-parent", parent);
532                         cl_lock_mutex_get(env, parent);
533                 }
534                 cl_lock_mutex_put(env, sublock);
535                 result = CLO_REPEAT;
536         } else
537                 result = PTR_ERR(sublock);
538         return result;
539 }
540
541 /**
542  * Implementation of cl_lock_operations::clo_enqueue() for lov layer. This
543  * function is rather subtle, as it enqueues top-lock (i.e., advances top-lock
544  * state machine from CLS_QUEUING to CLS_ENQUEUED states) by juggling sub-lock
545  * state machines in the face of sub-locks sharing (by multiple top-locks),
546  * and concurrent sub-lock cancellations.
547  */
548 static int lov_lock_enqueue(const struct lu_env *env,
549                             const struct cl_lock_slice *slice,
550                             struct cl_io *io, __u32 enqflags)
551 {
552         struct cl_lock         *lock    = slice->cls_lock;
553         struct lov_lock        *lck     = cl2lov_lock(slice);
554         struct cl_lock_closure *closure = lov_closure_get(env, lock);
555         int i;
556         int result;
557         enum cl_lock_state minstate;
558
559         ENTRY;
560
561         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
562                 int rc;
563                 struct lovsub_lock     *sub;
564                 struct lov_lock_sub    *lls;
565                 struct cl_lock         *sublock;
566                 struct lov_sublock_env *subenv;
567
568                 if (lock->cll_state != CLS_QUEUING) {
569                         /*
570                          * Lock might have left QUEUING state if previous
571                          * iteration released its mutex. Stop enqueing in this
572                          * case and let the upper layer to decide what to do.
573                          */
574                         LASSERT(i > 0 && result != 0);
575                         break;
576                 }
577
578                 lls = &lck->lls_sub[i];
579                 sub = lls->sub_lock;
580                 /*
581                  * Sub-lock might have been canceled, while top-lock was
582                  * cached.
583                  */
584                 if (sub == NULL) {
585                         result = lov_sublock_fill(env, lock, io, lck, i);
586                         /* lov_sublock_fill() released @lock mutex,
587                          * restart. */
588                         break;
589                 }
590                 sublock = sub->lss_cl.cls_lock;
591                 rc = lov_sublock_lock(env, lls, closure, &subenv);
592                 if (rc == 0) {
593                         lov_sublock_hold(env, lck, i);
594                         rc = lov_lock_enqueue_one(subenv->lse_env, lck, sublock,
595                                                   subenv->lse_io, enqflags,
596                                                   i == lck->lls_nr - 1);
597                         minstate = min(minstate, sublock->cll_state);
598                         /*
599                          * Don't hold a sub-lock in CLS_CACHED state, see
600                          * description for lov_lock::lls_sub.
601                          */
602                         if (sublock->cll_state > CLS_HELD)
603                                 rc = lov_sublock_release(env, lck, i, 1, rc);
604                         lov_sublock_unlock(env, sub, closure, subenv);
605                 }
606                 result = lov_subresult(result, rc);
607                 if (result < 0)
608                         break;
609         }
610         cl_lock_closure_fini(closure);
611         RETURN(result ?: minstate >= CLS_ENQUEUED ? 0 : CLO_WAIT);
612 }
613
614 static int lov_lock_unuse(const struct lu_env *env,
615                           const struct cl_lock_slice *slice)
616 {
617         struct lov_lock        *lck     = cl2lov_lock(slice);
618         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
619         int i;
620         int result;
621
622         ENTRY;
623
624         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
625                 int rc;
626                 struct lovsub_lock     *sub;
627                 struct cl_lock         *sublock;
628                 struct lov_lock_sub    *lls;
629                 struct lov_sublock_env *subenv;
630
631                 /* top-lock state cannot change concurrently, because single
632                  * thread (one that released the last hold) carries unlocking
633                  * to the completion. */
634                 LASSERT(slice->cls_lock->cll_state == CLS_UNLOCKING);
635                 lls = &lck->lls_sub[i];
636                 sub = lls->sub_lock;
637                 if (sub == NULL)
638                         continue;
639
640                 sublock = sub->lss_cl.cls_lock;
641                 rc = lov_sublock_lock(env, lls, closure, &subenv);
642                 if (rc == 0) {
643                         if (lck->lls_sub[i].sub_flags & LSF_HELD) {
644                                 LASSERT(sublock->cll_state == CLS_HELD);
645                                 rc = cl_unuse_try(subenv->lse_env, sublock);
646                                 if (rc != CLO_WAIT)
647                                         rc = lov_sublock_release(env, lck,
648                                                                  i, 0, rc);
649                         }
650                         lov_sublock_unlock(env, sub, closure, subenv);
651                 }
652                 result = lov_subresult(result, rc);
653                 if (result < 0)
654                         break;
655         }
656         if (result == 0 && lck->lls_unuse_race) {
657                 lck->lls_unuse_race = 0;
658                 result = -ESTALE;
659         }
660         cl_lock_closure_fini(closure);
661         RETURN(result);
662 }
663
664 static int lov_lock_wait(const struct lu_env *env,
665                          const struct cl_lock_slice *slice)
666 {
667         struct lov_lock        *lck     = cl2lov_lock(slice);
668         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
669         enum cl_lock_state      minstate;
670         int                     result;
671         int                     i;
672
673         ENTRY;
674
675         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
676                 int rc;
677                 struct lovsub_lock     *sub;
678                 struct cl_lock         *sublock;
679                 struct lov_lock_sub    *lls;
680                 struct lov_sublock_env *subenv;
681
682                 lls = &lck->lls_sub[i];
683                 sub = lls->sub_lock;
684                 LASSERT(sub != NULL);
685                 sublock = sub->lss_cl.cls_lock;
686                 rc = lov_sublock_lock(env, lls, closure, &subenv);
687                 if (rc == 0) {
688                         LASSERT(sublock->cll_state >= CLS_ENQUEUED);
689                         if (sublock->cll_state < CLS_HELD)
690                                 rc = cl_wait_try(env, sublock);
691
692                         minstate = min(minstate, sublock->cll_state);
693                         lov_sublock_unlock(env, sub, closure, subenv);
694                 }
695                 result = lov_subresult(result, rc);
696                 if (result < 0)
697                         break;
698         }
699         cl_lock_closure_fini(closure);
700         RETURN(result ?: minstate >= CLS_HELD ? 0 : CLO_WAIT);
701 }
702
703 static int lov_lock_use(const struct lu_env *env,
704                         const struct cl_lock_slice *slice)
705 {
706         struct lov_lock        *lck     = cl2lov_lock(slice);
707         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
708         int                     result;
709         int                     i;
710
711         LASSERT(slice->cls_lock->cll_state == CLS_CACHED);
712         ENTRY;
713
714         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
715                 int rc;
716                 struct lovsub_lock     *sub;
717                 struct cl_lock         *sublock;
718                 struct lov_lock_sub    *lls;
719                 struct lov_sublock_env *subenv;
720
721                 if (slice->cls_lock->cll_state != CLS_CACHED) {
722                         /* see comment in lov_lock_enqueue(). */
723                         LASSERT(i > 0 && result != 0);
724                         break;
725                 }
726                 /*
727                  * if a sub-lock was destroyed while top-lock was in
728                  * CLS_CACHED state, top-lock would have been moved into
729                  * CLS_NEW state, so all sub-locks have to be in place.
730                  */
731                 lls = &lck->lls_sub[i];
732                 sub = lls->sub_lock;
733                 LASSERT(sub != NULL);
734                 sublock = sub->lss_cl.cls_lock;
735                 rc = lov_sublock_lock(env, lls, closure, &subenv);
736                 if (rc == 0) {
737                         LASSERT(sublock->cll_state != CLS_FREEING);
738                         lov_sublock_hold(env, lck, i);
739                         if (sublock->cll_state == CLS_CACHED) {
740                                 rc = cl_use_try(subenv->lse_env, sublock);
741                                 if (rc != 0)
742                                         rc = lov_sublock_release(env, lck,
743                                                                  i, 1, rc);
744                         } else
745                                 rc = 0;
746                         lov_sublock_unlock(env, sub, closure, subenv);
747                 }
748                 result = lov_subresult(result, rc);
749                 if (result < 0)
750                         break;
751         }
752         cl_lock_closure_fini(closure);
753         RETURN(result);
754 }
755
756 #if 0
757 static int lock_lock_multi_match()
758 {
759         struct cl_lock          *lock    = slice->cls_lock;
760         struct cl_lock_descr    *subneed = &lov_env_info(env)->lti_ldescr;
761         struct lov_object       *loo     = cl2lov(lov->lls_cl.cls_obj);
762         struct lov_layout_raid0 *r0      = lov_r0(loo);
763         struct lov_lock_sub     *sub;
764         struct cl_object        *subobj;
765         obd_off  fstart;
766         obd_off  fend;
767         obd_off  start;
768         obd_off  end;
769         int i;
770
771         fstart = cl_offset(need->cld_obj, need->cld_start);
772         fend   = cl_offset(need->cld_obj, need->cld_end + 1) - 1;
773         subneed->cld_mode = need->cld_mode;
774         cl_lock_mutex_get(env, lock);
775         for (i = 0; i < lov->lls_nr; ++i) {
776                 sub = &lov->lls_sub[i];
777                 if (sub->sub_lock == NULL)
778                         continue;
779                 subobj = sub->sub_descr.cld_obj;
780                 if (!lov_stripe_intersects(r0->lo_lsm, sub->sub_stripe,
781                                            fstart, fend, &start, &end))
782                         continue;
783                 subneed->cld_start = cl_index(subobj, start);
784                 subneed->cld_end   = cl_index(subobj, end);
785                 subneed->cld_obj   = subobj;
786                 if (!cl_lock_ext_match(&sub->sub_got, subneed)) {
787                         result = 0;
788                         break;
789                 }
790         }
791         cl_lock_mutex_put(env, lock);
792 }
793 #endif
794
795 /**
796  * Check if the extent region \a descr is covered by \a child against the
797  * specific \a stripe.
798  */
799 static int lov_lock_stripe_is_matching(const struct lu_env *env,
800                                        struct lov_object *lov, int stripe,
801                                        const struct cl_lock_descr *child,
802                                        const struct cl_lock_descr *descr)
803 {
804         struct lov_stripe_md *lsm = lov_r0(lov)->lo_lsm;
805         obd_off start;
806         obd_off end;
807         int result;
808
809         if (lov_r0(lov)->lo_nr == 1)
810                 return cl_lock_ext_match(child, descr);
811
812         /*
813          * For a multi-stripes object:
814          * - make sure the descr only covers child's stripe, and
815          * - check if extent is matching.
816          */
817         start = cl_offset(&lov->lo_cl, descr->cld_start);
818         end   = cl_offset(&lov->lo_cl, descr->cld_end + 1) - 1;
819         result = end - start <= lsm->lsm_stripe_size &&
820                  stripe == lov_stripe_number(lsm, start) &&
821                  stripe == lov_stripe_number(lsm, end);
822         if (result) {
823                 struct cl_lock_descr *subd = &lov_env_info(env)->lti_ldescr;
824                 obd_off sub_start;
825                 obd_off sub_end;
826
827                 subd->cld_obj  = NULL;   /* don't need sub object at all */
828                 subd->cld_mode = descr->cld_mode;
829                 subd->cld_gid  = descr->cld_gid;
830                 result = lov_stripe_intersects(lsm, stripe, start, end,
831                                                &sub_start, &sub_end);
832                 LASSERT(result);
833                 subd->cld_start = cl_index(child->cld_obj, sub_start);
834                 subd->cld_end   = cl_index(child->cld_obj, sub_end);
835                 result = cl_lock_ext_match(child, subd);
836         }
837         return result;
838 }
839
840 /**
841  * An implementation of cl_lock_operations::clo_fits_into() method.
842  *
843  * Checks whether a lock (given by \a slice) is suitable for \a
844  * io. Multi-stripe locks can be used only for "quick" io, like truncate, or
845  * O_APPEND write.
846  *
847  * \see ccc_lock_fits_into().
848  */
849 static int lov_lock_fits_into(const struct lu_env *env,
850                               const struct cl_lock_slice *slice,
851                               const struct cl_lock_descr *need,
852                               const struct cl_io *io)
853 {
854         struct lov_lock   *lov = cl2lov_lock(slice);
855         struct lov_object *obj = cl2lov(slice->cls_obj);
856         int result;
857
858         LASSERT(cl_object_same(need->cld_obj, slice->cls_obj));
859         LASSERT(lov->lls_nr > 0);
860
861         ENTRY;
862
863         if (need->cld_mode == CLM_GROUP)
864                 /*
865                  * always allow to match group lock.
866                  */
867                 result = cl_lock_ext_match(&lov->lls_orig, need);
868         else if (lov->lls_nr == 1) {
869                 struct cl_lock_descr *got = &lov->lls_sub[0].sub_got;
870                 result = lov_lock_stripe_is_matching(env,
871                                                      cl2lov(slice->cls_obj),
872                                                      lov->lls_sub[0].sub_stripe,
873                                                      got, need);
874         } else if (io->ci_type != CIT_TRUNC && io->ci_type != CIT_MISC &&
875                    !cl_io_is_append(io) && need->cld_mode != CLM_PHANTOM)
876                 /*
877                  * Multi-stripe locks are only suitable for `quick' IO and for
878                  * glimpse.
879                  */
880                 result = 0;
881         else
882                 /*
883                  * Most general case: multi-stripe existing lock, and
884                  * (potentially) multi-stripe @need lock. Check that @need is
885                  * covered by @lov's sub-locks.
886                  *
887                  * For now, ignore lock expansions made by the server, and
888                  * match against original lock extent.
889                  */
890                 result = cl_lock_ext_match(&lov->lls_orig, need);
891         CDEBUG(D_DLMTRACE, DDESCR"/"DDESCR" %i %i/%i: %i\n",
892                PDESCR(&lov->lls_orig), PDESCR(&lov->lls_sub[0].sub_got),
893                lov->lls_sub[0].sub_stripe, lov->lls_nr, lov_r0(obj)->lo_nr,
894                result);
895         RETURN(result);
896 }
897
898 void lov_lock_unlink(const struct lu_env *env,
899                      struct lov_lock_link *link, struct lovsub_lock *sub)
900 {
901         struct lov_lock *lck    = link->lll_super;
902         struct cl_lock  *parent = lck->lls_cl.cls_lock;
903
904         LASSERT(cl_lock_is_mutexed(parent));
905         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
906         ENTRY;
907
908         list_del_init(&link->lll_list);
909         LASSERT(lck->lls_sub[link->lll_idx].sub_lock == sub);
910         /* yank this sub-lock from parent's array */
911         lck->lls_sub[link->lll_idx].sub_lock = NULL;
912         LASSERT(lck->lls_nr_filled > 0);
913         lck->lls_nr_filled--;
914         lu_ref_del(&parent->cll_reference, "lov-child", sub->lss_cl.cls_lock);
915         cl_lock_put(env, parent);
916         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
917         EXIT;
918 }
919
920 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
921                                          struct lov_lock *lck,
922                                          struct lovsub_lock *sub)
923 {
924         struct lov_lock_link *scan;
925
926         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
927         ENTRY;
928
929         list_for_each_entry(scan, &sub->lss_parents, lll_list) {
930                 if (scan->lll_super == lck)
931                         RETURN(scan);
932         }
933         RETURN(NULL);
934 }
935
936 /**
937  * An implementation of cl_lock_operations::clo_delete() method. This is
938  * invoked for "top-to-bottom" delete, when lock destruction starts from the
939  * top-lock, e.g., as a result of inode destruction.
940  *
941  * Unlinks top-lock from all its sub-locks. Sub-locks are not deleted there:
942  * this is done separately elsewhere:
943  *
944  *     - for inode destruction, lov_object_delete() calls cl_object_kill() for
945  *       each sub-object, purging its locks;
946  *
947  *     - in other cases (e.g., a fatal error with a top-lock) sub-locks are
948  *       left in the cache.
949  */
950 static void lov_lock_delete(const struct lu_env *env,
951                             const struct cl_lock_slice *slice)
952 {
953         struct lov_lock        *lck     = cl2lov_lock(slice);
954         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
955         int i;
956
957         LASSERT(slice->cls_lock->cll_state == CLS_FREEING);
958         ENTRY;
959
960         for (i = 0; i < lck->lls_nr; ++i) {
961                 struct lov_lock_sub *lls;
962                 struct lovsub_lock  *lsl;
963                 struct cl_lock      *sublock;
964                 int rc;
965
966                 lls = &lck->lls_sub[i];
967                 lsl = lls->sub_lock;
968                 if (lsl == NULL)
969                         continue;
970
971                 sublock = lsl->lss_cl.cls_lock;
972                 rc = lov_sublock_lock(env, lls, closure, NULL);
973                 if (rc == 0) {
974                         if (lck->lls_sub[i].sub_flags & LSF_HELD)
975                                 lov_sublock_release(env, lck, i, 1, 0);
976                         if (sublock->cll_state < CLS_FREEING) {
977                                 struct lov_lock_link *link;
978
979                                 link = lov_lock_link_find(env, lck, lsl);
980                                 LASSERT(link != NULL);
981                                 lov_lock_unlink(env, link, lsl);
982                                 LASSERT(lck->lls_sub[i].sub_lock == NULL);
983                         }
984                         lov_sublock_unlock(env, lsl, closure, NULL);
985                 } else if (rc == CLO_REPEAT) {
986                         --i; /* repeat with this lock */
987                 } else {
988                         CL_LOCK_DEBUG(D_ERROR, env, sublock,
989                                       "Cannot get sub-lock for delete: %i\n",
990                                       rc);
991                 }
992         }
993         cl_lock_closure_fini(closure);
994         EXIT;
995 }
996
997 static int lov_lock_print(const struct lu_env *env, void *cookie,
998                           lu_printer_t p, const struct cl_lock_slice *slice)
999 {
1000         struct lov_lock *lck = cl2lov_lock(slice);
1001         int              i;
1002
1003         (*p)(env, cookie, "%d\n", lck->lls_nr);
1004         for (i = 0; i < lck->lls_nr; ++i) {
1005                 struct lov_lock_sub *sub;
1006
1007                 sub = &lck->lls_sub[i];
1008                 (*p)(env, cookie, "    %d %x: ", i, sub->sub_flags);
1009                 if (sub->sub_lock != NULL)
1010                         cl_lock_print(env, cookie, p,
1011                                       sub->sub_lock->lss_cl.cls_lock);
1012                 else
1013                         (*p)(env, cookie, "---\n");
1014         }
1015         return 0;
1016 }
1017
1018 static const struct cl_lock_operations lov_lock_ops = {
1019         .clo_fini      = lov_lock_fini,
1020         .clo_enqueue   = lov_lock_enqueue,
1021         .clo_wait      = lov_lock_wait,
1022         .clo_use       = lov_lock_use,
1023         .clo_unuse     = lov_lock_unuse,
1024         .clo_fits_into = lov_lock_fits_into,
1025         .clo_delete    = lov_lock_delete,
1026         .clo_print     = lov_lock_print
1027 };
1028
1029 int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
1030                         struct cl_lock *lock, const struct cl_io *io)
1031 {
1032         struct lov_lock *lck;
1033         int result;
1034
1035         ENTRY;
1036         OBD_SLAB_ALLOC_PTR_GFP(lck, lov_lock_kmem, CFS_ALLOC_IO);
1037         if (lck != NULL) {
1038                 cl_lock_slice_add(lock, &lck->lls_cl, obj, &lov_lock_ops);
1039                 result = lov_lock_sub_init(env, lck, io);
1040         } else
1041                 result = -ENOMEM;
1042         RETURN(result);
1043 }
1044
1045 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
1046                                                struct cl_lock *parent)
1047 {
1048         struct cl_lock_closure *closure;
1049
1050         closure = &lov_env_info(env)->lti_closure;
1051         LASSERT(list_empty(&closure->clc_list));
1052         cl_lock_closure_init(env, closure, parent, 1);
1053         return closure;
1054 }
1055
1056
1057 /** @} lov */