Whamcloud - gitweb
547bdca89eb543103046706ccd7e990f4a7b4643
[fs/lustre-release.git] / lustre / lov / lov_lock.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2013, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * Implementation of cl_lock for LOV layer.
37  *
38  *   Author: Nikita Danilov <nikita.danilov@sun.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_LOV
42
43 #include "lov_cl_internal.h"
44
45 /** \addtogroup lov
46  *  @{
47  */
48
49 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
50                                                struct cl_lock *parent);
51
52 static int lov_lock_unuse(const struct lu_env *env,
53                           const struct cl_lock_slice *slice);
54 /*****************************************************************************
55  *
56  * Lov lock operations.
57  *
58  */
59
60 static struct lov_sublock_env *lov_sublock_env_get(const struct lu_env *env,
61                                                    struct cl_lock *parent,
62                                                    struct lov_lock_sub *lls)
63 {
64         struct lov_sublock_env *subenv;
65         struct lov_io          *lio    = lov_env_io(env);
66         struct cl_io           *io     = lio->lis_cl.cis_io;
67         struct lov_io_sub      *sub;
68
69         subenv = &lov_env_session(env)->ls_subenv;
70
71         /*
72          * FIXME: We tend to use the subio's env & io to call the sublock
73          * lock operations because osc lock sometimes stores some control
74          * variables in thread's IO infomation(Now only lockless information).
75          * However, if the lock's host(object) is different from the object
76          * for current IO, we have no way to get the subenv and subio because
77          * they are not initialized at all. As a temp fix, in this case,
78          * we still borrow the parent's env to call sublock operations.
79          */
80         if (!io || !cl_object_same(io->ci_obj, parent->cll_descr.cld_obj)) {
81                 subenv->lse_env = env;
82                 subenv->lse_io  = io;
83                 subenv->lse_sub = NULL;
84         } else {
85                 sub = lov_sub_get(env, lio, lls->sub_stripe);
86                 if (!IS_ERR(sub)) {
87                         subenv->lse_env = sub->sub_env;
88                         subenv->lse_io  = sub->sub_io;
89                         subenv->lse_sub = sub;
90                 } else {
91                         subenv = (void*)sub;
92                 }
93         }
94         return subenv;
95 }
96
97 static void lov_sublock_env_put(struct lov_sublock_env *subenv)
98 {
99         if (subenv && subenv->lse_sub)
100                 lov_sub_put(subenv->lse_sub);
101 }
102
103 static void lov_sublock_adopt(const struct lu_env *env, struct lov_lock *lck,
104                               struct cl_lock *sublock, int idx,
105                               struct lov_lock_link *link)
106 {
107         struct lovsub_lock *lsl;
108         struct cl_lock     *parent = lck->lls_cl.cls_lock;
109         int                 rc;
110
111         LASSERT(cl_lock_is_mutexed(parent));
112         LASSERT(cl_lock_is_mutexed(sublock));
113         ENTRY;
114
115         lsl = cl2sub_lock(sublock);
116         /*
117          * check that sub-lock doesn't have lock link to this top-lock.
118          */
119         LASSERT(lov_lock_link_find(env, lck, lsl) == NULL);
120         LASSERT(idx < lck->lls_nr);
121
122         lck->lls_sub[idx].sub_lock = lsl;
123         lck->lls_nr_filled++;
124         LASSERT(lck->lls_nr_filled <= lck->lls_nr);
125         cfs_list_add_tail(&link->lll_list, &lsl->lss_parents);
126         link->lll_idx = idx;
127         link->lll_super = lck;
128         cl_lock_get(parent);
129         lu_ref_add(&parent->cll_reference, "lov-child", sublock);
130         lck->lls_sub[idx].sub_flags |= LSF_HELD;
131         cl_lock_user_add(env, sublock);
132
133         rc = lov_sublock_modify(env, lck, lsl, &sublock->cll_descr, idx);
134         LASSERT(rc == 0); /* there is no way this can fail, currently */
135         EXIT;
136 }
137
138 static struct cl_lock *lov_sublock_alloc(const struct lu_env *env,
139                                          const struct cl_io *io,
140                                          struct lov_lock *lck,
141                                          int idx, struct lov_lock_link **out)
142 {
143         struct cl_lock       *sublock;
144         struct cl_lock       *parent;
145         struct lov_lock_link *link;
146
147         LASSERT(idx < lck->lls_nr);
148         ENTRY;
149
150         OBD_SLAB_ALLOC_PTR_GFP(link, lov_lock_link_kmem, __GFP_IO);
151         if (link != NULL) {
152                 struct lov_sublock_env *subenv;
153                 struct lov_lock_sub  *lls;
154                 struct cl_lock_descr *descr;
155
156                 parent = lck->lls_cl.cls_lock;
157                 lls    = &lck->lls_sub[idx];
158                 descr  = &lls->sub_got;
159
160                 subenv = lov_sublock_env_get(env, parent, lls);
161                 if (!IS_ERR(subenv)) {
162                         /* CAVEAT: Don't try to add a field in lov_lock_sub
163                          * to remember the subio. This is because lock is able
164                          * to be cached, but this is not true for IO. This
165                          * further means a sublock might be referenced in
166                          * different io context. -jay */
167
168                         sublock = cl_lock_hold(subenv->lse_env, subenv->lse_io,
169                                                descr, "lov-parent", parent);
170                         lov_sublock_env_put(subenv);
171                 } else {
172                         /* error occurs. */
173                         sublock = (void*)subenv;
174                 }
175
176                 if (!IS_ERR(sublock))
177                         *out = link;
178                 else
179                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
180         } else
181                 sublock = ERR_PTR(-ENOMEM);
182         RETURN(sublock);
183 }
184
185 static void lov_sublock_unlock(const struct lu_env *env,
186                                struct lovsub_lock *lsl,
187                                struct cl_lock_closure *closure,
188                                struct lov_sublock_env *subenv)
189 {
190         ENTRY;
191         lov_sublock_env_put(subenv);
192         lsl->lss_active = NULL;
193         cl_lock_disclosure(env, closure);
194         EXIT;
195 }
196
197 static int lov_sublock_lock(const struct lu_env *env,
198                             struct lov_lock *lck,
199                             struct lov_lock_sub *lls,
200                             struct cl_lock_closure *closure,
201                             struct lov_sublock_env **lsep)
202 {
203         struct lovsub_lock *sublock;
204         struct cl_lock     *child;
205         int                 result = 0;
206         ENTRY;
207
208         LASSERT(cfs_list_empty(&closure->clc_list));
209
210         sublock = lls->sub_lock;
211         child = sublock->lss_cl.cls_lock;
212         result = cl_lock_closure_build(env, child, closure);
213         if (result == 0) {
214                 struct cl_lock *parent = closure->clc_origin;
215
216                 LASSERT(cl_lock_is_mutexed(child));
217                 sublock->lss_active = parent;
218
219                 if (unlikely((child->cll_state == CLS_FREEING) ||
220                              (child->cll_flags & CLF_CANCELLED))) {
221                         struct lov_lock_link *link;
222                         /*
223                          * we could race with lock deletion which temporarily
224                          * put the lock in freeing state, bug 19080.
225                          */
226                         LASSERT(!(lls->sub_flags & LSF_HELD));
227
228                         link = lov_lock_link_find(env, lck, sublock);
229                         LASSERT(link != NULL);
230                         lov_lock_unlink(env, link, sublock);
231                         lov_sublock_unlock(env, sublock, closure, NULL);
232                         lck->lls_cancel_race = 1;
233                         result = CLO_REPEAT;
234                 } else if (lsep) {
235                         struct lov_sublock_env *subenv;
236                         subenv = lov_sublock_env_get(env, parent, lls);
237                         if (IS_ERR(subenv)) {
238                                 lov_sublock_unlock(env, sublock,
239                                                    closure, NULL);
240                                 result = PTR_ERR(subenv);
241                         } else {
242                                 *lsep = subenv;
243                         }
244                 }
245         }
246         RETURN(result);
247 }
248
249 /**
250  * Updates the result of a top-lock operation from a result of sub-lock
251  * sub-operations. Top-operations like lov_lock_{enqueue,use,unuse}() iterate
252  * over sub-locks and lov_subresult() is used to calculate return value of a
253  * top-operation. To this end, possible return values of sub-operations are
254  * ordered as
255  *
256  *     - 0                  success
257  *     - CLO_WAIT           wait for event
258  *     - CLO_REPEAT         repeat top-operation
259  *     - -ne                fundamental error
260  *
261  * Top-level return code can only go down through this list. CLO_REPEAT
262  * overwrites CLO_WAIT, because lock mutex was released and sleeping condition
263  * has to be rechecked by the upper layer.
264  */
265 static int lov_subresult(int result, int rc)
266 {
267         int result_rank;
268         int rc_rank;
269
270         ENTRY;
271
272         LASSERTF(result <= 0 || result == CLO_REPEAT || result == CLO_WAIT,
273                  "result = %d", result);
274         LASSERTF(rc <= 0 || rc == CLO_REPEAT || rc == CLO_WAIT,
275                  "rc = %d\n", rc);
276         CLASSERT(CLO_WAIT < CLO_REPEAT);
277
278         /* calculate ranks in the ordering above */
279         result_rank = result < 0 ? 1 + CLO_REPEAT : result;
280         rc_rank = rc < 0 ? 1 + CLO_REPEAT : rc;
281
282         if (result_rank < rc_rank)
283                 result = rc;
284         RETURN(result);
285 }
286
287 /**
288  * Creates sub-locks for a given lov_lock for the first time.
289  *
290  * Goes through all sub-objects of top-object, and creates sub-locks on every
291  * sub-object intersecting with top-lock extent. This is complicated by the
292  * fact that top-lock (that is being created) can be accessed concurrently
293  * through already created sub-locks (possibly shared with other top-locks).
294  */
295 static int lov_lock_sub_init(const struct lu_env *env,
296                              struct lov_lock *lck, const struct cl_io *io)
297 {
298         int result = 0;
299         int i;
300         int nr;
301         obd_off start;
302         obd_off end;
303         obd_off file_start;
304         obd_off file_end;
305
306         struct lov_object       *loo    = cl2lov(lck->lls_cl.cls_obj);
307         struct lov_layout_raid0 *r0     = lov_r0(loo);
308         struct cl_lock          *parent = lck->lls_cl.cls_lock;
309
310         ENTRY;
311
312         lck->lls_orig = parent->cll_descr;
313         file_start = cl_offset(lov2cl(loo), parent->cll_descr.cld_start);
314         file_end   = cl_offset(lov2cl(loo), parent->cll_descr.cld_end + 1) - 1;
315
316         for (i = 0, nr = 0; i < r0->lo_nr; i++) {
317                 /*
318                  * XXX for wide striping smarter algorithm is desirable,
319                  * breaking out of the loop, early.
320                  */
321                 if (lov_stripe_intersects(loo->lo_lsm, i,
322                                           file_start, file_end, &start, &end))
323                         nr++;
324         }
325         LASSERT(nr > 0);
326         OBD_ALLOC_LARGE(lck->lls_sub, nr * sizeof lck->lls_sub[0]);
327         if (lck->lls_sub == NULL)
328                 RETURN(-ENOMEM);
329
330         lck->lls_nr = nr;
331         /*
332          * First, fill in sub-lock descriptions in
333          * lck->lls_sub[].sub_descr. They are used by lov_sublock_alloc()
334          * (called below in this function, and by lov_lock_enqueue()) to
335          * create sub-locks. At this moment, no other thread can access
336          * top-lock.
337          */
338         for (i = 0, nr = 0; i < r0->lo_nr; ++i) {
339                 if (lov_stripe_intersects(loo->lo_lsm, i,
340                                           file_start, file_end, &start, &end)) {
341                         struct cl_lock_descr *descr;
342
343                         descr = &lck->lls_sub[nr].sub_descr;
344
345                         LASSERT(descr->cld_obj == NULL);
346                         descr->cld_obj   = lovsub2cl(r0->lo_sub[i]);
347                         descr->cld_start = cl_index(descr->cld_obj, start);
348                         descr->cld_end   = cl_index(descr->cld_obj, end);
349                         descr->cld_mode  = parent->cll_descr.cld_mode;
350                         descr->cld_gid   = parent->cll_descr.cld_gid;
351                         descr->cld_enq_flags   = parent->cll_descr.cld_enq_flags;
352                         /* XXX has no effect */
353                         lck->lls_sub[nr].sub_got = *descr;
354                         lck->lls_sub[nr].sub_stripe = i;
355                         nr++;
356                 }
357         }
358         LASSERT(nr == lck->lls_nr);
359         /*
360          * Then, create sub-locks. Once at least one sub-lock was created,
361          * top-lock can be reached by other threads.
362          */
363         for (i = 0; i < lck->lls_nr; ++i) {
364                 struct cl_lock       *sublock;
365                 struct lov_lock_link *link;
366
367                 if (lck->lls_sub[i].sub_lock == NULL) {
368                         sublock = lov_sublock_alloc(env, io, lck, i, &link);
369                         if (IS_ERR(sublock)) {
370                                 result = PTR_ERR(sublock);
371                                 break;
372                         }
373                         cl_lock_get_trust(sublock);
374                         cl_lock_mutex_get(env, sublock);
375                         cl_lock_mutex_get(env, parent);
376                         /*
377                          * recheck under mutex that sub-lock wasn't created
378                          * concurrently, and that top-lock is still alive.
379                          */
380                         if (lck->lls_sub[i].sub_lock == NULL &&
381                             parent->cll_state < CLS_FREEING) {
382                                 lov_sublock_adopt(env, lck, sublock, i, link);
383                                 cl_lock_mutex_put(env, parent);
384                         } else {
385                                 OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
386                                 cl_lock_mutex_put(env, parent);
387                                 cl_lock_unhold(env, sublock,
388                                                "lov-parent", parent);
389                         }
390                         cl_lock_mutex_put(env, sublock);
391                         cl_lock_put(env, sublock);
392                 }
393         }
394         /*
395          * Some sub-locks can be missing at this point. This is not a problem,
396          * because enqueue will create them anyway. Main duty of this function
397          * is to fill in sub-lock descriptions in a race free manner.
398          */
399         RETURN(result);
400 }
401
402 static int lov_sublock_release(const struct lu_env *env, struct lov_lock *lck,
403                                int i, int deluser, int rc)
404 {
405         struct cl_lock *parent = lck->lls_cl.cls_lock;
406
407         LASSERT(cl_lock_is_mutexed(parent));
408         ENTRY;
409
410         if (lck->lls_sub[i].sub_flags & LSF_HELD) {
411                 struct cl_lock    *sublock;
412                 int dying;
413
414                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
415                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
416                 LASSERT(cl_lock_is_mutexed(sublock));
417
418                 lck->lls_sub[i].sub_flags &= ~LSF_HELD;
419                 if (deluser)
420                         cl_lock_user_del(env, sublock);
421                 /*
422                  * If the last hold is released, and cancellation is pending
423                  * for a sub-lock, release parent mutex, to avoid keeping it
424                  * while sub-lock is being paged out.
425                  */
426                 dying = (sublock->cll_descr.cld_mode == CLM_PHANTOM ||
427                          sublock->cll_descr.cld_mode == CLM_GROUP ||
428                          (sublock->cll_flags & (CLF_CANCELPEND|CLF_DOOMED))) &&
429                         sublock->cll_holds == 1;
430                 if (dying)
431                         cl_lock_mutex_put(env, parent);
432                 cl_lock_unhold(env, sublock, "lov-parent", parent);
433                 if (dying) {
434                         cl_lock_mutex_get(env, parent);
435                         rc = lov_subresult(rc, CLO_REPEAT);
436                 }
437                 /*
438                  * From now on lck->lls_sub[i].sub_lock is a "weak" pointer,
439                  * not backed by a reference on a
440                  * sub-lock. lovsub_lock_delete() will clear
441                  * lck->lls_sub[i].sub_lock under semaphores, just before
442                  * sub-lock is destroyed.
443                  */
444         }
445         RETURN(rc);
446 }
447
448 static void lov_sublock_hold(const struct lu_env *env, struct lov_lock *lck,
449                              int i)
450 {
451         struct cl_lock *parent = lck->lls_cl.cls_lock;
452
453         LASSERT(cl_lock_is_mutexed(parent));
454         ENTRY;
455
456         if (!(lck->lls_sub[i].sub_flags & LSF_HELD)) {
457                 struct cl_lock *sublock;
458
459                 LASSERT(lck->lls_sub[i].sub_lock != NULL);
460                 sublock = lck->lls_sub[i].sub_lock->lss_cl.cls_lock;
461                 LASSERT(cl_lock_is_mutexed(sublock));
462                 LASSERT(sublock->cll_state != CLS_FREEING);
463
464                 lck->lls_sub[i].sub_flags |= LSF_HELD;
465
466                 cl_lock_get_trust(sublock);
467                 cl_lock_hold_add(env, sublock, "lov-parent", parent);
468                 cl_lock_user_add(env, sublock);
469                 cl_lock_put(env, sublock);
470         }
471         EXIT;
472 }
473
474 static void lov_lock_fini(const struct lu_env *env,
475                           struct cl_lock_slice *slice)
476 {
477         struct lov_lock *lck;
478         int i;
479
480         ENTRY;
481         lck = cl2lov_lock(slice);
482         LASSERT(lck->lls_nr_filled == 0);
483         if (lck->lls_sub != NULL) {
484                 for (i = 0; i < lck->lls_nr; ++i)
485                         /*
486                          * No sub-locks exists at this point, as sub-lock has
487                          * a reference on its parent.
488                          */
489                         LASSERT(lck->lls_sub[i].sub_lock == NULL);
490                 OBD_FREE_LARGE(lck->lls_sub,
491                                lck->lls_nr * sizeof lck->lls_sub[0]);
492         }
493         OBD_SLAB_FREE_PTR(lck, lov_lock_kmem);
494         EXIT;
495 }
496
497 static int lov_lock_enqueue_wait(const struct lu_env *env,
498                                  struct lov_lock *lck,
499                                  struct cl_lock *sublock)
500 {
501         struct cl_lock *lock = lck->lls_cl.cls_lock;
502         int             result;
503         ENTRY;
504
505         LASSERT(cl_lock_is_mutexed(lock));
506
507         cl_lock_mutex_put(env, lock);
508         result = cl_lock_enqueue_wait(env, sublock, 0);
509         cl_lock_mutex_get(env, lock);
510         RETURN(result ?: CLO_REPEAT);
511 }
512
513 /**
514  * Tries to advance a state machine of a given sub-lock toward enqueuing of
515  * the top-lock.
516  *
517  * \retval 0 if state-transition can proceed
518  * \retval -ve otherwise.
519  */
520 static int lov_lock_enqueue_one(const struct lu_env *env, struct lov_lock *lck,
521                                 struct cl_lock *sublock,
522                                 struct cl_io *io, __u32 enqflags, int last)
523 {
524         int result;
525         ENTRY;
526
527         /* first, try to enqueue a sub-lock ... */
528         result = cl_enqueue_try(env, sublock, io, enqflags);
529         if ((sublock->cll_state == CLS_ENQUEUED) && !(enqflags & CEF_AGL)) {
530                 /* if it is enqueued, try to `wait' on it---maybe it's already
531                  * granted */
532                 result = cl_wait_try(env, sublock);
533                 if (result == CLO_REENQUEUED)
534                         result = CLO_WAIT;
535         }
536         /*
537          * If CEF_ASYNC flag is set, then all sub-locks can be enqueued in
538          * parallel, otherwise---enqueue has to wait until sub-lock is granted
539          * before proceeding to the next one.
540          */
541         if ((result == CLO_WAIT) && (sublock->cll_state <= CLS_HELD) &&
542             (enqflags & CEF_ASYNC) && (!last || (enqflags & CEF_AGL)))
543                 result = 0;
544         RETURN(result);
545 }
546
547 /**
548  * Helper function for lov_lock_enqueue() that creates missing sub-lock.
549  */
550 static int lov_sublock_fill(const struct lu_env *env, struct cl_lock *parent,
551                             struct cl_io *io, struct lov_lock *lck, int idx)
552 {
553         struct lov_lock_link *link;
554         struct cl_lock       *sublock;
555         int                   result;
556
557         LASSERT(parent->cll_depth == 1);
558         cl_lock_mutex_put(env, parent);
559         sublock = lov_sublock_alloc(env, io, lck, idx, &link);
560         if (!IS_ERR(sublock))
561                 cl_lock_mutex_get(env, sublock);
562         cl_lock_mutex_get(env, parent);
563
564         if (!IS_ERR(sublock)) {
565                 cl_lock_get_trust(sublock);
566                 if (parent->cll_state == CLS_QUEUING &&
567                     lck->lls_sub[idx].sub_lock == NULL) {
568                         lov_sublock_adopt(env, lck, sublock, idx, link);
569                 } else {
570                         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
571                         /* other thread allocated sub-lock, or enqueue is no
572                          * longer going on */
573                         cl_lock_mutex_put(env, parent);
574                         cl_lock_unhold(env, sublock, "lov-parent", parent);
575                         cl_lock_mutex_get(env, parent);
576                 }
577                 cl_lock_mutex_put(env, sublock);
578                 cl_lock_put(env, sublock);
579                 result = CLO_REPEAT;
580         } else
581                 result = PTR_ERR(sublock);
582         return result;
583 }
584
585 /**
586  * Implementation of cl_lock_operations::clo_enqueue() for lov layer. This
587  * function is rather subtle, as it enqueues top-lock (i.e., advances top-lock
588  * state machine from CLS_QUEUING to CLS_ENQUEUED states) by juggling sub-lock
589  * state machines in the face of sub-locks sharing (by multiple top-locks),
590  * and concurrent sub-lock cancellations.
591  */
592 static int lov_lock_enqueue(const struct lu_env *env,
593                             const struct cl_lock_slice *slice,
594                             struct cl_io *io, __u32 enqflags)
595 {
596         struct cl_lock         *lock    = slice->cls_lock;
597         struct lov_lock        *lck     = cl2lov_lock(slice);
598         struct cl_lock_closure *closure = lov_closure_get(env, lock);
599         int i;
600         int result;
601         enum cl_lock_state minstate;
602
603         ENTRY;
604
605         for (result = 0, minstate = CLS_FREEING, i = 0; i < lck->lls_nr; ++i) {
606                 int rc;
607                 struct lovsub_lock     *sub;
608                 struct lov_lock_sub    *lls;
609                 struct cl_lock         *sublock;
610                 struct lov_sublock_env *subenv;
611
612                 if (lock->cll_state != CLS_QUEUING) {
613                         /*
614                          * Lock might have left QUEUING state if previous
615                          * iteration released its mutex. Stop enqueing in this
616                          * case and let the upper layer to decide what to do.
617                          */
618                         LASSERT(i > 0 && result != 0);
619                         break;
620                 }
621
622                 lls = &lck->lls_sub[i];
623                 sub = lls->sub_lock;
624                 /*
625                  * Sub-lock might have been canceled, while top-lock was
626                  * cached.
627                  */
628                 if (sub == NULL) {
629                         result = lov_sublock_fill(env, lock, io, lck, i);
630                         /* lov_sublock_fill() released @lock mutex,
631                          * restart. */
632                         break;
633                 }
634                 sublock = sub->lss_cl.cls_lock;
635                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
636                 if (rc == 0) {
637                         lov_sublock_hold(env, lck, i);
638                         rc = lov_lock_enqueue_one(subenv->lse_env, lck, sublock,
639                                                   subenv->lse_io, enqflags,
640                                                   i == lck->lls_nr - 1);
641                         minstate = min(minstate, sublock->cll_state);
642                         if (rc == CLO_WAIT) {
643                                 switch (sublock->cll_state) {
644                                 case CLS_QUEUING:
645                                         /* take recursive mutex, the lock is
646                                          * released in lov_lock_enqueue_wait.
647                                          */
648                                         cl_lock_mutex_get(env, sublock);
649                                         lov_sublock_unlock(env, sub, closure,
650                                                            subenv);
651                                         rc = lov_lock_enqueue_wait(env, lck,
652                                                                    sublock);
653                                         break;
654                                 case CLS_CACHED:
655                                         cl_lock_get(sublock);
656                                         /* take recursive mutex of sublock */
657                                         cl_lock_mutex_get(env, sublock);
658                                         /* need to release all locks in closure
659                                          * otherwise it may deadlock. LU-2683.*/
660                                         lov_sublock_unlock(env, sub, closure,
661                                                            subenv);
662                                         /* sublock and parent are held. */
663                                         rc = lov_sublock_release(env, lck, i,
664                                                                  1, rc);
665                                         cl_lock_mutex_put(env, sublock);
666                                         cl_lock_put(env, sublock);
667                                         break;
668                                 default:
669                                         lov_sublock_unlock(env, sub, closure,
670                                                            subenv);
671                                         break;
672                                 }
673                         } else {
674                                 LASSERT(sublock->cll_conflict == NULL);
675                                 lov_sublock_unlock(env, sub, closure, subenv);
676                         }
677                 }
678                 result = lov_subresult(result, rc);
679                 if (result != 0)
680                         break;
681         }
682         cl_lock_closure_fini(closure);
683         RETURN(result ?: minstate >= CLS_ENQUEUED ? 0 : CLO_WAIT);
684 }
685
686 static int lov_lock_unuse(const struct lu_env *env,
687                           const struct cl_lock_slice *slice)
688 {
689         struct lov_lock        *lck     = cl2lov_lock(slice);
690         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
691         int i;
692         int result;
693
694         ENTRY;
695
696         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
697                 int rc;
698                 struct lovsub_lock     *sub;
699                 struct cl_lock         *sublock;
700                 struct lov_lock_sub    *lls;
701                 struct lov_sublock_env *subenv;
702
703                 /* top-lock state cannot change concurrently, because single
704                  * thread (one that released the last hold) carries unlocking
705                  * to the completion. */
706                 LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
707                 lls = &lck->lls_sub[i];
708                 sub = lls->sub_lock;
709                 if (sub == NULL)
710                         continue;
711
712                 sublock = sub->lss_cl.cls_lock;
713                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
714                 if (rc == 0) {
715                         if (lls->sub_flags & LSF_HELD) {
716                                 LASSERT(sublock->cll_state == CLS_HELD ||
717                                         sublock->cll_state == CLS_ENQUEUED);
718                                 rc = cl_unuse_try(subenv->lse_env, sublock);
719                                 rc = lov_sublock_release(env, lck, i, 0, rc);
720                         }
721                         lov_sublock_unlock(env, sub, closure, subenv);
722                 }
723                 result = lov_subresult(result, rc);
724         }
725
726         if (result == 0 && lck->lls_cancel_race) {
727                 lck->lls_cancel_race = 0;
728                 result = -ESTALE;
729         }
730         cl_lock_closure_fini(closure);
731         RETURN(result);
732 }
733
734
735 static void lov_lock_cancel(const struct lu_env *env,
736                            const struct cl_lock_slice *slice)
737 {
738         struct lov_lock        *lck     = cl2lov_lock(slice);
739         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
740         int i;
741         int result;
742
743         ENTRY;
744
745         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
746                 int rc;
747                 struct lovsub_lock     *sub;
748                 struct cl_lock         *sublock;
749                 struct lov_lock_sub    *lls;
750                 struct lov_sublock_env *subenv;
751
752                 /* top-lock state cannot change concurrently, because single
753                  * thread (one that released the last hold) carries unlocking
754                  * to the completion. */
755                 lls = &lck->lls_sub[i];
756                 sub = lls->sub_lock;
757                 if (sub == NULL)
758                         continue;
759
760                 sublock = sub->lss_cl.cls_lock;
761                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
762                 if (rc == 0) {
763                         if (!(lls->sub_flags & LSF_HELD)) {
764                                 lov_sublock_unlock(env, sub, closure, subenv);
765                                 continue;
766                         }
767
768                         switch(sublock->cll_state) {
769                         case CLS_HELD:
770                                 rc = cl_unuse_try(subenv->lse_env, sublock);
771                                 lov_sublock_release(env, lck, i, 0, 0);
772                                 break;
773                         default:
774                                 lov_sublock_release(env, lck, i, 1, 0);
775                                 break;
776                         }
777                         lov_sublock_unlock(env, sub, closure, subenv);
778                 }
779
780                 if (rc == CLO_REPEAT) {
781                         --i;
782                         continue;
783                 }
784
785                 result = lov_subresult(result, rc);
786         }
787
788         if (result)
789                 CL_LOCK_DEBUG(D_ERROR, env, slice->cls_lock,
790                               "lov_lock_cancel fails with %d.\n", result);
791
792         cl_lock_closure_fini(closure);
793 }
794
795 static int lov_lock_wait(const struct lu_env *env,
796                          const struct cl_lock_slice *slice)
797 {
798         struct lov_lock        *lck     = cl2lov_lock(slice);
799         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
800         enum cl_lock_state      minstate;
801         int                     reenqueued;
802         int                     result;
803         int                     i;
804
805         ENTRY;
806
807 again:
808         for (result = 0, minstate = CLS_FREEING, i = 0, reenqueued = 0;
809              i < lck->lls_nr; ++i) {
810                 int rc;
811                 struct lovsub_lock     *sub;
812                 struct cl_lock         *sublock;
813                 struct lov_lock_sub    *lls;
814                 struct lov_sublock_env *subenv;
815
816                 lls = &lck->lls_sub[i];
817                 sub = lls->sub_lock;
818                 LASSERT(sub != NULL);
819                 sublock = sub->lss_cl.cls_lock;
820                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
821                 if (rc == 0) {
822                         LASSERT(sublock->cll_state >= CLS_ENQUEUED);
823                         if (sublock->cll_state < CLS_HELD)
824                                 rc = cl_wait_try(env, sublock);
825
826                         minstate = min(minstate, sublock->cll_state);
827                         lov_sublock_unlock(env, sub, closure, subenv);
828                 }
829                 if (rc == CLO_REENQUEUED) {
830                         reenqueued++;
831                         rc = 0;
832                 }
833                 result = lov_subresult(result, rc);
834                 if (result != 0)
835                         break;
836         }
837         /* Each sublock only can be reenqueued once, so will not loop for
838          * ever. */
839         if (result == 0 && reenqueued != 0)
840                 goto again;
841         cl_lock_closure_fini(closure);
842         RETURN(result ?: minstate >= CLS_HELD ? 0 : CLO_WAIT);
843 }
844
845 static int lov_lock_use(const struct lu_env *env,
846                         const struct cl_lock_slice *slice)
847 {
848         struct lov_lock        *lck     = cl2lov_lock(slice);
849         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
850         int                     result;
851         int                     i;
852
853         LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
854         ENTRY;
855
856         for (result = 0, i = 0; i < lck->lls_nr; ++i) {
857                 int rc;
858                 struct lovsub_lock     *sub;
859                 struct cl_lock         *sublock;
860                 struct lov_lock_sub    *lls;
861                 struct lov_sublock_env *subenv;
862
863                 LASSERT(slice->cls_lock->cll_state == CLS_INTRANSIT);
864
865                 lls = &lck->lls_sub[i];
866                 sub = lls->sub_lock;
867                 if (sub == NULL) {
868                         /*
869                          * Sub-lock might have been canceled, while top-lock was
870                          * cached.
871                          */
872                         result = -ESTALE;
873                         break;
874                 }
875
876                 sublock = sub->lss_cl.cls_lock;
877                 rc = lov_sublock_lock(env, lck, lls, closure, &subenv);
878                 if (rc == 0) {
879                         LASSERT(sublock->cll_state != CLS_FREEING);
880                         lov_sublock_hold(env, lck, i);
881                         if (sublock->cll_state == CLS_CACHED) {
882                                 rc = cl_use_try(subenv->lse_env, sublock, 0);
883                                 if (rc != 0)
884                                         rc = lov_sublock_release(env, lck,
885                                                                  i, 1, rc);
886                         } else if (sublock->cll_state == CLS_NEW) {
887                                 /* Sub-lock might have been canceled, while
888                                  * top-lock was cached. */
889                                 result = -ESTALE;
890                                 lov_sublock_release(env, lck, i, 1, result);
891                         }
892                         lov_sublock_unlock(env, sub, closure, subenv);
893                 }
894                 result = lov_subresult(result, rc);
895                 if (result != 0)
896                         break;
897         }
898
899         if (lck->lls_cancel_race) {
900                 /*
901                  * If there is unlocking happened at the same time, then
902                  * sublock_lock state should be FREEING, and lov_sublock_lock
903                  * should return CLO_REPEAT. In this case, it should return
904                  * ESTALE, and up layer should reset the lock state to be NEW.
905                  */
906                 lck->lls_cancel_race = 0;
907                 LASSERT(result != 0);
908                 result = -ESTALE;
909         }
910         cl_lock_closure_fini(closure);
911         RETURN(result);
912 }
913
914 #if 0
915 static int lock_lock_multi_match()
916 {
917         struct cl_lock          *lock    = slice->cls_lock;
918         struct cl_lock_descr    *subneed = &lov_env_info(env)->lti_ldescr;
919         struct lov_object       *loo     = cl2lov(lov->lls_cl.cls_obj);
920         struct lov_layout_raid0 *r0      = lov_r0(loo);
921         struct lov_lock_sub     *sub;
922         struct cl_object        *subobj;
923         obd_off  fstart;
924         obd_off  fend;
925         obd_off  start;
926         obd_off  end;
927         int i;
928
929         fstart = cl_offset(need->cld_obj, need->cld_start);
930         fend   = cl_offset(need->cld_obj, need->cld_end + 1) - 1;
931         subneed->cld_mode = need->cld_mode;
932         cl_lock_mutex_get(env, lock);
933         for (i = 0; i < lov->lls_nr; ++i) {
934                 sub = &lov->lls_sub[i];
935                 if (sub->sub_lock == NULL)
936                         continue;
937                 subobj = sub->sub_descr.cld_obj;
938                 if (!lov_stripe_intersects(loo->lo_lsm, sub->sub_stripe,
939                                            fstart, fend, &start, &end))
940                         continue;
941                 subneed->cld_start = cl_index(subobj, start);
942                 subneed->cld_end   = cl_index(subobj, end);
943                 subneed->cld_obj   = subobj;
944                 if (!cl_lock_ext_match(&sub->sub_got, subneed)) {
945                         result = 0;
946                         break;
947                 }
948         }
949         cl_lock_mutex_put(env, lock);
950 }
951 #endif
952
953 /**
954  * Check if the extent region \a descr is covered by \a child against the
955  * specific \a stripe.
956  */
957 static int lov_lock_stripe_is_matching(const struct lu_env *env,
958                                        struct lov_object *lov, int stripe,
959                                        const struct cl_lock_descr *child,
960                                        const struct cl_lock_descr *descr)
961 {
962         struct lov_stripe_md *lsm = lov->lo_lsm;
963         obd_off start;
964         obd_off end;
965         int result;
966
967         if (lov_r0(lov)->lo_nr == 1)
968                 return cl_lock_ext_match(child, descr);
969
970         /*
971          * For a multi-stripes object:
972          * - make sure the descr only covers child's stripe, and
973          * - check if extent is matching.
974          */
975         start = cl_offset(&lov->lo_cl, descr->cld_start);
976         end   = cl_offset(&lov->lo_cl, descr->cld_end + 1) - 1;
977         result = end - start <= lsm->lsm_stripe_size &&
978                  stripe == lov_stripe_number(lsm, start) &&
979                  stripe == lov_stripe_number(lsm, end);
980         if (result) {
981                 struct cl_lock_descr *subd = &lov_env_info(env)->lti_ldescr;
982                 obd_off sub_start;
983                 obd_off sub_end;
984
985                 subd->cld_obj  = NULL;   /* don't need sub object at all */
986                 subd->cld_mode = descr->cld_mode;
987                 subd->cld_gid  = descr->cld_gid;
988                 result = lov_stripe_intersects(lsm, stripe, start, end,
989                                                &sub_start, &sub_end);
990                 LASSERT(result);
991                 subd->cld_start = cl_index(child->cld_obj, sub_start);
992                 subd->cld_end   = cl_index(child->cld_obj, sub_end);
993                 result = cl_lock_ext_match(child, subd);
994         }
995         return result;
996 }
997
998 /**
999  * An implementation of cl_lock_operations::clo_fits_into() method.
1000  *
1001  * Checks whether a lock (given by \a slice) is suitable for \a
1002  * io. Multi-stripe locks can be used only for "quick" io, like truncate, or
1003  * O_APPEND write.
1004  *
1005  * \see ccc_lock_fits_into().
1006  */
1007 static int lov_lock_fits_into(const struct lu_env *env,
1008                               const struct cl_lock_slice *slice,
1009                               const struct cl_lock_descr *need,
1010                               const struct cl_io *io)
1011 {
1012         struct lov_lock   *lov = cl2lov_lock(slice);
1013         struct lov_object *obj = cl2lov(slice->cls_obj);
1014         int result;
1015
1016         LASSERT(cl_object_same(need->cld_obj, slice->cls_obj));
1017         LASSERT(lov->lls_nr > 0);
1018
1019         ENTRY;
1020
1021         /* for top lock, it's necessary to match enq flags otherwise it will
1022          * run into problem if a sublock is missing and reenqueue. */
1023         if (need->cld_enq_flags != lov->lls_orig.cld_enq_flags)
1024                 return 0;
1025
1026         if (lov->lls_ever_canceled)
1027                 return 0;
1028
1029         if (need->cld_mode == CLM_GROUP)
1030                 /*
1031                  * always allow to match group lock.
1032                  */
1033                 result = cl_lock_ext_match(&lov->lls_orig, need);
1034         else if (lov->lls_nr == 1) {
1035                 struct cl_lock_descr *got = &lov->lls_sub[0].sub_got;
1036                 result = lov_lock_stripe_is_matching(env,
1037                                                      cl2lov(slice->cls_obj),
1038                                                      lov->lls_sub[0].sub_stripe,
1039                                                      got, need);
1040         } else if (io->ci_type != CIT_SETATTR && io->ci_type != CIT_MISC &&
1041                    !cl_io_is_append(io) && need->cld_mode != CLM_PHANTOM)
1042                 /*
1043                  * Multi-stripe locks are only suitable for `quick' IO and for
1044                  * glimpse.
1045                  */
1046                 result = 0;
1047         else
1048                 /*
1049                  * Most general case: multi-stripe existing lock, and
1050                  * (potentially) multi-stripe @need lock. Check that @need is
1051                  * covered by @lov's sub-locks.
1052                  *
1053                  * For now, ignore lock expansions made by the server, and
1054                  * match against original lock extent.
1055                  */
1056                 result = cl_lock_ext_match(&lov->lls_orig, need);
1057         CDEBUG(D_DLMTRACE, DDESCR"/"DDESCR" %d %d/%d: %d\n",
1058                PDESCR(&lov->lls_orig), PDESCR(&lov->lls_sub[0].sub_got),
1059                lov->lls_sub[0].sub_stripe, lov->lls_nr, lov_r0(obj)->lo_nr,
1060                result);
1061         RETURN(result);
1062 }
1063
1064 void lov_lock_unlink(const struct lu_env *env,
1065                      struct lov_lock_link *link, struct lovsub_lock *sub)
1066 {
1067         struct lov_lock *lck    = link->lll_super;
1068         struct cl_lock  *parent = lck->lls_cl.cls_lock;
1069
1070         LASSERT(cl_lock_is_mutexed(parent));
1071         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
1072         ENTRY;
1073
1074         cfs_list_del_init(&link->lll_list);
1075         LASSERT(lck->lls_sub[link->lll_idx].sub_lock == sub);
1076         /* yank this sub-lock from parent's array */
1077         lck->lls_sub[link->lll_idx].sub_lock = NULL;
1078         LASSERT(lck->lls_nr_filled > 0);
1079         lck->lls_nr_filled--;
1080         lu_ref_del(&parent->cll_reference, "lov-child", sub->lss_cl.cls_lock);
1081         cl_lock_put(env, parent);
1082         OBD_SLAB_FREE_PTR(link, lov_lock_link_kmem);
1083         EXIT;
1084 }
1085
1086 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
1087                                          struct lov_lock *lck,
1088                                          struct lovsub_lock *sub)
1089 {
1090         struct lov_lock_link *scan;
1091
1092         LASSERT(cl_lock_is_mutexed(sub->lss_cl.cls_lock));
1093         ENTRY;
1094
1095         cfs_list_for_each_entry(scan, &sub->lss_parents, lll_list) {
1096                 if (scan->lll_super == lck)
1097                         RETURN(scan);
1098         }
1099         RETURN(NULL);
1100 }
1101
1102 /**
1103  * An implementation of cl_lock_operations::clo_delete() method. This is
1104  * invoked for "top-to-bottom" delete, when lock destruction starts from the
1105  * top-lock, e.g., as a result of inode destruction.
1106  *
1107  * Unlinks top-lock from all its sub-locks. Sub-locks are not deleted there:
1108  * this is done separately elsewhere:
1109  *
1110  *     - for inode destruction, lov_object_delete() calls cl_object_kill() for
1111  *       each sub-object, purging its locks;
1112  *
1113  *     - in other cases (e.g., a fatal error with a top-lock) sub-locks are
1114  *       left in the cache.
1115  */
1116 static void lov_lock_delete(const struct lu_env *env,
1117                             const struct cl_lock_slice *slice)
1118 {
1119         struct lov_lock        *lck     = cl2lov_lock(slice);
1120         struct cl_lock_closure *closure = lov_closure_get(env, slice->cls_lock);
1121         struct lov_lock_link   *link;
1122         int                     rc;
1123         int                     i;
1124
1125         LASSERT(slice->cls_lock->cll_state == CLS_FREEING);
1126         ENTRY;
1127
1128         for (i = 0; i < lck->lls_nr; ++i) {
1129                 struct lov_lock_sub *lls = &lck->lls_sub[i];
1130                 struct lovsub_lock  *lsl = lls->sub_lock;
1131
1132                 if (lsl == NULL) /* already removed */
1133                         continue;
1134
1135                 rc = lov_sublock_lock(env, lck, lls, closure, NULL);
1136                 if (rc == CLO_REPEAT) {
1137                         --i;
1138                         continue;
1139                 }
1140
1141                 LASSERT(rc == 0);
1142                 LASSERT(lsl->lss_cl.cls_lock->cll_state < CLS_FREEING);
1143
1144                 if (lls->sub_flags & LSF_HELD)
1145                         lov_sublock_release(env, lck, i, 1, 0);
1146
1147                 link = lov_lock_link_find(env, lck, lsl);
1148                 LASSERT(link != NULL);
1149                 lov_lock_unlink(env, link, lsl);
1150                 LASSERT(lck->lls_sub[i].sub_lock == NULL);
1151
1152                 lov_sublock_unlock(env, lsl, closure, NULL);
1153         }
1154
1155         cl_lock_closure_fini(closure);
1156         EXIT;
1157 }
1158
1159 static int lov_lock_print(const struct lu_env *env, void *cookie,
1160                           lu_printer_t p, const struct cl_lock_slice *slice)
1161 {
1162         struct lov_lock *lck = cl2lov_lock(slice);
1163         int              i;
1164
1165         (*p)(env, cookie, "%d\n", lck->lls_nr);
1166         for (i = 0; i < lck->lls_nr; ++i) {
1167                 struct lov_lock_sub *sub;
1168
1169                 sub = &lck->lls_sub[i];
1170                 (*p)(env, cookie, "    %d %x: ", i, sub->sub_flags);
1171                 if (sub->sub_lock != NULL)
1172                         cl_lock_print(env, cookie, p,
1173                                       sub->sub_lock->lss_cl.cls_lock);
1174                 else
1175                         (*p)(env, cookie, "---\n");
1176         }
1177         return 0;
1178 }
1179
1180 static const struct cl_lock_operations lov_lock_ops = {
1181         .clo_fini      = lov_lock_fini,
1182         .clo_enqueue   = lov_lock_enqueue,
1183         .clo_wait      = lov_lock_wait,
1184         .clo_use       = lov_lock_use,
1185         .clo_unuse     = lov_lock_unuse,
1186         .clo_cancel    = lov_lock_cancel,
1187         .clo_fits_into = lov_lock_fits_into,
1188         .clo_delete    = lov_lock_delete,
1189         .clo_print     = lov_lock_print
1190 };
1191
1192 int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
1193                         struct cl_lock *lock, const struct cl_io *io)
1194 {
1195         struct lov_lock *lck;
1196         int result;
1197
1198         ENTRY;
1199         OBD_SLAB_ALLOC_PTR_GFP(lck, lov_lock_kmem, __GFP_IO);
1200         if (lck != NULL) {
1201                 cl_lock_slice_add(lock, &lck->lls_cl, obj, &lov_lock_ops);
1202                 result = lov_lock_sub_init(env, lck, io);
1203         } else
1204                 result = -ENOMEM;
1205         RETURN(result);
1206 }
1207
1208 static void lov_empty_lock_fini(const struct lu_env *env,
1209                                 struct cl_lock_slice *slice)
1210 {
1211         struct lov_lock *lck = cl2lov_lock(slice);
1212         OBD_SLAB_FREE_PTR(lck, lov_lock_kmem);
1213 }
1214
1215 static int lov_empty_lock_print(const struct lu_env *env, void *cookie,
1216                         lu_printer_t p, const struct cl_lock_slice *slice)
1217 {
1218         (*p)(env, cookie, "empty\n");
1219         return 0;
1220 }
1221
1222 /* XXX: more methods will be added later. */
1223 static const struct cl_lock_operations lov_empty_lock_ops = {
1224         .clo_fini  = lov_empty_lock_fini,
1225         .clo_print = lov_empty_lock_print
1226 };
1227
1228 int lov_lock_init_empty(const struct lu_env *env, struct cl_object *obj,
1229                 struct cl_lock *lock, const struct cl_io *io)
1230 {
1231         struct lov_lock *lck;
1232         int result = -ENOMEM;
1233
1234         ENTRY;
1235         OBD_SLAB_ALLOC_PTR_GFP(lck, lov_lock_kmem, __GFP_IO);
1236         if (lck != NULL) {
1237                 cl_lock_slice_add(lock, &lck->lls_cl, obj, &lov_empty_lock_ops);
1238                 lck->lls_orig = lock->cll_descr;
1239                 result = 0;
1240         }
1241         RETURN(result);
1242 }
1243
1244 static struct cl_lock_closure *lov_closure_get(const struct lu_env *env,
1245                                                struct cl_lock *parent)
1246 {
1247         struct cl_lock_closure *closure;
1248
1249         closure = &lov_env_info(env)->lti_closure;
1250         LASSERT(cfs_list_empty(&closure->clc_list));
1251         cl_lock_closure_init(env, closure, parent, 1);
1252         return closure;
1253 }
1254
1255
1256 /** @} lov */