Whamcloud - gitweb
LU-4684 migrate: replace PFID via source
[fs/lustre-release.git] / lustre / lod / lod_object.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License version 2 for more details.  A copy is
14  * included in the COPYING file that accompanied this code.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright  2009 Sun Microsystems, Inc. All rights reserved
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2012, 2017, Intel Corporation.
27  */
28 /*
29  * lustre/lod/lod_object.c
30  *
31  * This file contains implementations of methods for the OSD API
32  * for the Logical Object Device (LOD) layer, which provides a virtual
33  * local OSD object interface to the MDD layer, and abstracts the
34  * addressing of local (OSD) and remote (OSP) objects. The API is
35  * described in the file lustre/include/dt_object.h and in
36  * Documentation/osd-api.txt.
37  *
38  * Author: Alex Zhuravlev <alexey.zhuravlev@intel.com>
39  */
40
41 #define DEBUG_SUBSYSTEM S_MDS
42
43 #include <linux/random.h>
44
45 #include <obd.h>
46 #include <obd_class.h>
47 #include <obd_support.h>
48
49 #include <lustre_fid.h>
50 #include <lustre_linkea.h>
51 #include <lustre_lmv.h>
52 #include <uapi/linux/lustre/lustre_param.h>
53 #include <lustre_swab.h>
54 #include <uapi/linux/lustre/lustre_ver.h>
55 #include <lprocfs_status.h>
56 #include <md_object.h>
57
58 #include "lod_internal.h"
59
60 static const char dot[] = ".";
61 static const char dotdot[] = "..";
62
63 /**
64  * Implementation of dt_index_operations::dio_lookup
65  *
66  * Used with regular (non-striped) objects.
67  *
68  * \see dt_index_operations::dio_lookup() in the API description for details.
69  */
70 static int lod_lookup(const struct lu_env *env, struct dt_object *dt,
71                       struct dt_rec *rec, const struct dt_key *key)
72 {
73         struct dt_object *next = dt_object_child(dt);
74         return next->do_index_ops->dio_lookup(env, next, rec, key);
75 }
76
77 /**
78  * Implementation of dt_index_operations::dio_declare_insert.
79  *
80  * Used with regular (non-striped) objects.
81  *
82  * \see dt_index_operations::dio_declare_insert() in the API description
83  * for details.
84  */
85 static int lod_declare_insert(const struct lu_env *env, struct dt_object *dt,
86                               const struct dt_rec *rec,
87                               const struct dt_key *key, struct thandle *th)
88 {
89         return lod_sub_declare_insert(env, dt_object_child(dt), rec, key, th);
90 }
91
92 /**
93  * Implementation of dt_index_operations::dio_insert.
94  *
95  * Used with regular (non-striped) objects
96  *
97  * \see dt_index_operations::dio_insert() in the API description for details.
98  */
99 static int lod_insert(const struct lu_env *env, struct dt_object *dt,
100                       const struct dt_rec *rec, const struct dt_key *key,
101                       struct thandle *th)
102 {
103         return lod_sub_insert(env, dt_object_child(dt), rec, key, th);
104 }
105
106 /**
107  * Implementation of dt_index_operations::dio_declare_delete.
108  *
109  * Used with regular (non-striped) objects.
110  *
111  * \see dt_index_operations::dio_declare_delete() in the API description
112  * for details.
113  */
114 static int lod_declare_delete(const struct lu_env *env, struct dt_object *dt,
115                               const struct dt_key *key, struct thandle *th)
116 {
117         return lod_sub_declare_delete(env, dt_object_child(dt), key, th);
118 }
119
120 /**
121  * Implementation of dt_index_operations::dio_delete.
122  *
123  * Used with regular (non-striped) objects.
124  *
125  * \see dt_index_operations::dio_delete() in the API description for details.
126  */
127 static int lod_delete(const struct lu_env *env, struct dt_object *dt,
128                       const struct dt_key *key, struct thandle *th)
129 {
130         return lod_sub_delete(env, dt_object_child(dt), key, th);
131 }
132
133 /**
134  * Implementation of dt_it_ops::init.
135  *
136  * Used with regular (non-striped) objects.
137  *
138  * \see dt_it_ops::init() in the API description for details.
139  */
140 static struct dt_it *lod_it_init(const struct lu_env *env,
141                                  struct dt_object *dt, __u32 attr)
142 {
143         struct dt_object        *next = dt_object_child(dt);
144         struct lod_it           *it = &lod_env_info(env)->lti_it;
145         struct dt_it            *it_next;
146
147         it_next = next->do_index_ops->dio_it.init(env, next, attr);
148         if (IS_ERR(it_next))
149                 return it_next;
150
151         /* currently we do not use more than one iterator per thread
152          * so we store it in thread info. if at some point we need
153          * more active iterators in a single thread, we can allocate
154          * additional ones */
155         LASSERT(it->lit_obj == NULL);
156
157         it->lit_it = it_next;
158         it->lit_obj = next;
159
160         return (struct dt_it *)it;
161 }
162
163 #define LOD_CHECK_IT(env, it)                                   \
164 do {                                                            \
165         LASSERT((it)->lit_obj != NULL);                         \
166         LASSERT((it)->lit_it != NULL);                          \
167 } while (0)
168
169 /**
170  * Implementation of dt_index_operations::dio_it.fini.
171  *
172  * Used with regular (non-striped) objects.
173  *
174  * \see dt_index_operations::dio_it.fini() in the API description for details.
175  */
176 static void lod_it_fini(const struct lu_env *env, struct dt_it *di)
177 {
178         struct lod_it *it = (struct lod_it *)di;
179
180         LOD_CHECK_IT(env, it);
181         it->lit_obj->do_index_ops->dio_it.fini(env, it->lit_it);
182
183         /* the iterator not in use any more */
184         it->lit_obj = NULL;
185         it->lit_it = NULL;
186 }
187
188 /**
189  * Implementation of dt_it_ops::get.
190  *
191  * Used with regular (non-striped) objects.
192  *
193  * \see dt_it_ops::get() in the API description for details.
194  */
195 static int lod_it_get(const struct lu_env *env, struct dt_it *di,
196                       const struct dt_key *key)
197 {
198         const struct lod_it *it = (const struct lod_it *)di;
199
200         LOD_CHECK_IT(env, it);
201         return it->lit_obj->do_index_ops->dio_it.get(env, it->lit_it, key);
202 }
203
204 /**
205  * Implementation of dt_it_ops::put.
206  *
207  * Used with regular (non-striped) objects.
208  *
209  * \see dt_it_ops::put() in the API description for details.
210  */
211 static void lod_it_put(const struct lu_env *env, struct dt_it *di)
212 {
213         struct lod_it *it = (struct lod_it *)di;
214
215         LOD_CHECK_IT(env, it);
216         return it->lit_obj->do_index_ops->dio_it.put(env, it->lit_it);
217 }
218
219 /**
220  * Implementation of dt_it_ops::next.
221  *
222  * Used with regular (non-striped) objects
223  *
224  * \see dt_it_ops::next() in the API description for details.
225  */
226 static int lod_it_next(const struct lu_env *env, struct dt_it *di)
227 {
228         struct lod_it *it = (struct lod_it *)di;
229
230         LOD_CHECK_IT(env, it);
231         return it->lit_obj->do_index_ops->dio_it.next(env, it->lit_it);
232 }
233
234 /**
235  * Implementation of dt_it_ops::key.
236  *
237  * Used with regular (non-striped) objects.
238  *
239  * \see dt_it_ops::key() in the API description for details.
240  */
241 static struct dt_key *lod_it_key(const struct lu_env *env,
242                                  const struct dt_it *di)
243 {
244         const struct lod_it *it = (const struct lod_it *)di;
245
246         LOD_CHECK_IT(env, it);
247         return it->lit_obj->do_index_ops->dio_it.key(env, it->lit_it);
248 }
249
250 /**
251  * Implementation of dt_it_ops::key_size.
252  *
253  * Used with regular (non-striped) objects.
254  *
255  * \see dt_it_ops::key_size() in the API description for details.
256  */
257 static int lod_it_key_size(const struct lu_env *env, const struct dt_it *di)
258 {
259         struct lod_it *it = (struct lod_it *)di;
260
261         LOD_CHECK_IT(env, it);
262         return it->lit_obj->do_index_ops->dio_it.key_size(env, it->lit_it);
263 }
264
265 /**
266  * Implementation of dt_it_ops::rec.
267  *
268  * Used with regular (non-striped) objects.
269  *
270  * \see dt_it_ops::rec() in the API description for details.
271  */
272 static int lod_it_rec(const struct lu_env *env, const struct dt_it *di,
273                       struct dt_rec *rec, __u32 attr)
274 {
275         const struct lod_it *it = (const struct lod_it *)di;
276
277         LOD_CHECK_IT(env, it);
278         return it->lit_obj->do_index_ops->dio_it.rec(env, it->lit_it, rec,
279                                                      attr);
280 }
281
282 /**
283  * Implementation of dt_it_ops::rec_size.
284  *
285  * Used with regular (non-striped) objects.
286  *
287  * \see dt_it_ops::rec_size() in the API description for details.
288  */
289 static int lod_it_rec_size(const struct lu_env *env, const struct dt_it *di,
290                            __u32 attr)
291 {
292         const struct lod_it *it = (const struct lod_it *)di;
293
294         LOD_CHECK_IT(env, it);
295         return it->lit_obj->do_index_ops->dio_it.rec_size(env, it->lit_it,
296                                                           attr);
297 }
298
299 /**
300  * Implementation of dt_it_ops::store.
301  *
302  * Used with regular (non-striped) objects.
303  *
304  * \see dt_it_ops::store() in the API description for details.
305  */
306 static __u64 lod_it_store(const struct lu_env *env, const struct dt_it *di)
307 {
308         const struct lod_it *it = (const struct lod_it *)di;
309
310         LOD_CHECK_IT(env, it);
311         return it->lit_obj->do_index_ops->dio_it.store(env, it->lit_it);
312 }
313
314 /**
315  * Implementation of dt_it_ops::load.
316  *
317  * Used with regular (non-striped) objects.
318  *
319  * \see dt_it_ops::load() in the API description for details.
320  */
321 static int lod_it_load(const struct lu_env *env, const struct dt_it *di,
322                        __u64 hash)
323 {
324         const struct lod_it *it = (const struct lod_it *)di;
325
326         LOD_CHECK_IT(env, it);
327         return it->lit_obj->do_index_ops->dio_it.load(env, it->lit_it, hash);
328 }
329
330 /**
331  * Implementation of dt_it_ops::key_rec.
332  *
333  * Used with regular (non-striped) objects.
334  *
335  * \see dt_it_ops::rec() in the API description for details.
336  */
337 static int lod_it_key_rec(const struct lu_env *env, const struct dt_it *di,
338                           void *key_rec)
339 {
340         const struct lod_it *it = (const struct lod_it *)di;
341
342         LOD_CHECK_IT(env, it);
343         return it->lit_obj->do_index_ops->dio_it.key_rec(env, it->lit_it,
344                                                          key_rec);
345 }
346
347 static struct dt_index_operations lod_index_ops = {
348         .dio_lookup             = lod_lookup,
349         .dio_declare_insert     = lod_declare_insert,
350         .dio_insert             = lod_insert,
351         .dio_declare_delete     = lod_declare_delete,
352         .dio_delete             = lod_delete,
353         .dio_it = {
354                 .init           = lod_it_init,
355                 .fini           = lod_it_fini,
356                 .get            = lod_it_get,
357                 .put            = lod_it_put,
358                 .next           = lod_it_next,
359                 .key            = lod_it_key,
360                 .key_size       = lod_it_key_size,
361                 .rec            = lod_it_rec,
362                 .rec_size       = lod_it_rec_size,
363                 .store          = lod_it_store,
364                 .load           = lod_it_load,
365                 .key_rec        = lod_it_key_rec,
366         }
367 };
368
369 /**
370  * Implementation of dt_it_ops::init.
371  *
372  * Used with striped objects. Internally just initializes the iterator
373  * on the first stripe.
374  *
375  * \see dt_it_ops::init() in the API description for details.
376  */
377 static struct dt_it *lod_striped_it_init(const struct lu_env *env,
378                                          struct dt_object *dt, __u32 attr)
379 {
380         struct lod_object       *lo = lod_dt_obj(dt);
381         struct dt_object        *next;
382         struct lod_it           *it = &lod_env_info(env)->lti_it;
383         struct dt_it            *it_next;
384         ENTRY;
385
386         LASSERT(lo->ldo_dir_stripe_count > 0);
387         next = lo->ldo_stripe[0];
388         LASSERT(next != NULL);
389         LASSERT(next->do_index_ops != NULL);
390
391         it_next = next->do_index_ops->dio_it.init(env, next, attr);
392         if (IS_ERR(it_next))
393                 return it_next;
394
395         /* currently we do not use more than one iterator per thread
396          * so we store it in thread info. if at some point we need
397          * more active iterators in a single thread, we can allocate
398          * additional ones */
399         LASSERT(it->lit_obj == NULL);
400
401         it->lit_stripe_index = 0;
402         it->lit_attr = attr;
403         it->lit_it = it_next;
404         it->lit_obj = dt;
405
406         return (struct dt_it *)it;
407 }
408
409 #define LOD_CHECK_STRIPED_IT(env, it, lo)                               \
410 do {                                                                    \
411         LASSERT((it)->lit_obj != NULL);                                 \
412         LASSERT((it)->lit_it != NULL);                                  \
413         LASSERT((lo)->ldo_dir_stripe_count > 0);                        \
414         LASSERT((it)->lit_stripe_index < (lo)->ldo_dir_stripe_count);   \
415 } while (0)
416
417 /**
418  * Implementation of dt_it_ops::fini.
419  *
420  * Used with striped objects.
421  *
422  * \see dt_it_ops::fini() in the API description for details.
423  */
424 static void lod_striped_it_fini(const struct lu_env *env, struct dt_it *di)
425 {
426         struct lod_it           *it = (struct lod_it *)di;
427         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
428         struct dt_object        *next;
429
430         /* If lit_it == NULL, then it means the sub_it has been finished,
431          * which only happens in failure cases, see lod_striped_it_next() */
432         if (it->lit_it != NULL) {
433                 LOD_CHECK_STRIPED_IT(env, it, lo);
434
435                 next = lo->ldo_stripe[it->lit_stripe_index];
436                 LASSERT(next != NULL);
437                 LASSERT(next->do_index_ops != NULL);
438
439                 next->do_index_ops->dio_it.fini(env, it->lit_it);
440         }
441
442         /* the iterator not in use any more */
443         it->lit_obj = NULL;
444         it->lit_it = NULL;
445         it->lit_stripe_index = 0;
446 }
447
448 /**
449  * Implementation of dt_it_ops::get.
450  *
451  * Right now it's not used widely, only to reset the iterator to the
452  * initial position. It should be possible to implement a full version
453  * which chooses a correct stripe to be able to position with any key.
454  *
455  * \see dt_it_ops::get() in the API description for details.
456  */
457 static int lod_striped_it_get(const struct lu_env *env, struct dt_it *di,
458                               const struct dt_key *key)
459 {
460         const struct lod_it     *it = (const struct lod_it *)di;
461         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
462         struct dt_object        *next;
463         ENTRY;
464
465         LOD_CHECK_STRIPED_IT(env, it, lo);
466
467         next = lo->ldo_stripe[it->lit_stripe_index];
468         LASSERT(next != NULL);
469         LASSERT(next->do_index_ops != NULL);
470
471         return next->do_index_ops->dio_it.get(env, it->lit_it, key);
472 }
473
474 /**
475  * Implementation of dt_it_ops::put.
476  *
477  * Used with striped objects.
478  *
479  * \see dt_it_ops::put() in the API description for details.
480  */
481 static void lod_striped_it_put(const struct lu_env *env, struct dt_it *di)
482 {
483         struct lod_it           *it = (struct lod_it *)di;
484         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
485         struct dt_object        *next;
486
487         LOD_CHECK_STRIPED_IT(env, it, lo);
488
489         next = lo->ldo_stripe[it->lit_stripe_index];
490         LASSERT(next != NULL);
491         LASSERT(next->do_index_ops != NULL);
492
493         return next->do_index_ops->dio_it.put(env, it->lit_it);
494 }
495
496 /**
497  * Implementation of dt_it_ops::next.
498  *
499  * Used with striped objects. When the end of the current stripe is
500  * reached, the method takes the next stripe's iterator.
501  *
502  * \see dt_it_ops::next() in the API description for details.
503  */
504 static int lod_striped_it_next(const struct lu_env *env, struct dt_it *di)
505 {
506         struct lod_it           *it = (struct lod_it *)di;
507         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
508         struct dt_object        *next;
509         struct dt_it            *it_next;
510         int                     rc;
511         ENTRY;
512
513         LOD_CHECK_STRIPED_IT(env, it, lo);
514
515         next = lo->ldo_stripe[it->lit_stripe_index];
516         LASSERT(next != NULL);
517         LASSERT(next->do_index_ops != NULL);
518 again:
519         rc = next->do_index_ops->dio_it.next(env, it->lit_it);
520         if (rc < 0)
521                 RETURN(rc);
522
523         if (rc == 0 && it->lit_stripe_index == 0)
524                 RETURN(rc);
525
526         if (rc == 0 && it->lit_stripe_index > 0) {
527                 struct lu_dirent *ent;
528
529                 ent = (struct lu_dirent *)lod_env_info(env)->lti_key;
530
531                 rc = next->do_index_ops->dio_it.rec(env, it->lit_it,
532                                                     (struct dt_rec *)ent,
533                                                     it->lit_attr);
534                 if (rc != 0)
535                         RETURN(rc);
536
537                 /* skip . and .. for slave stripe */
538                 if ((strncmp(ent->lde_name, ".",
539                              le16_to_cpu(ent->lde_namelen)) == 0 &&
540                      le16_to_cpu(ent->lde_namelen) == 1) ||
541                     (strncmp(ent->lde_name, "..",
542                              le16_to_cpu(ent->lde_namelen)) == 0 &&
543                      le16_to_cpu(ent->lde_namelen) == 2))
544                         goto again;
545
546                 RETURN(rc);
547         }
548
549         /* go to next stripe */
550         if (it->lit_stripe_index + 1 >= lo->ldo_dir_stripe_count)
551                 RETURN(1);
552
553         it->lit_stripe_index++;
554
555         next->do_index_ops->dio_it.put(env, it->lit_it);
556         next->do_index_ops->dio_it.fini(env, it->lit_it);
557         it->lit_it = NULL;
558
559         next = lo->ldo_stripe[it->lit_stripe_index];
560         LASSERT(next != NULL);
561         rc = next->do_ops->do_index_try(env, next, &dt_directory_features);
562         if (rc != 0)
563                 RETURN(rc);
564
565         LASSERT(next->do_index_ops != NULL);
566
567         it_next = next->do_index_ops->dio_it.init(env, next, it->lit_attr);
568         if (!IS_ERR(it_next)) {
569                 it->lit_it = it_next;
570                 goto again;
571         } else {
572                 rc = PTR_ERR(it_next);
573         }
574
575         RETURN(rc);
576 }
577
578 /**
579  * Implementation of dt_it_ops::key.
580  *
581  * Used with striped objects.
582  *
583  * \see dt_it_ops::key() in the API description for details.
584  */
585 static struct dt_key *lod_striped_it_key(const struct lu_env *env,
586                                          const struct dt_it *di)
587 {
588         const struct lod_it     *it = (const struct lod_it *)di;
589         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
590         struct dt_object        *next;
591
592         LOD_CHECK_STRIPED_IT(env, it, lo);
593
594         next = lo->ldo_stripe[it->lit_stripe_index];
595         LASSERT(next != NULL);
596         LASSERT(next->do_index_ops != NULL);
597
598         return next->do_index_ops->dio_it.key(env, it->lit_it);
599 }
600
601 /**
602  * Implementation of dt_it_ops::key_size.
603  *
604  * Used with striped objects.
605  *
606  * \see dt_it_ops::size() in the API description for details.
607  */
608 static int lod_striped_it_key_size(const struct lu_env *env,
609                                    const struct dt_it *di)
610 {
611         struct lod_it           *it = (struct lod_it *)di;
612         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
613         struct dt_object        *next;
614
615         LOD_CHECK_STRIPED_IT(env, it, lo);
616
617         next = lo->ldo_stripe[it->lit_stripe_index];
618         LASSERT(next != NULL);
619         LASSERT(next->do_index_ops != NULL);
620
621         return next->do_index_ops->dio_it.key_size(env, it->lit_it);
622 }
623
624 /**
625  * Implementation of dt_it_ops::rec.
626  *
627  * Used with striped objects.
628  *
629  * \see dt_it_ops::rec() in the API description for details.
630  */
631 static int lod_striped_it_rec(const struct lu_env *env, const struct dt_it *di,
632                               struct dt_rec *rec, __u32 attr)
633 {
634         const struct lod_it     *it = (const struct lod_it *)di;
635         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
636         struct dt_object        *next;
637
638         LOD_CHECK_STRIPED_IT(env, it, lo);
639
640         next = lo->ldo_stripe[it->lit_stripe_index];
641         LASSERT(next != NULL);
642         LASSERT(next->do_index_ops != NULL);
643
644         return next->do_index_ops->dio_it.rec(env, it->lit_it, rec, attr);
645 }
646
647 /**
648  * Implementation of dt_it_ops::rec_size.
649  *
650  * Used with striped objects.
651  *
652  * \see dt_it_ops::rec_size() in the API description for details.
653  */
654 static int lod_striped_it_rec_size(const struct lu_env *env,
655                                    const struct dt_it *di, __u32 attr)
656 {
657         struct lod_it           *it = (struct lod_it *)di;
658         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
659         struct dt_object        *next;
660
661         LOD_CHECK_STRIPED_IT(env, it, lo);
662
663         next = lo->ldo_stripe[it->lit_stripe_index];
664         LASSERT(next != NULL);
665         LASSERT(next->do_index_ops != NULL);
666
667         return next->do_index_ops->dio_it.rec_size(env, it->lit_it, attr);
668 }
669
670 /**
671  * Implementation of dt_it_ops::store.
672  *
673  * Used with striped objects.
674  *
675  * \see dt_it_ops::store() in the API description for details.
676  */
677 static __u64 lod_striped_it_store(const struct lu_env *env,
678                                   const struct dt_it *di)
679 {
680         const struct lod_it     *it = (const struct lod_it *)di;
681         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
682         struct dt_object        *next;
683
684         LOD_CHECK_STRIPED_IT(env, it, lo);
685
686         next = lo->ldo_stripe[it->lit_stripe_index];
687         LASSERT(next != NULL);
688         LASSERT(next->do_index_ops != NULL);
689
690         return next->do_index_ops->dio_it.store(env, it->lit_it);
691 }
692
693 /**
694  * Implementation of dt_it_ops::load.
695  *
696  * Used with striped objects.
697  *
698  * \see dt_it_ops::load() in the API description for details.
699  */
700 static int lod_striped_it_load(const struct lu_env *env,
701                                const struct dt_it *di, __u64 hash)
702 {
703         const struct lod_it     *it = (const struct lod_it *)di;
704         struct lod_object       *lo = lod_dt_obj(it->lit_obj);
705         struct dt_object        *next;
706
707         LOD_CHECK_STRIPED_IT(env, it, lo);
708
709         next = lo->ldo_stripe[it->lit_stripe_index];
710         LASSERT(next != NULL);
711         LASSERT(next->do_index_ops != NULL);
712
713         return next->do_index_ops->dio_it.load(env, it->lit_it, hash);
714 }
715
716 static struct dt_index_operations lod_striped_index_ops = {
717         .dio_lookup             = lod_lookup,
718         .dio_declare_insert     = lod_declare_insert,
719         .dio_insert             = lod_insert,
720         .dio_declare_delete     = lod_declare_delete,
721         .dio_delete             = lod_delete,
722         .dio_it = {
723                 .init           = lod_striped_it_init,
724                 .fini           = lod_striped_it_fini,
725                 .get            = lod_striped_it_get,
726                 .put            = lod_striped_it_put,
727                 .next           = lod_striped_it_next,
728                 .key            = lod_striped_it_key,
729                 .key_size       = lod_striped_it_key_size,
730                 .rec            = lod_striped_it_rec,
731                 .rec_size       = lod_striped_it_rec_size,
732                 .store          = lod_striped_it_store,
733                 .load           = lod_striped_it_load,
734         }
735 };
736
737 /**
738  * Append the FID for each shard of the striped directory after the
739  * given LMV EA header.
740  *
741  * To simplify striped directory and the consistency verification,
742  * we only store the LMV EA header on disk, for both master object
743  * and slave objects. When someone wants to know the whole LMV EA,
744  * such as client readdir(), we can build the entrie LMV EA on the
745  * MDT side (in RAM) via iterating the sub-directory entries that
746  * are contained in the master object of the stripe directory.
747  *
748  * For the master object of the striped directroy, the valid name
749  * for each shard is composed of the ${shard_FID}:${shard_idx}.
750  *
751  * There may be holes in the LMV EA if some shards' name entries
752  * are corrupted or lost.
753  *
754  * \param[in] env       pointer to the thread context
755  * \param[in] lo        pointer to the master object of the striped directory
756  * \param[in] buf       pointer to the lu_buf which will hold the LMV EA
757  * \param[in] resize    whether re-allocate the buffer if it is not big enough
758  *
759  * \retval              positive size of the LMV EA
760  * \retval              0 for nothing to be loaded
761  * \retval              negative error number on failure
762  */
763 int lod_load_lmv_shards(const struct lu_env *env, struct lod_object *lo,
764                         struct lu_buf *buf, bool resize)
765 {
766         struct lu_dirent        *ent    =
767                         (struct lu_dirent *)lod_env_info(env)->lti_key;
768         struct lod_device       *lod    = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
769         struct dt_object        *obj    = dt_object_child(&lo->ldo_obj);
770         struct lmv_mds_md_v1    *lmv1   = buf->lb_buf;
771         struct dt_it            *it;
772         const struct dt_it_ops  *iops;
773         __u32                    stripes;
774         __u32                    magic  = le32_to_cpu(lmv1->lmv_magic);
775         size_t                   lmv1_size;
776         int                      rc;
777         ENTRY;
778
779         if (magic != LMV_MAGIC_V1)
780                 RETURN(0);
781
782         stripes = le32_to_cpu(lmv1->lmv_stripe_count);
783         if (stripes < 1)
784                 RETURN(0);
785
786         rc = lmv_mds_md_size(stripes, magic);
787         if (rc < 0)
788                 RETURN(rc);
789         lmv1_size = rc;
790         if (buf->lb_len < lmv1_size) {
791                 struct lu_buf tbuf;
792
793                 if (!resize)
794                         RETURN(-ERANGE);
795
796                 tbuf = *buf;
797                 buf->lb_buf = NULL;
798                 buf->lb_len = 0;
799                 lu_buf_alloc(buf, lmv1_size);
800                 lmv1 = buf->lb_buf;
801                 if (lmv1 == NULL)
802                         RETURN(-ENOMEM);
803
804                 memcpy(buf->lb_buf, tbuf.lb_buf, tbuf.lb_len);
805         }
806
807         if (unlikely(!dt_try_as_dir(env, obj)))
808                 RETURN(-ENOTDIR);
809
810         memset(&lmv1->lmv_stripe_fids[0], 0, stripes * sizeof(struct lu_fid));
811         iops = &obj->do_index_ops->dio_it;
812         it = iops->init(env, obj, LUDA_64BITHASH);
813         if (IS_ERR(it))
814                 RETURN(PTR_ERR(it));
815
816         rc = iops->load(env, it, 0);
817         if (rc == 0)
818                 rc = iops->next(env, it);
819         else if (rc > 0)
820                 rc = 0;
821
822         while (rc == 0) {
823                 char             name[FID_LEN + 2] = "";
824                 struct lu_fid    fid;
825                 __u32            index;
826                 int              len;
827
828                 rc = iops->rec(env, it, (struct dt_rec *)ent, LUDA_64BITHASH);
829                 if (rc != 0)
830                         break;
831
832                 rc = -EIO;
833
834                 fid_le_to_cpu(&fid, &ent->lde_fid);
835                 ent->lde_namelen = le16_to_cpu(ent->lde_namelen);
836                 if (ent->lde_name[0] == '.') {
837                         if (ent->lde_namelen == 1)
838                                 goto next;
839
840                         if (ent->lde_namelen == 2 && ent->lde_name[1] == '.')
841                                 goto next;
842                 }
843
844                 len = snprintf(name, sizeof(name),
845                                DFID":", PFID(&ent->lde_fid));
846                 /* The ent->lde_name is composed of ${FID}:${index} */
847                 if (ent->lde_namelen < len + 1 ||
848                     memcmp(ent->lde_name, name, len) != 0) {
849                         CDEBUG(lod->lod_lmv_failout ? D_ERROR : D_INFO,
850                                "%s: invalid shard name %.*s with the FID "DFID
851                                " for the striped directory "DFID", %s\n",
852                                lod2obd(lod)->obd_name, ent->lde_namelen,
853                                ent->lde_name, PFID(&fid),
854                                PFID(lu_object_fid(&obj->do_lu)),
855                                lod->lod_lmv_failout ? "failout" : "skip");
856
857                         if (lod->lod_lmv_failout)
858                                 break;
859
860                         goto next;
861                 }
862
863                 index = 0;
864                 do {
865                         if (ent->lde_name[len] < '0' ||
866                             ent->lde_name[len] > '9') {
867                                 CDEBUG(lod->lod_lmv_failout ? D_ERROR : D_INFO,
868                                        "%s: invalid shard name %.*s with the "
869                                        "FID "DFID" for the striped directory "
870                                        DFID", %s\n",
871                                        lod2obd(lod)->obd_name, ent->lde_namelen,
872                                        ent->lde_name, PFID(&fid),
873                                        PFID(lu_object_fid(&obj->do_lu)),
874                                        lod->lod_lmv_failout ?
875                                        "failout" : "skip");
876
877                                 if (lod->lod_lmv_failout)
878                                         break;
879
880                                 goto next;
881                         }
882
883                         index = index * 10 + ent->lde_name[len++] - '0';
884                 } while (len < ent->lde_namelen);
885
886                 if (len == ent->lde_namelen) {
887                         /* Out of LMV EA range. */
888                         if (index >= stripes) {
889                                 CERROR("%s: the shard %.*s for the striped "
890                                        "directory "DFID" is out of the known "
891                                        "LMV EA range [0 - %u], failout\n",
892                                        lod2obd(lod)->obd_name, ent->lde_namelen,
893                                        ent->lde_name,
894                                        PFID(lu_object_fid(&obj->do_lu)),
895                                        stripes - 1);
896
897                                 break;
898                         }
899
900                         /* The slot has been occupied. */
901                         if (!fid_is_zero(&lmv1->lmv_stripe_fids[index])) {
902                                 struct lu_fid fid0;
903
904                                 fid_le_to_cpu(&fid0,
905                                         &lmv1->lmv_stripe_fids[index]);
906                                 CERROR("%s: both the shard "DFID" and "DFID
907                                        " for the striped directory "DFID
908                                        " claim the same LMV EA slot at the "
909                                        "index %d, failout\n",
910                                        lod2obd(lod)->obd_name,
911                                        PFID(&fid0), PFID(&fid),
912                                        PFID(lu_object_fid(&obj->do_lu)), index);
913
914                                 break;
915                         }
916
917                         /* stored as LE mode */
918                         lmv1->lmv_stripe_fids[index] = ent->lde_fid;
919
920 next:
921                         rc = iops->next(env, it);
922                 }
923         }
924
925         iops->put(env, it);
926         iops->fini(env, it);
927
928         RETURN(rc > 0 ? lmv_mds_md_size(stripes, magic) : rc);
929 }
930
931 /**
932  * Implementation of dt_object_operations::do_index_try.
933  *
934  * \see dt_object_operations::do_index_try() in the API description for details.
935  */
936 static int lod_index_try(const struct lu_env *env, struct dt_object *dt,
937                          const struct dt_index_features *feat)
938 {
939         struct lod_object       *lo = lod_dt_obj(dt);
940         struct dt_object        *next = dt_object_child(dt);
941         int                     rc;
942         ENTRY;
943
944         LASSERT(next->do_ops);
945         LASSERT(next->do_ops->do_index_try);
946
947         rc = lod_striping_load(env, lo);
948         if (rc != 0)
949                 RETURN(rc);
950
951         rc = next->do_ops->do_index_try(env, next, feat);
952         if (rc != 0)
953                 RETURN(rc);
954
955         if (lo->ldo_dir_stripe_count > 0) {
956                 int i;
957
958                 for (i = 0; i < lo->ldo_dir_stripe_count; i++) {
959                         if (dt_object_exists(lo->ldo_stripe[i]) == 0)
960                                 continue;
961                         rc = lo->ldo_stripe[i]->do_ops->do_index_try(env,
962                                                 lo->ldo_stripe[i], feat);
963                         if (rc != 0)
964                                 RETURN(rc);
965                 }
966                 dt->do_index_ops = &lod_striped_index_ops;
967         } else {
968                 dt->do_index_ops = &lod_index_ops;
969         }
970
971         RETURN(rc);
972 }
973
974 /**
975  * Implementation of dt_object_operations::do_read_lock.
976  *
977  * \see dt_object_operations::do_read_lock() in the API description for details.
978  */
979 static void lod_read_lock(const struct lu_env *env, struct dt_object *dt,
980                           unsigned role)
981 {
982         dt_read_lock(env, dt_object_child(dt), role);
983 }
984
985 /**
986  * Implementation of dt_object_operations::do_write_lock.
987  *
988  * \see dt_object_operations::do_write_lock() in the API description for
989  * details.
990  */
991 static void lod_write_lock(const struct lu_env *env, struct dt_object *dt,
992                            unsigned role)
993 {
994         dt_write_lock(env, dt_object_child(dt), role);
995 }
996
997 /**
998  * Implementation of dt_object_operations::do_read_unlock.
999  *
1000  * \see dt_object_operations::do_read_unlock() in the API description for
1001  * details.
1002  */
1003 static void lod_read_unlock(const struct lu_env *env, struct dt_object *dt)
1004 {
1005         dt_read_unlock(env, dt_object_child(dt));
1006 }
1007
1008 /**
1009  * Implementation of dt_object_operations::do_write_unlock.
1010  *
1011  * \see dt_object_operations::do_write_unlock() in the API description for
1012  * details.
1013  */
1014 static void lod_write_unlock(const struct lu_env *env, struct dt_object *dt)
1015 {
1016         dt_write_unlock(env, dt_object_child(dt));
1017 }
1018
1019 /**
1020  * Implementation of dt_object_operations::do_write_locked.
1021  *
1022  * \see dt_object_operations::do_write_locked() in the API description for
1023  * details.
1024  */
1025 static int lod_write_locked(const struct lu_env *env, struct dt_object *dt)
1026 {
1027         return dt_write_locked(env, dt_object_child(dt));
1028 }
1029
1030 /**
1031  * Implementation of dt_object_operations::do_attr_get.
1032  *
1033  * \see dt_object_operations::do_attr_get() in the API description for details.
1034  */
1035 static int lod_attr_get(const struct lu_env *env,
1036                         struct dt_object *dt,
1037                         struct lu_attr *attr)
1038 {
1039         /* Note: for striped directory, client will merge attributes
1040          * from all of the sub-stripes see lmv_merge_attr(), and there
1041          * no MDD logic depend on directory nlink/size/time, so we can
1042          * always use master inode nlink and size for now. */
1043         return dt_attr_get(env, dt_object_child(dt), attr);
1044 }
1045
1046 static inline void lod_adjust_stripe_info(struct lod_layout_component *comp,
1047                                           struct lov_desc *desc)
1048 {
1049         if (comp->llc_pattern != LOV_PATTERN_MDT) {
1050                 if (!comp->llc_stripe_count)
1051                         comp->llc_stripe_count =
1052                                 desc->ld_default_stripe_count;
1053         }
1054         if (comp->llc_stripe_size <= 0)
1055                 comp->llc_stripe_size = desc->ld_default_stripe_size;
1056 }
1057
1058 int lod_obj_for_each_stripe(const struct lu_env *env, struct lod_object *lo,
1059                             struct thandle *th,
1060                             struct lod_obj_stripe_cb_data *data)
1061 {
1062         struct lod_layout_component *lod_comp;
1063         int i, j, rc;
1064         ENTRY;
1065
1066         LASSERT(lo->ldo_comp_cnt != 0 && lo->ldo_comp_entries != NULL);
1067         for (i = 0; i < lo->ldo_comp_cnt; i++) {
1068                 lod_comp = &lo->ldo_comp_entries[i];
1069
1070                 if (lod_comp->llc_stripe == NULL)
1071                         continue;
1072
1073                 /* has stripe but not inited yet, this component has been
1074                  * declared to be created, but hasn't created yet.
1075                  */
1076                 if (!lod_comp_inited(lod_comp))
1077                         continue;
1078
1079                 if (data->locd_comp_skip_cb &&
1080                     data->locd_comp_skip_cb(env, lo, i, data))
1081                         continue;
1082
1083                 if (data->locd_comp_cb) {
1084                         rc = data->locd_comp_cb(env, lo, i, data);
1085                         if (rc)
1086                                 RETURN(rc);
1087                 }
1088
1089                 /* could used just to do sth about component, not each
1090                  * stripes
1091                  */
1092                 if (!data->locd_stripe_cb)
1093                         continue;
1094
1095                 LASSERT(lod_comp->llc_stripe_count > 0);
1096                 for (j = 0; j < lod_comp->llc_stripe_count; j++) {
1097                         struct dt_object *dt = lod_comp->llc_stripe[j];
1098
1099                         if (dt == NULL)
1100                                 continue;
1101                         rc = data->locd_stripe_cb(env, lo, dt, th, i, j, data);
1102                         if (rc != 0)
1103                                 RETURN(rc);
1104                 }
1105         }
1106         RETURN(0);
1107 }
1108
1109 static bool lod_obj_attr_set_comp_skip_cb(const struct lu_env *env,
1110                 struct lod_object *lo, int comp_idx,
1111                 struct lod_obj_stripe_cb_data *data)
1112 {
1113         struct lod_layout_component *lod_comp = &lo->ldo_comp_entries[comp_idx];
1114         bool skipped = false;
1115
1116         if (!(data->locd_attr->la_valid & LA_LAYOUT_VERSION))
1117                 return skipped;
1118
1119         switch (lo->ldo_flr_state) {
1120         case LCM_FL_WRITE_PENDING: {
1121                 int i;
1122
1123                 /* skip stale components */
1124                 if (lod_comp->llc_flags & LCME_FL_STALE) {
1125                         skipped = true;
1126                         break;
1127                 }
1128
1129                 /* skip valid and overlapping components, therefore any
1130                  * attempts to write overlapped components will never succeed
1131                  * because client will get EINPROGRESS. */
1132                 for (i = 0; i < lo->ldo_comp_cnt; i++) {
1133                         if (i == comp_idx)
1134                                 continue;
1135
1136                         if (lo->ldo_comp_entries[i].llc_flags & LCME_FL_STALE)
1137                                 continue;
1138
1139                         if (lu_extent_is_overlapped(&lod_comp->llc_extent,
1140                                         &lo->ldo_comp_entries[i].llc_extent)) {
1141                                 skipped = true;
1142                                 break;
1143                         }
1144                 }
1145                 break;
1146         }
1147         default:
1148                 LASSERTF(0, "impossible: %d\n", lo->ldo_flr_state);
1149         case LCM_FL_SYNC_PENDING:
1150                 break;
1151         }
1152
1153         CDEBUG(D_LAYOUT, DFID": %s to set component %x to version: %u\n",
1154                PFID(lu_object_fid(&lo->ldo_obj.do_lu)),
1155                skipped ? "skipped" : "chose", lod_comp->llc_id,
1156                data->locd_attr->la_layout_version);
1157
1158         return skipped;
1159 }
1160
1161 static inline int
1162 lod_obj_stripe_attr_set_cb(const struct lu_env *env, struct lod_object *lo,
1163                            struct dt_object *dt, struct thandle *th,
1164                            int comp_idx, int stripe_idx,
1165                            struct lod_obj_stripe_cb_data *data)
1166 {
1167         if (data->locd_declare)
1168                 return lod_sub_declare_attr_set(env, dt, data->locd_attr, th);
1169
1170         if (data->locd_attr->la_valid & LA_LAYOUT_VERSION) {
1171                 CDEBUG(D_LAYOUT, DFID": set layout version: %u, comp_idx: %d\n",
1172                        PFID(lu_object_fid(&dt->do_lu)),
1173                        data->locd_attr->la_layout_version, comp_idx);
1174         }
1175
1176         return lod_sub_attr_set(env, dt, data->locd_attr, th);
1177 }
1178
1179 /**
1180  * Implementation of dt_object_operations::do_declare_attr_set.
1181  *
1182  * If the object is striped, then apply the changes to all the stripes.
1183  *
1184  * \see dt_object_operations::do_declare_attr_set() in the API description
1185  * for details.
1186  */
1187 static int lod_declare_attr_set(const struct lu_env *env,
1188                                 struct dt_object *dt,
1189                                 const struct lu_attr *attr,
1190                                 struct thandle *th)
1191 {
1192         struct dt_object  *next = dt_object_child(dt);
1193         struct lod_object *lo = lod_dt_obj(dt);
1194         int                rc, i;
1195         ENTRY;
1196
1197         /*
1198          * declare setattr on the local object
1199          */
1200         rc = lod_sub_declare_attr_set(env, next, attr, th);
1201         if (rc)
1202                 RETURN(rc);
1203
1204         /* osp_declare_attr_set() ignores all attributes other than
1205          * UID, GID, PROJID, and size, and osp_attr_set() ignores all
1206          * but UID, GID and PROJID. Declaration of size attr setting
1207          * happens through lod_declare_init_size(), and not through
1208          * this function. Therefore we need not load striping unless
1209          * ownership is changing.  This should save memory and (we hope)
1210          * speed up rename().
1211          */
1212         if (!S_ISDIR(dt->do_lu.lo_header->loh_attr)) {
1213                 if (!(attr->la_valid & LA_REMOTE_ATTR_SET))
1214                         RETURN(rc);
1215
1216                 if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_OWNER))
1217                         RETURN(0);
1218         } else {
1219                 if (!(attr->la_valid & (LA_UID | LA_GID | LA_PROJID | LA_MODE |
1220                                         LA_ATIME | LA_MTIME | LA_CTIME |
1221                                         LA_FLAGS)))
1222                         RETURN(rc);
1223         }
1224         /*
1225          * load striping information, notice we don't do this when object
1226          * is being initialized as we don't need this information till
1227          * few specific cases like destroy, chown
1228          */
1229         rc = lod_striping_load(env, lo);
1230         if (rc)
1231                 RETURN(rc);
1232
1233         if (!lod_obj_is_striped(dt))
1234                 RETURN(0);
1235
1236         /*
1237          * if object is striped declare changes on the stripes
1238          */
1239         if (S_ISDIR(dt->do_lu.lo_header->loh_attr)) {
1240                 LASSERT(lo->ldo_stripe);
1241                 for (i = 0; i < lo->ldo_dir_stripe_count; i++) {
1242                         if (lo->ldo_stripe[i] == NULL)
1243                                 continue;
1244                         rc = lod_sub_declare_attr_set(env, lo->ldo_stripe[i],
1245                                                       attr, th);
1246                         if (rc != 0)
1247                                 RETURN(rc);
1248                 }
1249         } else {
1250                 struct lod_obj_stripe_cb_data data = { { 0 } };
1251
1252                 data.locd_attr = attr;
1253                 data.locd_declare = true;
1254                 data.locd_stripe_cb = lod_obj_stripe_attr_set_cb;
1255                 rc = lod_obj_for_each_stripe(env, lo, th, &data);
1256         }
1257
1258         if (rc)
1259                 RETURN(rc);
1260
1261         if (!dt_object_exists(next) || dt_object_remote(next) ||
1262             !S_ISREG(attr->la_mode))
1263                 RETURN(0);
1264
1265         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_LOST_STRIPE)) {
1266                 rc = lod_sub_declare_xattr_del(env, next, XATTR_NAME_LOV, th);
1267                 RETURN(rc);
1268         }
1269
1270         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_CHANGE_STRIPE) ||
1271             OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_PFL_RANGE)) {
1272                 struct lod_thread_info *info = lod_env_info(env);
1273                 struct lu_buf *buf = &info->lti_buf;
1274
1275                 buf->lb_buf = info->lti_ea_store;
1276                 buf->lb_len = info->lti_ea_store_size;
1277                 rc = lod_sub_declare_xattr_set(env, next, buf, XATTR_NAME_LOV,
1278                                                LU_XATTR_REPLACE, th);
1279         }
1280
1281         RETURN(rc);
1282 }
1283
1284 /**
1285  * Implementation of dt_object_operations::do_attr_set.
1286  *
1287  * If the object is striped, then apply the changes to all or subset of
1288  * the stripes depending on the object type and specific attributes.
1289  *
1290  * \see dt_object_operations::do_attr_set() in the API description for details.
1291  */
1292 static int lod_attr_set(const struct lu_env *env,
1293                         struct dt_object *dt,
1294                         const struct lu_attr *attr,
1295                         struct thandle *th)
1296 {
1297         struct dt_object        *next = dt_object_child(dt);
1298         struct lod_object       *lo = lod_dt_obj(dt);
1299         int                     rc, i;
1300         ENTRY;
1301
1302         /*
1303          * apply changes to the local object
1304          */
1305         rc = lod_sub_attr_set(env, next, attr, th);
1306         if (rc)
1307                 RETURN(rc);
1308
1309         if (!S_ISDIR(dt->do_lu.lo_header->loh_attr)) {
1310                 if (!(attr->la_valid & LA_REMOTE_ATTR_SET))
1311                         RETURN(rc);
1312
1313                 if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_OWNER))
1314                         RETURN(0);
1315         } else {
1316                 if (!(attr->la_valid & (LA_UID | LA_GID | LA_MODE | LA_PROJID |
1317                                         LA_ATIME | LA_MTIME | LA_CTIME |
1318                                         LA_FLAGS)))
1319                         RETURN(rc);
1320         }
1321
1322         /* FIXME: a tricky case in the code path of mdd_layout_change():
1323          * the in-memory striping information has been freed in lod_xattr_set()
1324          * due to layout change. It has to load stripe here again. It only
1325          * changes flags of layout so declare_attr_set() is still accurate */
1326         rc = lod_striping_load(env, lo);
1327         if (rc)
1328                 RETURN(rc);
1329
1330         if (!lod_obj_is_striped(dt))
1331                 RETURN(0);
1332
1333         /*
1334          * if object is striped, apply changes to all the stripes
1335          */
1336         if (S_ISDIR(dt->do_lu.lo_header->loh_attr)) {
1337                 LASSERT(lo->ldo_stripe);
1338                 for (i = 0; i < lo->ldo_dir_stripe_count; i++) {
1339                         if (unlikely(lo->ldo_stripe[i] == NULL))
1340                                 continue;
1341
1342                         if ((dt_object_exists(lo->ldo_stripe[i]) == 0))
1343                                 continue;
1344
1345                         rc = lod_sub_attr_set(env, lo->ldo_stripe[i], attr, th);
1346                         if (rc != 0)
1347                                 break;
1348                 }
1349         } else {
1350                 struct lod_obj_stripe_cb_data data = { { 0 } };
1351
1352                 data.locd_attr = attr;
1353                 data.locd_declare = false;
1354                 data.locd_comp_skip_cb = lod_obj_attr_set_comp_skip_cb;
1355                 data.locd_stripe_cb = lod_obj_stripe_attr_set_cb;
1356                 rc = lod_obj_for_each_stripe(env, lo, th, &data);
1357         }
1358
1359         if (rc)
1360                 RETURN(rc);
1361
1362         if (!dt_object_exists(next) || dt_object_remote(next) ||
1363             !S_ISREG(attr->la_mode))
1364                 RETURN(0);
1365
1366         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_LOST_STRIPE)) {
1367                 rc = lod_sub_xattr_del(env, next, XATTR_NAME_LOV, th);
1368                 RETURN(rc);
1369         }
1370
1371         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_CHANGE_STRIPE)) {
1372                 struct lod_thread_info *info = lod_env_info(env);
1373                 struct lu_buf *buf = &info->lti_buf;
1374                 struct ost_id *oi = &info->lti_ostid;
1375                 struct lu_fid *fid = &info->lti_fid;
1376                 struct lov_mds_md_v1 *lmm;
1377                 struct lov_ost_data_v1 *objs;
1378                 __u32 magic;
1379
1380                 rc = lod_get_lov_ea(env, lo);
1381                 if (rc <= 0)
1382                         RETURN(rc);
1383
1384                 buf->lb_buf = info->lti_ea_store;
1385                 buf->lb_len = info->lti_ea_store_size;
1386                 lmm = info->lti_ea_store;
1387                 magic = le32_to_cpu(lmm->lmm_magic);
1388                 if (magic == LOV_MAGIC_COMP_V1) {
1389                         struct lov_comp_md_v1 *lcm = buf->lb_buf;
1390                         struct lov_comp_md_entry_v1 *lcme =
1391                                                 &lcm->lcm_entries[0];
1392
1393                         lmm = buf->lb_buf + le32_to_cpu(lcme->lcme_offset);
1394                         magic = le32_to_cpu(lmm->lmm_magic);
1395                 }
1396
1397                 if (magic == LOV_MAGIC_V1)
1398                         objs = &(lmm->lmm_objects[0]);
1399                 else
1400                         objs = &((struct lov_mds_md_v3 *)lmm)->lmm_objects[0];
1401                 ostid_le_to_cpu(&objs->l_ost_oi, oi);
1402                 ostid_to_fid(fid, oi, le32_to_cpu(objs->l_ost_idx));
1403                 fid->f_oid--;
1404                 fid_to_ostid(fid, oi);
1405                 ostid_cpu_to_le(oi, &objs->l_ost_oi);
1406
1407                 rc = lod_sub_xattr_set(env, next, buf, XATTR_NAME_LOV,
1408                                        LU_XATTR_REPLACE, th);
1409         } else if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_PFL_RANGE)) {
1410                 struct lod_thread_info *info = lod_env_info(env);
1411                 struct lu_buf *buf = &info->lti_buf;
1412                 struct lov_comp_md_v1 *lcm;
1413                 struct lov_comp_md_entry_v1 *lcme;
1414
1415                 rc = lod_get_lov_ea(env, lo);
1416                 if (rc <= 0)
1417                         RETURN(rc);
1418
1419                 buf->lb_buf = info->lti_ea_store;
1420                 buf->lb_len = info->lti_ea_store_size;
1421                 lcm = buf->lb_buf;
1422                 if (le32_to_cpu(lcm->lcm_magic) != LOV_MAGIC_COMP_V1)
1423                         RETURN(-EINVAL);
1424
1425                 le32_add_cpu(&lcm->lcm_layout_gen, 1);
1426                 lcme = &lcm->lcm_entries[0];
1427                 le64_add_cpu(&lcme->lcme_extent.e_start, 1);
1428                 le64_add_cpu(&lcme->lcme_extent.e_end, -1);
1429
1430                 rc = lod_sub_xattr_set(env, next, buf, XATTR_NAME_LOV,
1431                                        LU_XATTR_REPLACE, th);
1432         }
1433
1434         RETURN(rc);
1435 }
1436
1437 /**
1438  * Implementation of dt_object_operations::do_xattr_get.
1439  *
1440  * If LOV EA is requested from the root object and it's not
1441  * found, then return default striping for the filesystem.
1442  *
1443  * \see dt_object_operations::do_xattr_get() in the API description for details.
1444  */
1445 static int lod_xattr_get(const struct lu_env *env, struct dt_object *dt,
1446                          struct lu_buf *buf, const char *name)
1447 {
1448         struct lod_thread_info *info = lod_env_info(env);
1449         struct lod_device *dev = lu2lod_dev(dt->do_lu.lo_dev);
1450         int is_root;
1451         int rc;
1452         ENTRY;
1453
1454         rc = dt_xattr_get(env, dt_object_child(dt), buf, name);
1455         if (strcmp(name, XATTR_NAME_LMV) == 0) {
1456                 struct lmv_mds_md_v1    *lmv1;
1457                 int                      rc1 = 0;
1458
1459                 if (rc > (typeof(rc))sizeof(*lmv1))
1460                         RETURN(rc);
1461
1462                 if (rc < (typeof(rc))sizeof(*lmv1))
1463                         RETURN(rc = rc > 0 ? -EINVAL : rc);
1464
1465                 if (buf->lb_buf == NULL || buf->lb_len == 0) {
1466                         CLASSERT(sizeof(*lmv1) <= sizeof(info->lti_key));
1467
1468                         info->lti_buf.lb_buf = info->lti_key;
1469                         info->lti_buf.lb_len = sizeof(*lmv1);
1470                         rc = dt_xattr_get(env, dt_object_child(dt),
1471                                           &info->lti_buf, name);
1472                         if (unlikely(rc != sizeof(*lmv1)))
1473                                 RETURN(rc = rc > 0 ? -EINVAL : rc);
1474
1475                         lmv1 = info->lti_buf.lb_buf;
1476                         /* The on-disk LMV EA only contains header, but the
1477                          * returned LMV EA size should contain the space for
1478                          * the FIDs of all shards of the striped directory. */
1479                         if (le32_to_cpu(lmv1->lmv_magic) == LMV_MAGIC_V1)
1480                                 rc = lmv_mds_md_size(
1481                                         le32_to_cpu(lmv1->lmv_stripe_count),
1482                                         LMV_MAGIC_V1);
1483                 } else {
1484                         rc1 = lod_load_lmv_shards(env, lod_dt_obj(dt),
1485                                                   buf, false);
1486                 }
1487
1488                 RETURN(rc = rc1 != 0 ? rc1 : rc);
1489         }
1490
1491         if (rc != -ENODATA || !S_ISDIR(dt->do_lu.lo_header->loh_attr & S_IFMT))
1492                 RETURN(rc);
1493
1494         /*
1495          * XXX: Only used by lfsck
1496          *
1497          * lod returns default striping on the real root of the device
1498          * this is like the root stores default striping for the whole
1499          * filesystem. historically we've been using a different approach
1500          * and store it in the config.
1501          */
1502         dt_root_get(env, dev->lod_child, &info->lti_fid);
1503         is_root = lu_fid_eq(&info->lti_fid, lu_object_fid(&dt->do_lu));
1504
1505         if (is_root && strcmp(XATTR_NAME_LOV, name) == 0) {
1506                 struct lov_user_md *lum = buf->lb_buf;
1507                 struct lov_desc    *desc = &dev->lod_desc;
1508
1509                 if (buf->lb_buf == NULL) {
1510                         rc = sizeof(*lum);
1511                 } else if (buf->lb_len >= sizeof(*lum)) {
1512                         lum->lmm_magic = cpu_to_le32(LOV_USER_MAGIC_V1);
1513                         lmm_oi_set_seq(&lum->lmm_oi, FID_SEQ_LOV_DEFAULT);
1514                         lmm_oi_set_id(&lum->lmm_oi, 0);
1515                         lmm_oi_cpu_to_le(&lum->lmm_oi, &lum->lmm_oi);
1516                         lum->lmm_pattern = cpu_to_le32(desc->ld_pattern);
1517                         lum->lmm_stripe_size = cpu_to_le32(
1518                                                 desc->ld_default_stripe_size);
1519                         lum->lmm_stripe_count = cpu_to_le16(
1520                                                 desc->ld_default_stripe_count);
1521                         lum->lmm_stripe_offset = cpu_to_le16(
1522                                                 desc->ld_default_stripe_offset);
1523                         rc = sizeof(*lum);
1524                 } else {
1525                         rc = -ERANGE;
1526                 }
1527         }
1528
1529         RETURN(rc);
1530 }
1531
1532 /**
1533  * Verify LVM EA.
1534  *
1535  * Checks that the magic of the stripe is sane.
1536  *
1537  * \param[in] lod       lod device
1538  * \param[in] lum       a buffer storing LMV EA to verify
1539  *
1540  * \retval              0 if the EA is sane
1541  * \retval              negative otherwise
1542  */
1543 static int lod_verify_md_striping(struct lod_device *lod,
1544                                   const struct lmv_user_md_v1 *lum)
1545 {
1546         if (unlikely(le32_to_cpu(lum->lum_magic) != LMV_USER_MAGIC)) {
1547                 CERROR("%s: invalid lmv_user_md: magic = %x, "
1548                        "stripe_offset = %d, stripe_count = %u: rc = %d\n",
1549                        lod2obd(lod)->obd_name, le32_to_cpu(lum->lum_magic),
1550                        (int)le32_to_cpu(lum->lum_stripe_offset),
1551                        le32_to_cpu(lum->lum_stripe_count), -EINVAL);
1552                 return -EINVAL;
1553         }
1554
1555         return 0;
1556 }
1557
1558 /**
1559  * Initialize LMV EA for a slave.
1560  *
1561  * Initialize slave's LMV EA from the master's LMV EA.
1562  *
1563  * \param[in] master_lmv        a buffer containing master's EA
1564  * \param[out] slave_lmv        a buffer where slave's EA will be stored
1565  *
1566  */
1567 static void lod_prep_slave_lmv_md(struct lmv_mds_md_v1 *slave_lmv,
1568                                   const struct lmv_mds_md_v1 *master_lmv)
1569 {
1570         *slave_lmv = *master_lmv;
1571         slave_lmv->lmv_magic = cpu_to_le32(LMV_MAGIC_STRIPE);
1572 }
1573
1574 /**
1575  * Generate LMV EA.
1576  *
1577  * Generate LMV EA from the object passed as \a dt. The object must have
1578  * the stripes created and initialized.
1579  *
1580  * \param[in] env       execution environment
1581  * \param[in] dt        object
1582  * \param[out] lmv_buf  buffer storing generated LMV EA
1583  *
1584  * \retval              0 on success
1585  * \retval              negative if failed
1586  */
1587 static int lod_prep_lmv_md(const struct lu_env *env, struct dt_object *dt,
1588                            struct lu_buf *lmv_buf)
1589 {
1590         struct lod_thread_info  *info = lod_env_info(env);
1591         struct lod_device       *lod = lu2lod_dev(dt->do_lu.lo_dev);
1592         struct lod_object       *lo = lod_dt_obj(dt);
1593         struct lmv_mds_md_v1    *lmm1;
1594         int                     stripe_count;
1595         int                     type = LU_SEQ_RANGE_ANY;
1596         int                     rc;
1597         __u32                   mdtidx;
1598         ENTRY;
1599
1600         LASSERT(lo->ldo_dir_striped != 0);
1601         LASSERT(lo->ldo_dir_stripe_count > 0);
1602         stripe_count = lo->ldo_dir_stripe_count;
1603         /* Only store the LMV EA heahder on the disk. */
1604         if (info->lti_ea_store_size < sizeof(*lmm1)) {
1605                 rc = lod_ea_store_resize(info, sizeof(*lmm1));
1606                 if (rc != 0)
1607                         RETURN(rc);
1608         } else {
1609                 memset(info->lti_ea_store, 0, sizeof(*lmm1));
1610         }
1611
1612         lmm1 = (struct lmv_mds_md_v1 *)info->lti_ea_store;
1613         memset(lmm1, 0, sizeof(*lmm1));
1614         lmm1->lmv_magic = cpu_to_le32(LMV_MAGIC);
1615         lmm1->lmv_stripe_count = cpu_to_le32(stripe_count);
1616         lmm1->lmv_hash_type = cpu_to_le32(lo->ldo_dir_hash_type);
1617         if (lo->ldo_dir_hash_type & LMV_HASH_FLAG_MIGRATION) {
1618                 lmm1->lmv_migrate_hash = cpu_to_le32(lo->ldo_dir_migrate_hash);
1619                 lmm1->lmv_migrate_offset =
1620                         cpu_to_le32(lo->ldo_dir_migrate_offset);
1621         }
1622         rc = lod_fld_lookup(env, lod, lu_object_fid(&dt->do_lu),
1623                             &mdtidx, &type);
1624         if (rc != 0)
1625                 RETURN(rc);
1626
1627         lmm1->lmv_master_mdt_index = cpu_to_le32(mdtidx);
1628         lmv_buf->lb_buf = info->lti_ea_store;
1629         lmv_buf->lb_len = sizeof(*lmm1);
1630
1631         RETURN(rc);
1632 }
1633
1634 /**
1635  * Create in-core represenation for a striped directory.
1636  *
1637  * Parse the buffer containing LMV EA and instantiate LU objects
1638  * representing the stripe objects. The pointers to the objects are
1639  * stored in ldo_stripe field of \a lo. This function is used when
1640  * we need to access an already created object (i.e. load from a disk).
1641  *
1642  * \param[in] env       execution environment
1643  * \param[in] lo        lod object
1644  * \param[in] buf       buffer containing LMV EA
1645  *
1646  * \retval              0 on success
1647  * \retval              negative if failed
1648  */
1649 int lod_parse_dir_striping(const struct lu_env *env, struct lod_object *lo,
1650                            const struct lu_buf *buf)
1651 {
1652         struct lod_thread_info  *info = lod_env_info(env);
1653         struct lod_device       *lod = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
1654         struct lod_tgt_descs    *ltd = &lod->lod_mdt_descs;
1655         struct dt_object        **stripe;
1656         union lmv_mds_md        *lmm = buf->lb_buf;
1657         struct lmv_mds_md_v1    *lmv1 = &lmm->lmv_md_v1;
1658         struct lu_fid           *fid = &info->lti_fid;
1659         unsigned int            i;
1660         int                     rc = 0;
1661         ENTRY;
1662
1663         LASSERT(mutex_is_locked(&lo->ldo_layout_mutex));
1664
1665         if (le32_to_cpu(lmv1->lmv_hash_type) & LMV_HASH_FLAG_MIGRATION)
1666                 RETURN(0);
1667
1668         if (le32_to_cpu(lmv1->lmv_magic) == LMV_MAGIC_STRIPE) {
1669                 lo->ldo_dir_slave_stripe = 1;
1670                 RETURN(0);
1671         }
1672
1673         if (le32_to_cpu(lmv1->lmv_magic) != LMV_MAGIC_V1)
1674                 RETURN(-EINVAL);
1675
1676         if (le32_to_cpu(lmv1->lmv_stripe_count) < 1)
1677                 RETURN(0);
1678
1679         LASSERT(lo->ldo_stripe == NULL);
1680         OBD_ALLOC(stripe, sizeof(stripe[0]) *
1681                   (le32_to_cpu(lmv1->lmv_stripe_count)));
1682         if (stripe == NULL)
1683                 RETURN(-ENOMEM);
1684
1685         for (i = 0; i < le32_to_cpu(lmv1->lmv_stripe_count); i++) {
1686                 struct dt_device        *tgt_dt;
1687                 struct dt_object        *dto;
1688                 int                     type = LU_SEQ_RANGE_ANY;
1689                 __u32                   idx;
1690
1691                 fid_le_to_cpu(fid, &lmv1->lmv_stripe_fids[i]);
1692                 if (!fid_is_sane(fid))
1693                         GOTO(out, rc = -ESTALE);
1694
1695                 rc = lod_fld_lookup(env, lod, fid, &idx, &type);
1696                 if (rc != 0)
1697                         GOTO(out, rc);
1698
1699                 if (idx == lod2lu_dev(lod)->ld_site->ld_seq_site->ss_node_id) {
1700                         tgt_dt = lod->lod_child;
1701                 } else {
1702                         struct lod_tgt_desc     *tgt;
1703
1704                         tgt = LTD_TGT(ltd, idx);
1705                         if (tgt == NULL)
1706                                 GOTO(out, rc = -ESTALE);
1707                         tgt_dt = tgt->ltd_tgt;
1708                 }
1709
1710                 dto = dt_locate_at(env, tgt_dt, fid,
1711                                   lo->ldo_obj.do_lu.lo_dev->ld_site->ls_top_dev,
1712                                   NULL);
1713                 if (IS_ERR(dto))
1714                         GOTO(out, rc = PTR_ERR(dto));
1715
1716                 stripe[i] = dto;
1717         }
1718 out:
1719         lo->ldo_stripe = stripe;
1720         lo->ldo_dir_stripe_count = le32_to_cpu(lmv1->lmv_stripe_count);
1721         lo->ldo_dir_stripes_allocated = le32_to_cpu(lmv1->lmv_stripe_count);
1722         if (rc != 0)
1723                 lod_striping_free_nolock(env, lo);
1724
1725         RETURN(rc);
1726 }
1727
1728 /**
1729  * Declare create a striped directory.
1730  *
1731  * Declare creating a striped directory with a given stripe pattern on the
1732  * specified MDTs. A striped directory is represented as a regular directory
1733  * - an index listing all the stripes. The stripes point back to the master
1734  * object with ".." and LinkEA. The master object gets LMV EA which
1735  * identifies it as a striped directory. The function allocates FIDs
1736  * for all stripes.
1737  *
1738  * \param[in] env       execution environment
1739  * \param[in] dt        object
1740  * \param[in] attr      attributes to initialize the objects with
1741  * \param[in] dof       type of objects to be created
1742  * \param[in] th        transaction handle
1743  *
1744  * \retval              0 on success
1745  * \retval              negative if failed
1746  */
1747 static int lod_dir_declare_create_stripes(const struct lu_env *env,
1748                                           struct dt_object *dt,
1749                                           struct lu_attr *attr,
1750                                           struct dt_object_format *dof,
1751                                           struct thandle *th)
1752 {
1753         struct lod_thread_info  *info = lod_env_info(env);
1754         struct lu_buf           lmv_buf;
1755         struct lu_buf           slave_lmv_buf;
1756         struct lmv_mds_md_v1    *lmm;
1757         struct lmv_mds_md_v1    *slave_lmm = NULL;
1758         struct dt_insert_rec    *rec = &info->lti_dt_rec;
1759         struct lod_object       *lo = lod_dt_obj(dt);
1760         int                     rc;
1761         __u32                   i;
1762         ENTRY;
1763
1764         rc = lod_prep_lmv_md(env, dt, &lmv_buf);
1765         if (rc != 0)
1766                 GOTO(out, rc);
1767         lmm = lmv_buf.lb_buf;
1768
1769         OBD_ALLOC_PTR(slave_lmm);
1770         if (slave_lmm == NULL)
1771                 GOTO(out, rc = -ENOMEM);
1772
1773         lod_prep_slave_lmv_md(slave_lmm, lmm);
1774         slave_lmv_buf.lb_buf = slave_lmm;
1775         slave_lmv_buf.lb_len = sizeof(*slave_lmm);
1776
1777         if (!dt_try_as_dir(env, dt_object_child(dt)))
1778                 GOTO(out, rc = -EINVAL);
1779
1780         rec->rec_type = S_IFDIR;
1781         for (i = 0; i < lo->ldo_dir_stripe_count; i++) {
1782                 struct dt_object        *dto = lo->ldo_stripe[i];
1783                 char                    *stripe_name = info->lti_key;
1784                 struct lu_name          *sname;
1785                 struct linkea_data       ldata          = { NULL };
1786                 struct lu_buf           linkea_buf;
1787
1788                 rc = lod_sub_declare_create(env, dto, attr, NULL, dof, th);
1789                 if (rc != 0)
1790                         GOTO(out, rc);
1791
1792                 if (!dt_try_as_dir(env, dto))
1793                         GOTO(out, rc = -EINVAL);
1794
1795                 rc = lod_sub_declare_ref_add(env, dto, th);
1796                 if (rc != 0)
1797                         GOTO(out, rc);
1798
1799                 rec->rec_fid = lu_object_fid(&dto->do_lu);
1800                 rc = lod_sub_declare_insert(env, dto,
1801                                             (const struct dt_rec *)rec,
1802                                             (const struct dt_key *)dot, th);
1803                 if (rc != 0)
1804                         GOTO(out, rc);
1805
1806                 /* master stripe FID will be put to .. */
1807                 rec->rec_fid = lu_object_fid(&dt->do_lu);
1808                 rc = lod_sub_declare_insert(env, dto,
1809                                             (const struct dt_rec *)rec,
1810                                             (const struct dt_key *)dotdot, th);
1811                 if (rc != 0)
1812                         GOTO(out, rc);
1813
1814                 if (!OBD_FAIL_CHECK(OBD_FAIL_LFSCK_LOST_SLAVE_LMV) ||
1815                     cfs_fail_val != i) {
1816                         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_SLAVE_LMV) &&
1817                             cfs_fail_val == i)
1818                                 slave_lmm->lmv_master_mdt_index =
1819                                                         cpu_to_le32(i + 1);
1820                         else
1821                                 slave_lmm->lmv_master_mdt_index =
1822                                                         cpu_to_le32(i);
1823                         rc = lod_sub_declare_xattr_set(env, dto, &slave_lmv_buf,
1824                                                        XATTR_NAME_LMV, 0, th);
1825                         if (rc != 0)
1826                                 GOTO(out, rc);
1827                 }
1828
1829                 if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_SLAVE_NAME) &&
1830                     cfs_fail_val == i)
1831                         snprintf(stripe_name, sizeof(info->lti_key), DFID":%u",
1832                                 PFID(lu_object_fid(&dto->do_lu)), i + 1);
1833                 else
1834                         snprintf(stripe_name, sizeof(info->lti_key), DFID":%u",
1835                                 PFID(lu_object_fid(&dto->do_lu)), i);
1836
1837                 sname = lod_name_get(env, stripe_name, strlen(stripe_name));
1838                 rc = linkea_links_new(&ldata, &info->lti_linkea_buf,
1839                                       sname, lu_object_fid(&dt->do_lu));
1840                 if (rc != 0)
1841                         GOTO(out, rc);
1842
1843                 linkea_buf.lb_buf = ldata.ld_buf->lb_buf;
1844                 linkea_buf.lb_len = ldata.ld_leh->leh_len;
1845                 rc = lod_sub_declare_xattr_set(env, dto, &linkea_buf,
1846                                                XATTR_NAME_LINK, 0, th);
1847                 if (rc != 0)
1848                         GOTO(out, rc);
1849
1850                 rec->rec_fid = lu_object_fid(&dto->do_lu);
1851                 rc = lod_sub_declare_insert(env, dt_object_child(dt),
1852                                             (const struct dt_rec *)rec,
1853                                             (const struct dt_key *)stripe_name,
1854                                             th);
1855                 if (rc != 0)
1856                         GOTO(out, rc);
1857
1858                 rc = lod_sub_declare_ref_add(env, dt_object_child(dt), th);
1859                 if (rc != 0)
1860                         GOTO(out, rc);
1861         }
1862
1863         rc = lod_sub_declare_xattr_set(env, dt_object_child(dt),
1864                                        &lmv_buf, XATTR_NAME_LMV, 0, th);
1865         if (rc != 0)
1866                 GOTO(out, rc);
1867 out:
1868         if (slave_lmm != NULL)
1869                 OBD_FREE_PTR(slave_lmm);
1870
1871         RETURN(rc);
1872 }
1873
1874 static int lod_prep_md_striped_create(const struct lu_env *env,
1875                                       struct dt_object *dt,
1876                                       struct lu_attr *attr,
1877                                       const struct lmv_user_md_v1 *lum,
1878                                       struct dt_object_format *dof,
1879                                       struct thandle *th)
1880 {
1881         struct lod_thread_info  *info = lod_env_info(env);
1882         struct lod_device       *lod = lu2lod_dev(dt->do_lu.lo_dev);
1883         struct lod_tgt_descs    *ltd = &lod->lod_mdt_descs;
1884         struct lod_object       *lo = lod_dt_obj(dt);
1885         struct dt_object        **stripe;
1886         __u32                   stripe_count;
1887         int                     *idx_array;
1888         __u32                   master_index;
1889         int                     rc = 0;
1890         __u32                   i;
1891         __u32                   j;
1892         bool                    is_specific = false;
1893         ENTRY;
1894
1895         /* The lum has been verifed in lod_verify_md_striping */
1896         LASSERT(le32_to_cpu(lum->lum_magic) == LMV_USER_MAGIC ||
1897                 le32_to_cpu(lum->lum_magic) == LMV_USER_MAGIC_SPECIFIC);
1898         LASSERT(le32_to_cpu(lum->lum_stripe_count) > 0);
1899
1900         stripe_count = le32_to_cpu(lum->lum_stripe_count);
1901
1902         OBD_ALLOC(idx_array, sizeof(idx_array[0]) * stripe_count);
1903         if (idx_array == NULL)
1904                 RETURN(-ENOMEM);
1905
1906         OBD_ALLOC(stripe, sizeof(stripe[0]) * stripe_count);
1907         if (stripe == NULL)
1908                 GOTO(out_free, rc = -ENOMEM);
1909
1910         /* Start index must be the master MDT */
1911         master_index = lu_site2seq(lod2lu_dev(lod)->ld_site)->ss_node_id;
1912         idx_array[0] = master_index;
1913         if (le32_to_cpu(lum->lum_magic) == LMV_USER_MAGIC_SPECIFIC) {
1914                 is_specific = true;
1915                 for (i = 1; i < stripe_count; i++)
1916                         idx_array[i] = le32_to_cpu(lum->lum_objects[i].lum_mds);
1917         }
1918
1919         for (i = 0; i < stripe_count; i++) {
1920                 struct lod_tgt_desc     *tgt = NULL;
1921                 struct dt_object        *dto;
1922                 struct lu_fid           fid = { 0 };
1923                 int                     idx;
1924                 struct lu_object_conf   conf = { 0 };
1925                 struct dt_device        *tgt_dt = NULL;
1926
1927                 /* Try to find next avaible target */
1928                 idx = idx_array[i];
1929                 for (j = 0; j < lod->lod_remote_mdt_count;
1930                      j++, idx = (idx + 1) % (lod->lod_remote_mdt_count + 1)) {
1931                         bool already_allocated = false;
1932                         __u32 k;
1933
1934                         CDEBUG(D_INFO, "try idx %d, mdt cnt %u, allocated %u\n",
1935                                idx, lod->lod_remote_mdt_count + 1, i);
1936
1937                         if (likely(!is_specific &&
1938                                    !OBD_FAIL_CHECK(OBD_FAIL_LARGE_STRIPE))) {
1939                                 /* check whether the idx already exists
1940                                  * in current allocated array */
1941                                 for (k = 0; k < i; k++) {
1942                                         if (idx_array[k] == idx) {
1943                                                 already_allocated = true;
1944                                                 break;
1945                                         }
1946                                 }
1947
1948                                 if (already_allocated)
1949                                         continue;
1950                         }
1951
1952                         /* Sigh, this index is not in the bitmap, let's check
1953                          * next available target */
1954                         if (!cfs_bitmap_check(ltd->ltd_tgt_bitmap, idx) &&
1955                             idx != master_index)
1956                                 continue;
1957
1958                         if (idx == master_index) {
1959                                 /* Allocate the FID locally */
1960                                 rc = obd_fid_alloc(env, lod->lod_child_exp,
1961                                                    &fid, NULL);
1962                                 if (rc < 0)
1963                                         GOTO(out_put, rc);
1964                                 tgt_dt = lod->lod_child;
1965                                 break;
1966                         }
1967
1968                         /* check the status of the OSP */
1969                         tgt = LTD_TGT(ltd, idx);
1970                         if (tgt == NULL)
1971                                 continue;
1972
1973                         tgt_dt = tgt->ltd_tgt;
1974                         rc = dt_statfs(env, tgt_dt, &info->lti_osfs);
1975                         if (rc) {
1976                                 /* this OSP doesn't feel well */
1977                                 rc = 0;
1978                                 continue;
1979                         }
1980
1981                         rc = obd_fid_alloc(env, tgt->ltd_exp, &fid, NULL);
1982                         if (rc < 0) {
1983                                 rc = 0;
1984                                 continue;
1985                         }
1986
1987                         break;
1988                 }
1989
1990                 /* Can not allocate more stripes */
1991                 if (j == lod->lod_remote_mdt_count) {
1992                         CDEBUG(D_INFO, "%s: require stripes %u only get %d\n",
1993                                lod2obd(lod)->obd_name, stripe_count, i);
1994                         break;
1995                 }
1996
1997                 CDEBUG(D_INFO, "Get idx %d, for stripe %d "DFID"\n",
1998                        idx, i, PFID(&fid));
1999                 idx_array[i] = idx;
2000                 /* Set the start index for next stripe allocation */
2001                 if (!is_specific && i < stripe_count - 1) {
2002                         /*
2003                          * for large dir test, put all other slaves on one
2004                          * remote MDT, otherwise we may save too many local
2005                          * slave locks which will exceed RS_MAX_LOCKS.
2006                          */
2007                         if (unlikely(OBD_FAIL_CHECK(OBD_FAIL_LARGE_STRIPE)))
2008                                 idx = master_index;
2009                         idx_array[i + 1] = (idx + 1) %
2010                                            (lod->lod_remote_mdt_count + 1);
2011                 }
2012                 /* tgt_dt and fid must be ready after search avaible OSP
2013                  * in the above loop */
2014                 LASSERT(tgt_dt != NULL);
2015                 LASSERT(fid_is_sane(&fid));
2016                 conf.loc_flags = LOC_F_NEW;
2017                 dto = dt_locate_at(env, tgt_dt, &fid,
2018                                    dt->do_lu.lo_dev->ld_site->ls_top_dev,
2019                                    &conf);
2020                 if (IS_ERR(dto))
2021                         GOTO(out_put, rc = PTR_ERR(dto));
2022                 stripe[i] = dto;
2023         }
2024
2025         lo->ldo_dir_striped = 1;
2026         lo->ldo_stripe = stripe;
2027         lo->ldo_dir_stripe_count = i;
2028         lo->ldo_dir_stripes_allocated = stripe_count;
2029         smp_mb();
2030         lo->ldo_dir_stripe_loaded = 1;
2031
2032         if (lo->ldo_dir_stripe_count == 0)
2033                 GOTO(out_put, rc = -ENOSPC);
2034
2035         rc = lod_dir_declare_create_stripes(env, dt, attr, dof, th);
2036         if (rc != 0)
2037                 GOTO(out_put, rc);
2038
2039 out_put:
2040         if (rc < 0) {
2041                 for (i = 0; i < stripe_count; i++)
2042                         if (stripe[i] != NULL)
2043                                 dt_object_put(env, stripe[i]);
2044                 OBD_FREE(stripe, sizeof(stripe[0]) * stripe_count);
2045                 lo->ldo_dir_stripe_count = 0;
2046                 lo->ldo_dir_stripes_allocated = 0;
2047                 lo->ldo_stripe = NULL;
2048         }
2049
2050 out_free:
2051         OBD_FREE(idx_array, sizeof(idx_array[0]) * stripe_count);
2052
2053         RETURN(rc);
2054 }
2055
2056 /**
2057  * Declare create striped md object.
2058  *
2059  * The function declares intention to create a striped directory. This is a
2060  * wrapper for lod_prep_md_striped_create(). The only additional functionality
2061  * is to verify pattern \a lum_buf is good. Check that function for the details.
2062  *
2063  * \param[in] env       execution environment
2064  * \param[in] dt        object
2065  * \param[in] attr      attributes to initialize the objects with
2066  * \param[in] lum_buf   a pattern specifying the number of stripes and
2067  *                      MDT to start from
2068  * \param[in] dof       type of objects to be created
2069  * \param[in] th        transaction handle
2070  *
2071  * \retval              0 on success
2072  * \retval              negative if failed
2073  *
2074  */
2075 static int lod_declare_xattr_set_lmv(const struct lu_env *env,
2076                                      struct dt_object *dt,
2077                                      struct lu_attr *attr,
2078                                      const struct lu_buf *lum_buf,
2079                                      struct dt_object_format *dof,
2080                                      struct thandle *th)
2081 {
2082         struct lod_object       *lo = lod_dt_obj(dt);
2083         struct lmv_user_md_v1   *lum = lum_buf->lb_buf;
2084         int                     rc;
2085         ENTRY;
2086
2087         LASSERT(lum != NULL);
2088
2089         CDEBUG(D_INFO, "lum magic = %x count = %u offset = %d\n",
2090                le32_to_cpu(lum->lum_magic), le32_to_cpu(lum->lum_stripe_count),
2091                (int)le32_to_cpu(lum->lum_stripe_offset));
2092
2093         if (lo->ldo_dir_stripe_count == 0)
2094                 GOTO(out, rc = 0);
2095
2096         /* prepare dir striped objects */
2097         rc = lod_prep_md_striped_create(env, dt, attr, lum, dof, th);
2098         if (rc != 0) {
2099                 /* failed to create striping, let's reset
2100                  * config so that others don't get confused */
2101                 lod_striping_free(env, lo);
2102                 GOTO(out, rc);
2103         }
2104 out:
2105         RETURN(rc);
2106 }
2107
2108 /**
2109  * Append source stripes after target stripes for migrating directory. NB, we
2110  * only need to declare this, the append is done inside lod_xattr_set_lmv().
2111  *
2112  * \param[in] env       execution environment
2113  * \param[in] dt        target object
2114  * \param[in] buf       LMV buf which contains source stripe fids
2115  * \param[in] th        transaction handle
2116  *
2117  * \retval              0 on success
2118  * \retval              negative if failed
2119  */
2120 static int lod_dir_declare_layout_add(const struct lu_env *env,
2121                                       struct dt_object *dt,
2122                                       const struct lu_buf *buf,
2123                                       struct thandle *th)
2124 {
2125         struct lod_thread_info *info = lod_env_info(env);
2126         struct lod_device *lod = lu2lod_dev(dt->do_lu.lo_dev);
2127         struct lod_tgt_descs *ltd = &lod->lod_mdt_descs;
2128         struct lod_object *lo = lod_dt_obj(dt);
2129         struct dt_object *next = dt_object_child(dt);
2130         struct dt_object_format *dof = &info->lti_format;
2131         struct lmv_mds_md_v1 *lmv = buf->lb_buf;
2132         struct dt_object **stripe;
2133         __u32 stripe_count = le32_to_cpu(lmv->lmv_stripe_count);
2134         struct lu_fid *fid = &info->lti_fid;
2135         struct lod_tgt_desc *tgt;
2136         struct dt_object *dto;
2137         struct dt_device *tgt_dt;
2138         int type = LU_SEQ_RANGE_ANY;
2139         struct dt_insert_rec *rec = &info->lti_dt_rec;
2140         char *stripe_name = info->lti_key;
2141         struct lu_name *sname;
2142         struct linkea_data ldata = { NULL };
2143         struct lu_buf linkea_buf;
2144         __u32 idx;
2145         int i;
2146         int rc;
2147
2148         ENTRY;
2149
2150         if (le32_to_cpu(lmv->lmv_magic) != LMV_MAGIC_V1)
2151                 RETURN(-EINVAL);
2152
2153         if (stripe_count == 0)
2154                 RETURN(-EINVAL);
2155
2156         dof->dof_type = DFT_DIR;
2157
2158         OBD_ALLOC(stripe,
2159                   sizeof(*stripe) * (lo->ldo_dir_stripe_count + stripe_count));
2160         if (stripe == NULL)
2161                 RETURN(-ENOMEM);
2162
2163         for (i = 0; i < lo->ldo_dir_stripe_count; i++)
2164                 stripe[i] = lo->ldo_stripe[i];
2165
2166         for (i = 0; i < stripe_count; i++) {
2167                 fid_le_to_cpu(fid,
2168                         &lmv->lmv_stripe_fids[i]);
2169                 if (!fid_is_sane(fid))
2170                         GOTO(out, rc = -ESTALE);
2171
2172                 rc = lod_fld_lookup(env, lod, fid, &idx, &type);
2173                 if (rc)
2174                         GOTO(out, rc);
2175
2176                 if (idx == lod2lu_dev(lod)->ld_site->ld_seq_site->ss_node_id) {
2177                         tgt_dt = lod->lod_child;
2178                 } else {
2179                         tgt = LTD_TGT(ltd, idx);
2180                         if (tgt == NULL)
2181                                 GOTO(out, rc = -ESTALE);
2182                         tgt_dt = tgt->ltd_tgt;
2183                 }
2184
2185                 dto = dt_locate_at(env, tgt_dt, fid,
2186                                   lo->ldo_obj.do_lu.lo_dev->ld_site->ls_top_dev,
2187                                   NULL);
2188                 if (IS_ERR(dto))
2189                         GOTO(out, rc = PTR_ERR(dto));
2190
2191                 stripe[i + lo->ldo_dir_stripe_count] = dto;
2192
2193                 if (!dt_try_as_dir(env, dto))
2194                         GOTO(out, rc = -ENOTDIR);
2195
2196                 rc = lod_sub_declare_ref_add(env, dto, th);
2197                 if (rc)
2198                         GOTO(out, rc);
2199
2200                 rc = lod_sub_declare_insert(env, dto,
2201                                             (const struct dt_rec *)rec,
2202                                             (const struct dt_key *)dot, th);
2203                 if (rc)
2204                         GOTO(out, rc);
2205
2206                 rc = lod_sub_declare_insert(env, dto,
2207                                             (const struct dt_rec *)rec,
2208                                             (const struct dt_key *)dotdot, th);
2209                 if (rc)
2210                         GOTO(out, rc);
2211
2212                 rc = lod_sub_declare_xattr_set(env, dto, buf,
2213                                                 XATTR_NAME_LMV, 0, th);
2214                 if (rc)
2215                         GOTO(out, rc);
2216
2217                 snprintf(stripe_name, sizeof(info->lti_key), DFID":%u",
2218                          PFID(lu_object_fid(&dto->do_lu)),
2219                          i + lo->ldo_dir_stripe_count);
2220
2221                 sname = lod_name_get(env, stripe_name, strlen(stripe_name));
2222                 rc = linkea_links_new(&ldata, &info->lti_linkea_buf,
2223                                       sname, lu_object_fid(&dt->do_lu));
2224                 if (rc)
2225                         GOTO(out, rc);
2226
2227                 linkea_buf.lb_buf = ldata.ld_buf->lb_buf;
2228                 linkea_buf.lb_len = ldata.ld_leh->leh_len;
2229                 rc = lod_sub_declare_xattr_set(env, dto, &linkea_buf,
2230                                                XATTR_NAME_LINK, 0, th);
2231                 if (rc)
2232                         GOTO(out, rc);
2233
2234                 rc = lod_sub_declare_insert(env, next,
2235                                             (const struct dt_rec *)rec,
2236                                             (const struct dt_key *)stripe_name,
2237                                             th);
2238                 if (rc)
2239                         GOTO(out, rc);
2240
2241                 rc = lod_sub_declare_ref_add(env, next, th);
2242                 if (rc)
2243                         GOTO(out, rc);
2244         }
2245
2246         if (lo->ldo_stripe)
2247                 OBD_FREE(lo->ldo_stripe,
2248                          sizeof(*stripe) * lo->ldo_dir_stripes_allocated);
2249         lo->ldo_stripe = stripe;
2250         lo->ldo_dir_migrate_offset = lo->ldo_dir_stripe_count;
2251         lo->ldo_dir_migrate_hash = le32_to_cpu(lmv->lmv_hash_type);
2252         lo->ldo_dir_stripe_count += stripe_count;
2253         lo->ldo_dir_stripes_allocated += stripe_count;
2254         lo->ldo_dir_hash_type |= LMV_HASH_FLAG_MIGRATION;
2255
2256         RETURN(0);
2257 out:
2258         i = lo->ldo_dir_stripe_count;
2259         while (i < lo->ldo_dir_stripe_count + stripe_count && stripe[i])
2260                 dt_object_put(env, stripe[i++]);
2261
2262         OBD_FREE(stripe,
2263                  sizeof(*stripe) * (stripe_count + lo->ldo_dir_stripe_count));
2264         RETURN(rc);
2265 }
2266
2267 static int lod_dir_declare_layout_delete(const struct lu_env *env,
2268                                          struct dt_object *dt,
2269                                          const struct lu_buf *buf,
2270                                          struct thandle *th)
2271 {
2272         struct lod_thread_info *info = lod_env_info(env);
2273         struct lod_object *lo = lod_dt_obj(dt);
2274         struct dt_object *next = dt_object_child(dt);
2275         struct lmv_user_md *lmu = buf->lb_buf;
2276         __u32 final_stripe_count;
2277         char *stripe_name = info->lti_key;
2278         struct dt_object *dto;
2279         int i;
2280         int rc = 0;
2281
2282         if (!lmu)
2283                 return -EINVAL;
2284
2285         final_stripe_count = le32_to_cpu(lmu->lum_stripe_count);
2286         if (final_stripe_count >= lo->ldo_dir_stripe_count)
2287                 return -EINVAL;
2288
2289         for (i = final_stripe_count; i < lo->ldo_dir_stripe_count; i++) {
2290                 dto = lo->ldo_stripe[i];
2291                 LASSERT(dto);
2292
2293                 if (!dt_try_as_dir(env, dto))
2294                         return -ENOTDIR;
2295
2296                 rc = lod_sub_declare_delete(env, dto,
2297                                             (const struct dt_key *)dot, th);
2298                 if (rc)
2299                         return rc;
2300
2301                 rc = lod_sub_declare_ref_del(env, dto, th);
2302                 if (rc)
2303                         return rc;
2304
2305                 rc = lod_sub_declare_delete(env, dto,
2306                                         (const struct dt_key *)dotdot, th);
2307                 if (rc)
2308                         return rc;
2309
2310                 snprintf(stripe_name, sizeof(info->lti_key), DFID":%d",
2311                          PFID(lu_object_fid(&dto->do_lu)), i);
2312
2313                 rc = lod_sub_declare_delete(env, next,
2314                                         (const struct dt_key *)stripe_name, th);
2315                 if (rc)
2316                         return rc;
2317
2318                 rc = lod_sub_declare_ref_del(env, next, th);
2319                 if (rc)
2320                         return rc;
2321         }
2322
2323         return 0;
2324 }
2325
2326 /*
2327  * delete stripes from dir master object, the lum_stripe_count in argument is
2328  * the final stripe count, the stripes after that will be deleted, NB, they
2329  * are not destroyed, but deleted from it's parent namespace, this function
2330  * will be called in two places:
2331  * 1. mdd_migrate_create() delete stripes from source, and append them to
2332  *    target.
2333  * 2. mdd_dir_layout_shrink() delete stripes from source, and destroy them.
2334  */
2335 static int lod_dir_layout_delete(const struct lu_env *env,
2336                                  struct dt_object *dt,
2337                                  const struct lu_buf *buf,
2338                                  struct thandle *th)
2339 {
2340         struct lod_thread_info *info = lod_env_info(env);
2341         struct lod_object *lo = lod_dt_obj(dt);
2342         struct dt_object *next = dt_object_child(dt);
2343         struct lmv_user_md *lmu = buf->lb_buf;
2344         __u32 final_stripe_count;
2345         char *stripe_name = info->lti_key;
2346         struct dt_object *dto;
2347         int i;
2348         int rc = 0;
2349
2350         ENTRY;
2351
2352         if (!lmu)
2353                 RETURN(-EINVAL);
2354
2355         final_stripe_count = le32_to_cpu(lmu->lum_stripe_count);
2356         if (final_stripe_count >= lo->ldo_dir_stripe_count)
2357                 RETURN(-EINVAL);
2358
2359         for (i = final_stripe_count; i < lo->ldo_dir_stripe_count; i++) {
2360                 dto = lo->ldo_stripe[i];
2361                 LASSERT(dto);
2362
2363                 rc = lod_sub_delete(env, dto,
2364                                     (const struct dt_key *)dotdot, th);
2365                 if (rc)
2366                         break;
2367
2368                 snprintf(stripe_name, sizeof(info->lti_key), DFID":%d",
2369                          PFID(lu_object_fid(&dto->do_lu)), i);
2370
2371                 rc = lod_sub_delete(env, next,
2372                                     (const struct dt_key *)stripe_name, th);
2373                 if (rc)
2374                         break;
2375
2376                 rc = lod_sub_ref_del(env, next, th);
2377                 if (rc)
2378                         break;
2379         }
2380
2381         lod_striping_free(env, lod_dt_obj(dt));
2382
2383         RETURN(rc);
2384 }
2385
2386 /**
2387  * Implementation of dt_object_operations::do_declare_xattr_set.
2388  *
2389  * Used with regular (non-striped) objects. Basically it
2390  * initializes the striping information and applies the
2391  * change to all the stripes.
2392  *
2393  * \see dt_object_operations::do_declare_xattr_set() in the API description
2394  * for details.
2395  */
2396 static int lod_dir_declare_xattr_set(const struct lu_env *env,
2397                                      struct dt_object *dt,
2398                                      const struct lu_buf *buf,
2399                                      const char *name, int fl,
2400                                      struct thandle *th)
2401 {
2402         struct dt_object        *next = dt_object_child(dt);
2403         struct lod_device       *d = lu2lod_dev(dt->do_lu.lo_dev);
2404         struct lod_object       *lo = lod_dt_obj(dt);
2405         int                     i;
2406         int                     rc;
2407         ENTRY;
2408
2409         if (strcmp(name, XATTR_NAME_DEFAULT_LMV) == 0) {
2410                 struct lmv_user_md_v1 *lum;
2411
2412                 LASSERT(buf != NULL && buf->lb_buf != NULL);
2413                 lum = buf->lb_buf;
2414                 rc = lod_verify_md_striping(d, lum);
2415                 if (rc != 0)
2416                         RETURN(rc);
2417         } else if (strcmp(name, XATTR_NAME_LOV) == 0) {
2418                 rc = lod_verify_striping(d, lo, buf, false);
2419                 if (rc != 0)
2420                         RETURN(rc);
2421         }
2422
2423         rc = lod_sub_declare_xattr_set(env, next, buf, name, fl, th);
2424         if (rc != 0)
2425                 RETURN(rc);
2426
2427         /* Note: Do not set LinkEA on sub-stripes, otherwise
2428          * it will confuse the fid2path process(see mdt_path_current()).
2429          * The linkEA between master and sub-stripes is set in
2430          * lod_xattr_set_lmv(). */
2431         if (strcmp(name, XATTR_NAME_LINK) == 0)
2432                 RETURN(0);
2433
2434         /* set xattr to each stripes, if needed */
2435         rc = lod_striping_load(env, lo);
2436         if (rc != 0)
2437                 RETURN(rc);
2438
2439         if (lo->ldo_dir_stripe_count == 0)
2440                 RETURN(0);
2441
2442         for (i = 0; i < lo->ldo_dir_stripe_count; i++) {
2443                 LASSERT(lo->ldo_stripe[i]);
2444
2445                 rc = lod_sub_declare_xattr_set(env, lo->ldo_stripe[i],
2446                                                buf, name, fl, th);
2447                 if (rc != 0)
2448                         break;
2449         }
2450
2451         RETURN(rc);
2452 }
2453
2454 static int
2455 lod_obj_stripe_replace_parent_fid_cb(const struct lu_env *env,
2456                                      struct lod_object *lo,
2457                                      struct dt_object *dt, struct thandle *th,
2458                                      int comp_idx, int stripe_idx,
2459                                      struct lod_obj_stripe_cb_data *data)
2460 {
2461         struct lod_thread_info *info = lod_env_info(env);
2462         struct lod_layout_component *comp = &lo->ldo_comp_entries[comp_idx];
2463         struct filter_fid *ff = &info->lti_ff;
2464         struct lu_buf *buf = &info->lti_buf;
2465         int rc;
2466
2467         buf->lb_buf = ff;
2468         buf->lb_len = sizeof(*ff);
2469         rc = dt_xattr_get(env, dt, buf, XATTR_NAME_FID);
2470         if (rc < 0) {
2471                 if (rc == -ENODATA)
2472                         return 0;
2473                 return rc;
2474         }
2475
2476         /*
2477          * locd_buf is set if it's called by dir migration, which doesn't check
2478          * pfid and comp id.
2479          */
2480         if (data->locd_buf) {
2481                 memset(ff, 0, sizeof(*ff));
2482                 ff->ff_parent = *(struct lu_fid *)data->locd_buf->lb_buf;
2483         } else {
2484                 filter_fid_le_to_cpu(ff, ff, sizeof(*ff));
2485
2486                 if (lu_fid_eq(lod_object_fid(lo), &ff->ff_parent) &&
2487                     ff->ff_layout.ol_comp_id == comp->llc_id)
2488                         return 0;
2489
2490                 memset(ff, 0, sizeof(*ff));
2491                 ff->ff_parent = *lu_object_fid(&lo->ldo_obj.do_lu);
2492         }
2493
2494         /* rewrite filter_fid */
2495         ff->ff_parent.f_ver = stripe_idx;
2496         ff->ff_layout.ol_stripe_size = comp->llc_stripe_size;
2497         ff->ff_layout.ol_stripe_count = comp->llc_stripe_count;
2498         ff->ff_layout.ol_comp_id = comp->llc_id;
2499         ff->ff_layout.ol_comp_start = comp->llc_extent.e_start;
2500         ff->ff_layout.ol_comp_end = comp->llc_extent.e_end;
2501         filter_fid_cpu_to_le(ff, ff, sizeof(*ff));
2502
2503         if (data->locd_declare)
2504                 rc = lod_sub_declare_xattr_set(env, dt, buf, XATTR_NAME_FID,
2505                                                LU_XATTR_REPLACE, th);
2506         else
2507                 rc = lod_sub_xattr_set(env, dt, buf, XATTR_NAME_FID,
2508                                        LU_XATTR_REPLACE, th);
2509
2510         return rc;
2511 }
2512
2513 /**
2514  * Reset parent FID on OST object
2515  *
2516  * Replace parent FID with @dt object FID, which is only called during migration
2517  * to reset the parent FID after the MDT object is migrated to the new MDT, i.e.
2518  * the FID is changed.
2519  *
2520  * \param[in] env execution environment
2521  * \param[in] dt dt_object whose stripes's parent FID will be reset
2522  * \parem[in] th thandle
2523  * \param[in] declare if it is declare
2524  *
2525  * \retval      0 if reset succeeds
2526  * \retval      negative errno if reset fails
2527  */
2528 static int lod_replace_parent_fid(const struct lu_env *env,
2529                                   struct dt_object *dt,
2530                                   const struct lu_buf *buf,
2531                                   struct thandle *th, bool declare)
2532 {
2533         struct lod_object *lo = lod_dt_obj(dt);
2534         struct lod_thread_info  *info = lod_env_info(env);
2535         struct filter_fid *ff;
2536         struct lod_obj_stripe_cb_data data = { { 0 } };
2537         int rc;
2538         ENTRY;
2539
2540         LASSERT(S_ISREG(dt->do_lu.lo_header->loh_attr));
2541
2542         /* set xattr to each stripes, if needed */
2543         rc = lod_striping_load(env, lo);
2544         if (rc != 0)
2545                 RETURN(rc);
2546
2547         if (!lod_obj_is_striped(dt))
2548                 RETURN(0);
2549
2550         if (info->lti_ea_store_size < sizeof(*ff)) {
2551                 rc = lod_ea_store_resize(info, sizeof(*ff));
2552                 if (rc != 0)
2553                         RETURN(rc);
2554         }
2555
2556         data.locd_declare = declare;
2557         data.locd_stripe_cb = lod_obj_stripe_replace_parent_fid_cb;
2558         data.locd_buf = buf;
2559         rc = lod_obj_for_each_stripe(env, lo, th, &data);
2560
2561         RETURN(rc);
2562 }
2563
2564 inline __u16 lod_comp_entry_stripe_count(struct lod_object *lo,
2565                                          struct lod_layout_component *entry,
2566                                          bool is_dir)
2567 {
2568         struct lod_device *lod = lu2lod_dev(lod2lu_obj(lo)->lo_dev);
2569
2570         if (is_dir)
2571                 return  0;
2572         else if (lod_comp_inited(entry))
2573                 return entry->llc_stripe_count;
2574         else if ((__u16)-1 == entry->llc_stripe_count)
2575                 return lod->lod_desc.ld_tgt_count;
2576         else
2577                 return lod_get_stripe_count(lod, lo, entry->llc_stripe_count);
2578 }
2579
2580 static int lod_comp_md_size(struct lod_object *lo, bool is_dir)
2581 {
2582         int magic, size = 0, i;
2583         struct lod_layout_component *comp_entries;
2584         __u16 comp_cnt;
2585         bool is_composite;
2586
2587         if (is_dir) {
2588                 comp_cnt = lo->ldo_def_striping->lds_def_comp_cnt;
2589                 comp_entries = lo->ldo_def_striping->lds_def_comp_entries;
2590                 is_composite =
2591                         lo->ldo_def_striping->lds_def_striping_is_composite;
2592         } else {
2593                 comp_cnt = lo->ldo_comp_cnt;
2594                 comp_entries = lo->ldo_comp_entries;
2595                 is_composite = lo->ldo_is_composite;
2596         }
2597
2598
2599         LASSERT(comp_cnt != 0 && comp_entries != NULL);
2600         if (is_composite) {
2601                 size = sizeof(struct lov_comp_md_v1) +
2602                        sizeof(struct lov_comp_md_entry_v1) * comp_cnt;
2603                 LASSERT(size % sizeof(__u64) == 0);
2604         }
2605
2606         for (i = 0; i < comp_cnt; i++) {
2607                 __u16 stripe_count;
2608
2609                 magic = comp_entries[i].llc_pool ? LOV_MAGIC_V3 : LOV_MAGIC_V1;
2610                 stripe_count = lod_comp_entry_stripe_count(lo, &comp_entries[i],
2611                                                            is_dir);
2612                 if (!is_dir && is_composite)
2613                         lod_comp_shrink_stripe_count(&comp_entries[i],
2614                                                      &stripe_count);
2615
2616                 size += lov_user_md_size(stripe_count, magic);
2617                 LASSERT(size % sizeof(__u64) == 0);
2618         }
2619         return size;
2620 }
2621
2622 /**
2623  * Declare component add. The xattr name is XATTR_LUSTRE_LOV.add, and
2624  * the xattr value is binary lov_comp_md_v1 which contains component(s)
2625  * to be added.
2626   *
2627  * \param[in] env       execution environment
2628  * \param[in] dt        dt_object to add components on
2629  * \param[in] buf       buffer contains components to be added
2630  * \parem[in] th        thandle
2631  *
2632  * \retval      0 on success
2633  * \retval      negative errno on failure
2634  */
2635 static int lod_declare_layout_add(const struct lu_env *env,
2636                                   struct dt_object *dt,
2637                                   const struct lu_buf *buf,
2638                                   struct thandle *th)
2639 {
2640         struct lod_thread_info  *info = lod_env_info(env);
2641         struct lod_layout_component *comp_array, *lod_comp, *old_array;
2642         struct lod_device       *d = lu2lod_dev(dt->do_lu.lo_dev);
2643         struct dt_object *next = dt_object_child(dt);
2644         struct lov_desc         *desc = &d->lod_desc;
2645         struct lod_object       *lo = lod_dt_obj(dt);
2646         struct lov_user_md_v3   *v3;
2647         struct lov_comp_md_v1   *comp_v1 = buf->lb_buf;
2648         __u32   magic;
2649         int     i, rc, array_cnt, old_array_cnt;
2650         ENTRY;
2651
2652         LASSERT(lo->ldo_is_composite);
2653
2654         if (lo->ldo_flr_state != LCM_FL_NONE)
2655                 RETURN(-EBUSY);
2656
2657         rc = lod_verify_striping(d, lo, buf, false);
2658         if (rc != 0)
2659                 RETURN(rc);
2660
2661         magic = comp_v1->lcm_magic;
2662         if (magic == __swab32(LOV_USER_MAGIC_COMP_V1)) {
2663                 lustre_swab_lov_comp_md_v1(comp_v1);
2664                 magic = comp_v1->lcm_magic;
2665         }
2666
2667         if (magic != LOV_USER_MAGIC_COMP_V1)
2668                 RETURN(-EINVAL);
2669
2670         array_cnt = lo->ldo_comp_cnt + comp_v1->lcm_entry_count;
2671         OBD_ALLOC(comp_array, sizeof(*comp_array) * array_cnt);
2672         if (comp_array == NULL)
2673                 RETURN(-ENOMEM);
2674
2675         memcpy(comp_array, lo->ldo_comp_entries,
2676                sizeof(*comp_array) * lo->ldo_comp_cnt);
2677
2678         for (i = 0; i < comp_v1->lcm_entry_count; i++) {
2679                 struct lov_user_md_v1 *v1;
2680                 struct lu_extent *ext;
2681
2682                 v1 = (struct lov_user_md *)((char *)comp_v1 +
2683                                 comp_v1->lcm_entries[i].lcme_offset);
2684                 ext = &comp_v1->lcm_entries[i].lcme_extent;
2685
2686                 lod_comp = &comp_array[lo->ldo_comp_cnt + i];
2687                 lod_comp->llc_extent.e_start = ext->e_start;
2688                 lod_comp->llc_extent.e_end = ext->e_end;
2689                 lod_comp->llc_stripe_offset = v1->lmm_stripe_offset;
2690                 lod_comp->llc_flags = comp_v1->lcm_entries[i].lcme_flags;
2691
2692                 lod_comp->llc_stripe_count = v1->lmm_stripe_count;
2693                 lod_comp->llc_stripe_size = v1->lmm_stripe_size;
2694                 lod_adjust_stripe_info(lod_comp, desc);
2695
2696                 if (v1->lmm_magic == LOV_USER_MAGIC_V3) {
2697                         v3 = (struct lov_user_md_v3 *) v1;
2698                         if (v3->lmm_pool_name[0] != '\0') {
2699                                 rc = lod_set_pool(&lod_comp->llc_pool,
2700                                                   v3->lmm_pool_name);
2701                                 if (rc)
2702                                         GOTO(error, rc);
2703                         }
2704                 }
2705         }
2706
2707         old_array = lo->ldo_comp_entries;
2708         old_array_cnt = lo->ldo_comp_cnt;
2709
2710         lo->ldo_comp_entries = comp_array;
2711         lo->ldo_comp_cnt = array_cnt;
2712
2713         /* No need to increase layout generation here, it will be increased
2714          * later when generating component ID for the new components */
2715
2716         info->lti_buf.lb_len = lod_comp_md_size(lo, false);
2717         rc = lod_sub_declare_xattr_set(env, next, &info->lti_buf,
2718                                               XATTR_NAME_LOV, 0, th);
2719         if (rc) {
2720                 lo->ldo_comp_entries = old_array;
2721                 lo->ldo_comp_cnt = old_array_cnt;
2722                 GOTO(error, rc);
2723         }
2724
2725         OBD_FREE(old_array, sizeof(*lod_comp) * old_array_cnt);
2726
2727         LASSERT(lo->ldo_mirror_count == 1);
2728         lo->ldo_mirrors[0].lme_end = array_cnt - 1;
2729
2730         RETURN(0);
2731
2732 error:
2733         for (i = lo->ldo_comp_cnt; i < array_cnt; i++) {
2734                 lod_comp = &comp_array[i];
2735                 if (lod_comp->llc_pool != NULL) {
2736                         OBD_FREE(lod_comp->llc_pool,
2737                                  strlen(lod_comp->llc_pool) + 1);
2738                         lod_comp->llc_pool = NULL;
2739                 }
2740         }
2741         OBD_FREE(comp_array, sizeof(*comp_array) * array_cnt);
2742         RETURN(rc);
2743 }
2744
2745 /**
2746  * Declare component set. The xattr is name XATTR_LUSTRE_LOV.set.$field,
2747  * the '$field' can only be 'flags' now. The xattr value is binary
2748  * lov_comp_md_v1 which contains the component ID(s) and the value of
2749  * the field to be modified.
2750  *
2751  * \param[in] env       execution environment
2752  * \param[in] dt        dt_object to be modified
2753  * \param[in] op        operation string, like "set.flags"
2754  * \param[in] buf       buffer contains components to be set
2755  * \parem[in] th        thandle
2756  *
2757  * \retval      0 on success
2758  * \retval      negative errno on failure
2759  */
2760 static int lod_declare_layout_set(const struct lu_env *env,
2761                                   struct dt_object *dt,
2762                                   char *op, const struct lu_buf *buf,
2763                                   struct thandle *th)
2764 {
2765         struct lod_layout_component     *lod_comp;
2766         struct lod_thread_info  *info = lod_env_info(env);
2767         struct lod_device       *d = lu2lod_dev(dt->do_lu.lo_dev);
2768         struct lod_object       *lo = lod_dt_obj(dt);
2769         struct lov_comp_md_v1   *comp_v1 = buf->lb_buf;
2770         __u32   magic;
2771         int     i, j, rc;
2772         bool    changed = false;
2773         ENTRY;
2774
2775         if (strcmp(op, "set.flags") != 0) {
2776                 CDEBUG(D_LAYOUT, "%s: operation (%s) not supported.\n",
2777                        lod2obd(d)->obd_name, op);
2778                 RETURN(-ENOTSUPP);
2779         }
2780
2781         magic = comp_v1->lcm_magic;
2782         if (magic == __swab32(LOV_USER_MAGIC_COMP_V1)) {
2783                 lustre_swab_lov_comp_md_v1(comp_v1);
2784                 magic = comp_v1->lcm_magic;
2785         }
2786
2787         if (magic != LOV_USER_MAGIC_COMP_V1)
2788                 RETURN(-EINVAL);
2789
2790         if (comp_v1->lcm_entry_count == 0) {
2791                 CDEBUG(D_LAYOUT, "%s: entry count is zero.\n",
2792                        lod2obd(d)->obd_name);
2793                 RETURN(-EINVAL);
2794         }
2795
2796         for (i = 0; i < comp_v1->lcm_entry_count; i++) {
2797                 __u32 id = comp_v1->lcm_entries[i].lcme_id;
2798                 __u32 flags = comp_v1->lcm_entries[i].lcme_flags;
2799                 __u32 mirror_flag = flags & LCME_MIRROR_FLAGS;
2800                 bool neg = flags & LCME_FL_NEG;
2801
2802                 if (flags & LCME_FL_INIT) {
2803                         if (changed)
2804                                 lod_striping_free(env, lo);
2805                         RETURN(-EINVAL);
2806                 }
2807
2808                 flags &= ~(LCME_MIRROR_FLAGS | LCME_FL_NEG);
2809                 for (j = 0; j < lo->ldo_comp_cnt; j++) {
2810                         lod_comp = &lo->ldo_comp_entries[j];
2811
2812                         /* lfs only put one flag in each entry */
2813                         if ((flags && id != lod_comp->llc_id) ||
2814                             (mirror_flag && mirror_id_of(id) !=
2815                                             mirror_id_of(lod_comp->llc_id)))
2816                                 continue;
2817
2818                         if (neg) {
2819                                 if (flags)
2820                                         lod_comp->llc_flags &= ~flags;
2821                                 if (mirror_flag)
2822                                         lod_comp->llc_flags &= ~mirror_flag;
2823                         } else {
2824                                 if (flags)
2825                                         lod_comp->llc_flags |= flags;
2826                                 if (mirror_flag) {
2827                                         lod_comp->llc_flags |= mirror_flag;
2828                                         if (mirror_flag & LCME_FL_NOSYNC)
2829                                                 lod_comp->llc_timestamp =
2830                                                        ktime_get_real_seconds();
2831                                 }
2832                         }
2833                         changed = true;
2834                 }
2835         }
2836
2837         if (!changed) {
2838                 CDEBUG(D_LAYOUT, "%s: requested component(s) not found.\n",
2839                        lod2obd(d)->obd_name);
2840                 RETURN(-EINVAL);
2841         }
2842
2843         lod_obj_inc_layout_gen(lo);
2844
2845         info->lti_buf.lb_len = lod_comp_md_size(lo, false);
2846         rc = lod_sub_declare_xattr_set(env, dt_object_child(dt), &info->lti_buf,
2847                                        XATTR_NAME_LOV, LU_XATTR_REPLACE, th);
2848         RETURN(rc);
2849 }
2850
2851 /**
2852  * Declare component deletion. The xattr name is XATTR_LUSTRE_LOV.del,
2853  * and the xattr value is a unique component ID or a special lcme_id.
2854  *
2855  * \param[in] env       execution environment
2856  * \param[in] dt        dt_object to be operated on
2857  * \param[in] buf       buffer contains component ID or lcme_id
2858  * \parem[in] th        thandle
2859  *
2860  * \retval      0 on success
2861  * \retval      negative errno on failure
2862  */
2863 static int lod_declare_layout_del(const struct lu_env *env,
2864                                   struct dt_object *dt,
2865                                   const struct lu_buf *buf,
2866                                   struct thandle *th)
2867 {
2868         struct lod_thread_info  *info = lod_env_info(env);
2869         struct dt_object *next = dt_object_child(dt);
2870         struct lod_device *d = lu2lod_dev(dt->do_lu.lo_dev);
2871         struct lod_object *lo = lod_dt_obj(dt);
2872         struct lu_attr *attr = &lod_env_info(env)->lti_attr;
2873         struct lov_comp_md_v1 *comp_v1 = buf->lb_buf;
2874         __u32 magic, id, flags, neg_flags = 0;
2875         int rc, i, j, left;
2876         ENTRY;
2877
2878         LASSERT(lo->ldo_is_composite);
2879
2880         if (lo->ldo_flr_state != LCM_FL_NONE)
2881                 RETURN(-EBUSY);
2882
2883         magic = comp_v1->lcm_magic;
2884         if (magic == __swab32(LOV_USER_MAGIC_COMP_V1)) {
2885                 lustre_swab_lov_comp_md_v1(comp_v1);
2886                 magic = comp_v1->lcm_magic;
2887         }
2888
2889         if (magic != LOV_USER_MAGIC_COMP_V1)
2890                 RETURN(-EINVAL);
2891
2892         id = comp_v1->lcm_entries[0].lcme_id;
2893         flags = comp_v1->lcm_entries[0].lcme_flags;
2894
2895         if (id > LCME_ID_MAX || (flags & ~LCME_KNOWN_FLAGS)) {
2896                 CDEBUG(D_LAYOUT, "%s: invalid component id %#x, flags %#x\n",
2897                        lod2obd(d)->obd_name, id, flags);
2898                 RETURN(-EINVAL);
2899         }
2900
2901         if (id != LCME_ID_INVAL && flags != 0) {
2902                 CDEBUG(D_LAYOUT, "%s: specified both id and flags.\n",
2903                        lod2obd(d)->obd_name);
2904                 RETURN(-EINVAL);
2905         }
2906
2907         if (id == LCME_ID_INVAL && !flags) {
2908                 CDEBUG(D_LAYOUT, "%s: no id or flags specified.\n",
2909                        lod2obd(d)->obd_name);
2910                 RETURN(-EINVAL);
2911         }
2912
2913         if (flags & LCME_FL_NEG) {
2914                 neg_flags = flags & ~LCME_FL_NEG;
2915                 flags = 0;
2916         }
2917
2918         left = lo->ldo_comp_cnt;
2919         if (left <= 0)
2920                 RETURN(-EINVAL);
2921
2922         for (i = (lo->ldo_comp_cnt - 1); i >= 0; i--) {
2923                 struct lod_layout_component *lod_comp;
2924
2925                 lod_comp = &lo->ldo_comp_entries[i];
2926
2927                 if (id != LCME_ID_INVAL && id != lod_comp->llc_id)
2928                         continue;
2929                 else if (flags && !(flags & lod_comp->llc_flags))
2930                         continue;
2931                 else if (neg_flags && (neg_flags & lod_comp->llc_flags))
2932                         continue;
2933
2934                 if (left != (i + 1)) {
2935                         CDEBUG(D_LAYOUT, "%s: this deletion will create "
2936                                "a hole.\n", lod2obd(d)->obd_name);
2937                         RETURN(-EINVAL);
2938                 }
2939                 left--;
2940
2941                 /* Mark the component as deleted */
2942                 lod_comp->llc_id = LCME_ID_INVAL;
2943
2944                 /* Not instantiated component */
2945                 if (lod_comp->llc_stripe == NULL)
2946                         continue;
2947
2948                 LASSERT(lod_comp->llc_stripe_count > 0);
2949                 for (j = 0; j < lod_comp->llc_stripe_count; j++) {
2950                         struct dt_object *obj = lod_comp->llc_stripe[j];
2951
2952                         if (obj == NULL)
2953                                 continue;
2954                         rc = lod_sub_declare_destroy(env, obj, th);
2955                         if (rc)
2956                                 RETURN(rc);
2957                 }
2958         }
2959
2960         LASSERTF(left >= 0, "left = %d\n", left);
2961         if (left == lo->ldo_comp_cnt) {
2962                 CDEBUG(D_LAYOUT, "%s: requested component id:%#x not found\n",
2963                        lod2obd(d)->obd_name, id);
2964                 RETURN(-EINVAL);
2965         }
2966
2967         memset(attr, 0, sizeof(*attr));
2968         attr->la_valid = LA_SIZE;
2969         rc = lod_sub_declare_attr_set(env, next, attr, th);
2970         if (rc)
2971                 RETURN(rc);
2972
2973         if (left > 0) {
2974                 info->lti_buf.lb_len = lod_comp_md_size(lo, false);
2975                 rc = lod_sub_declare_xattr_set(env, next, &info->lti_buf,
2976                                                XATTR_NAME_LOV, 0, th);
2977         } else {
2978                 rc = lod_sub_declare_xattr_del(env, next, XATTR_NAME_LOV, th);
2979         }
2980
2981         RETURN(rc);
2982 }
2983
2984 /**
2985  * Declare layout add/set/del operations issued by special xattr names:
2986  *
2987  * XATTR_LUSTRE_LOV.add         add component(s) to existing file
2988  * XATTR_LUSTRE_LOV.del         delete component(s) from existing file
2989  * XATTR_LUSTRE_LOV.set.$field  set specified field of certain component(s)
2990  *
2991  * \param[in] env       execution environment
2992  * \param[in] dt        object
2993  * \param[in] name      name of xattr
2994  * \param[in] buf       lu_buf contains xattr value
2995  * \param[in] th        transaction handle
2996  *
2997  * \retval              0 on success
2998  * \retval              negative if failed
2999  */
3000 static int lod_declare_modify_layout(const struct lu_env *env,
3001                                      struct dt_object *dt,
3002                                      const char *name,
3003                                      const struct lu_buf *buf,
3004                                      struct thandle *th)
3005 {
3006         struct lod_device *d = lu2lod_dev(dt->do_lu.lo_dev);
3007         struct lod_object *lo = lod_dt_obj(dt);
3008         char *op;
3009         int rc, len = strlen(XATTR_LUSTRE_LOV);
3010         ENTRY;
3011
3012         LASSERT(dt_object_exists(dt));
3013
3014         if (strlen(name) <= len || name[len] != '.') {
3015                 CDEBUG(D_LAYOUT, "%s: invalid xattr name: %s\n",
3016                        lod2obd(d)->obd_name, name);
3017                 RETURN(-EINVAL);
3018         }
3019         len++;
3020
3021         rc = lod_striping_load(env, lo);
3022         if (rc)
3023                 GOTO(unlock, rc);
3024
3025         /* the layout to be modified must be a composite layout */
3026         if (!lo->ldo_is_composite) {
3027                 CDEBUG(D_LAYOUT, "%s: object "DFID" isn't a composite file.\n",
3028                        lod2obd(d)->obd_name, PFID(lu_object_fid(&dt->do_lu)));
3029                 GOTO(unlock, rc = -EINVAL);
3030         }
3031
3032         op = (char *)name + len;
3033         if (strcmp(op, "add") == 0) {
3034                 rc = lod_declare_layout_add(env, dt, buf, th);
3035         } else if (strcmp(op, "del") == 0) {
3036                 rc = lod_declare_layout_del(env, dt, buf, th);
3037         } else if (strncmp(op, "set", strlen("set")) == 0) {
3038                 rc = lod_declare_layout_set(env, dt, op, buf, th);
3039         } else  {
3040                 CDEBUG(D_LAYOUT, "%s: unsupported xattr name:%s\n",
3041                        lod2obd(d)->obd_name, name);
3042                 GOTO(unlock, rc = -ENOTSUPP);
3043         }
3044 unlock:
3045         if (rc)
3046                 lod_striping_free(env, lo);
3047
3048         RETURN(rc);
3049 }
3050
3051 /**
3052  * Convert a plain file lov_mds_md to a composite layout.
3053  *
3054  * \param[in,out] info  the thread info::lti_ea_store buffer contains little
3055  *                      endian plain file layout
3056  *
3057  * \retval              0 on success, <0 on failure
3058  */
3059 static int lod_layout_convert(struct lod_thread_info *info)
3060 {
3061         struct lov_mds_md *lmm = info->lti_ea_store;
3062         struct lov_mds_md *lmm_save;
3063         struct lov_comp_md_v1 *lcm;
3064         struct lov_comp_md_entry_v1 *lcme;
3065         size_t size;
3066         __u32 blob_size;
3067         int rc = 0;
3068         ENTRY;
3069
3070         /* realloc buffer to a composite layout which contains one component */
3071         blob_size = lov_mds_md_size(le16_to_cpu(lmm->lmm_stripe_count),
3072                                     le32_to_cpu(lmm->lmm_magic));
3073         size = sizeof(*lcm) + sizeof(*lcme) + blob_size;
3074
3075         OBD_ALLOC_LARGE(lmm_save, blob_size);
3076         if (!lmm_save)
3077                 GOTO(out, rc = -ENOMEM);
3078
3079         memcpy(lmm_save, lmm, blob_size);
3080
3081         if (info->lti_ea_store_size < size) {
3082                 rc = lod_ea_store_resize(info, size);
3083                 if (rc)
3084                         GOTO(out, rc);
3085         }
3086
3087         lcm = info->lti_ea_store;
3088         lcm->lcm_magic = cpu_to_le32(LOV_MAGIC_COMP_V1);
3089         lcm->lcm_size = cpu_to_le32(size);
3090         lcm->lcm_layout_gen = cpu_to_le32(le16_to_cpu(
3091                                                 lmm_save->lmm_layout_gen));
3092         lcm->lcm_flags = cpu_to_le16(LCM_FL_NONE);
3093         lcm->lcm_entry_count = cpu_to_le16(1);
3094         lcm->lcm_mirror_count = 0;
3095
3096         lcme = &lcm->lcm_entries[0];
3097         lcme->lcme_flags = cpu_to_le32(LCME_FL_INIT);
3098         lcme->lcme_extent.e_start = 0;
3099         lcme->lcme_extent.e_end = cpu_to_le64(OBD_OBJECT_EOF);
3100         lcme->lcme_offset = cpu_to_le32(sizeof(*lcm) + sizeof(*lcme));
3101         lcme->lcme_size = cpu_to_le32(blob_size);
3102
3103         memcpy((char *)lcm + lcme->lcme_offset, (char *)lmm_save, blob_size);
3104
3105         EXIT;
3106 out:
3107         if (lmm_save)
3108                 OBD_FREE_LARGE(lmm_save, blob_size);
3109         return rc;
3110 }
3111
3112 /**
3113  * Merge layouts to form a mirrored file.
3114  */
3115 static int lod_declare_layout_merge(const struct lu_env *env,
3116                 struct dt_object *dt, const struct lu_buf *mbuf,
3117                 struct thandle *th)
3118 {
3119         struct lod_thread_info  *info = lod_env_info(env);
3120         struct lu_buf           *buf = &info->lti_buf;
3121         struct lod_object       *lo = lod_dt_obj(dt);
3122         struct lov_comp_md_v1   *lcm;
3123         struct lov_comp_md_v1   *cur_lcm;
3124         struct lov_comp_md_v1   *merge_lcm;
3125         struct lov_comp_md_entry_v1     *lcme;
3126         size_t size = 0;
3127         size_t offset;
3128         __u16 cur_entry_count;
3129         __u16 merge_entry_count;
3130         __u32 id = 0;
3131         __u16 mirror_id = 0;
3132         __u32 mirror_count;
3133         int     rc, i;
3134         ENTRY;
3135
3136         merge_lcm = mbuf->lb_buf;
3137         if (mbuf->lb_len < sizeof(*merge_lcm))
3138                 RETURN(-EINVAL);
3139
3140         /* must be an existing layout from disk */
3141         if (le32_to_cpu(merge_lcm->lcm_magic) != LOV_MAGIC_COMP_V1)
3142                 RETURN(-EINVAL);
3143
3144         merge_entry_count = le16_to_cpu(merge_lcm->lcm_entry_count);
3145
3146         /* do not allow to merge two mirrored files */
3147         if (le16_to_cpu(merge_lcm->lcm_mirror_count))
3148                 RETURN(-EBUSY);
3149
3150         /* verify the target buffer */
3151         rc = lod_get_lov_ea(env, lo);
3152         if (rc <= 0)
3153                 RETURN(rc ? : -ENODATA);
3154
3155         cur_lcm = info->lti_ea_store;
3156         switch (le32_to_cpu(cur_lcm->lcm_magic)) {
3157         case LOV_MAGIC_V1:
3158         case LOV_MAGIC_V3:
3159                 rc = lod_layout_convert(info);
3160                 break;
3161         case LOV_MAGIC_COMP_V1:
3162                 rc = 0;
3163                 break;
3164         default:
3165                 rc = -EINVAL;
3166         }
3167         if (rc)
3168                 RETURN(rc);
3169
3170         /* info->lti_ea_store could be reallocated in lod_layout_convert() */
3171         cur_lcm = info->lti_ea_store;
3172         cur_entry_count = le16_to_cpu(cur_lcm->lcm_entry_count);
3173
3174         /* 'lcm_mirror_count + 1' is the current # of mirrors the file has */
3175         mirror_count = le16_to_cpu(cur_lcm->lcm_mirror_count) + 1;
3176         if (mirror_count + 1 > LUSTRE_MIRROR_COUNT_MAX)
3177                 RETURN(-ERANGE);
3178
3179         /* size of new layout */
3180         size = le32_to_cpu(cur_lcm->lcm_size) +
3181                le32_to_cpu(merge_lcm->lcm_size) - sizeof(*cur_lcm);
3182
3183         memset(buf, 0, sizeof(*buf));
3184         lu_buf_alloc(buf, size);
3185         if (buf->lb_buf == NULL)
3186                 RETURN(-ENOMEM);
3187
3188         lcm = buf->lb_buf;
3189         memcpy(lcm, cur_lcm, sizeof(*lcm) + cur_entry_count * sizeof(*lcme));
3190
3191         offset = sizeof(*lcm) +
3192                  sizeof(*lcme) * (cur_entry_count + merge_entry_count);
3193         for (i = 0; i < cur_entry_count; i++) {
3194                 struct lov_comp_md_entry_v1 *cur_lcme;
3195
3196                 lcme = &lcm->lcm_entries[i];
3197                 cur_lcme = &cur_lcm->lcm_entries[i];
3198
3199                 lcme->lcme_offset = cpu_to_le32(offset);
3200                 memcpy((char *)lcm + offset,
3201                        (char *)cur_lcm + le32_to_cpu(cur_lcme->lcme_offset),
3202                        le32_to_cpu(lcme->lcme_size));
3203
3204                 offset += le32_to_cpu(lcme->lcme_size);
3205
3206                 if (mirror_count == 1 &&
3207                     mirror_id_of(le32_to_cpu(lcme->lcme_id)) == 0) {
3208                         /* Add mirror from a non-flr file, create new mirror ID.
3209                          * Otherwise, keep existing mirror's component ID, used
3210                          * for mirror extension.
3211                          */
3212                         id = pflr_id(1, i + 1);
3213                         lcme->lcme_id = cpu_to_le32(id);
3214                 }
3215
3216                 id = MAX(le32_to_cpu(lcme->lcme_id), id);
3217         }
3218
3219         mirror_id = mirror_id_of(id) + 1;
3220         for (i = 0; i < merge_entry_count; i++) {
3221                 struct lov_comp_md_entry_v1 *merge_lcme;
3222
3223                 merge_lcme = &merge_lcm->lcm_entries[i];