Whamcloud - gitweb
cb33955a29115a5c2c0c5395e8385979b5965f43
[fs/lustre-release.git] / lustre / lod / lod_lov.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License version 2 for more details.  A copy is
14  * included in the COPYING file that accompanied this code.
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright  2009 Sun Microsystems, Inc. All rights reserved
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2012, 2014, Intel Corporation.
27  */
28 /*
29  * lustre/lod/lod_lov.c
30  *
31  * A set of helpers to maintain Logical Object Volume (LOV)
32  * Extended Attribute (EA) and known OST targets
33  *
34  * Author: Alex Zhuravlev <alexey.zhuravlev@intel.com>
35  */
36
37 #define DEBUG_SUBSYSTEM S_MDS
38
39 #include <obd_class.h>
40 #include <lustre_lfsck.h>
41 #include <lustre_lmv.h>
42
43 #include "lod_internal.h"
44
45 /**
46  * Increase reference count on the target table.
47  *
48  * Increase reference count on the target table usage to prevent racing with
49  * addition/deletion. Any function that expects the table to remain
50  * stationary must take a ref.
51  *
52  * \param[in] ltd       target table (lod_ost_descs or lod_mdt_descs)
53  */
54 void lod_getref(struct lod_tgt_descs *ltd)
55 {
56         down_read(&ltd->ltd_rw_sem);
57         mutex_lock(&ltd->ltd_mutex);
58         ltd->ltd_refcount++;
59         mutex_unlock(&ltd->ltd_mutex);
60 }
61
62 /**
63  * Decrease reference count on the target table.
64  *
65  * Companion of lod_getref() to release a reference on the target table.
66  * If this is the last reference and the OST entry was scheduled for deletion,
67  * the descriptor is removed from the table.
68  *
69  * \param[in] lod       LOD device from which we release a reference
70  * \param[in] ltd       target table (lod_ost_descs or lod_mdt_descs)
71  */
72 void lod_putref(struct lod_device *lod, struct lod_tgt_descs *ltd)
73 {
74         mutex_lock(&ltd->ltd_mutex);
75         ltd->ltd_refcount--;
76         if (ltd->ltd_refcount == 0 && ltd->ltd_death_row) {
77                 struct lod_tgt_desc *tgt_desc, *tmp;
78                 struct list_head kill;
79                 unsigned int idx;
80
81                 CDEBUG(D_CONFIG, "destroying %d ltd desc\n",
82                        ltd->ltd_death_row);
83
84                 INIT_LIST_HEAD(&kill);
85
86                 cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx) {
87                         tgt_desc = LTD_TGT(ltd, idx);
88                         LASSERT(tgt_desc);
89
90                         if (!tgt_desc->ltd_reap)
91                                 continue;
92
93                         list_add(&tgt_desc->ltd_kill, &kill);
94                         LTD_TGT(ltd, idx) = NULL;
95                         /*FIXME: only support ost pool for now */
96                         if (ltd == &lod->lod_ost_descs) {
97                                 lod_ost_pool_remove(&lod->lod_pool_info, idx);
98                                 if (tgt_desc->ltd_active)
99                                         lod->lod_desc.ld_active_tgt_count--;
100                         }
101                         ltd->ltd_tgtnr--;
102                         cfs_bitmap_clear(ltd->ltd_tgt_bitmap, idx);
103                         ltd->ltd_death_row--;
104                 }
105                 mutex_unlock(&ltd->ltd_mutex);
106                 up_read(&ltd->ltd_rw_sem);
107
108                 list_for_each_entry_safe(tgt_desc, tmp, &kill, ltd_kill) {
109                         int rc;
110                         list_del(&tgt_desc->ltd_kill);
111                         if (ltd == &lod->lod_ost_descs) {
112                                 /* remove from QoS structures */
113                                 rc = qos_del_tgt(lod, tgt_desc);
114                                 if (rc)
115                                         CERROR("%s: qos_del_tgt(%s) failed:"
116                                                "rc = %d\n",
117                                                lod2obd(lod)->obd_name,
118                                               obd_uuid2str(&tgt_desc->ltd_uuid),
119                                                rc);
120                         }
121                         rc = obd_disconnect(tgt_desc->ltd_exp);
122                         if (rc)
123                                 CERROR("%s: failed to disconnect %s: rc = %d\n",
124                                        lod2obd(lod)->obd_name,
125                                        obd_uuid2str(&tgt_desc->ltd_uuid), rc);
126                         OBD_FREE_PTR(tgt_desc);
127                 }
128         } else {
129                 mutex_unlock(&ltd->ltd_mutex);
130                 up_read(&ltd->ltd_rw_sem);
131         }
132 }
133
134 /**
135  * Expand size of target table.
136  *
137  * When the target table is full, we have to extend the table. To do so,
138  * we allocate new memory with some reserve, move data from the old table
139  * to the new one and release memory consumed by the old table.
140  * Notice we take ltd_rw_sem exclusively to ensure atomic switch.
141  *
142  * \param[in] ltd               target table
143  * \param[in] newsize           new size of the table
144  *
145  * \retval                      0 on success
146  * \retval                      -ENOMEM if reallocation failed
147  */
148 static int ltd_bitmap_resize(struct lod_tgt_descs *ltd, __u32 newsize)
149 {
150         cfs_bitmap_t *new_bitmap, *old_bitmap = NULL;
151         int           rc = 0;
152         ENTRY;
153
154         /* grab write reference on the lod. Relocating the array requires
155          * exclusive access */
156
157         down_write(&ltd->ltd_rw_sem);
158         if (newsize <= ltd->ltd_tgts_size)
159                 /* someone else has already resize the array */
160                 GOTO(out, rc = 0);
161
162         /* allocate new bitmap */
163         new_bitmap = CFS_ALLOCATE_BITMAP(newsize);
164         if (!new_bitmap)
165                 GOTO(out, rc = -ENOMEM);
166
167         if (ltd->ltd_tgts_size > 0) {
168                 /* the bitmap already exists, we need
169                  * to copy data from old one */
170                 cfs_bitmap_copy(new_bitmap, ltd->ltd_tgt_bitmap);
171                 old_bitmap = ltd->ltd_tgt_bitmap;
172         }
173
174         ltd->ltd_tgts_size  = newsize;
175         ltd->ltd_tgt_bitmap = new_bitmap;
176
177         if (old_bitmap)
178                 CFS_FREE_BITMAP(old_bitmap);
179
180         CDEBUG(D_CONFIG, "tgt size: %d\n", ltd->ltd_tgts_size);
181
182         EXIT;
183 out:
184         up_write(&ltd->ltd_rw_sem);
185         return rc;
186 }
187
188 /**
189  * Connect LOD to a new OSP and add it to the target table.
190  *
191  * Connect to the OSP device passed, initialize all the internal
192  * structures related to the device and add it to the target table.
193  *
194  * \param[in] env               execution environment for this thread
195  * \param[in] lod               LOD device to be connected to the new OSP
196  * \param[in] osp               name of OSP device name to be added
197  * \param[in] index             index of the new target
198  * \param[in] gen               target's generation number
199  * \param[in] tgt_index         OSP's group
200  * \param[in] type              type of device (mdc or osc)
201  * \param[in] active            state of OSP: 0 - inactive, 1 - active
202  *
203  * \retval                      0 if added successfully
204  * \retval                      negative error number on failure
205  */
206 int lod_add_device(const struct lu_env *env, struct lod_device *lod,
207                    char *osp, unsigned index, unsigned gen, int tgt_index,
208                    char *type, int active)
209 {
210         struct obd_connect_data *data = NULL;
211         struct obd_export       *exp = NULL;
212         struct obd_device       *obd;
213         struct lu_device        *ldev;
214         struct dt_device        *d;
215         int                      rc;
216         struct lod_tgt_desc     *tgt_desc;
217         struct lod_tgt_descs    *ltd;
218         struct obd_uuid         obd_uuid;
219         bool                    for_ost;
220         ENTRY;
221
222         CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, index, gen);
223
224         if (gen <= 0) {
225                 CERROR("request to add OBD %s with invalid generation: %d\n",
226                        osp, gen);
227                 RETURN(-EINVAL);
228         }
229
230         obd_str2uuid(&obd_uuid, osp);
231
232         obd = class_find_client_obd(&obd_uuid, LUSTRE_OSP_NAME,
233                                 &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid);
234         if (obd == NULL) {
235                 CERROR("can't find %s device\n", osp);
236                 RETURN(-EINVAL);
237         }
238
239         OBD_ALLOC_PTR(data);
240         if (data == NULL)
241                 RETURN(-ENOMEM);
242
243         data->ocd_connect_flags = OBD_CONNECT_INDEX | OBD_CONNECT_VERSION;
244         data->ocd_version = LUSTRE_VERSION_CODE;
245         data->ocd_index = index;
246
247         if (strcmp(LUSTRE_OSC_NAME, type) == 0) {
248                 for_ost = true;
249                 data->ocd_connect_flags |= OBD_CONNECT_AT |
250                                            OBD_CONNECT_FULL20 |
251                                            OBD_CONNECT_INDEX |
252 #ifdef HAVE_LRU_RESIZE_SUPPORT
253                                            OBD_CONNECT_LRU_RESIZE |
254 #endif
255                                            OBD_CONNECT_MDS |
256                                            OBD_CONNECT_REQPORTAL |
257                                            OBD_CONNECT_SKIP_ORPHAN |
258                                            OBD_CONNECT_FID |
259                                            OBD_CONNECT_LVB_TYPE |
260                                            OBD_CONNECT_VERSION |
261                                            OBD_CONNECT_PINGLESS |
262                                            OBD_CONNECT_LFSCK;
263
264                 data->ocd_group = tgt_index;
265                 ltd = &lod->lod_ost_descs;
266         } else {
267                 struct obd_import *imp = obd->u.cli.cl_import;
268
269                 for_ost = false;
270                 data->ocd_ibits_known = MDS_INODELOCK_UPDATE;
271                 data->ocd_connect_flags |= OBD_CONNECT_ACL |
272                                            OBD_CONNECT_IBITS |
273                                            OBD_CONNECT_MDS_MDS |
274                                            OBD_CONNECT_FID |
275                                            OBD_CONNECT_AT |
276                                            OBD_CONNECT_FULL20 |
277                                            OBD_CONNECT_LFSCK;
278                 spin_lock(&imp->imp_lock);
279                 imp->imp_server_timeout = 1;
280                 spin_unlock(&imp->imp_lock);
281                 imp->imp_client->cli_request_portal = OUT_PORTAL;
282                 CDEBUG(D_OTHER, "%s: Set 'mds' portal and timeout\n",
283                       obd->obd_name);
284                 ltd = &lod->lod_mdt_descs;
285         }
286
287         rc = obd_connect(env, &exp, obd, &obd->obd_uuid, data, NULL);
288         OBD_FREE_PTR(data);
289         if (rc) {
290                 CERROR("%s: cannot connect to next dev %s (%d)\n",
291                        obd->obd_name, osp, rc);
292                 GOTO(out_free, rc);
293         }
294
295         LASSERT(obd->obd_lu_dev);
296         LASSERT(obd->obd_lu_dev->ld_site == lod->lod_dt_dev.dd_lu_dev.ld_site);
297
298         ldev = obd->obd_lu_dev;
299         d = lu2dt_dev(ldev);
300
301         /* Allocate ost descriptor and fill it */
302         OBD_ALLOC_PTR(tgt_desc);
303         if (!tgt_desc)
304                 GOTO(out_conn, rc = -ENOMEM);
305
306         tgt_desc->ltd_tgt    = d;
307         tgt_desc->ltd_exp    = exp;
308         tgt_desc->ltd_uuid   = obd->u.cli.cl_target_uuid;
309         tgt_desc->ltd_gen    = gen;
310         tgt_desc->ltd_index  = index;
311         tgt_desc->ltd_active = active;
312
313         lod_getref(ltd);
314         if (index >= ltd->ltd_tgts_size) {
315                 /* we have to increase the size of the lod_osts array */
316                 __u32  newsize;
317
318                 newsize = max(ltd->ltd_tgts_size, (__u32)2);
319                 while (newsize < index + 1)
320                         newsize = newsize << 1;
321
322                 /* lod_bitmap_resize() needs lod_rw_sem
323                  * which we hold with th reference */
324                 lod_putref(lod, ltd);
325
326                 rc = ltd_bitmap_resize(ltd, newsize);
327                 if (rc)
328                         GOTO(out_desc, rc);
329
330                 lod_getref(ltd);
331         }
332
333         mutex_lock(&ltd->ltd_mutex);
334         if (cfs_bitmap_check(ltd->ltd_tgt_bitmap, index)) {
335                 CERROR("%s: device %d is registered already\n", obd->obd_name,
336                        index);
337                 GOTO(out_mutex, rc = -EEXIST);
338         }
339
340         if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) {
341                 OBD_ALLOC_PTR(ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK]);
342                 if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) {
343                         CERROR("can't allocate index to add %s\n",
344                                obd->obd_name);
345                         GOTO(out_mutex, rc = -ENOMEM);
346                 }
347         }
348
349         if (for_ost) {
350                 /* pool and qos are not supported for MDS stack yet */
351                 rc = lod_ost_pool_add(&lod->lod_pool_info, index,
352                                       lod->lod_osts_size);
353                 if (rc) {
354                         CERROR("%s: can't set up pool, failed with %d\n",
355                                obd->obd_name, rc);
356                         GOTO(out_mutex, rc);
357                 }
358
359                 rc = qos_add_tgt(lod, tgt_desc);
360                 if (rc) {
361                         CERROR("%s: qos_add_tgt failed with %d\n",
362                                 obd->obd_name, rc);
363                         GOTO(out_pool, rc);
364                 }
365
366                 /* The new OST is now a full citizen */
367                 if (index >= lod->lod_desc.ld_tgt_count)
368                         lod->lod_desc.ld_tgt_count = index + 1;
369                 if (active)
370                         lod->lod_desc.ld_active_tgt_count++;
371         }
372
373         LTD_TGT(ltd, index) = tgt_desc;
374         cfs_bitmap_set(ltd->ltd_tgt_bitmap, index);
375         ltd->ltd_tgtnr++;
376         mutex_unlock(&ltd->ltd_mutex);
377         lod_putref(lod, ltd);
378         if (lod->lod_recovery_completed)
379                 ldev->ld_ops->ldo_recovery_complete(env, ldev);
380
381         if (!for_ost && lod->lod_initialized) {
382                 rc = lod_sub_init_llog(env, lod, tgt_desc->ltd_tgt);
383                 if (rc != 0) {
384                         CERROR("%s: cannot start llog on %s:rc = %d\n",
385                                lod2obd(lod)->obd_name, osp, rc);
386                         GOTO(out_pool, rc);
387                 }
388         }
389
390         rc = lfsck_add_target(env, lod->lod_child, d, exp, index, for_ost);
391         if (rc != 0) {
392                 CERROR("Fail to add LFSCK target: name = %s, type = %s, "
393                        "index = %u, rc = %d\n", osp, type, index, rc);
394                 GOTO(out_fini_llog, rc);
395         }
396         RETURN(rc);
397 out_fini_llog:
398         lod_sub_fini_llog(env, tgt_desc->ltd_tgt,
399                           tgt_desc->ltd_recovery_thread);
400 out_pool:
401         lod_ost_pool_remove(&lod->lod_pool_info, index);
402 out_mutex:
403         mutex_unlock(&ltd->ltd_mutex);
404         lod_putref(lod, ltd);
405 out_desc:
406         OBD_FREE_PTR(tgt_desc);
407 out_conn:
408         obd_disconnect(exp);
409 out_free:
410         return rc;
411 }
412
413 /**
414  * Schedule target removal from the target table.
415  *
416  * Mark the device as dead. The device is not removed here because it may
417  * still be in use. The device will be removed in lod_putref() when the
418  * last reference is released.
419  *
420  * \param[in] env               execution environment for this thread
421  * \param[in] lod               LOD device the target table belongs to
422  * \param[in] ltd               target table
423  * \param[in] idx               index of the target
424  * \param[in] for_ost           type of the target: 0 - MDT, 1 - OST
425  */
426 static void __lod_del_device(const struct lu_env *env, struct lod_device *lod,
427                              struct lod_tgt_descs *ltd, unsigned idx,
428                              bool for_ost)
429 {
430         LASSERT(LTD_TGT(ltd, idx));
431
432         lfsck_del_target(env, lod->lod_child, LTD_TGT(ltd, idx)->ltd_tgt,
433                          idx, for_ost);
434
435         if (LTD_TGT(ltd, idx)->ltd_reap == 0) {
436                 LTD_TGT(ltd, idx)->ltd_reap = 1;
437                 ltd->ltd_death_row++;
438         }
439 }
440
441 /**
442  * Schedule removal of all the targets from the given target table.
443  *
444  * See more details in the description for __lod_del_device()
445  *
446  * \param[in] env               execution environment for this thread
447  * \param[in] lod               LOD device the target table belongs to
448  * \param[in] ltd               target table
449  * \param[in] for_ost           type of the target: MDT or OST
450  *
451  * \retval                      0 always
452  */
453 int lod_fini_tgt(const struct lu_env *env, struct lod_device *lod,
454                  struct lod_tgt_descs *ltd, bool for_ost)
455 {
456         unsigned int idx;
457
458         if (ltd->ltd_tgts_size <= 0)
459                 return 0;
460         lod_getref(ltd);
461         mutex_lock(&ltd->ltd_mutex);
462         cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx)
463                 __lod_del_device(env, lod, ltd, idx, for_ost);
464         mutex_unlock(&ltd->ltd_mutex);
465         lod_putref(lod, ltd);
466         CFS_FREE_BITMAP(ltd->ltd_tgt_bitmap);
467         for (idx = 0; idx < TGT_PTRS; idx++) {
468                 if (ltd->ltd_tgt_idx[idx])
469                         OBD_FREE_PTR(ltd->ltd_tgt_idx[idx]);
470         }
471         ltd->ltd_tgts_size = 0;
472         return 0;
473 }
474
475 /**
476  * Remove device by name.
477  *
478  * Remove a device identified by \a osp from the target table. Given
479  * the device can be in use, the real deletion happens in lod_putref().
480  *
481  * \param[in] env               execution environment for this thread
482  * \param[in] lod               LOD device to be connected to the new OSP
483  * \param[in] ltd               target table
484  * \param[in] osp               name of OSP device to be removed
485  * \param[in] idx               index of the target
486  * \param[in] gen               generation number, not used currently
487  * \param[in] for_ost           type of the target: 0 - MDT, 1 - OST
488  *
489  * \retval                      0 if the device was scheduled for removal
490  * \retval                      -EINVAL if no device was found
491  */
492 int lod_del_device(const struct lu_env *env, struct lod_device *lod,
493                    struct lod_tgt_descs *ltd, char *osp, unsigned idx,
494                    unsigned gen, bool for_ost)
495 {
496         struct obd_device *obd;
497         int                rc = 0;
498         struct obd_uuid    uuid;
499         ENTRY;
500
501         CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, idx, gen);
502
503         obd_str2uuid(&uuid, osp);
504
505         obd = class_find_client_obd(&uuid, LUSTRE_OSP_NAME,
506                                    &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid);
507         if (obd == NULL) {
508                 CERROR("can't find %s device\n", osp);
509                 RETURN(-EINVAL);
510         }
511
512         if (gen <= 0) {
513                 CERROR("%s: request to remove OBD %s with invalid generation %d"
514                        "\n", obd->obd_name, osp, gen);
515                 RETURN(-EINVAL);
516         }
517
518         obd_str2uuid(&uuid,  osp);
519
520         lod_getref(ltd);
521         mutex_lock(&ltd->ltd_mutex);
522         /* check that the index is allocated in the bitmap */
523         if (!cfs_bitmap_check(ltd->ltd_tgt_bitmap, idx) ||
524             !LTD_TGT(ltd, idx)) {
525                 CERROR("%s: device %d is not set up\n", obd->obd_name, idx);
526                 GOTO(out, rc = -EINVAL);
527         }
528
529         /* check that the UUID matches */
530         if (!obd_uuid_equals(&uuid, &LTD_TGT(ltd, idx)->ltd_uuid)) {
531                 CERROR("%s: LOD target UUID %s at index %d does not match %s\n",
532                        obd->obd_name, obd_uuid2str(&LTD_TGT(ltd,idx)->ltd_uuid),
533                        idx, osp);
534                 GOTO(out, rc = -EINVAL);
535         }
536
537         __lod_del_device(env, lod, ltd, idx, for_ost);
538         EXIT;
539 out:
540         mutex_unlock(&ltd->ltd_mutex);
541         lod_putref(lod, ltd);
542         return(rc);
543 }
544
545 /**
546  * Resize per-thread storage to hold specified size.
547  *
548  * A helper function to resize per-thread temporary storage. This storage
549  * is used to process LOV/LVM EAs and may be quite large. We do not want to
550  * allocate/release it every time, so instead we put it into the env and
551  * reallocate on demand. The memory is released when the correspondent thread
552  * is finished.
553  *
554  * \param[in] info              LOD-specific storage in the environment
555  * \param[in] size              new size to grow the buffer to
556
557  * \retval                      0 on success, -ENOMEM if reallocation failed
558  */
559 int lod_ea_store_resize(struct lod_thread_info *info, size_t size)
560 {
561         __u32 round = size_roundup_power2(size);
562
563         LASSERT(round <=
564                 lov_mds_md_size(LOV_MAX_STRIPE_COUNT, LOV_MAGIC_V3));
565         if (info->lti_ea_store) {
566                 LASSERT(info->lti_ea_store_size);
567                 LASSERT(info->lti_ea_store_size < round);
568                 CDEBUG(D_INFO, "EA store size %d is not enough, need %d\n",
569                        info->lti_ea_store_size, round);
570                 OBD_FREE_LARGE(info->lti_ea_store, info->lti_ea_store_size);
571                 info->lti_ea_store = NULL;
572                 info->lti_ea_store_size = 0;
573         }
574
575         OBD_ALLOC_LARGE(info->lti_ea_store, round);
576         if (info->lti_ea_store == NULL)
577                 RETURN(-ENOMEM);
578         info->lti_ea_store_size = round;
579         RETURN(0);
580 }
581
582 /**
583  * Make LOV EA for striped object.
584  *
585  * Generate striping information and store it in the LOV EA of the given
586  * object. The caller must ensure nobody else is calling the function
587  * against the object concurrently. The transaction must be started.
588  * FLDB service must be running as well; it's used to map FID to the target,
589  * which is stored in LOV EA.
590  *
591  * \param[in] env               execution environment for this thread
592  * \param[in] lo                LOD object
593  * \param[in] th                transaction handle
594  *
595  * \retval                      0 if LOV EA is stored successfully
596  * \retval                      negative error number on failure
597  */
598 int lod_generate_and_set_lovea(const struct lu_env *env,
599                                struct lod_object *lo, struct thandle *th)
600 {
601         struct lod_thread_info  *info = lod_env_info(env);
602         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
603         const struct lu_fid     *fid  = lu_object_fid(&lo->ldo_obj.do_lu);
604         struct lov_mds_md_v1    *lmm;
605         struct lov_ost_data_v1  *objs;
606         __u32                    magic;
607         int                      i, rc;
608         size_t                   lmm_size;
609         ENTRY;
610
611         LASSERT(lo);
612
613         magic = lo->ldo_pool != NULL ? LOV_MAGIC_V3 : LOV_MAGIC_V1;
614         lmm_size = lov_mds_md_size(lo->ldo_stripenr, magic);
615         if (info->lti_ea_store_size < lmm_size) {
616                 rc = lod_ea_store_resize(info, lmm_size);
617                 if (rc)
618                         RETURN(rc);
619         }
620
621         if (lo->ldo_pattern == 0) /* default striping */
622                 lo->ldo_pattern = LOV_PATTERN_RAID0;
623
624         lmm = info->lti_ea_store;
625
626         lmm->lmm_magic = cpu_to_le32(magic);
627         lmm->lmm_pattern = cpu_to_le32(lo->ldo_pattern);
628         fid_to_lmm_oi(fid, &lmm->lmm_oi);
629         if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_LMMOI))
630                 lmm->lmm_oi.oi.oi_id++;
631         lmm_oi_cpu_to_le(&lmm->lmm_oi, &lmm->lmm_oi);
632         lmm->lmm_stripe_size = cpu_to_le32(lo->ldo_stripe_size);
633         lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_stripenr);
634         if (lo->ldo_pattern & LOV_PATTERN_F_RELEASED)
635                 lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_released_stripenr);
636         lmm->lmm_layout_gen = 0;
637         if (magic == LOV_MAGIC_V1) {
638                 objs = &lmm->lmm_objects[0];
639         } else {
640                 struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm;
641                 size_t cplen = strlcpy(v3->lmm_pool_name, lo->ldo_pool,
642                                 sizeof(v3->lmm_pool_name));
643                 if (cplen >= sizeof(v3->lmm_pool_name))
644                         RETURN(-E2BIG);
645                 objs = &v3->lmm_objects[0];
646         }
647
648         for (i = 0; i < lo->ldo_stripenr; i++) {
649                 struct lu_fid           *fid    = &info->lti_fid;
650                 struct lod_device       *lod;
651                 __u32                   index;
652                 int                     type    = LU_SEQ_RANGE_OST;
653
654                 lod = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
655                 LASSERT(lo->ldo_stripe[i]);
656
657                 *fid = *lu_object_fid(&lo->ldo_stripe[i]->do_lu);
658                 if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_MULTIPLE_REF)) {
659                         if (cfs_fail_val == 0)
660                                 cfs_fail_val = fid->f_oid;
661                         else
662                                 fid->f_oid = cfs_fail_val;
663                 }
664
665                 rc = fid_to_ostid(fid, &info->lti_ostid);
666                 LASSERT(rc == 0);
667
668                 ostid_cpu_to_le(&info->lti_ostid, &objs[i].l_ost_oi);
669                 objs[i].l_ost_gen    = cpu_to_le32(0);
670                 rc = lod_fld_lookup(env, lod, fid, &index, &type);
671                 if (rc < 0) {
672                         CERROR("%s: Can not locate "DFID": rc = %d\n",
673                                lod2obd(lod)->obd_name, PFID(fid), rc);
674                         lod_object_free_striping(env, lo);
675                         RETURN(rc);
676                 }
677                 objs[i].l_ost_idx = cpu_to_le32(index);
678         }
679
680         info->lti_buf.lb_buf = lmm;
681         info->lti_buf.lb_len = lmm_size;
682         rc = lod_sub_object_xattr_set(env, next, &info->lti_buf, XATTR_NAME_LOV,
683                                       0, th);
684         if (rc < 0) {
685                 lod_object_free_striping(env, lo);
686                 RETURN(rc);
687         }
688
689         RETURN(rc);
690 }
691
692 /**
693  * Get LOV EA.
694  *
695  * Fill lti_ea_store buffer in the environment with a value for the given
696  * EA. The buffer is reallocated if the value doesn't fit.
697  *
698  * \param[in,out] env           execution environment for this thread
699  *                              .lti_ea_store buffer is filled with EA's value
700  * \param[in] lo                LOD object
701  * \param[in] name              name of the EA
702  *
703  * \retval                      0 if EA is fetched successfully
704  * \retval                      negative error number on failure
705  */
706 int lod_get_ea(const struct lu_env *env, struct lod_object *lo,
707                const char *name)
708 {
709         struct lod_thread_info  *info = lod_env_info(env);
710         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
711         int                     rc;
712         ENTRY;
713
714         LASSERT(info);
715
716         if (unlikely(info->lti_ea_store == NULL)) {
717                 /* just to enter in allocation block below */
718                 rc = -ERANGE;
719         } else {
720 repeat:
721                 info->lti_buf.lb_buf = info->lti_ea_store;
722                 info->lti_buf.lb_len = info->lti_ea_store_size;
723                 rc = dt_xattr_get(env, next, &info->lti_buf, name);
724         }
725
726         /* if object is not striped or inaccessible */
727         if (rc == -ENODATA || rc == -ENOENT)
728                 RETURN(0);
729
730         if (rc == -ERANGE) {
731                 /* EA doesn't fit, reallocate new buffer */
732                 rc = dt_xattr_get(env, next, &LU_BUF_NULL, name);
733                 if (rc == -ENODATA || rc == -ENOENT)
734                         RETURN(0);
735                 else if (rc < 0)
736                         RETURN(rc);
737
738                 LASSERT(rc > 0);
739                 rc = lod_ea_store_resize(info, rc);
740                 if (rc)
741                         RETURN(rc);
742                 goto repeat;
743         }
744
745         RETURN(rc);
746 }
747
748 /**
749  * Verify the target index is present in the current configuration.
750  *
751  * \param[in] md                LOD device where the target table is stored
752  * \param[in] idx               target's index
753  *
754  * \retval                      0 if the index is present
755  * \retval                      -EINVAL if not
756  */
757 static int validate_lod_and_idx(struct lod_device *md, __u32 idx)
758 {
759         if (unlikely(idx >= md->lod_ost_descs.ltd_tgts_size ||
760                      !cfs_bitmap_check(md->lod_ost_bitmap, idx))) {
761                 CERROR("%s: bad idx: %d of %d\n", lod2obd(md)->obd_name, idx,
762                        md->lod_ost_descs.ltd_tgts_size);
763                 return -EINVAL;
764         }
765
766         if (unlikely(OST_TGT(md, idx) == NULL)) {
767                 CERROR("%s: bad lod_tgt_desc for idx: %d\n",
768                        lod2obd(md)->obd_name, idx);
769                 return -EINVAL;
770         }
771
772         if (unlikely(OST_TGT(md, idx)->ltd_ost == NULL)) {
773                 CERROR("%s: invalid lod device, for idx: %d\n",
774                        lod2obd(md)->obd_name , idx);
775                 return -EINVAL;
776         }
777
778         return 0;
779 }
780
781 /**
782  * Instantiate objects for stripes.
783  *
784  * Allocate and initialize LU-objects representing the stripes. The number
785  * of the stripes (ldo_stripenr) must be initialized already. The caller
786  * must ensure nobody else is calling the function on the object at the same
787  * time. FLDB service must be running to be able to map a FID to the targets
788  * and find appropriate device representing that target.
789  *
790  * \param[in] env               execution environment for this thread
791  * \param[in,out] lo            LOD object
792  * \param[in] objs              an array of IDs to creates the objects from
793  *
794  * \retval                      0 if the objects are instantiated successfully
795  * \retval                      negative error number on failure
796  */
797 int lod_initialize_objects(const struct lu_env *env, struct lod_object *lo,
798                            struct lov_ost_data_v1 *objs)
799 {
800         struct lod_thread_info  *info = lod_env_info(env);
801         struct lod_device       *md;
802         struct lu_object        *o, *n;
803         struct lu_device        *nd;
804         struct dt_object       **stripe;
805         int                      stripe_len;
806         int                      i, rc = 0;
807         __u32                   idx;
808         ENTRY;
809
810         LASSERT(lo != NULL);
811         md = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev);
812         LASSERT(lo->ldo_stripe == NULL);
813         LASSERT(lo->ldo_stripenr > 0);
814         LASSERT(lo->ldo_stripe_size > 0);
815
816         stripe_len = lo->ldo_stripenr;
817         OBD_ALLOC(stripe, sizeof(stripe[0]) * stripe_len);
818         if (stripe == NULL)
819                 RETURN(-ENOMEM);
820
821         for (i = 0; i < lo->ldo_stripenr; i++) {
822                 if (unlikely(lovea_slot_is_dummy(&objs[i])))
823                         continue;
824
825                 ostid_le_to_cpu(&objs[i].l_ost_oi, &info->lti_ostid);
826                 idx = le32_to_cpu(objs[i].l_ost_idx);
827                 rc = ostid_to_fid(&info->lti_fid, &info->lti_ostid, idx);
828                 if (rc != 0)
829                         GOTO(out, rc);
830                 LASSERTF(fid_is_sane(&info->lti_fid), ""DFID" insane!\n",
831                          PFID(&info->lti_fid));
832                 lod_getref(&md->lod_ost_descs);
833
834                 rc = validate_lod_and_idx(md, idx);
835                 if (unlikely(rc != 0)) {
836                         lod_putref(md, &md->lod_ost_descs);
837                         GOTO(out, rc);
838                 }
839
840                 nd = &OST_TGT(md,idx)->ltd_ost->dd_lu_dev;
841                 lod_putref(md, &md->lod_ost_descs);
842
843                 /* In the function below, .hs_keycmp resolves to
844                  * u_obj_hop_keycmp() */
845                 /* coverity[overrun-buffer-val] */
846                 o = lu_object_find_at(env, nd, &info->lti_fid, NULL);
847                 if (IS_ERR(o))
848                         GOTO(out, rc = PTR_ERR(o));
849
850                 n = lu_object_locate(o->lo_header, nd->ld_type);
851                 LASSERT(n);
852
853                 stripe[i] = container_of(n, struct dt_object, do_lu);
854         }
855
856 out:
857         if (rc != 0) {
858                 for (i = 0; i < stripe_len; i++)
859                         if (stripe[i] != NULL)
860                                 lu_object_put(env, &stripe[i]->do_lu);
861
862                 OBD_FREE(stripe, sizeof(stripe[0]) * stripe_len);
863                 lo->ldo_stripenr = 0;
864         } else {
865                 lo->ldo_stripe = stripe;
866                 lo->ldo_stripes_allocated = stripe_len;
867         }
868
869         RETURN(rc);
870 }
871
872 /**
873  * Instantiate objects for striping.
874  *
875  * Parse striping information in \a buf and instantiate the objects
876  * representing the stripes.
877  *
878  * \param[in] env               execution environment for this thread
879  * \param[in] lo                LOD object
880  * \param[in] buf               buffer storing LOV EA to parse
881  *
882  * \retval                      0 if parsing and objects creation succeed
883  * \retval                      negative error number on failure
884  */
885 int lod_parse_striping(const struct lu_env *env, struct lod_object *lo,
886                        const struct lu_buf *buf)
887 {
888         struct lov_mds_md_v1    *lmm;
889         struct lov_ost_data_v1  *objs;
890         __u32                    magic;
891         __u32                    pattern;
892         int                      rc = 0;
893         ENTRY;
894
895         LASSERT(buf);
896         LASSERT(buf->lb_buf);
897         LASSERT(buf->lb_len);
898
899         lmm = (struct lov_mds_md_v1 *) buf->lb_buf;
900         magic = le32_to_cpu(lmm->lmm_magic);
901         pattern = le32_to_cpu(lmm->lmm_pattern);
902
903         if (magic != LOV_MAGIC_V1 && magic != LOV_MAGIC_V3)
904                 GOTO(out, rc = -EINVAL);
905         if (lov_pattern(pattern) != LOV_PATTERN_RAID0)
906                 GOTO(out, rc = -EINVAL);
907
908         lo->ldo_pattern = pattern;
909         lo->ldo_stripe_size = le32_to_cpu(lmm->lmm_stripe_size);
910         lo->ldo_layout_gen = le16_to_cpu(lmm->lmm_layout_gen);
911         lo->ldo_stripenr = le16_to_cpu(lmm->lmm_stripe_count);
912         /* released file stripenr fixup. */
913         if (pattern & LOV_PATTERN_F_RELEASED)
914                 lo->ldo_stripenr = 0;
915
916         LASSERT(buf->lb_len >= lov_mds_md_size(lo->ldo_stripenr, magic));
917
918         if (magic == LOV_MAGIC_V3) {
919                 struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm;
920                 objs = &v3->lmm_objects[0];
921                 lod_object_set_pool(lo, v3->lmm_pool_name);
922         } else {
923                 objs = &lmm->lmm_objects[0];
924         }
925
926         if (lo->ldo_stripenr > 0)
927                 rc = lod_initialize_objects(env, lo, objs);
928
929 out:
930         RETURN(rc);
931 }
932
933 /**
934  * Initialize the object representing the stripes.
935  *
936  * Unless the stripes are initialized already, fetch LOV (for regular
937  * objects) or LMV (for directory objects) EA and call lod_parse_striping()
938  * to instantiate the objects representing the stripes.
939  *
940  * \param[in] env               execution environment for this thread
941  * \param[in,out] lo            LOD object
942  *
943  * \retval                      0 if parsing and object creation succeed
944  * \retval                      negative error number on failure
945  */
946 int lod_load_striping_locked(const struct lu_env *env, struct lod_object *lo)
947 {
948         struct lod_thread_info  *info = lod_env_info(env);
949         struct lu_buf           *buf  = &info->lti_buf;
950         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
951         int                      rc = 0;
952         ENTRY;
953
954         /* already initialized? */
955         if (lo->ldo_stripe != NULL)
956                 GOTO(out, rc = 0);
957
958         if (!dt_object_exists(next))
959                 GOTO(out, rc = 0);
960
961         /* Do not load stripe for slaves of striped dir */
962         if (lo->ldo_dir_slave_stripe)
963                 GOTO(out, rc = 0);
964
965         if (S_ISREG(lu_object_attr(lod2lu_obj(lo)))) {
966                 rc = lod_get_lov_ea(env, lo);
967                 if (rc <= 0)
968                         GOTO(out, rc);
969                 /*
970                  * there is LOV EA (striping information) in this object
971                  * let's parse it and create in-core objects for the stripes
972                  */
973                 buf->lb_buf = info->lti_ea_store;
974                 buf->lb_len = info->lti_ea_store_size;
975                 rc = lod_parse_striping(env, lo, buf);
976         } else if (S_ISDIR(lu_object_attr(lod2lu_obj(lo)))) {
977                 rc = lod_get_lmv_ea(env, lo);
978                 if (rc < (typeof(rc))sizeof(struct lmv_mds_md_v1))
979                         GOTO(out, rc = rc > 0 ? -EINVAL : rc);
980
981                 buf->lb_buf = info->lti_ea_store;
982                 buf->lb_len = info->lti_ea_store_size;
983                 if (rc == sizeof(struct lmv_mds_md_v1)) {
984                         rc = lod_load_lmv_shards(env, lo, buf, true);
985                         if (buf->lb_buf != info->lti_ea_store) {
986                                 OBD_FREE_LARGE(info->lti_ea_store,
987                                                info->lti_ea_store_size);
988                                 info->lti_ea_store = buf->lb_buf;
989                                 info->lti_ea_store_size = buf->lb_len;
990                         }
991
992                         if (rc < 0)
993                                 GOTO(out, rc);
994                 }
995
996                 /*
997                  * there is LOV EA (striping information) in this object
998                  * let's parse it and create in-core objects for the stripes
999                  */
1000                 rc = lod_parse_dir_striping(env, lo, buf);
1001         }
1002
1003         if (rc == 0)
1004                 lo->ldo_striping_cached = 1;
1005 out:
1006         RETURN(rc);
1007 }
1008
1009 /**
1010  * A generic function to initialize the stripe objects.
1011  *
1012  * A protected version of lod_load_striping_locked() - load the striping
1013  * information from storage, parse that and instantiate LU objects to
1014  * represent the stripes.  The LOD object \a lo supplies a pointer to the
1015  * next sub-object in the LU stack so we can lock it. Also use \a lo to
1016  * return an array of references to the newly instantiated objects.
1017  *
1018  * \param[in] env               execution environment for this thread
1019  * \param[in,out] lo            LOD object, where striping is stored and
1020  *                              which gets an array of references
1021  *
1022  * \retval                      0 if parsing and object creation succeed
1023  * \retval                      negative error number on failure
1024  **/
1025 int lod_load_striping(const struct lu_env *env, struct lod_object *lo)
1026 {
1027         struct dt_object        *next = dt_object_child(&lo->ldo_obj);
1028         int                     rc = 0;
1029
1030         /* currently this code is supposed to be called from declaration
1031          * phase only, thus the object is not expected to be locked by caller */
1032         dt_write_lock(env, next, 0);
1033         rc = lod_load_striping_locked(env, lo);
1034         dt_write_unlock(env, next);
1035         return rc;
1036 }
1037
1038 /**
1039  * Verify striping.
1040  *
1041  * Check the validity of all fields including the magic, stripe size,
1042  * stripe count, stripe offset and that the pool is present.  Also check
1043  * that each target index points to an existing target. The additional
1044  * \a is_from_disk turns additional checks. In some cases zero fields
1045  * are allowed (like pattern=0).
1046  *
1047  * \param[in] d                 LOD device
1048  * \param[in] buf               buffer with LOV EA to verify
1049  * \param[in] is_from_disk      0 - from user, allow some fields to be 0
1050  *                              1 - from disk, do not allow
1051  *
1052  * \retval                      0 if the striping is valid
1053  * \retval                      -EINVAL if striping is invalid
1054  */
1055 int lod_verify_striping(struct lod_device *d, const struct lu_buf *buf,
1056                         bool is_from_disk)
1057 {
1058         struct lov_user_md_v1   *lum;
1059         struct lov_user_md_v3   *lum3;
1060         struct pool_desc        *pool = NULL;
1061         __u32                    magic;
1062         __u32                    stripe_size;
1063         __u16                    stripe_count;
1064         __u16                    stripe_offset;
1065         size_t                   lum_size;
1066         int                      rc = 0;
1067         ENTRY;
1068
1069         lum = buf->lb_buf;
1070
1071         LASSERT(sizeof(*lum) < sizeof(*lum3));
1072
1073         if (buf->lb_len < sizeof(*lum)) {
1074                 CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md\n",
1075                        buf->lb_len);
1076                 GOTO(out, rc = -EINVAL);
1077         }
1078
1079         magic = le32_to_cpu(lum->lmm_magic);
1080         if (magic != LOV_USER_MAGIC_V1 &&
1081             magic != LOV_USER_MAGIC_V3 &&
1082             magic != LOV_MAGIC_V1_DEF &&
1083             magic != LOV_MAGIC_V3_DEF) {
1084                 CDEBUG(D_IOCTL, "bad userland LOV MAGIC: %#x\n", magic);
1085                 GOTO(out, rc = -EINVAL);
1086         }
1087
1088         /* the user uses "0" for default stripe pattern normally. */
1089         if (!is_from_disk && lum->lmm_pattern == 0)
1090                 lum->lmm_pattern = cpu_to_le32(LOV_PATTERN_RAID0);
1091
1092         if (le32_to_cpu(lum->lmm_pattern) != LOV_PATTERN_RAID0) {
1093                 CDEBUG(D_IOCTL, "bad userland stripe pattern: %#x\n",
1094                        le32_to_cpu(lum->lmm_pattern));
1095                 GOTO(out, rc = -EINVAL);
1096         }
1097
1098         /* 64kB is the largest common page size we see (ia64), and matches the
1099          * check in lfs */
1100         stripe_size = le32_to_cpu(lum->lmm_stripe_size);
1101         if (stripe_size & (LOV_MIN_STRIPE_SIZE - 1)) {
1102                 CDEBUG(D_IOCTL, "stripe size %u not a multiple of %u\n",
1103                        stripe_size, LOV_MIN_STRIPE_SIZE);
1104                 GOTO(out, rc = -EINVAL);
1105         }
1106
1107         stripe_offset = le16_to_cpu(lum->lmm_stripe_offset);
1108         if (stripe_offset != LOV_OFFSET_DEFAULT) {
1109                 /* if offset is not within valid range [0, osts_size) */
1110                 if (stripe_offset >= d->lod_osts_size) {
1111                         CDEBUG(D_IOCTL, "stripe offset %u >= bitmap size %u\n",
1112                                stripe_offset, d->lod_osts_size);
1113                         GOTO(out, rc = -EINVAL);
1114                 }
1115
1116                 /* if lmm_stripe_offset is *not* in bitmap */
1117                 if (!cfs_bitmap_check(d->lod_ost_bitmap, stripe_offset)) {
1118                         CDEBUG(D_IOCTL, "stripe offset %u not in bitmap\n",
1119                                stripe_offset);
1120                         GOTO(out, rc = -EINVAL);
1121                 }
1122         }
1123
1124         if (magic == LOV_USER_MAGIC_V1 || magic == LOV_MAGIC_V1_DEF)
1125                 lum_size = offsetof(struct lov_user_md_v1,
1126                                     lmm_objects[0]);
1127         else if (magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF)
1128                 lum_size = offsetof(struct lov_user_md_v3,
1129                                     lmm_objects[0]);
1130         else
1131                 GOTO(out, rc = -EINVAL);
1132
1133         stripe_count = le16_to_cpu(lum->lmm_stripe_count);
1134         if (buf->lb_len != lum_size) {
1135                 CDEBUG(D_IOCTL, "invalid buf len %zu for lov_user_md with "
1136                        "magic %#x and stripe_count %u\n",
1137                        buf->lb_len, magic, stripe_count);
1138                 GOTO(out, rc = -EINVAL);
1139         }
1140
1141         if (!(magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF))
1142                 goto out;
1143
1144         lum3 = buf->lb_buf;
1145         if (buf->lb_len < sizeof(*lum3)) {
1146                 CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md_v3\n",
1147                        buf->lb_len);
1148                 GOTO(out, rc = -EINVAL);
1149         }
1150
1151         /* In the function below, .hs_keycmp resolves to
1152          * pool_hashkey_keycmp() */
1153         /* coverity[overrun-buffer-val] */
1154         pool = lod_find_pool(d, lum3->lmm_pool_name);
1155         if (pool == NULL)
1156                 goto out;
1157
1158         if (stripe_offset != LOV_OFFSET_DEFAULT) {
1159                 rc = lod_check_index_in_pool(stripe_offset, pool);
1160                 if (rc < 0)
1161                         GOTO(out, rc = -EINVAL);
1162         }
1163
1164         if (is_from_disk && stripe_count > pool_tgt_count(pool)) {
1165                 CDEBUG(D_IOCTL,
1166                        "stripe count %u > # OSTs %u in the pool\n",
1167                        stripe_count, pool_tgt_count(pool));
1168                 GOTO(out, rc = -EINVAL);
1169         }
1170
1171 out:
1172         if (pool != NULL)
1173                 lod_pool_putref(pool);
1174
1175         RETURN(rc);
1176 }
1177
1178 void lod_fix_desc_stripe_size(__u64 *val)
1179 {
1180         if (*val < LOV_MIN_STRIPE_SIZE) {
1181                 if (*val != 0)
1182                         LCONSOLE_INFO("Increasing default stripe size to "
1183                                       "minimum value %u\n",
1184                                       LOV_DESC_STRIPE_SIZE_DEFAULT);
1185                 *val = LOV_DESC_STRIPE_SIZE_DEFAULT;
1186         } else if (*val & (LOV_MIN_STRIPE_SIZE - 1)) {
1187                 *val &= ~(LOV_MIN_STRIPE_SIZE - 1);
1188                 LCONSOLE_WARN("Changing default stripe size to "LPU64" (a "
1189                               "multiple of %u)\n",
1190                               *val, LOV_MIN_STRIPE_SIZE);
1191         }
1192 }
1193
1194 void lod_fix_desc_stripe_count(__u32 *val)
1195 {
1196         if (*val == 0)
1197                 *val = 1;
1198 }
1199
1200 void lod_fix_desc_pattern(__u32 *val)
1201 {
1202         /* from lov_setstripe */
1203         if ((*val != 0) && (*val != LOV_PATTERN_RAID0)) {
1204                 LCONSOLE_WARN("Unknown stripe pattern: %#x\n", *val);
1205                 *val = 0;
1206         }
1207 }
1208
1209 void lod_fix_desc_qos_maxage(__u32 *val)
1210 {
1211         /* fix qos_maxage */
1212         if (*val == 0)
1213                 *val = LOV_DESC_QOS_MAXAGE_DEFAULT;
1214 }
1215
1216 /**
1217  * Used to fix insane default striping.
1218  *
1219  * \param[in] desc      striping description
1220  */
1221 void lod_fix_desc(struct lov_desc *desc)
1222 {
1223         lod_fix_desc_stripe_size(&desc->ld_default_stripe_size);
1224         lod_fix_desc_stripe_count(&desc->ld_default_stripe_count);
1225         lod_fix_desc_pattern(&desc->ld_pattern);
1226         lod_fix_desc_qos_maxage(&desc->ld_qos_maxage);
1227 }
1228
1229 /**
1230  * Initialize the structures used to store pools and default striping.
1231  *
1232  * \param[in] lod       LOD device
1233  * \param[in] lcfg      configuration structure storing default striping.
1234  *
1235  * \retval              0 if initialization succeeds
1236  * \retval              negative error number on failure
1237  */
1238 int lod_pools_init(struct lod_device *lod, struct lustre_cfg *lcfg)
1239 {
1240         struct obd_device          *obd;
1241         struct lov_desc            *desc;
1242         int                         rc;
1243         ENTRY;
1244
1245         obd = class_name2obd(lustre_cfg_string(lcfg, 0));
1246         LASSERT(obd != NULL);
1247         obd->obd_lu_dev = &lod->lod_dt_dev.dd_lu_dev;
1248
1249         if (LUSTRE_CFG_BUFLEN(lcfg, 1) < 1) {
1250                 CERROR("LOD setup requires a descriptor\n");
1251                 RETURN(-EINVAL);
1252         }
1253
1254         desc = (struct lov_desc *)lustre_cfg_buf(lcfg, 1);
1255
1256         if (sizeof(*desc) > LUSTRE_CFG_BUFLEN(lcfg, 1)) {
1257                 CERROR("descriptor size wrong: %d > %d\n",
1258                        (int)sizeof(*desc), LUSTRE_CFG_BUFLEN(lcfg, 1));
1259                 RETURN(-EINVAL);
1260         }
1261
1262         if (desc->ld_magic != LOV_DESC_MAGIC) {
1263                 if (desc->ld_magic == __swab32(LOV_DESC_MAGIC)) {
1264                         CDEBUG(D_OTHER, "%s: Swabbing lov desc %p\n",
1265                                obd->obd_name, desc);
1266                         lustre_swab_lov_desc(desc);
1267                 } else {
1268                         CERROR("%s: Bad lov desc magic: %#x\n",
1269                                obd->obd_name, desc->ld_magic);
1270                         RETURN(-EINVAL);
1271                 }
1272         }
1273
1274         lod_fix_desc(desc);
1275
1276         desc->ld_active_tgt_count = 0;
1277         lod->lod_desc = *desc;
1278
1279         lod->lod_sp_me = LUSTRE_SP_CLI;
1280
1281         /* Set up allocation policy (QoS and RR) */
1282         INIT_LIST_HEAD(&lod->lod_qos.lq_oss_list);
1283         init_rwsem(&lod->lod_qos.lq_rw_sem);
1284         lod->lod_qos.lq_dirty = 1;
1285         lod->lod_qos.lq_rr.lqr_dirty = 1;
1286         lod->lod_qos.lq_reset = 1;
1287         /* Default priority is toward free space balance */
1288         lod->lod_qos.lq_prio_free = 232;
1289         /* Default threshold for rr (roughly 17%) */
1290         lod->lod_qos.lq_threshold_rr = 43;
1291
1292         /* Set up OST pool environment */
1293         lod->lod_pools_hash_body = cfs_hash_create("POOLS", HASH_POOLS_CUR_BITS,
1294                                                    HASH_POOLS_MAX_BITS,
1295                                                    HASH_POOLS_BKT_BITS, 0,
1296                                                    CFS_HASH_MIN_THETA,
1297                                                    CFS_HASH_MAX_THETA,
1298                                                    &pool_hash_operations,
1299                                                    CFS_HASH_DEFAULT);
1300         if (lod->lod_pools_hash_body == NULL)
1301                 RETURN(-ENOMEM);
1302
1303         INIT_LIST_HEAD(&lod->lod_pool_list);
1304         lod->lod_pool_count = 0;
1305         rc = lod_ost_pool_init(&lod->lod_pool_info, 0);
1306         if (rc)
1307                 GOTO(out_hash, rc);
1308         rc = lod_ost_pool_init(&lod->lod_qos.lq_rr.lqr_pool, 0);
1309         if (rc)
1310                 GOTO(out_pool_info, rc);
1311
1312         RETURN(0);
1313
1314 out_pool_info:
1315         lod_ost_pool_free(&lod->lod_pool_info);
1316 out_hash:
1317         cfs_hash_putref(lod->lod_pools_hash_body);
1318
1319         return rc;
1320 }
1321
1322 /**
1323  * Release the structures describing the pools.
1324  *
1325  * \param[in] lod       LOD device from which we release the structures
1326  *
1327  * \retval              0 always
1328  */
1329 int lod_pools_fini(struct lod_device *lod)
1330 {
1331         struct obd_device   *obd = lod2obd(lod);
1332         struct pool_desc    *pool, *tmp;
1333         ENTRY;
1334
1335         list_for_each_entry_safe(pool, tmp, &lod->lod_pool_list, pool_list) {
1336                 /* free pool structs */
1337                 CDEBUG(D_INFO, "delete pool %p\n", pool);
1338                 /* In the function below, .hs_keycmp resolves to
1339                  * pool_hashkey_keycmp() */
1340                 /* coverity[overrun-buffer-val] */
1341                 lod_pool_del(obd, pool->pool_name);
1342         }
1343
1344         cfs_hash_putref(lod->lod_pools_hash_body);
1345         lod_ost_pool_free(&(lod->lod_qos.lq_rr.lqr_pool));
1346         lod_ost_pool_free(&lod->lod_pool_info);
1347
1348         RETURN(0);
1349 }