Whamcloud - gitweb
LU-12610 llite: remove OBD_ -> CFS_ macros
[fs/lustre-release.git] / lustre / llite / rw.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2017, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  *
31  * lustre/llite/rw.c
32  *
33  * Lustre Lite I/O page cache routines shared by different kernel revs
34  */
35
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/string.h>
39 #include <linux/stat.h>
40 #include <linux/errno.h>
41 #include <linux/unistd.h>
42 #include <linux/writeback.h>
43 #include <asm/uaccess.h>
44
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/stat.h>
48 #include <asm/uaccess.h>
49 #include <linux/mm.h>
50 #include <linux/pagemap.h>
51 /* current_is_kswapd() */
52 #include <linux/swap.h>
53 #include <linux/task_io_accounting_ops.h>
54
55 #define DEBUG_SUBSYSTEM S_LLITE
56
57 #include <obd_cksum.h>
58 #include "llite_internal.h"
59 #include <lustre_compat.h>
60
61 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
62
63 /**
64  * Get readahead pages from the filesystem readahead pool of the client for a
65  * thread.
66  *
67  * /param sbi superblock for filesystem readahead state ll_ra_info
68  * /param ria per-thread readahead state
69  * /param pages number of pages requested for readahead for the thread.
70  *
71  * WARNING: This algorithm is used to reduce contention on sbi->ll_lock.
72  * It should work well if the ra_max_pages is much greater than the single
73  * file's read-ahead window, and not too many threads contending for
74  * these readahead pages.
75  *
76  * TODO: There may be a 'global sync problem' if many threads are trying
77  * to get an ra budget that is larger than the remaining readahead pages
78  * and reach here at exactly the same time. They will compute /a ret to
79  * consume the remaining pages, but will fail at atomic_add_return() and
80  * get a zero ra window, although there is still ra space remaining. - Jay */
81
82 static unsigned long ll_ra_count_get(struct ll_sb_info *sbi,
83                                      struct ra_io_arg *ria,
84                                      unsigned long pages,
85                                      unsigned long pages_min)
86 {
87         struct ll_ra_info *ra = &sbi->ll_ra_info;
88         long ret;
89
90         ENTRY;
91
92         WARN_ON_ONCE(pages_min > pages);
93         /**
94          * Don't try readahead aggresively if we are limited
95          * LRU pages, otherwise, it could cause deadlock.
96          */
97         pages = min(sbi->ll_cache->ccc_lru_max >> 2, pages);
98         /**
99          * if this happen, we reserve more pages than needed,
100          * this will make us leak @ra_cur_pages, because
101          * ll_ra_count_put() acutally freed @pages.
102          */
103         if (unlikely(pages_min > pages))
104                 pages_min = pages;
105
106         /*
107          * If read-ahead pages left are less than 1M, do not do read-ahead,
108          * otherwise it will form small read RPC(< 1M), which hurt server
109          * performance a lot.
110          */
111         ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages),
112                   pages);
113         if (ret < 0 || ret < min_t(long, PTLRPC_MAX_BRW_PAGES, pages))
114                 GOTO(out, ret = 0);
115
116         if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
117                 atomic_sub(ret, &ra->ra_cur_pages);
118                 ret = 0;
119         }
120
121 out:
122         if (ret < pages_min) {
123                 /* override ra limit for maximum performance */
124                 atomic_add(pages_min - ret, &ra->ra_cur_pages);
125                 ret = pages_min;
126         }
127         RETURN(ret);
128 }
129
130 void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long pages)
131 {
132         struct ll_ra_info *ra = &sbi->ll_ra_info;
133         atomic_sub(pages, &ra->ra_cur_pages);
134 }
135
136 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
137 {
138         LASSERTF(which < _NR_RA_STAT, "which: %u\n", which);
139         lprocfs_counter_incr(sbi->ll_ra_stats, which);
140 }
141
142 static inline bool ll_readahead_enabled(struct ll_sb_info *sbi)
143 {
144         return sbi->ll_ra_info.ra_max_pages_per_file > 0 &&
145                 sbi->ll_ra_info.ra_max_pages > 0;
146 }
147
148 void ll_ra_stats_inc(struct inode *inode, enum ra_stat which)
149 {
150         struct ll_sb_info *sbi = ll_i2sbi(inode);
151
152         ll_ra_stats_inc_sbi(sbi, which);
153 }
154
155 void ll_ra_stats_add(struct inode *inode, enum ra_stat which, long count)
156 {
157         struct ll_sb_info *sbi = ll_i2sbi(inode);
158
159         LASSERTF(which < _NR_RA_STAT, "which: %u\n", which);
160         lprocfs_counter_add(sbi->ll_ra_stats, which, count);
161 }
162
163 #define RAS_CDEBUG(ras) \
164         CDEBUG(D_READA,                                                      \
165                "lre %llu cr %lu cb %llu wsi %lu wp %lu nra %lu rpc %lu "     \
166                "r %lu csr %lu so %llu sb %llu sl %llu lr %lu\n",             \
167                ras->ras_last_read_end_bytes, ras->ras_consecutive_requests,  \
168                ras->ras_consecutive_bytes, ras->ras_window_start_idx,        \
169                ras->ras_window_pages, ras->ras_next_readahead_idx,           \
170                ras->ras_rpc_pages, ras->ras_requests,                        \
171                ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
172                ras->ras_stride_bytes, ras->ras_stride_length,                \
173                ras->ras_async_last_readpage_idx)
174
175 static bool pos_in_window(loff_t pos, loff_t point,
176                           unsigned long before, unsigned long after)
177 {
178         loff_t start = point - before;
179         loff_t end = point + after;
180
181         if (start > point)
182                 start = 0;
183         if (end < point)
184                 end = ~0;
185
186         return start <= pos && pos <= end;
187 }
188
189 enum ll_ra_page_hint {
190         MAYNEED = 0, /* this page possibly accessed soon */
191         WILLNEED /* this page is gurateed to be needed */
192 };
193
194 /**
195  * Initiates read-ahead of a page with given index.
196  *
197  * \retval +ve: page was already uptodate so it will be skipped
198  *              from being added;
199  * \retval -ve: page wasn't added to \a queue for error;
200  * \retval   0: page was added into \a queue for read ahead.
201  */
202 static int ll_read_ahead_page(const struct lu_env *env, struct cl_io *io,
203                               struct cl_page_list *queue, pgoff_t index,
204                               enum ll_ra_page_hint hint)
205 {
206         struct cl_object *clob  = io->ci_obj;
207         struct inode     *inode = vvp_object_inode(clob);
208         struct page      *vmpage = NULL;
209         struct cl_page   *cp;
210         enum ra_stat      which = _NR_RA_STAT; /* keep gcc happy */
211         int               rc    = 0;
212         const char       *msg   = NULL;
213
214         ENTRY;
215
216         switch (hint) {
217         case MAYNEED:
218                 /*
219                  * We need __GFP_NORETRY here for read-ahead page, otherwise
220                  * the process will fail with OOM killed due to memcg limit.
221                  * See @readahead_gfp_mask for an example.
222                  */
223                 vmpage = pagecache_get_page(inode->i_mapping, index,
224                                             FGP_LOCK | FGP_CREAT |
225                                             FGP_NOFS | FGP_NOWAIT,
226                                             mapping_gfp_mask(inode->i_mapping) |
227                                             __GFP_NORETRY | __GFP_NOWARN);
228                 if (vmpage == NULL) {
229                         which = RA_STAT_FAILED_GRAB_PAGE;
230                         msg   = "g_c_p_n failed";
231                         GOTO(out, rc = -EBUSY);
232                 }
233                 break;
234         case WILLNEED:
235                 vmpage = find_or_create_page(inode->i_mapping, index,
236                                              GFP_NOFS);
237                 if (vmpage == NULL)
238                         GOTO(out, rc = -ENOMEM);
239                 break;
240         default:
241                 /* should not come here */
242                 GOTO(out, rc = -EINVAL);
243         }
244
245         /* Check if vmpage was truncated or reclaimed */
246         if (vmpage->mapping != inode->i_mapping) {
247                 which = RA_STAT_WRONG_GRAB_PAGE;
248                 msg   = "g_c_p_n returned invalid page";
249                 GOTO(out, rc = -EBUSY);
250         }
251
252         cp = cl_page_find(env, clob, vmpage->index, vmpage, CPT_CACHEABLE);
253         if (IS_ERR(cp)) {
254                 which = RA_STAT_FAILED_GRAB_PAGE;
255                 msg   = "cl_page_find failed";
256                 GOTO(out, rc = PTR_ERR(cp));
257         }
258
259         lu_ref_add(&cp->cp_reference, "ra", current);
260         cl_page_assume(env, io, cp);
261
262         if (!cp->cp_defer_uptodate && !PageUptodate(vmpage)) {
263                 if (hint == MAYNEED) {
264                         cp->cp_defer_uptodate = 1;
265                         cp->cp_ra_used = 0;
266                 }
267
268                 cl_page_list_add(queue, cp, true);
269         } else {
270                 /* skip completed pages */
271                 cl_page_unassume(env, io, cp);
272                 /* This page is already uptodate, returning a positive number
273                  * to tell the callers about this */
274                 rc = 1;
275         }
276
277         lu_ref_del(&cp->cp_reference, "ra", current);
278         cl_page_put(env, cp);
279
280 out:
281         if (vmpage != NULL) {
282                 if (rc != 0)
283                         unlock_page(vmpage);
284                 put_page(vmpage);
285         }
286         if (msg != NULL && hint == MAYNEED) {
287                 ll_ra_stats_inc(inode, which);
288                 CDEBUG(D_READA, "%s\n", msg);
289
290         }
291
292         RETURN(rc);
293 }
294
295 #define RIA_DEBUG(ria)                                                  \
296         CDEBUG(D_READA, "rs %lu re %lu ro %llu rl %llu rb %llu\n",      \
297                ria->ria_start_idx, ria->ria_end_idx, ria->ria_stoff,    \
298                ria->ria_length, ria->ria_bytes)
299
300 static inline int stride_io_mode(struct ll_readahead_state *ras)
301 {
302         return ras->ras_consecutive_stride_requests > 1;
303 }
304
305 /* The function calculates how many bytes will be read in
306  * [off, off + length], in such stride IO area,
307  * stride_offset = st_off, stride_lengh = st_len,
308  * stride_bytes = st_bytes
309  *
310  *   |------------------|*****|------------------|*****|------------|*****|....
311  * st_off
312  *   |--- st_bytes     ---|
313  *   |-----     st_len   -----|
314  *
315  *              How many bytes it should read in such pattern
316  *              |-------------------------------------------------------------|
317  *              off
318  *              |<------                  length                      ------->|
319  *
320  *          =   |<----->|  +  |-------------------------------------| +   |---|
321  *             start_left                 st_bytes * i                 end_left
322  */
323 static loff_t stride_byte_count(loff_t st_off, loff_t st_len, loff_t st_bytes,
324                                 loff_t off, loff_t length)
325 {
326         u64 start = off > st_off ? off - st_off : 0;
327         u64 end = off + length > st_off ? off + length - st_off : 0;
328         u64 start_left;
329         u64 end_left;
330         u64 bytes_count;
331
332         if (st_len == 0 || length == 0 || end == 0)
333                 return length;
334
335         start = div64_u64_rem(start, st_len, &start_left);
336         if (start_left < st_bytes)
337                 start_left = st_bytes - start_left;
338         else
339                 start_left = 0;
340
341         end = div64_u64_rem(end, st_len, &end_left);
342         if (end_left > st_bytes)
343                 end_left = st_bytes;
344
345         CDEBUG(D_READA, "start %llu, end %llu start_left %llu end_left %llu\n",
346                start, end, start_left, end_left);
347
348         if (start == end)
349                 bytes_count = end_left - (st_bytes - start_left);
350         else
351                 bytes_count = start_left +
352                         st_bytes * (end - start - 1) + end_left;
353
354         CDEBUG(D_READA,
355                "st_off %llu, st_len %llu st_bytes %llu off %llu length %llu bytescount %llu\n",
356                st_off, st_len, st_bytes, off, length, bytes_count);
357
358         return bytes_count;
359 }
360
361 static unsigned long ria_page_count(struct ra_io_arg *ria)
362 {
363         loff_t length_bytes = ria->ria_end_idx >= ria->ria_start_idx ?
364                 (loff_t)(ria->ria_end_idx -
365                          ria->ria_start_idx + 1) << PAGE_SHIFT : 0;
366         loff_t bytes_count;
367
368         if (ria->ria_length > ria->ria_bytes && ria->ria_bytes &&
369             (ria->ria_length & ~PAGE_MASK || ria->ria_bytes & ~PAGE_MASK ||
370              ria->ria_stoff & ~PAGE_MASK)) {
371                 /* Over-estimate un-aligned page stride read */
372                 unsigned long pg_count = ((ria->ria_bytes +
373                                            PAGE_SIZE - 1) >> PAGE_SHIFT) + 1;
374                 pg_count *= length_bytes / ria->ria_length + 1;
375
376                 return pg_count;
377         }
378         bytes_count = stride_byte_count(ria->ria_stoff, ria->ria_length,
379                                         ria->ria_bytes,
380                                         (loff_t)ria->ria_start_idx<<PAGE_SHIFT,
381                                         length_bytes);
382         return (bytes_count + PAGE_SIZE - 1) >> PAGE_SHIFT;
383 }
384
385 static pgoff_t ras_align(struct ll_readahead_state *ras, pgoff_t index)
386 {
387         unsigned opt_size = min(ras->ras_window_pages, ras->ras_rpc_pages);
388
389         if (opt_size == 0)
390                 opt_size = 1;
391         return index - (index % opt_size);
392 }
393
394 /* Check whether the index is in the defined ra-window */
395 static bool ras_inside_ra_window(pgoff_t idx, struct ra_io_arg *ria)
396 {
397         loff_t pos = (loff_t)idx << PAGE_SHIFT;
398
399         /* If ria_length == ria_bytes, it means non-stride I/O mode,
400          * idx should always inside read-ahead window in this case
401          * For stride I/O mode, just check whether the idx is inside
402          * the ria_bytes.
403          */
404         if (ria->ria_length == 0 || ria->ria_length == ria->ria_bytes)
405                 return true;
406
407         if (pos >= ria->ria_stoff) {
408                 u64 offset;
409
410                 div64_u64_rem(pos - ria->ria_stoff, ria->ria_length, &offset);
411
412                 if (offset < ria->ria_bytes ||
413                     (ria->ria_length - offset) < PAGE_SIZE)
414                         return true;
415         } else if (pos + PAGE_SIZE > ria->ria_stoff) {
416                 return true;
417         }
418
419         return false;
420 }
421
422 static unsigned long
423 ll_read_ahead_pages(const struct lu_env *env, struct cl_io *io,
424                     struct cl_page_list *queue, struct ll_readahead_state *ras,
425                     struct ra_io_arg *ria, pgoff_t *ra_end, pgoff_t skip_index)
426 {
427         struct cl_read_ahead ra = { 0 };
428         /* busy page count is per stride */
429         int rc = 0, count = 0, busy_page_count = 0;
430         pgoff_t page_idx;
431
432         LASSERT(ria != NULL);
433         RIA_DEBUG(ria);
434
435         for (page_idx = ria->ria_start_idx;
436              page_idx <= ria->ria_end_idx && ria->ria_reserved > 0;
437              page_idx++) {
438                 if (skip_index && page_idx == skip_index)
439                         continue;
440                 if (ras_inside_ra_window(page_idx, ria)) {
441                         if (ra.cra_end_idx == 0 || ra.cra_end_idx < page_idx) {
442                                 pgoff_t end_idx;
443
444                                 /*
445                                  * Do not shrink ria_end_idx at any case until
446                                  * the minimum end of current read is covered.
447                                  *
448                                  * Do not extend read lock accross stripe if
449                                  * lock contention detected.
450                                  */
451                                 if (ra.cra_contention &&
452                                     page_idx > ria->ria_end_idx_min) {
453                                         ria->ria_end_idx = *ra_end;
454                                         break;
455                                 }
456
457                                 cl_read_ahead_release(env, &ra);
458
459                                 rc = cl_io_read_ahead(env, io, page_idx, &ra);
460                                 if (rc < 0)
461                                         break;
462
463                                  /*
464                                   * Only shrink ria_end_idx if the matched
465                                   * LDLM lock doesn't cover more.
466                                   */
467                                 if (page_idx > ra.cra_end_idx) {
468                                         ria->ria_end_idx = ra.cra_end_idx;
469                                         break;
470                                 }
471
472                                 CDEBUG(D_READA, "idx: %lu, ra: %lu, rpc: %lu\n",
473                                        page_idx, ra.cra_end_idx,
474                                        ra.cra_rpc_pages);
475                                 LASSERTF(ra.cra_end_idx >= page_idx,
476                                          "object: %p, indcies %lu / %lu\n",
477                                          io->ci_obj, ra.cra_end_idx, page_idx);
478                                 /* update read ahead RPC size.
479                                  * NB: it's racy but doesn't matter */
480                                 if (ras->ras_rpc_pages != ra.cra_rpc_pages &&
481                                     ra.cra_rpc_pages > 0)
482                                         ras->ras_rpc_pages = ra.cra_rpc_pages;
483                                 if (!skip_index) {
484                                         /* trim it to align with optimal RPC size */
485                                         end_idx = ras_align(ras, ria->ria_end_idx + 1);
486                                         if (end_idx > 0 && !ria->ria_eof)
487                                                 ria->ria_end_idx = end_idx - 1;
488                                 }
489                                 if (ria->ria_end_idx < ria->ria_end_idx_min)
490                                         ria->ria_end_idx = ria->ria_end_idx_min;
491                         }
492                         if (page_idx > ria->ria_end_idx)
493                                 break;
494
495                         /* If the page is inside the read-ahead window */
496                         rc = ll_read_ahead_page(env, io, queue, page_idx,
497                                                 MAYNEED);
498                         if (rc < 0 && rc != -EBUSY)
499                                 break;
500                         if (rc == -EBUSY) {
501                                 busy_page_count++;
502                                 CDEBUG(D_READA,
503                                        "skip busy page: %lu\n", page_idx);
504                                 /* For page unaligned readahead the first
505                                  * last pages of each region can be read by
506                                  * another reader on the same node, and so
507                                  * may be busy. So only stop for > 2 busy
508                                  * pages. */
509                                 if (busy_page_count > 2)
510                                         break;
511                         }
512
513                         *ra_end = page_idx;
514                         /* Only subtract from reserve & count the page if we
515                          * really did readahead on that page. */
516                         if (rc == 0) {
517                                 ria->ria_reserved--;
518                                 count++;
519                         }
520                 } else if (stride_io_mode(ras)) {
521                         /* If it is not in the read-ahead window, and it is
522                          * read-ahead mode, then check whether it should skip
523                          * the stride gap.
524                          */
525                         loff_t pos = (loff_t)page_idx << PAGE_SHIFT;
526                         u64 offset;
527
528                         div64_u64_rem(pos - ria->ria_stoff, ria->ria_length,
529                                       &offset);
530                         if (offset >= ria->ria_bytes) {
531                                 pos += (ria->ria_length - offset);
532                                 if ((pos >> PAGE_SHIFT) >= page_idx + 1)
533                                         page_idx = (pos >> PAGE_SHIFT) - 1;
534                                 busy_page_count = 0;
535                                 CDEBUG(D_READA,
536                                        "Stride: jump %llu pages to %lu\n",
537                                        ria->ria_length - offset, page_idx);
538                                 continue;
539                         }
540                 }
541         }
542
543         cl_read_ahead_release(env, &ra);
544
545         if (count)
546                 ll_ra_stats_add(vvp_object_inode(io->ci_obj),
547                                 RA_STAT_READAHEAD_PAGES, count);
548
549         return count;
550 }
551
552 static void ll_readahead_work_free(struct ll_readahead_work *work)
553 {
554         fput(work->lrw_file);
555         OBD_FREE_PTR(work);
556 }
557
558 static void ll_readahead_handle_work(struct work_struct *wq);
559 static void ll_readahead_work_add(struct inode *inode,
560                                   struct ll_readahead_work *work)
561 {
562         INIT_WORK(&work->lrw_readahead_work, ll_readahead_handle_work);
563         queue_work(ll_i2sbi(inode)->ll_ra_info.ll_readahead_wq,
564                    &work->lrw_readahead_work);
565 }
566
567 static int ll_readahead_file_kms(const struct lu_env *env,
568                                 struct cl_io *io, __u64 *kms)
569 {
570         struct cl_object *clob;
571         struct inode *inode;
572         struct cl_attr *attr = vvp_env_thread_attr(env);
573         int ret;
574
575         clob = io->ci_obj;
576         inode = vvp_object_inode(clob);
577
578         cl_object_attr_lock(clob);
579         ret = cl_object_attr_get(env, clob, attr);
580         cl_object_attr_unlock(clob);
581
582         if (ret != 0)
583                 RETURN(ret);
584
585         *kms = attr->cat_kms;
586         return 0;
587 }
588
589 static void ll_readahead_handle_work(struct work_struct *wq)
590 {
591         struct ll_readahead_work *work;
592         struct lu_env *env;
593         __u16 refcheck;
594         struct ra_io_arg *ria;
595         struct inode *inode;
596         struct ll_file_data *fd;
597         struct ll_readahead_state *ras;
598         struct cl_io *io;
599         struct cl_2queue *queue;
600         pgoff_t ra_end_idx = 0;
601         unsigned long pages, pages_min = 0;
602         struct file *file;
603         __u64 kms;
604         int rc;
605         pgoff_t eof_index;
606         struct ll_sb_info *sbi;
607
608         work = container_of(wq, struct ll_readahead_work,
609                             lrw_readahead_work);
610         fd = work->lrw_file->private_data;
611         ras = &fd->fd_ras;
612         file = work->lrw_file;
613         inode = file_inode(file);
614         sbi = ll_i2sbi(inode);
615
616         CDEBUG(D_READA|D_IOTRACE,
617                "%s:"DFID": async ra from %lu to %lu triggered by user pid %d\n",
618                file_dentry(file)->d_name.name, PFID(ll_inode2fid(inode)),
619                work->lrw_start_idx, work->lrw_end_idx, work->lrw_user_pid);
620
621         env = cl_env_alloc(&refcheck, LCT_NOREF);
622         if (IS_ERR(env))
623                 GOTO(out_free_work, rc = PTR_ERR(env));
624
625         io = vvp_env_thread_io(env);
626         ll_io_init(io, file, CIT_READ, NULL);
627
628         rc = ll_readahead_file_kms(env, io, &kms);
629         if (rc != 0)
630                 GOTO(out_put_env, rc);
631
632         if (kms == 0) {
633                 ll_ra_stats_inc(inode, RA_STAT_ZERO_LEN);
634                 GOTO(out_put_env, rc = 0);
635         }
636
637         ria = &ll_env_info(env)->lti_ria;
638         memset(ria, 0, sizeof(*ria));
639
640         ria->ria_start_idx = work->lrw_start_idx;
641         /* Truncate RA window to end of file */
642         eof_index = (pgoff_t)(kms - 1) >> PAGE_SHIFT;
643         if (eof_index <= work->lrw_end_idx) {
644                 work->lrw_end_idx = eof_index;
645                 ria->ria_eof = true;
646         }
647         if (work->lrw_end_idx <= work->lrw_start_idx)
648                 GOTO(out_put_env, rc = 0);
649
650         ria->ria_end_idx = work->lrw_end_idx;
651         pages = ria->ria_end_idx - ria->ria_start_idx + 1;
652         ria->ria_reserved = ll_ra_count_get(sbi, ria,
653                                             ria_page_count(ria), pages_min);
654
655         CDEBUG(D_READA,
656                "async reserved pages: %lu/%lu/%lu, ra_cur %d, ra_max %lu\n",
657                ria->ria_reserved, pages, pages_min,
658                atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
659                ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
660
661         if (ria->ria_reserved < pages) {
662                 ll_ra_stats_inc(inode, RA_STAT_MAX_IN_FLIGHT);
663                 if (PAGES_TO_MiB(ria->ria_reserved) < 1) {
664                         ll_ra_count_put(ll_i2sbi(inode), ria->ria_reserved);
665                         GOTO(out_put_env, rc = 0);
666                 }
667         }
668
669         rc = cl_io_rw_init(env, io, CIT_READ, ria->ria_start_idx, pages);
670         if (rc)
671                 GOTO(out_put_env, rc);
672
673         /* overwrite jobid inited in vvp_io_init() */
674         if (strncmp(ll_i2info(inode)->lli_jobid, work->lrw_jobid,
675                     sizeof(work->lrw_jobid)))
676                 memcpy(ll_i2info(inode)->lli_jobid, work->lrw_jobid,
677                        sizeof(work->lrw_jobid));
678
679         vvp_env_io(env)->vui_fd = fd;
680         io->ci_state = CIS_LOCKED;
681         io->ci_async_readahead = true;
682         rc = cl_io_start(env, io);
683         if (rc)
684                 GOTO(out_io_fini, rc);
685
686         queue = &io->ci_queue;
687         cl_2queue_init(queue);
688
689         rc = ll_read_ahead_pages(env, io, &queue->c2_qin, ras, ria,
690                                  &ra_end_idx, 0);
691         if (ria->ria_reserved != 0)
692                 ll_ra_count_put(ll_i2sbi(inode), ria->ria_reserved);
693         if (queue->c2_qin.pl_nr > 0) {
694                 int count = queue->c2_qin.pl_nr;
695
696                 rc = cl_io_submit_rw(env, io, CRT_READ, queue);
697                 if (rc == 0)
698                         task_io_account_read(PAGE_SIZE * count);
699         }
700         if (ria->ria_end_idx == ra_end_idx && ra_end_idx == (kms >> PAGE_SHIFT))
701                 ll_ra_stats_inc(inode, RA_STAT_EOF);
702
703         if (ra_end_idx != ria->ria_end_idx)
704                 ll_ra_stats_inc(inode, RA_STAT_FAILED_REACH_END);
705
706         /* TODO: discard all pages until page reinit route is implemented */
707         cl_page_list_discard(env, io, &queue->c2_qin);
708
709         /* Unlock unsent read pages in case of error. */
710         cl_page_list_disown(env, &queue->c2_qin);
711
712         cl_2queue_fini(env, queue);
713 out_io_fini:
714         cl_io_end(env, io);
715         cl_io_fini(env, io);
716 out_put_env:
717         cl_env_put(env, &refcheck);
718 out_free_work:
719         if (ra_end_idx > 0)
720                 ll_ra_stats_inc_sbi(ll_i2sbi(inode), RA_STAT_ASYNC);
721         atomic_dec(&sbi->ll_ra_info.ra_async_inflight);
722         ll_readahead_work_free(work);
723 }
724
725 static int ll_readahead(const struct lu_env *env, struct cl_io *io,
726                         struct cl_page_list *queue,
727                         struct ll_readahead_state *ras, bool hit,
728                         struct file *file, pgoff_t skip_index,
729                         pgoff_t *start_idx)
730 {
731         struct vvp_io *vio = vvp_env_io(env);
732         struct ll_thread_info *lti = ll_env_info(env);
733         unsigned long pages, pages_min = 0;
734         pgoff_t ra_end_idx = 0, end_idx = 0;
735         struct inode *inode;
736         struct ra_io_arg *ria = &lti->lti_ria;
737         struct cl_object *clob;
738         int ret = 0;
739         __u64 kms;
740         struct ll_sb_info *sbi;
741         struct ll_ra_info *ra;
742
743         ENTRY;
744
745         clob = io->ci_obj;
746         inode = vvp_object_inode(clob);
747         sbi = ll_i2sbi(inode);
748         ra = &sbi->ll_ra_info;
749
750         /**
751          * In case we have a limited max_cached_mb, readahead
752          * should be stopped if it have run out of all LRU slots.
753          */
754         if (atomic_read(&ra->ra_cur_pages) >= sbi->ll_cache->ccc_lru_max) {
755                 ll_ra_stats_inc(inode, RA_STAT_MAX_IN_FLIGHT);
756                 RETURN(0);
757         }
758
759         memset(ria, 0, sizeof(*ria));
760         ret = ll_readahead_file_kms(env, io, &kms);
761         if (ret != 0)
762                 RETURN(ret);
763
764         if (kms == 0) {
765                 ll_ra_stats_inc(inode, RA_STAT_ZERO_LEN);
766                 RETURN(0);
767         }
768
769         spin_lock(&ras->ras_lock);
770
771         /**
772          * Note: other thread might rollback the ras_next_readahead_idx,
773          * if it can not get the full size of prepared pages, see the
774          * end of this function. For stride read ahead, it needs to
775          * make sure the offset is no less than ras_stride_offset,
776          * so that stride read ahead can work correctly.
777          */
778         if (stride_io_mode(ras))
779                 *start_idx = max_t(pgoff_t, ras->ras_next_readahead_idx,
780                                   ras->ras_stride_offset >> PAGE_SHIFT);
781         else
782                 *start_idx = ras->ras_next_readahead_idx;
783
784         if (ras->ras_window_pages > 0)
785                 end_idx = ras->ras_window_start_idx + ras->ras_window_pages - 1;
786
787         if (skip_index)
788                 end_idx = *start_idx + ras->ras_window_pages - 1;
789
790         /* Enlarge the RA window to encompass the full read */
791         if (vio->vui_ra_valid &&
792             end_idx < vio->vui_ra_start_idx + vio->vui_ra_pages - 1)
793                 end_idx = vio->vui_ra_start_idx + vio->vui_ra_pages - 1;
794
795         if (end_idx != 0) {
796                 pgoff_t eof_index;
797
798                 /* Truncate RA window to end of file */
799                 eof_index = (pgoff_t)((kms - 1) >> PAGE_SHIFT);
800                 if (eof_index <= end_idx) {
801                         end_idx = eof_index;
802                         ria->ria_eof = true;
803                 }
804         }
805         ria->ria_start_idx = *start_idx;
806         ria->ria_end_idx = end_idx;
807         /* If stride I/O mode is detected, get stride window*/
808         if (stride_io_mode(ras)) {
809                 ria->ria_stoff = ras->ras_stride_offset;
810                 ria->ria_length = ras->ras_stride_length;
811                 ria->ria_bytes = ras->ras_stride_bytes;
812         }
813         spin_unlock(&ras->ras_lock);
814
815         if (end_idx == 0) {
816                 ll_ra_stats_inc(inode, RA_STAT_ZERO_WINDOW);
817                 RETURN(0);
818         }
819         pages = ria_page_count(ria);
820         if (pages == 0) {
821                 ll_ra_stats_inc(inode, RA_STAT_ZERO_WINDOW);
822                 RETURN(0);
823         }
824
825         RAS_CDEBUG(ras);
826         CDEBUG(D_READA, DFID": ria: %lu/%lu, bead: %lu/%lu, hit: %d\n",
827                PFID(lu_object_fid(&clob->co_lu)),
828                ria->ria_start_idx, ria->ria_end_idx,
829                vio->vui_ra_valid ? vio->vui_ra_start_idx : 0,
830                vio->vui_ra_valid ? vio->vui_ra_pages : 0,
831                hit);
832
833         /* at least to extend the readahead window to cover current read */
834         if (!hit && vio->vui_ra_valid &&
835             vio->vui_ra_start_idx + vio->vui_ra_pages > ria->ria_start_idx) {
836                 ria->ria_end_idx_min =
837                         vio->vui_ra_start_idx + vio->vui_ra_pages - 1;
838                 pages_min = vio->vui_ra_start_idx + vio->vui_ra_pages -
839                                 ria->ria_start_idx;
840                  /**
841                   * For performance reason, exceeding @ra_max_pages
842                   * are allowed, but this should be limited with RPC
843                   * size in case a large block size read issued. Trim
844                   * to RPC boundary.
845                   */
846                 pages_min = min(pages_min, ras->ras_rpc_pages -
847                                 (ria->ria_start_idx % ras->ras_rpc_pages));
848         }
849
850         /* don't over reserved for mmap range read */
851         if (skip_index)
852                 pages_min = 0;
853         if (pages_min > pages)
854                 pages = pages_min;
855         ria->ria_reserved = ll_ra_count_get(ll_i2sbi(inode), ria, pages,
856                                             pages_min);
857         if (ria->ria_reserved < pages)
858                 ll_ra_stats_inc(inode, RA_STAT_MAX_IN_FLIGHT);
859
860         CDEBUG(D_READA, "reserved pages: %lu/%lu/%lu, ra_cur %d, ra_max %lu\n",
861                ria->ria_reserved, pages, pages_min,
862                atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
863                ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
864
865         ret = ll_read_ahead_pages(env, io, queue, ras, ria, &ra_end_idx,
866                                   skip_index);
867         if (ria->ria_reserved != 0)
868                 ll_ra_count_put(ll_i2sbi(inode), ria->ria_reserved);
869
870         if (ra_end_idx == end_idx && ra_end_idx == (kms >> PAGE_SHIFT))
871                 ll_ra_stats_inc(inode, RA_STAT_EOF);
872
873         CDEBUG(D_READA,
874                "ra_end_idx = %lu end_idx = %lu stride end = %lu pages = %d\n",
875                ra_end_idx, end_idx, ria->ria_end_idx, ret);
876
877         if (ra_end_idx != end_idx)
878                 ll_ra_stats_inc(inode, RA_STAT_FAILED_REACH_END);
879         if (ra_end_idx > 0) {
880                 /* update the ras so that the next read-ahead tries from
881                  * where we left off. */
882                 spin_lock(&ras->ras_lock);
883                 ras->ras_next_readahead_idx = ra_end_idx + 1;
884                 spin_unlock(&ras->ras_lock);
885                 RAS_CDEBUG(ras);
886         }
887
888         RETURN(ret);
889 }
890
891 static int ll_readpages(const struct lu_env *env, struct cl_io *io,
892                         struct cl_page_list *queue,
893                         pgoff_t start, pgoff_t end)
894 {
895         int ret = 0;
896         __u64 kms;
897         pgoff_t page_idx;
898         int count = 0;
899
900         ENTRY;
901
902         ret = ll_readahead_file_kms(env, io, &kms);
903         if (ret != 0)
904                 RETURN(ret);
905
906         if (kms == 0)
907                 RETURN(0);
908
909         if (end != 0) {
910                 unsigned long end_index;
911
912                 end_index = (unsigned long)((kms - 1) >> PAGE_SHIFT);
913                 if (end_index <= end)
914                         end = end_index;
915         }
916
917         for (page_idx = start; page_idx <= end; page_idx++) {
918                 ret= ll_read_ahead_page(env, io, queue, page_idx,
919                                         WILLNEED);
920                 if (ret < 0)
921                         break;
922                 else if (ret == 0) /* ret 1 is already uptodate */
923                         count++;
924         }
925
926         RETURN(count > 0 ? count : ret);
927 }
928
929 static void ras_set_start(struct ll_readahead_state *ras, pgoff_t index)
930 {
931         ras->ras_window_start_idx = ras_align(ras, index);
932 }
933
934 /* called with the ras_lock held or from places where it doesn't matter */
935 static void ras_reset(struct ll_readahead_state *ras, pgoff_t index)
936 {
937         ras->ras_consecutive_requests = 0;
938         ras->ras_consecutive_bytes = 0;
939         ras->ras_window_pages = 0;
940         ras_set_start(ras, index);
941         ras->ras_next_readahead_idx = max(ras->ras_window_start_idx, index + 1);
942
943         RAS_CDEBUG(ras);
944 }
945
946 /* called with the ras_lock held or from places where it doesn't matter */
947 static void ras_stride_reset(struct ll_readahead_state *ras)
948 {
949         ras->ras_consecutive_stride_requests = 0;
950         ras->ras_stride_length = 0;
951         ras->ras_stride_bytes = 0;
952         RAS_CDEBUG(ras);
953 }
954
955 void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
956 {
957         spin_lock_init(&ras->ras_lock);
958         ras->ras_rpc_pages = PTLRPC_MAX_BRW_PAGES;
959         ras_reset(ras, 0);
960         ras->ras_last_read_end_bytes = 0;
961         ras->ras_requests = 0;
962         ras->ras_range_min_start_idx = 0;
963         ras->ras_range_max_end_idx = 0;
964         ras->ras_range_requests = 0;
965         ras->ras_last_range_pages = 0;
966 }
967
968 /*
969  * Check whether the read request is in the stride window.
970  * If it is in the stride window, return true, otherwise return false.
971  */
972 static bool read_in_stride_window(struct ll_readahead_state *ras,
973                                   loff_t pos, loff_t count)
974 {
975         loff_t stride_gap;
976
977         if (ras->ras_stride_length == 0 || ras->ras_stride_bytes == 0 ||
978             ras->ras_stride_bytes == ras->ras_stride_length)
979                 return false;
980
981         stride_gap = pos - ras->ras_last_read_end_bytes - 1;
982
983         /* If it is contiguous read */
984         if (stride_gap == 0)
985                 return ras->ras_consecutive_bytes + count <=
986                         ras->ras_stride_bytes;
987
988         /* Otherwise check the stride by itself */
989         return (ras->ras_stride_length - ras->ras_stride_bytes) == stride_gap &&
990                 ras->ras_consecutive_bytes == ras->ras_stride_bytes &&
991                 count <= ras->ras_stride_bytes;
992 }
993
994 static void ras_init_stride_detector(struct ll_readahead_state *ras,
995                                      loff_t pos, loff_t count)
996 {
997         loff_t stride_gap = pos - ras->ras_last_read_end_bytes - 1;
998
999         LASSERT(ras->ras_consecutive_stride_requests == 0);
1000
1001         if (pos <= ras->ras_last_read_end_bytes) {
1002                 /*Reset stride window for forward read*/
1003                 ras_stride_reset(ras);
1004                 return;
1005         }
1006
1007         ras->ras_stride_bytes = ras->ras_consecutive_bytes;
1008         ras->ras_stride_length = stride_gap + ras->ras_consecutive_bytes;
1009         ras->ras_consecutive_stride_requests++;
1010         ras->ras_stride_offset = pos;
1011
1012         RAS_CDEBUG(ras);
1013 }
1014
1015 static unsigned long
1016 stride_page_count(struct ll_readahead_state *ras, loff_t len)
1017 {
1018         loff_t bytes_count =
1019                 stride_byte_count(ras->ras_stride_offset,
1020                                   ras->ras_stride_length, ras->ras_stride_bytes,
1021                                   ras->ras_window_start_idx << PAGE_SHIFT, len);
1022
1023         return (bytes_count + PAGE_SIZE - 1) >> PAGE_SHIFT;
1024 }
1025
1026 /* Stride Read-ahead window will be increased inc_len according to
1027  * stride I/O pattern */
1028 static void ras_stride_increase_window(struct ll_readahead_state *ras,
1029                                        struct ll_ra_info *ra, loff_t inc_bytes)
1030 {
1031         loff_t window_bytes, stride_bytes;
1032         u64 left_bytes;
1033         u64 step;
1034         loff_t end;
1035
1036         /* temporarily store in page units to reduce LASSERT() cost below */
1037         end = ras->ras_window_start_idx + ras->ras_window_pages;
1038
1039         LASSERT(ras->ras_stride_length > 0);
1040         LASSERTF(end >= (ras->ras_stride_offset >> PAGE_SHIFT),
1041                  "window_start_idx %lu, window_pages %lu stride_offset %llu\n",
1042                  ras->ras_window_start_idx, ras->ras_window_pages,
1043                  ras->ras_stride_offset);
1044
1045         end <<= PAGE_SHIFT;
1046         if (end <= ras->ras_stride_offset)
1047                 stride_bytes = 0;
1048         else
1049                 stride_bytes = end - ras->ras_stride_offset;
1050
1051         div64_u64_rem(stride_bytes, ras->ras_stride_length, &left_bytes);
1052         window_bytes = (ras->ras_window_pages << PAGE_SHIFT);
1053         if (left_bytes < ras->ras_stride_bytes) {
1054                 if (ras->ras_stride_bytes - left_bytes >= inc_bytes) {
1055                         window_bytes += inc_bytes;
1056                         goto out;
1057                 } else {
1058                         window_bytes += (ras->ras_stride_bytes - left_bytes);
1059                         inc_bytes -= (ras->ras_stride_bytes - left_bytes);
1060                 }
1061         } else {
1062                 window_bytes += (ras->ras_stride_length - left_bytes);
1063         }
1064
1065         LASSERT(ras->ras_stride_bytes != 0);
1066
1067         step = div64_u64_rem(inc_bytes, ras->ras_stride_bytes, &left_bytes);
1068
1069         window_bytes += step * ras->ras_stride_length + left_bytes;
1070         LASSERT(window_bytes > 0);
1071
1072 out:
1073         if (stride_page_count(ras, window_bytes) <=
1074             ra->ra_max_pages_per_file || ras->ras_window_pages == 0)
1075                 ras->ras_window_pages = (window_bytes >> PAGE_SHIFT);
1076
1077         LASSERT(ras->ras_window_pages > 0);
1078
1079         RAS_CDEBUG(ras);
1080 }
1081
1082 static void ras_increase_window(struct inode *inode,
1083                                 struct ll_readahead_state *ras,
1084                                 struct ll_ra_info *ra)
1085 {
1086         /* The stretch of ra-window should be aligned with max rpc_size
1087          * but current clio architecture does not support retrieve such
1088          * information from lower layer. FIXME later
1089          */
1090         if (stride_io_mode(ras)) {
1091                 ras_stride_increase_window(ras, ra,
1092                                       (loff_t)ras->ras_rpc_pages << PAGE_SHIFT);
1093         } else {
1094                 pgoff_t window_pages;
1095
1096                 window_pages = min(ras->ras_window_pages + ras->ras_rpc_pages,
1097                                    ra->ra_max_pages_per_file);
1098                 if (window_pages < ras->ras_rpc_pages)
1099                         ras->ras_window_pages = window_pages;
1100                 else
1101                         ras->ras_window_pages = ras_align(ras, window_pages);
1102         }
1103 }
1104
1105 /**
1106  * Seek within 8 pages are considered as sequential read for now.
1107  */
1108 static inline bool is_loose_seq_read(struct ll_readahead_state *ras, loff_t pos)
1109 {
1110         return pos_in_window(pos, ras->ras_last_read_end_bytes,
1111                              8UL << PAGE_SHIFT, 8UL << PAGE_SHIFT);
1112 }
1113
1114 static inline bool is_loose_mmap_read(struct ll_sb_info *sbi,
1115                                       struct ll_readahead_state *ras,
1116                                       unsigned long pos)
1117 {
1118         unsigned long range_pages = sbi->ll_ra_info.ra_range_pages;
1119
1120         return pos_in_window(pos, ras->ras_last_read_end_bytes,
1121                              range_pages << PAGE_SHIFT,
1122                              range_pages << PAGE_SHIFT);
1123 }
1124
1125 /**
1126  * We have observed slow mmap read performances for some
1127  * applications. The problem is if access pattern is neither
1128  * sequential nor stride, but could be still adjacent in a
1129  * small range and then seek a random position.
1130  *
1131  * So the pattern could be something like this:
1132  *
1133  * [1M data] [hole] [0.5M data] [hole] [0.7M data] [1M data]
1134  *
1135  *
1136  * Every time an application reads mmap data, it may not only
1137  * read a single 4KB page, but aslo a cluster of nearby pages in
1138  * a range(e.g. 1MB) of the first page after a cache miss.
1139  *
1140  * The readahead engine is modified to track the range size of
1141  * a cluster of mmap reads, so that after a seek and/or cache miss,
1142  * the range size is used to efficiently prefetch multiple pages
1143  * in a single RPC rather than many small RPCs.
1144  */
1145 static void ras_detect_cluster_range(struct ll_readahead_state *ras,
1146                                      struct ll_sb_info *sbi,
1147                                      unsigned long pos, unsigned long count)
1148 {
1149         pgoff_t last_pages, pages;
1150         pgoff_t end_idx = (pos + count - 1) >> PAGE_SHIFT;
1151
1152         last_pages = ras->ras_range_max_end_idx -
1153                         ras->ras_range_min_start_idx + 1;
1154         /* First time come here */
1155         if (!ras->ras_range_max_end_idx)
1156                 goto out;
1157
1158         /* Random or Stride read */
1159         if (!is_loose_mmap_read(sbi, ras, pos))
1160                 goto out;
1161
1162         ras->ras_range_requests++;
1163         if (ras->ras_range_max_end_idx < end_idx)
1164                 ras->ras_range_max_end_idx = end_idx;
1165
1166         if (ras->ras_range_min_start_idx > (pos >> PAGE_SHIFT))
1167                 ras->ras_range_min_start_idx = pos >> PAGE_SHIFT;
1168
1169         /* Out of range, consider it as random or stride */
1170         pages = ras->ras_range_max_end_idx -
1171                         ras->ras_range_min_start_idx + 1;
1172         if (pages <= sbi->ll_ra_info.ra_range_pages)
1173                 return;
1174 out:
1175         ras->ras_last_range_pages = last_pages;
1176         ras->ras_range_requests = 0;
1177         ras->ras_range_min_start_idx = pos >> PAGE_SHIFT;
1178         ras->ras_range_max_end_idx = end_idx;
1179 }
1180
1181 static void ras_detect_read_pattern(struct ll_readahead_state *ras,
1182                                     struct ll_sb_info *sbi,
1183                                     loff_t pos, size_t count, bool mmap)
1184 {
1185         bool stride_detect = false;
1186         pgoff_t index = pos >> PAGE_SHIFT;
1187
1188         /*
1189          * Reset the read-ahead window in two cases. First when the app seeks
1190          * or reads to some other part of the file. Secondly if we get a
1191          * read-ahead miss that we think we've previously issued. This can
1192          * be a symptom of there being so many read-ahead pages that the VM
1193          * is reclaiming it before we get to it.
1194          */
1195         if (!is_loose_seq_read(ras, pos)) {
1196                 /* Check whether it is in stride I/O mode */
1197                 if (!read_in_stride_window(ras, pos, count)) {
1198                         if (ras->ras_consecutive_stride_requests == 0)
1199                                 ras_init_stride_detector(ras, pos, count);
1200                         else
1201                                 ras_stride_reset(ras);
1202                         ras->ras_consecutive_bytes = 0;
1203                         ras_reset(ras, index);
1204                 } else {
1205                         ras->ras_consecutive_bytes = 0;
1206                         ras->ras_consecutive_requests = 0;
1207                         if (++ras->ras_consecutive_stride_requests > 1)
1208                                 stride_detect = true;
1209                         RAS_CDEBUG(ras);
1210                 }
1211                 ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
1212         } else if (stride_io_mode(ras)) {
1213                 /*
1214                  * If this is contiguous read but in stride I/O mode
1215                  * currently, check whether stride step still is valid,
1216                  * if invalid, it will reset the stride ra window to
1217                  * be zero.
1218                  */
1219                 if (!read_in_stride_window(ras, pos, count)) {
1220                         ras_stride_reset(ras);
1221                         ras->ras_window_pages = 0;
1222                         ras->ras_next_readahead_idx = index;
1223                 }
1224         }
1225
1226         ras->ras_consecutive_bytes += count;
1227         if (mmap) {
1228                 pgoff_t idx = ras->ras_consecutive_bytes >> PAGE_SHIFT;
1229                 unsigned long ra_range_pages =
1230                                 max_t(unsigned long, RA_MIN_MMAP_RANGE_PAGES,
1231                                       sbi->ll_ra_info.ra_range_pages);
1232
1233                 if ((idx >= ra_range_pages &&
1234                      idx % ra_range_pages == 0) || stride_detect)
1235                         ras->ras_need_increase_window = true;
1236         } else if ((ras->ras_consecutive_requests > 1 || stride_detect)) {
1237                 ras->ras_need_increase_window = true;
1238         }
1239
1240         ras->ras_last_read_end_bytes = pos + count - 1;
1241 }
1242
1243 void ll_ras_enter(struct file *f, loff_t pos, size_t count)
1244 {
1245         struct ll_file_data *fd = f->private_data;
1246         struct ll_readahead_state *ras = &fd->fd_ras;
1247         struct inode *inode = file_inode(f);
1248         unsigned long index = pos >> PAGE_SHIFT;
1249         struct ll_sb_info *sbi = ll_i2sbi(inode);
1250
1251         spin_lock(&ras->ras_lock);
1252         ras->ras_requests++;
1253         ras->ras_consecutive_requests++;
1254         ras->ras_need_increase_window = false;
1255         ras->ras_no_miss_check = false;
1256         /*
1257          * On the second access to a file smaller than the tunable
1258          * ra_max_read_ahead_whole_pages trigger RA on all pages in the
1259          * file up to ra_max_pages_per_file.  This is simply a best effort
1260          * and only occurs once per open file. Normal RA behavior is reverted
1261          * to for subsequent IO.
1262          */
1263         if (ras->ras_requests >= 2) {
1264                 __u64 kms_pages;
1265                 struct ll_ra_info *ra = &sbi->ll_ra_info;
1266
1267                 kms_pages = (i_size_read(inode) + PAGE_SIZE - 1) >>
1268                             PAGE_SHIFT;
1269
1270                 CDEBUG(D_READA, "kmsp %llu mwp %lu mp %lu\n", kms_pages,
1271                        ra->ra_max_read_ahead_whole_pages,
1272                        ra->ra_max_pages_per_file);
1273
1274                 if (kms_pages &&
1275                     kms_pages <= ra->ra_max_read_ahead_whole_pages) {
1276                         ras->ras_window_start_idx = 0;
1277                         ras->ras_next_readahead_idx = index + 1;
1278                         ras->ras_window_pages = min(ra->ra_max_pages_per_file,
1279                                             ra->ra_max_read_ahead_whole_pages);
1280                         ras->ras_no_miss_check = true;
1281                         GOTO(out_unlock, 0);
1282                 }
1283         }
1284         ras_detect_read_pattern(ras, sbi, pos, count, false);
1285 out_unlock:
1286         spin_unlock(&ras->ras_lock);
1287 }
1288
1289 static bool index_in_stride_window(struct ll_readahead_state *ras,
1290                                    pgoff_t index)
1291 {
1292         loff_t pos = (loff_t)index << PAGE_SHIFT;
1293
1294         if (ras->ras_stride_length == 0 || ras->ras_stride_bytes == 0 ||
1295             ras->ras_stride_bytes == ras->ras_stride_length)
1296                 return false;
1297
1298         if (pos >= ras->ras_stride_offset) {
1299                 u64 offset;
1300
1301                 div64_u64_rem(pos - ras->ras_stride_offset,
1302                               ras->ras_stride_length, &offset);
1303                 if (offset < ras->ras_stride_bytes ||
1304                     ras->ras_stride_length - offset < PAGE_SIZE)
1305                         return true;
1306         } else if (ras->ras_stride_offset - pos < PAGE_SIZE) {
1307                 return true;
1308         }
1309
1310         return false;
1311 }
1312
1313 /*
1314  * ll_ras_enter() is used to detect read pattern according to pos and count.
1315  *
1316  * ras_update() is used to detect cache miss and
1317  * reset window or increase window accordingly
1318  */
1319 static void ras_update(struct ll_sb_info *sbi, struct inode *inode,
1320                        struct ll_readahead_state *ras, pgoff_t index,
1321                        enum ras_update_flags flags, struct cl_io *io)
1322 {
1323         struct ll_ra_info *ra = &sbi->ll_ra_info;
1324         bool hit = flags & LL_RAS_HIT;
1325
1326         ENTRY;
1327         spin_lock(&ras->ras_lock);
1328
1329         if (!hit)
1330                 CDEBUG(D_READA|D_IOTRACE, DFID " pages at %lu miss.\n",
1331                        PFID(ll_inode2fid(inode)), index);
1332         ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
1333
1334         /*
1335          * The readahead window has been expanded to cover whole
1336          * file size, we don't care whether ra miss happen or not.
1337          * Because we will read whole file to page cache even if
1338          * some pages missed.
1339          */
1340         if (ras->ras_no_miss_check)
1341                 GOTO(out_unlock, 0);
1342
1343         if (io && io->ci_rand_read)
1344                 GOTO(out_unlock, 0);
1345
1346         if (io && io->ci_seq_read) {
1347                 if (!hit) {
1348                         /* to avoid many small read RPC here */
1349                         ras->ras_window_pages = sbi->ll_ra_info.ra_range_pages;
1350                         ll_ra_stats_inc_sbi(sbi, RA_STAT_MMAP_RANGE_READ);
1351                 }
1352                 goto skip;
1353         }
1354
1355         if (flags & LL_RAS_MMAP) {
1356                 unsigned long ra_pages;
1357
1358                 ras_detect_cluster_range(ras, sbi, index << PAGE_SHIFT,
1359                                          PAGE_SIZE);
1360                 ras_detect_read_pattern(ras, sbi, (loff_t)index << PAGE_SHIFT,
1361                                         PAGE_SIZE, true);
1362
1363                 /* we did not detect anything but we could prefetch */
1364                 if (!ras->ras_need_increase_window &&
1365                     ras->ras_window_pages <= sbi->ll_ra_info.ra_range_pages &&
1366                     ras->ras_range_requests >= 2) {
1367                         if (!hit) {
1368                                 ra_pages = max_t(unsigned long,
1369                                         RA_MIN_MMAP_RANGE_PAGES,
1370                                         ras->ras_last_range_pages);
1371                                 if (index < ra_pages / 2)
1372                                         index = 0;
1373                                 else
1374                                         index -= ra_pages / 2;
1375                                 ras->ras_window_pages = ra_pages;
1376                                 ll_ra_stats_inc_sbi(sbi,
1377                                         RA_STAT_MMAP_RANGE_READ);
1378                         } else {
1379                                 ras->ras_window_pages = 0;
1380                         }
1381                         goto skip;
1382                 }
1383         }
1384
1385         if (!hit && ras->ras_window_pages &&
1386             index < ras->ras_next_readahead_idx &&
1387             pos_in_window(index, ras->ras_window_start_idx, 0,
1388                           ras->ras_window_pages)) {
1389                 ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
1390                 ras->ras_need_increase_window = false;
1391
1392                 if (index_in_stride_window(ras, index) &&
1393                     stride_io_mode(ras)) {
1394                         /*
1395                          * if (index != ras->ras_last_readpage + 1)
1396                          *      ras->ras_consecutive_pages = 0;
1397                          */
1398                         ras_reset(ras, index);
1399
1400                         /*
1401                          * If stride-RA hit cache miss, the stride
1402                          * detector will not be reset to avoid the
1403                          * overhead of redetecting read-ahead mode,
1404                          * but on the condition that the stride window
1405                          * is still intersect with normal sequential
1406                          * read-ahead window.
1407                          */
1408                         if (ras->ras_window_start_idx < ras->ras_stride_offset)
1409                                 ras_stride_reset(ras);
1410                         RAS_CDEBUG(ras);
1411                 } else {
1412                         /*
1413                          * Reset both stride window and normal RA
1414                          * window.
1415                          */
1416                         ras_reset(ras, index);
1417                         /* ras->ras_consecutive_pages++; */
1418                         ras->ras_consecutive_bytes = 0;
1419                         ras_stride_reset(ras);
1420                         GOTO(out_unlock, 0);
1421                 }
1422         }
1423
1424 skip:
1425         ras_set_start(ras, index);
1426
1427         if (stride_io_mode(ras)) {
1428                 /* Since stride readahead is sentivite to the offset
1429                  * of read-ahead, so we use original offset here,
1430                  * instead of ras_window_start_idx, which is RPC aligned.
1431                  */
1432                 ras->ras_next_readahead_idx = max(index + 1,
1433                                                   ras->ras_next_readahead_idx);
1434                 ras->ras_window_start_idx =
1435                                 max_t(pgoff_t, ras->ras_window_start_idx,
1436                                       ras->ras_stride_offset >> PAGE_SHIFT);
1437         } else {
1438                 if (ras->ras_next_readahead_idx < ras->ras_window_start_idx)
1439                         ras->ras_next_readahead_idx = ras->ras_window_start_idx;
1440                 if (!hit)
1441                         ras->ras_next_readahead_idx = index + 1;
1442         }
1443
1444         if (ras->ras_need_increase_window) {
1445                 ras_increase_window(inode, ras, ra);
1446                 ras->ras_need_increase_window = false;
1447         }
1448
1449         EXIT;
1450 out_unlock:
1451         spin_unlock(&ras->ras_lock);
1452 }
1453
1454 int ll_writepage(struct page *vmpage, struct writeback_control *wbc)
1455 {
1456         struct inode           *inode = vmpage->mapping->host;
1457         struct ll_inode_info   *lli   = ll_i2info(inode);
1458         struct lu_env          *env;
1459         struct cl_io           *io;
1460         struct cl_page         *page;
1461         struct cl_object       *clob;
1462         bool redirtied = false;
1463         bool unlocked = false;
1464         int result;
1465         __u16 refcheck;
1466         ENTRY;
1467
1468         LASSERT(PageLocked(vmpage));
1469         LASSERT(!PageWriteback(vmpage));
1470
1471         LASSERT(ll_i2dtexp(inode) != NULL);
1472
1473         env = cl_env_get(&refcheck);
1474         if (IS_ERR(env))
1475                 GOTO(out, result = PTR_ERR(env));
1476
1477         clob  = ll_i2info(inode)->lli_clob;
1478         LASSERT(clob != NULL);
1479
1480         io = vvp_env_thread_io(env);
1481         io->ci_obj = clob;
1482         io->ci_ignore_layout = 1;
1483         result = cl_io_init(env, io, CIT_MISC, clob);
1484         if (result == 0) {
1485                 page = cl_page_find(env, clob, vmpage->index,
1486                                     vmpage, CPT_CACHEABLE);
1487                 if (!IS_ERR(page)) {
1488                         lu_ref_add(&page->cp_reference, "writepage",
1489                                    current);
1490                         cl_page_assume(env, io, page);
1491                         result = cl_page_flush(env, io, page);
1492                         if (result != 0) {
1493                                 /*
1494                                  * Re-dirty page on error so it retries write,
1495                                  * but not in case when IO has actually
1496                                  * occurred and completed with an error.
1497                                  */
1498                                 if (!PageError(vmpage)) {
1499                                         redirty_page_for_writepage(wbc, vmpage);
1500                                         result = 0;
1501                                         redirtied = true;
1502                                 }
1503                         }
1504                         cl_page_disown(env, io, page);
1505                         unlocked = true;
1506                         lu_ref_del(&page->cp_reference,
1507                                    "writepage", current);
1508                         cl_page_put(env, page);
1509                 } else {
1510                         result = PTR_ERR(page);
1511                 }
1512         }
1513         cl_io_fini(env, io);
1514
1515         if (redirtied && wbc->sync_mode == WB_SYNC_ALL) {
1516                 loff_t offset = vmpage->index << PAGE_SHIFT;
1517
1518                 /* Flush page failed because the extent is being written out.
1519                  * Wait for the write of extent to be finished to avoid
1520                  * breaking kernel which assumes ->writepage should mark
1521                  * PageWriteback or clean the page. */
1522                 result = cl_sync_file_range(inode, offset,
1523                                             offset + PAGE_SIZE - 1,
1524                                             CL_FSYNC_LOCAL, 1);
1525                 if (result > 0) {
1526                         /* actually we may have written more than one page.
1527                          * decreasing this page because the caller will count
1528                          * it. */
1529                         wbc->nr_to_write -= result - 1;
1530                         result = 0;
1531                 }
1532         }
1533
1534         cl_env_put(env, &refcheck);
1535         GOTO(out, result);
1536
1537 out:
1538         if (result < 0) {
1539                 if (!lli->lli_async_rc)
1540                         lli->lli_async_rc = result;
1541                 SetPageError(vmpage);
1542                 if (!unlocked)
1543                         unlock_page(vmpage);
1544         }
1545         return result;
1546 }
1547
1548 int ll_writepages(struct address_space *mapping, struct writeback_control *wbc)
1549 {
1550         struct inode *inode = mapping->host;
1551         loff_t start;
1552         loff_t end;
1553         enum cl_fsync_mode mode;
1554         int range_whole = 0;
1555         int result;
1556         ENTRY;
1557
1558         if (wbc->range_cyclic) {
1559                 start = (loff_t)mapping->writeback_index << PAGE_SHIFT;
1560                 end = OBD_OBJECT_EOF;
1561         } else {
1562                 start = wbc->range_start;
1563                 end = wbc->range_end;
1564                 if (end == LLONG_MAX) {
1565                         end = OBD_OBJECT_EOF;
1566                         range_whole = start == 0;
1567                 }
1568         }
1569
1570         mode = CL_FSYNC_NONE;
1571         if (wbc->sync_mode == WB_SYNC_ALL)
1572                 mode = CL_FSYNC_LOCAL;
1573
1574         if (ll_i2info(inode)->lli_clob == NULL)
1575                 RETURN(0);
1576
1577         /* for directio, it would call writepages() to evict cached pages
1578          * inside the IO context of write, which will cause deadlock at
1579          * layout_conf since it waits for active IOs to complete. */
1580         result = cl_sync_file_range(inode, start, end, mode, 1);
1581         if (result > 0) {
1582                 wbc->nr_to_write -= result;
1583                 result = 0;
1584          }
1585
1586         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) {
1587                 if (end == OBD_OBJECT_EOF)
1588                         mapping->writeback_index = 0;
1589                 else
1590                         mapping->writeback_index = (end >> PAGE_SHIFT) + 1;
1591         }
1592         RETURN(result);
1593 }
1594
1595 struct ll_cl_context *ll_cl_find(struct inode *inode)
1596 {
1597         struct ll_inode_info *lli = ll_i2info(inode);
1598         struct ll_cl_context *lcc;
1599         struct ll_cl_context *found = NULL;
1600
1601         read_lock(&lli->lli_lock);
1602         list_for_each_entry(lcc, &lli->lli_lccs, lcc_list) {
1603                 if (lcc->lcc_cookie == current) {
1604                         found = lcc;
1605                         break;
1606                 }
1607         }
1608         read_unlock(&lli->lli_lock);
1609
1610         return found;
1611 }
1612
1613 void ll_cl_add(struct inode *inode, const struct lu_env *env, struct cl_io *io,
1614                enum lcc_type type)
1615 {
1616         struct ll_inode_info *lli = ll_i2info(inode);
1617         struct ll_cl_context *lcc = &ll_env_info(env)->lti_io_ctx;
1618
1619         memset(lcc, 0, sizeof(*lcc));
1620         INIT_LIST_HEAD(&lcc->lcc_list);
1621         lcc->lcc_cookie = current;
1622         lcc->lcc_env = env;
1623         lcc->lcc_io = io;
1624         lcc->lcc_type = type;
1625
1626         write_lock(&lli->lli_lock);
1627         list_add(&lcc->lcc_list, &lli->lli_lccs);
1628         write_unlock(&lli->lli_lock);
1629 }
1630
1631 void ll_cl_remove(struct inode *inode, const struct lu_env *env)
1632 {
1633         struct ll_inode_info *lli = ll_i2info(inode);
1634         struct ll_cl_context *lcc = &ll_env_info(env)->lti_io_ctx;
1635
1636         write_lock(&lli->lli_lock);
1637         list_del_init(&lcc->lcc_list);
1638         write_unlock(&lli->lli_lock);
1639 }
1640
1641 int ll_io_read_page(const struct lu_env *env, struct cl_io *io,
1642                            struct cl_page *page, struct file *file)
1643 {
1644         struct inode              *inode  = vvp_object_inode(page->cp_obj);
1645         struct ll_sb_info         *sbi    = ll_i2sbi(inode);
1646         struct ll_file_data       *fd     = NULL;
1647         struct ll_readahead_state *ras    = NULL;
1648         struct cl_2queue          *queue  = &io->ci_queue;
1649         struct cl_sync_io         *anchor = NULL;
1650         int                        rc = 0, rc2 = 0;
1651         bool                       uptodate;
1652         struct vvp_io *vio = vvp_env_io(env);
1653         bool mmap = !vio->vui_ra_valid;
1654         pgoff_t ra_start_index = 0;
1655         pgoff_t io_start_index;
1656         pgoff_t io_end_index;
1657         bool unlockpage = true;
1658         ENTRY;
1659
1660         if (file) {
1661                 fd = file->private_data;
1662                 ras = &fd->fd_ras;
1663         }
1664
1665         /* PagePrivate2 is set in ll_io_zero_page() to tell us the vmpage
1666          * must not be unlocked after processing.
1667          */
1668         if (page->cp_vmpage && PagePrivate2(page->cp_vmpage))
1669                 unlockpage = false;
1670
1671         uptodate = page->cp_defer_uptodate;
1672
1673         if (ll_readahead_enabled(sbi) && !page->cp_ra_updated && ras) {
1674                 enum ras_update_flags flags = 0;
1675
1676                 if (uptodate)
1677                         flags |= LL_RAS_HIT;
1678                 if (mmap)
1679                         flags |= LL_RAS_MMAP;
1680                 ras_update(sbi, inode, ras, cl_page_index(page), flags, io);
1681         }
1682
1683         cl_2queue_init(queue);
1684         if (uptodate) {
1685                 page->cp_ra_used = 1;
1686                 SetPageUptodate(page->cp_vmpage);
1687                 cl_page_disown(env, io, page);
1688         } else {
1689                 anchor = &vvp_env_info(env)->vti_anchor;
1690                 cl_sync_io_init(anchor, 1);
1691                 page->cp_sync_io = anchor;
1692
1693                 cl_page_list_add(&queue->c2_qin, page, true);
1694         }
1695
1696         /* mmap does not set the ci_rw fields */
1697         if (!mmap) {
1698                 io_start_index = io->u.ci_rw.crw_pos >> PAGE_SHIFT;
1699                 io_end_index = (io->u.ci_rw.crw_pos +
1700                                 io->u.ci_rw.crw_count - 1) >> PAGE_SHIFT;
1701         } else {
1702                 io_start_index = cl_page_index(page);
1703                 io_end_index = cl_page_index(page);
1704         }
1705
1706         if (ll_readahead_enabled(sbi) && ras && !io->ci_rand_read) {
1707                 pgoff_t skip_index = 0;
1708
1709                 if (ras->ras_next_readahead_idx < cl_page_index(page))
1710                         skip_index = cl_page_index(page);
1711                 rc2 = ll_readahead(env, io, &queue->c2_qin, ras,
1712                                    uptodate, file, skip_index,
1713                                    &ra_start_index);
1714                 /* to keep iotrace clean, we only print here if we actually
1715                  * read pages
1716                  */
1717                 CDEBUG(D_READA | (rc2 ? D_IOTRACE : 0),
1718                        DFID " %d pages read ahead at %lu, triggered by user read at %lu, stride offset %lld, stride length %lld, stride bytes %lld\n",
1719                        PFID(ll_inode2fid(inode)), rc2, ra_start_index,
1720                        cl_page_index(page), ras->ras_stride_offset,
1721                        ras->ras_stride_length, ras->ras_stride_bytes);
1722
1723         } else if (cl_page_index(page) == io_start_index &&
1724                    io_end_index - io_start_index > 0) {
1725                 rc2 = ll_readpages(env, io, &queue->c2_qin, io_start_index + 1,
1726                                    io_end_index);
1727                 CDEBUG(D_READA, DFID " %d pages read at %lu\n",
1728                        PFID(ll_inode2fid(inode)), rc2, cl_page_index(page));
1729         }
1730
1731         if (queue->c2_qin.pl_nr > 0) {
1732                 int count = queue->c2_qin.pl_nr;
1733                 rc = cl_io_submit_rw(env, io, CRT_READ, queue);
1734                 if (rc == 0)
1735                         task_io_account_read(PAGE_SIZE * count);
1736         }
1737
1738
1739         if (anchor != NULL && !cl_page_is_owned(page, io)) { /* have sent */
1740                 rc = cl_sync_io_wait(env, anchor, 0);
1741
1742                 cl_page_assume(env, io, page);
1743                 cl_page_list_del(env, &queue->c2_qout, page);
1744
1745                 if (!PageUptodate(cl_page_vmpage(page))) {
1746                         /* Failed to read a mirror, discard this page so that
1747                          * new page can be created with new mirror.
1748                          *
1749                          * TODO: this is not needed after page reinit
1750                          * route is implemented */
1751                         cl_page_discard(env, io, page);
1752                 }
1753                 if (unlockpage)
1754                         cl_page_disown(env, io, page);
1755         }
1756
1757         /* TODO: discard all pages until page reinit route is implemented */
1758         cl_page_list_discard(env, io, &queue->c2_qin);
1759
1760         /* Unlock unsent read pages in case of error. */
1761         cl_page_list_disown(env, &queue->c2_qin);
1762
1763         cl_2queue_fini(env, queue);
1764
1765         RETURN(rc);
1766 }
1767
1768 /*
1769  * Possible return value:
1770  * 0 no async readahead triggered and fast read could not be used.
1771  * 1 no async readahead, but fast read could be used.
1772  * 2 async readahead triggered and fast read could be used too.
1773  * < 0 on error.
1774  */
1775 static int kickoff_async_readahead(struct file *file, unsigned long pages)
1776 {
1777         struct ll_readahead_work *lrw;
1778         struct inode *inode = file_inode(file);
1779         struct ll_sb_info *sbi = ll_i2sbi(inode);
1780         struct ll_file_data *fd = file->private_data;
1781         struct ll_readahead_state *ras = &fd->fd_ras;
1782         struct ll_ra_info *ra = &sbi->ll_ra_info;
1783         unsigned long throttle;
1784         pgoff_t start_idx = ras_align(ras, ras->ras_next_readahead_idx);
1785         pgoff_t end_idx = start_idx + pages - 1;
1786
1787         /**
1788          * In case we have a limited max_cached_mb, readahead
1789          * should be stopped if it have run out of all LRU slots.
1790          */
1791         if (atomic_read(&ra->ra_cur_pages) >= sbi->ll_cache->ccc_lru_max) {
1792                 ll_ra_stats_inc(inode, RA_STAT_MAX_IN_FLIGHT);
1793                 return 0;
1794         }
1795
1796         throttle = min(ra->ra_async_pages_per_file_threshold,
1797                        ra->ra_max_pages_per_file);
1798         /*
1799          * If this is strided i/o or the window is smaller than the
1800          * throttle limit, we do not do async readahead. Otherwise,
1801          * we do async readahead, allowing the user thread to do fast i/o.
1802          */
1803         if (stride_io_mode(ras) || !throttle ||
1804             ras->ras_window_pages < throttle ||
1805             atomic_read(&ra->ra_async_inflight) > ra->ra_async_max_active)
1806                 return 0;
1807
1808         if ((atomic_read(&ra->ra_cur_pages) + pages) > ra->ra_max_pages)
1809                 return 0;
1810
1811         if (ras->ras_async_last_readpage_idx == start_idx)
1812                 return 1;
1813
1814         /* ll_readahead_work_free() free it */
1815         OBD_ALLOC_PTR(lrw);
1816         if (lrw) {
1817                 atomic_inc(&sbi->ll_ra_info.ra_async_inflight);
1818                 lrw->lrw_file = get_file(file);
1819                 lrw->lrw_start_idx = start_idx;
1820                 lrw->lrw_end_idx = end_idx;
1821                 lrw->lrw_user_pid = current->pid;
1822                 spin_lock(&ras->ras_lock);
1823                 ras->ras_next_readahead_idx = end_idx + 1;
1824                 ras->ras_async_last_readpage_idx = start_idx;
1825                 spin_unlock(&ras->ras_lock);
1826                 memcpy(lrw->lrw_jobid, ll_i2info(inode)->lli_jobid,
1827                        sizeof(lrw->lrw_jobid));
1828                 ll_readahead_work_add(inode, lrw);
1829         } else {
1830                 return -ENOMEM;
1831         }
1832
1833         return 2;
1834 }
1835
1836 /*
1837  * Check if we can issue a readahead RPC, if that is
1838  * the case, we can't do fast IO because we will need
1839  * a cl_io to issue the RPC.
1840  */
1841 static bool ll_use_fast_io(struct file *file,
1842                            struct ll_readahead_state *ras, pgoff_t index)
1843 {
1844         unsigned long fast_read_pages =
1845                 max(RA_REMAIN_WINDOW_MIN, ras->ras_rpc_pages);
1846         loff_t skip_pages;
1847         loff_t stride_bytes = ras->ras_stride_bytes;
1848
1849         if (stride_io_mode(ras) && stride_bytes) {
1850                 skip_pages = (ras->ras_stride_length +
1851                         ras->ras_stride_bytes - 1) / stride_bytes;
1852                 skip_pages *= fast_read_pages;
1853         } else {
1854                 skip_pages = fast_read_pages;
1855         }
1856
1857         if (ras->ras_window_start_idx + ras->ras_window_pages <
1858             ras->ras_next_readahead_idx + skip_pages ||
1859             kickoff_async_readahead(file, fast_read_pages) > 0)
1860                 return true;
1861
1862         return false;
1863 }
1864
1865 int ll_readpage(struct file *file, struct page *vmpage)
1866 {
1867         struct inode *inode = file_inode(file);
1868         struct cl_object *clob = ll_i2info(inode)->lli_clob;
1869         struct ll_sb_info *sbi = ll_i2sbi(inode);
1870         const struct lu_env *env = NULL;
1871         struct cl_read_ahead ra = { 0 };
1872         struct ll_cl_context *lcc;
1873         struct cl_io *io = NULL;
1874         struct cl_page *page;
1875         int result;
1876         ENTRY;
1877
1878         if (CFS_FAIL_PRECHECK(OBD_FAIL_LLITE_READPAGE_PAUSE)) {
1879                 unlock_page(vmpage);
1880                 CFS_FAIL_TIMEOUT(OBD_FAIL_LLITE_READPAGE_PAUSE, cfs_fail_val);
1881                 lock_page(vmpage);
1882         }
1883
1884         /*
1885          * The @vmpage got truncated.
1886          * This is a kernel bug introduced since kernel 5.12:
1887          * comment: cbd59c48ae2bcadc4a7599c29cf32fd3f9b78251
1888          * ("mm/filemap: use head pages in generic_file_buffered_read")
1889          *
1890          * The page end offset calculation in filemap_get_read_batch() was off
1891          * by one.  When a read is submitted with end offset 1048575, then it
1892          * calculates the end page for read of 256 where it should be 255. This
1893          * results in the readpage() for the page with index 256 is over stripe
1894          * boundary and may not covered by a DLM extent lock.
1895          *
1896          * This happens in a corner race case: filemap_get_read_batch() adds
1897          * the page with index 256 for read which is not in the current read
1898          * I/O context, and this page is being invalidated and will be removed
1899          * from page cache due to the lock protected it being revoken. This
1900          * results in this page in the read path not covered by any DLM lock.
1901          *
1902          * The solution is simple. Check whether the page was truncated in
1903          * ->readpage(). If so, just return AOP_TRUNCATED_PAGE to the upper
1904          * caller. Then the kernel will retry to batch pages, and it will not
1905          * add the truncated page into batches as it was removed from page
1906          * cache of the file.
1907          */
1908         if (vmpage->mapping != inode->i_mapping) {
1909                 unlock_page(vmpage);
1910                 RETURN(AOP_TRUNCATED_PAGE);
1911         }
1912
1913         lcc = ll_cl_find(inode);
1914         if (lcc != NULL) {
1915                 env = lcc->lcc_env;
1916                 io  = lcc->lcc_io;
1917         }
1918
1919         if (io == NULL) { /* fast read */
1920                 struct inode *inode = file_inode(file);
1921                 struct ll_file_data *fd = file->private_data;
1922                 struct ll_readahead_state *ras = &fd->fd_ras;
1923                 struct lu_env  *local_env = NULL;
1924
1925                 CDEBUG(D_VFSTRACE, "fast read pgno: %ld\n", vmpage->index);
1926
1927                 result = -ENODATA;
1928
1929                 /* TODO: need to verify the layout version to make sure
1930                  * the page is not invalid due to layout change. */
1931                 page = cl_vmpage_page(vmpage, clob);
1932                 if (page == NULL) {
1933                         unlock_page(vmpage);
1934                         ll_ra_stats_inc_sbi(sbi, RA_STAT_FAILED_FAST_READ);
1935                         RETURN(result);
1936                 }
1937
1938                 if (page->cp_defer_uptodate) {
1939                         enum ras_update_flags flags = LL_RAS_HIT;
1940
1941                         if (lcc && lcc->lcc_type == LCC_MMAP)
1942                                 flags |= LL_RAS_MMAP;
1943
1944                         /* For fast read, it updates read ahead state only
1945                          * if the page is hit in cache because non cache page
1946                          * case will be handled by slow read later. */
1947                         ras_update(sbi, inode, ras, cl_page_index(page), flags, io);
1948                         /* avoid duplicate ras_update() call */
1949                         page->cp_ra_updated = 1;
1950
1951                         if (ll_use_fast_io(file, ras, cl_page_index(page)))
1952                                 result = 0;
1953                 }
1954
1955                 if (!env) {
1956                         local_env = cl_env_percpu_get();
1957                         env = local_env;
1958                 }
1959
1960                 /* export the page and skip io stack */
1961                 if (result == 0) {
1962                         page->cp_ra_used = 1;
1963                         SetPageUptodate(vmpage);
1964                 } else {
1965                         ll_ra_stats_inc_sbi(sbi, RA_STAT_FAILED_FAST_READ);
1966                 }
1967
1968                 /* release page refcount before unlocking the page to ensure
1969                  * the object won't be destroyed in the calling path of
1970                  * cl_page_put(). Please see comment in ll_releasepage(). */
1971                 cl_page_put(env, page);
1972                 unlock_page(vmpage);
1973                 if (local_env)
1974                         cl_env_percpu_put(local_env);
1975
1976                 RETURN(result);
1977         }
1978
1979         if (lcc && lcc->lcc_type != LCC_MMAP) {
1980                 CDEBUG(D_VFSTRACE, "pgno:%ld, beyond read end_index:%ld\n",
1981                        vmpage->index, lcc->lcc_end_index);
1982
1983                 /*
1984                  * This handles a kernel bug introduced in kernel 5.12:
1985                  * comment: cbd59c48ae2bcadc4a7599c29cf32fd3f9b78251
1986                  * ("mm/filemap: use head pages in generic_file_buffered_read")
1987                  *
1988                  * See above in this function for a full description of the
1989                  * bug.  Briefly, the kernel will try to read 1 more page than
1990                  * was actually requested *if that page is already in cache*.
1991                  *
1992                  * Because this page is beyond the boundary of the requested
1993                  * read, Lustre does not lock it as part of the read.  This
1994                  * means we must check if there is a valid dlmlock on this
1995                  * this page and reference it before we attempt to read in the
1996                  * page.  If there is not a valid dlmlock, then we are racing
1997                  * with dlmlock cancellation and the page is being removed
1998                  * from the cache.
1999                  *
2000                  * That means we should return AOP_TRUNCATED_PAGE, which will
2001                  * cause the kernel to retry the read, which should allow the
2002                  * page to be removed from cache as the lock is cancelled.
2003                  *
2004                  * This should never occur except in kernels with the bug
2005                  * mentioned above.
2006                  */
2007                 if (vmpage->index >= lcc->lcc_end_index) {
2008                         result = cl_io_read_ahead(env, io, vmpage->index, &ra);
2009                         if (result < 0 || vmpage->index > ra.cra_end_idx) {
2010                                 cl_read_ahead_release(env, &ra);
2011                                 unlock_page(vmpage);
2012                                 RETURN(AOP_TRUNCATED_PAGE);
2013                         }
2014                 }
2015         }
2016
2017         /**
2018          * Direct read can fall back to buffered read, but DIO is done
2019          * with lockless i/o, and buffered requires LDLM locking, so in
2020          * this case we must restart without lockless.
2021          */
2022         if (file->f_flags & O_DIRECT &&
2023             lcc && lcc->lcc_type == LCC_RW &&
2024             !io->ci_dio_lock) {
2025                 unlock_page(vmpage);
2026                 io->ci_dio_lock = 1;
2027                 io->ci_need_restart = 1;
2028                 GOTO(out, result = -ENOLCK);
2029         }
2030
2031         LASSERT(io->ci_state == CIS_IO_GOING);
2032         page = cl_page_find(env, clob, vmpage->index, vmpage, CPT_CACHEABLE);
2033         if (!IS_ERR(page)) {
2034                 LASSERT(page->cp_type == CPT_CACHEABLE);
2035                 if (likely(!PageUptodate(vmpage))) {
2036                         cl_page_assume(env, io, page);
2037
2038                         result = ll_io_read_page(env, io, page, file);
2039                 } else {
2040                         /* Page from a non-object file. */
2041                         unlock_page(vmpage);
2042                         result = 0;
2043                 }
2044                 cl_page_put(env, page);
2045         } else {
2046                 unlock_page(vmpage);
2047                 result = PTR_ERR(page);
2048         }
2049
2050 out:
2051         if (ra.cra_release != NULL)
2052                 cl_read_ahead_release(env, &ra);
2053
2054         /* this delay gives time for the actual read of the page to finish and
2055          * unlock the page in vvp_page_completion_read before we return to our
2056          * caller and the caller tries to use the page, allowing us to test
2057          * races with the page being unlocked after readpage() but before it's
2058          * used by the caller
2059          */
2060         OBD_FAIL_TIMEOUT(OBD_FAIL_LLITE_READPAGE_PAUSE2, cfs_fail_val);
2061
2062         RETURN(result);
2063 }
2064
2065 #ifdef HAVE_AOPS_READ_FOLIO
2066 int ll_read_folio(struct file *file, struct folio *folio)
2067 {
2068         return ll_readpage(file, folio_page(folio, 0));
2069 }
2070 #endif