Whamcloud - gitweb
f2a7ca5bd2b3d4636f24e1b9cd13673d94c03d22
[fs/lustre-release.git] / libcfs / libcfs / hash.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2014, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * libcfs/libcfs/hash.c
37  *
38  * Implement a hash class for hash process in lustre system.
39  *
40  * Author: YuZhangyong <yzy@clusterfs.com>
41  *
42  * 2008-08-15: Brian Behlendorf <behlendorf1@llnl.gov>
43  * - Simplified API and improved documentation
44  * - Added per-hash feature flags:
45  *   * CFS_HASH_DEBUG additional validation
46  *   * CFS_HASH_REHASH dynamic rehashing
47  * - Added per-hash statistics
48  * - General performance enhancements
49  *
50  * 2009-07-31: Liang Zhen <zhen.liang@sun.com>
51  * - move all stuff to libcfs
52  * - don't allow cur_bits != max_bits without setting of CFS_HASH_REHASH
53  * - ignore hs_rwlock if without CFS_HASH_REHASH setting
54  * - buckets are allocated one by one(instead of contiguous memory),
55  *   to avoid unnecessary cacheline conflict
56  *
57  * 2010-03-01: Liang Zhen <zhen.liang@sun.com>
58  * - "bucket" is a group of hlist_head now, user can specify bucket size
59  *   by bkt_bits of cfs_hash_create(), all hlist_heads in a bucket share
60  *   one lock for reducing memory overhead.
61  *
62  * - support lockless hash, caller will take care of locks:
63  *   avoid lock overhead for hash tables that are already protected
64  *   by locking in the caller for another reason
65  *
66  * - support both spin_lock/rwlock for bucket:
67  *   overhead of spinlock contention is lower than read/write
68  *   contention of rwlock, so using spinlock to serialize operations on
69  *   bucket is more reasonable for those frequently changed hash tables
70  *
71  * - support one-single lock mode:
72  *   one lock to protect all hash operations to avoid overhead of
73  *   multiple locks if hash table is always small
74  *
75  * - removed a lot of unnecessary addref & decref on hash element:
76  *   addref & decref are atomic operations in many use-cases which
77  *   are expensive.
78  *
79  * - support non-blocking cfs_hash_add() and cfs_hash_findadd():
80  *   some lustre use-cases require these functions to be strictly
81  *   non-blocking, we need to schedule required rehash on a different
82  *   thread on those cases.
83  *
84  * - safer rehash on large hash table
85  *   In old implementation, rehash function will exclusively lock the
86  *   hash table and finish rehash in one batch, it's dangerous on SMP
87  *   system because rehash millions of elements could take long time.
88  *   New implemented rehash can release lock and relax CPU in middle
89  *   of rehash, it's safe for another thread to search/change on the
90  *   hash table even it's in rehasing.
91  *
92  * - support two different refcount modes
93  *   . hash table has refcount on element
94  *   . hash table doesn't change refcount on adding/removing element
95  *
96  * - support long name hash table (for param-tree)
97  *
98  * - fix a bug for cfs_hash_rehash_key:
99  *   in old implementation, cfs_hash_rehash_key could screw up the
100  *   hash-table because @key is overwritten without any protection.
101  *   Now we need user to define hs_keycpy for those rehash enabled
102  *   hash tables, cfs_hash_rehash_key will overwrite hash-key
103  *   inside lock by calling hs_keycpy.
104  *
105  * - better hash iteration:
106  *   Now we support both locked iteration & lockless iteration of hash
107  *   table. Also, user can break the iteration by return 1 in callback.
108  */
109 #include <linux/seq_file.h>
110
111 #include <libcfs/libcfs.h>
112
113 #if CFS_HASH_DEBUG_LEVEL >= CFS_HASH_DEBUG_1
114 static unsigned int warn_on_depth = 8;
115 module_param(warn_on_depth, uint, 0644);
116 MODULE_PARM_DESC(warn_on_depth, "warning when hash depth is high.");
117 #endif
118
119 struct cfs_wi_sched *cfs_sched_rehash;
120
121 static inline void
122 cfs_hash_nl_lock(union cfs_hash_lock *lock, int exclusive) {}
123
124 static inline void
125 cfs_hash_nl_unlock(union cfs_hash_lock *lock, int exclusive) {}
126
127 static inline void
128 cfs_hash_spin_lock(union cfs_hash_lock *lock, int exclusive)
129         __acquires(&lock->spin)
130 {
131         spin_lock(&lock->spin);
132 }
133
134 static inline void
135 cfs_hash_spin_unlock(union cfs_hash_lock *lock, int exclusive)
136         __releases(&lock->spin)
137 {
138         spin_unlock(&lock->spin);
139 }
140
141 static inline void
142 cfs_hash_rw_lock(union cfs_hash_lock *lock, int exclusive)
143         __acquires(&lock->rw)
144 {
145         if (!exclusive)
146                 read_lock(&lock->rw);
147         else
148                 write_lock(&lock->rw);
149 }
150
151 static inline void
152 cfs_hash_rw_unlock(union cfs_hash_lock *lock, int exclusive)
153         __releases(&lock->rw)
154 {
155         if (!exclusive)
156                 read_unlock(&lock->rw);
157         else
158                 write_unlock(&lock->rw);
159 }
160
161 /** No lock hash */
162 static struct cfs_hash_lock_ops cfs_hash_nl_lops = {
163         .hs_lock        = cfs_hash_nl_lock,
164         .hs_unlock      = cfs_hash_nl_unlock,
165         .hs_bkt_lock    = cfs_hash_nl_lock,
166         .hs_bkt_unlock  = cfs_hash_nl_unlock,
167 };
168
169 /** no bucket lock, one spinlock to protect everything */
170 static struct cfs_hash_lock_ops cfs_hash_nbl_lops = {
171         .hs_lock        = cfs_hash_spin_lock,
172         .hs_unlock      = cfs_hash_spin_unlock,
173         .hs_bkt_lock    = cfs_hash_nl_lock,
174         .hs_bkt_unlock  = cfs_hash_nl_unlock,
175 };
176
177 /** spin bucket lock, rehash is enabled */
178 static struct cfs_hash_lock_ops cfs_hash_bkt_spin_lops = {
179         .hs_lock        = cfs_hash_rw_lock,
180         .hs_unlock      = cfs_hash_rw_unlock,
181         .hs_bkt_lock    = cfs_hash_spin_lock,
182         .hs_bkt_unlock  = cfs_hash_spin_unlock,
183 };
184
185 /** rw bucket lock, rehash is enabled */
186 static struct cfs_hash_lock_ops cfs_hash_bkt_rw_lops = {
187         .hs_lock        = cfs_hash_rw_lock,
188         .hs_unlock      = cfs_hash_rw_unlock,
189         .hs_bkt_lock    = cfs_hash_rw_lock,
190         .hs_bkt_unlock  = cfs_hash_rw_unlock,
191 };
192
193 /** spin bucket lock, rehash is disabled */
194 static struct cfs_hash_lock_ops cfs_hash_nr_bkt_spin_lops = {
195         .hs_lock        = cfs_hash_nl_lock,
196         .hs_unlock      = cfs_hash_nl_unlock,
197         .hs_bkt_lock    = cfs_hash_spin_lock,
198         .hs_bkt_unlock  = cfs_hash_spin_unlock,
199 };
200
201 /** rw bucket lock, rehash is disabled */
202 static struct cfs_hash_lock_ops cfs_hash_nr_bkt_rw_lops = {
203         .hs_lock        = cfs_hash_nl_lock,
204         .hs_unlock      = cfs_hash_nl_unlock,
205         .hs_bkt_lock    = cfs_hash_rw_lock,
206         .hs_bkt_unlock  = cfs_hash_rw_unlock,
207 };
208
209 static void
210 cfs_hash_lock_setup(struct cfs_hash *hs)
211 {
212         if (cfs_hash_with_no_lock(hs)) {
213                 hs->hs_lops = &cfs_hash_nl_lops;
214
215         } else if (cfs_hash_with_no_bktlock(hs)) {
216                 hs->hs_lops = &cfs_hash_nbl_lops;
217                 spin_lock_init(&hs->hs_lock.spin);
218
219         } else if (cfs_hash_with_rehash(hs)) {
220                 rwlock_init(&hs->hs_lock.rw);
221
222                 if (cfs_hash_with_rw_bktlock(hs))
223                         hs->hs_lops = &cfs_hash_bkt_rw_lops;
224                 else if (cfs_hash_with_spin_bktlock(hs))
225                         hs->hs_lops = &cfs_hash_bkt_spin_lops;
226                 else
227                         LBUG();
228         } else {
229                 if (cfs_hash_with_rw_bktlock(hs))
230                         hs->hs_lops = &cfs_hash_nr_bkt_rw_lops;
231                 else if (cfs_hash_with_spin_bktlock(hs))
232                         hs->hs_lops = &cfs_hash_nr_bkt_spin_lops;
233                 else
234                         LBUG();
235         }
236 }
237
238 /**
239  * Simple hash head without depth tracking
240  * new element is always added to head of hlist
241  */
242 struct cfs_hash_head {
243         struct hlist_head       hh_head;        /**< entries list */
244 };
245
246 static int
247 cfs_hash_hh_hhead_size(struct cfs_hash *hs)
248 {
249         return sizeof(struct cfs_hash_head);
250 }
251
252 static struct hlist_head *
253 cfs_hash_hh_hhead(struct cfs_hash *hs, struct cfs_hash_bd *bd)
254 {
255         struct cfs_hash_head *head;
256
257         head = (struct cfs_hash_head *)&bd->bd_bucket->hsb_head[0];
258         return &head[bd->bd_offset].hh_head;
259 }
260
261 static int
262 cfs_hash_hh_hnode_add(struct cfs_hash *hs, struct cfs_hash_bd *bd,
263                       struct hlist_node *hnode)
264 {
265         hlist_add_head(hnode, cfs_hash_hh_hhead(hs, bd));
266         return -1; /* unknown depth */
267 }
268
269 static int
270 cfs_hash_hh_hnode_del(struct cfs_hash *hs, struct cfs_hash_bd *bd,
271                       struct hlist_node *hnode)
272 {
273         hlist_del_init(hnode);
274         return -1; /* unknown depth */
275 }
276
277 /**
278  * Simple hash head with depth tracking
279  * new element is always added to head of hlist
280  */
281 struct cfs_hash_head_dep {
282         struct hlist_head       hd_head;        /**< entries list */
283         unsigned int            hd_depth;       /**< list length */
284 };
285
286 static int
287 cfs_hash_hd_hhead_size(struct cfs_hash *hs)
288 {
289         return sizeof(struct cfs_hash_head_dep);
290 }
291
292 static struct hlist_head *
293 cfs_hash_hd_hhead(struct cfs_hash *hs, struct cfs_hash_bd *bd)
294 {
295         struct cfs_hash_head_dep   *head;
296
297         head = (struct cfs_hash_head_dep *)&bd->bd_bucket->hsb_head[0];
298         return &head[bd->bd_offset].hd_head;
299 }
300
301 static int
302 cfs_hash_hd_hnode_add(struct cfs_hash *hs, struct cfs_hash_bd *bd,
303                       struct hlist_node *hnode)
304 {
305         struct cfs_hash_head_dep *hh;
306
307         hh = container_of(cfs_hash_hd_hhead(hs, bd),
308                           struct cfs_hash_head_dep, hd_head);
309         hlist_add_head(hnode, &hh->hd_head);
310         return ++hh->hd_depth;
311 }
312
313 static int
314 cfs_hash_hd_hnode_del(struct cfs_hash *hs, struct cfs_hash_bd *bd,
315                       struct hlist_node *hnode)
316 {
317         struct cfs_hash_head_dep *hh;
318
319         hh = container_of(cfs_hash_hd_hhead(hs, bd),
320                           struct cfs_hash_head_dep, hd_head);
321         hlist_del_init(hnode);
322         return --hh->hd_depth;
323 }
324
325 /**
326  * double links hash head without depth tracking
327  * new element is always added to tail of hlist
328  */
329 struct cfs_hash_dhead {
330         struct hlist_head       dh_head;        /**< entries list */
331         struct hlist_node       *dh_tail;       /**< the last entry */
332 };
333
334 static int
335 cfs_hash_dh_hhead_size(struct cfs_hash *hs)
336 {
337         return sizeof(struct cfs_hash_dhead);
338 }
339
340 static struct hlist_head *
341 cfs_hash_dh_hhead(struct cfs_hash *hs, struct cfs_hash_bd *bd)
342 {
343         struct cfs_hash_dhead *head;
344
345         head = (struct cfs_hash_dhead *)&bd->bd_bucket->hsb_head[0];
346         return &head[bd->bd_offset].dh_head;
347 }
348
349 static int
350 cfs_hash_dh_hnode_add(struct cfs_hash *hs, struct cfs_hash_bd *bd,
351                       struct hlist_node *hnode)
352 {
353         struct cfs_hash_dhead *dh;
354
355         dh = container_of(cfs_hash_dh_hhead(hs, bd),
356                           struct cfs_hash_dhead, dh_head);
357         if (dh->dh_tail != NULL) /* not empty */
358                 hlist_add_behind(hnode, dh->dh_tail);
359         else /* empty list */
360                 hlist_add_head(hnode, &dh->dh_head);
361         dh->dh_tail = hnode;
362         return -1; /* unknown depth */
363 }
364
365 static int
366 cfs_hash_dh_hnode_del(struct cfs_hash *hs, struct cfs_hash_bd *bd,
367                       struct hlist_node *hnd)
368 {
369         struct cfs_hash_dhead *dh;
370
371         dh = container_of(cfs_hash_dh_hhead(hs, bd),
372                           struct cfs_hash_dhead, dh_head);
373         if (hnd->next == NULL) { /* it's the tail */
374                 dh->dh_tail = (hnd->pprev == &dh->dh_head.first) ? NULL :
375                               container_of(hnd->pprev, struct hlist_node, next);
376         }
377         hlist_del_init(hnd);
378         return -1; /* unknown depth */
379 }
380
381 /**
382  * double links hash head with depth tracking
383  * new element is always added to tail of hlist
384  */
385 struct cfs_hash_dhead_dep {
386         struct hlist_head       dd_head;        /**< entries list */
387         struct hlist_node       *dd_tail;       /**< the last entry */
388         unsigned int            dd_depth;       /**< list length */
389 };
390
391 static int
392 cfs_hash_dd_hhead_size(struct cfs_hash *hs)
393 {
394         return sizeof(struct cfs_hash_dhead_dep);
395 }
396
397 static struct hlist_head *
398 cfs_hash_dd_hhead(struct cfs_hash *hs, struct cfs_hash_bd *bd)
399 {
400         struct cfs_hash_dhead_dep *head;
401
402         head = (struct cfs_hash_dhead_dep *)&bd->bd_bucket->hsb_head[0];
403         return &head[bd->bd_offset].dd_head;
404 }
405
406 static int
407 cfs_hash_dd_hnode_add(struct cfs_hash *hs, struct cfs_hash_bd *bd,
408                       struct hlist_node *hnode)
409 {
410         struct cfs_hash_dhead_dep *dh;
411
412         dh = container_of(cfs_hash_dd_hhead(hs, bd),
413                           struct cfs_hash_dhead_dep, dd_head);
414         if (dh->dd_tail != NULL) /* not empty */
415                 hlist_add_behind(hnode, dh->dd_tail);
416         else /* empty list */
417                 hlist_add_head(hnode, &dh->dd_head);
418         dh->dd_tail = hnode;
419         return ++dh->dd_depth;
420 }
421
422 static int
423 cfs_hash_dd_hnode_del(struct cfs_hash *hs, struct cfs_hash_bd *bd,
424                       struct hlist_node *hnd)
425 {
426         struct cfs_hash_dhead_dep *dh;
427
428         dh = container_of(cfs_hash_dd_hhead(hs, bd),
429                           struct cfs_hash_dhead_dep, dd_head);
430         if (hnd->next == NULL) { /* it's the tail */
431                 dh->dd_tail = (hnd->pprev == &dh->dd_head.first) ? NULL :
432                               container_of(hnd->pprev, struct hlist_node, next);
433         }
434         hlist_del_init(hnd);
435         return --dh->dd_depth;
436 }
437
438 static struct cfs_hash_hlist_ops cfs_hash_hh_hops = {
439        .hop_hhead      = cfs_hash_hh_hhead,
440        .hop_hhead_size = cfs_hash_hh_hhead_size,
441        .hop_hnode_add  = cfs_hash_hh_hnode_add,
442        .hop_hnode_del  = cfs_hash_hh_hnode_del,
443 };
444
445 static struct cfs_hash_hlist_ops cfs_hash_hd_hops = {
446        .hop_hhead      = cfs_hash_hd_hhead,
447        .hop_hhead_size = cfs_hash_hd_hhead_size,
448        .hop_hnode_add  = cfs_hash_hd_hnode_add,
449        .hop_hnode_del  = cfs_hash_hd_hnode_del,
450 };
451
452 static struct cfs_hash_hlist_ops cfs_hash_dh_hops = {
453        .hop_hhead      = cfs_hash_dh_hhead,
454        .hop_hhead_size = cfs_hash_dh_hhead_size,
455        .hop_hnode_add  = cfs_hash_dh_hnode_add,
456        .hop_hnode_del  = cfs_hash_dh_hnode_del,
457 };
458
459 static struct cfs_hash_hlist_ops cfs_hash_dd_hops = {
460        .hop_hhead      = cfs_hash_dd_hhead,
461        .hop_hhead_size = cfs_hash_dd_hhead_size,
462        .hop_hnode_add  = cfs_hash_dd_hnode_add,
463        .hop_hnode_del  = cfs_hash_dd_hnode_del,
464 };
465
466 static void
467 cfs_hash_hlist_setup(struct cfs_hash *hs)
468 {
469         if (cfs_hash_with_add_tail(hs)) {
470                 hs->hs_hops = cfs_hash_with_depth(hs) ?
471                               &cfs_hash_dd_hops : &cfs_hash_dh_hops;
472         } else {
473                 hs->hs_hops = cfs_hash_with_depth(hs) ?
474                               &cfs_hash_hd_hops : &cfs_hash_hh_hops;
475         }
476 }
477
478 static void
479 cfs_hash_bd_from_key(struct cfs_hash *hs, struct cfs_hash_bucket **bkts,
480                      unsigned int bits, const void *key, struct cfs_hash_bd *bd)
481 {
482         unsigned int index = cfs_hash_id(hs, key, (1U << bits) - 1);
483
484         LASSERT(bits == hs->hs_cur_bits || bits == hs->hs_rehash_bits);
485
486         bd->bd_bucket = bkts[index & ((1U << (bits - hs->hs_bkt_bits)) - 1)];
487         bd->bd_offset = index >> (bits - hs->hs_bkt_bits);
488 }
489
490 void
491 cfs_hash_bd_get(struct cfs_hash *hs, const void *key, struct cfs_hash_bd *bd)
492 {
493         /* NB: caller should hold hs->hs_rwlock if REHASH is set */
494         if (likely(hs->hs_rehash_buckets == NULL)) {
495                 cfs_hash_bd_from_key(hs, hs->hs_buckets,
496                                      hs->hs_cur_bits, key, bd);
497         } else {
498                 LASSERT(hs->hs_rehash_bits != 0);
499                 cfs_hash_bd_from_key(hs, hs->hs_rehash_buckets,
500                                      hs->hs_rehash_bits, key, bd);
501         }
502 }
503 EXPORT_SYMBOL(cfs_hash_bd_get);
504
505 static inline void
506 cfs_hash_bd_dep_record(struct cfs_hash *hs, struct cfs_hash_bd *bd, int dep_cur)
507 {
508         if (likely(dep_cur <= bd->bd_bucket->hsb_depmax))
509                 return;
510
511         bd->bd_bucket->hsb_depmax = dep_cur;
512 # if CFS_HASH_DEBUG_LEVEL >= CFS_HASH_DEBUG_1
513         if (likely(warn_on_depth == 0 ||
514                    max(warn_on_depth, hs->hs_dep_max) >= dep_cur))
515                 return;
516
517         spin_lock(&hs->hs_dep_lock);
518         hs->hs_dep_max  = dep_cur;
519         hs->hs_dep_bkt  = bd->bd_bucket->hsb_index;
520         hs->hs_dep_off  = bd->bd_offset;
521         hs->hs_dep_bits = hs->hs_cur_bits;
522         spin_unlock(&hs->hs_dep_lock);
523
524         cfs_wi_schedule(cfs_sched_rehash, &hs->hs_dep_wi);
525 # endif
526 }
527
528 void
529 cfs_hash_bd_add_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
530                         struct hlist_node *hnode)
531 {
532         int rc;
533
534         rc = hs->hs_hops->hop_hnode_add(hs, bd, hnode);
535         cfs_hash_bd_dep_record(hs, bd, rc);
536         bd->bd_bucket->hsb_version++;
537         if (unlikely(bd->bd_bucket->hsb_version == 0))
538                 bd->bd_bucket->hsb_version++;
539         bd->bd_bucket->hsb_count++;
540
541         if (cfs_hash_with_counter(hs))
542                 atomic_inc(&hs->hs_count);
543         if (!cfs_hash_with_no_itemref(hs))
544                 cfs_hash_get(hs, hnode);
545 }
546 EXPORT_SYMBOL(cfs_hash_bd_add_locked);
547
548 void
549 cfs_hash_bd_del_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
550                        struct hlist_node *hnode)
551 {
552         hs->hs_hops->hop_hnode_del(hs, bd, hnode);
553
554         LASSERT(bd->bd_bucket->hsb_count > 0);
555         bd->bd_bucket->hsb_count--;
556         bd->bd_bucket->hsb_version++;
557         if (unlikely(bd->bd_bucket->hsb_version == 0))
558                 bd->bd_bucket->hsb_version++;
559
560         if (cfs_hash_with_counter(hs)) {
561                 LASSERT(atomic_read(&hs->hs_count) > 0);
562                 atomic_dec(&hs->hs_count);
563         }
564         if (!cfs_hash_with_no_itemref(hs))
565                 cfs_hash_put_locked(hs, hnode);
566 }
567 EXPORT_SYMBOL(cfs_hash_bd_del_locked);
568
569 void
570 cfs_hash_bd_move_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd_old,
571                         struct cfs_hash_bd *bd_new, struct hlist_node *hnode)
572 {
573         struct cfs_hash_bucket *obkt = bd_old->bd_bucket;
574         struct cfs_hash_bucket *nbkt = bd_new->bd_bucket;
575         int                rc;
576
577         if (cfs_hash_bd_compare(bd_old, bd_new) == 0)
578                 return;
579
580         /* use cfs_hash_bd_hnode_add/del, to avoid atomic & refcount ops
581          * in cfs_hash_bd_del/add_locked */
582         hs->hs_hops->hop_hnode_del(hs, bd_old, hnode);
583         rc = hs->hs_hops->hop_hnode_add(hs, bd_new, hnode);
584         cfs_hash_bd_dep_record(hs, bd_new, rc);
585
586         LASSERT(obkt->hsb_count > 0);
587         obkt->hsb_count--;
588         obkt->hsb_version++;
589         if (unlikely(obkt->hsb_version == 0))
590                 obkt->hsb_version++;
591         nbkt->hsb_count++;
592         nbkt->hsb_version++;
593         if (unlikely(nbkt->hsb_version == 0))
594                 nbkt->hsb_version++;
595 }
596 EXPORT_SYMBOL(cfs_hash_bd_move_locked);
597
598 enum {
599         /** always set, for sanity (avoid ZERO intent) */
600         CFS_HS_LOOKUP_MASK_FIND     = 1 << 0,
601         /** return entry with a ref */
602         CFS_HS_LOOKUP_MASK_REF      = 1 << 1,
603         /** add entry if not existing */
604         CFS_HS_LOOKUP_MASK_ADD      = 1 << 2,
605         /** delete entry, ignore other masks */
606         CFS_HS_LOOKUP_MASK_DEL      = 1 << 3,
607 };
608
609 enum cfs_hash_lookup_intent {
610         /** return item w/o refcount */
611         CFS_HS_LOOKUP_IT_PEEK       = CFS_HS_LOOKUP_MASK_FIND,
612         /** return item with refcount */
613         CFS_HS_LOOKUP_IT_FIND       = (CFS_HS_LOOKUP_MASK_FIND |
614                                        CFS_HS_LOOKUP_MASK_REF),
615         /** return item w/o refcount if existed, otherwise add */
616         CFS_HS_LOOKUP_IT_ADD        = (CFS_HS_LOOKUP_MASK_FIND |
617                                        CFS_HS_LOOKUP_MASK_ADD),
618         /** return item with refcount if existed, otherwise add */
619         CFS_HS_LOOKUP_IT_FINDADD    = (CFS_HS_LOOKUP_IT_FIND |
620                                        CFS_HS_LOOKUP_MASK_ADD),
621         /** delete if existed */
622         CFS_HS_LOOKUP_IT_FINDDEL    = (CFS_HS_LOOKUP_MASK_FIND |
623                                        CFS_HS_LOOKUP_MASK_DEL)
624 };
625
626 static struct hlist_node *
627 cfs_hash_bd_lookup_intent(struct cfs_hash *hs, struct cfs_hash_bd *bd,
628                           const void *key, struct hlist_node *hnode,
629                           enum cfs_hash_lookup_intent intent)
630
631 {
632         struct hlist_head  *hhead = cfs_hash_bd_hhead(hs, bd);
633         struct hlist_node  *ehnode;
634         struct hlist_node  *match;
635         int  intent_add = (intent & CFS_HS_LOOKUP_MASK_ADD) != 0;
636
637         /* with this function, we can avoid a lot of useless refcount ops,
638          * which are expensive atomic operations most time. */
639         match = intent_add ? NULL : hnode;
640         hlist_for_each(ehnode, hhead) {
641                 if (!cfs_hash_keycmp(hs, key, ehnode))
642                         continue;
643
644                 if (match != NULL && match != ehnode) /* can't match */
645                         continue;
646
647                 /* match and ... */
648                 if ((intent & CFS_HS_LOOKUP_MASK_DEL) != 0) {
649                         cfs_hash_bd_del_locked(hs, bd, ehnode);
650                         return ehnode;
651                 }
652
653                 /* caller wants refcount? */
654                 if ((intent & CFS_HS_LOOKUP_MASK_REF) != 0)
655                         cfs_hash_get(hs, ehnode);
656                 return ehnode;
657         }
658         /* no match item */
659         if (!intent_add)
660                 return NULL;
661
662         LASSERT(hnode != NULL);
663         cfs_hash_bd_add_locked(hs, bd, hnode);
664         return hnode;
665 }
666
667 struct hlist_node *
668 cfs_hash_bd_lookup_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
669                           const void *key)
670 {
671         return cfs_hash_bd_lookup_intent(hs, bd, key, NULL,
672                                         CFS_HS_LOOKUP_IT_FIND);
673 }
674 EXPORT_SYMBOL(cfs_hash_bd_lookup_locked);
675
676 struct hlist_node *
677 cfs_hash_bd_peek_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
678                         const void *key)
679 {
680         return cfs_hash_bd_lookup_intent(hs, bd, key, NULL,
681                                         CFS_HS_LOOKUP_IT_PEEK);
682 }
683 EXPORT_SYMBOL(cfs_hash_bd_peek_locked);
684
685 struct hlist_node *
686 cfs_hash_bd_findadd_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
687                            const void *key, struct hlist_node *hnode,
688                            int noref)
689 {
690         return cfs_hash_bd_lookup_intent(hs, bd, key, hnode,
691                                         CFS_HS_LOOKUP_IT_ADD |
692                                         (!noref * CFS_HS_LOOKUP_MASK_REF));
693 }
694 EXPORT_SYMBOL(cfs_hash_bd_findadd_locked);
695
696 struct hlist_node *
697 cfs_hash_bd_finddel_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
698                            const void *key, struct hlist_node *hnode)
699 {
700         /* hnode can be NULL, we find the first item with @key */
701         return cfs_hash_bd_lookup_intent(hs, bd, key, hnode,
702                                         CFS_HS_LOOKUP_IT_FINDDEL);
703 }
704 EXPORT_SYMBOL(cfs_hash_bd_finddel_locked);
705
706 static void
707 cfs_hash_multi_bd_lock(struct cfs_hash *hs, struct cfs_hash_bd *bds,
708                        unsigned n, int excl)
709 {
710         struct cfs_hash_bucket *prev = NULL;
711         int                i;
712
713         /**
714          * bds must be ascendantly ordered by bd->bd_bucket->hsb_index.
715          * NB: it's possible that several bds point to the same bucket but
716          * have different bd::bd_offset, so need take care of deadlock.
717          */
718         cfs_hash_for_each_bd(bds, n, i) {
719                 if (prev == bds[i].bd_bucket)
720                         continue;
721
722                 LASSERT(prev == NULL ||
723                         prev->hsb_index < bds[i].bd_bucket->hsb_index);
724                 cfs_hash_bd_lock(hs, &bds[i], excl);
725                 prev = bds[i].bd_bucket;
726         }
727 }
728
729 static void
730 cfs_hash_multi_bd_unlock(struct cfs_hash *hs, struct cfs_hash_bd *bds,
731                          unsigned n, int excl)
732 {
733         struct cfs_hash_bucket *prev = NULL;
734         int                i;
735
736         cfs_hash_for_each_bd(bds, n, i) {
737                 if (prev != bds[i].bd_bucket) {
738                         cfs_hash_bd_unlock(hs, &bds[i], excl);
739                         prev = bds[i].bd_bucket;
740                 }
741         }
742 }
743
744 static struct hlist_node *
745 cfs_hash_multi_bd_lookup_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
746                                 unsigned n, const void *key)
747 {
748         struct hlist_node *ehnode;
749         unsigned          i;
750
751         cfs_hash_for_each_bd(bds, n, i) {
752                 ehnode = cfs_hash_bd_lookup_intent(hs, &bds[i], key, NULL,
753                                                         CFS_HS_LOOKUP_IT_FIND);
754                 if (ehnode != NULL)
755                         return ehnode;
756         }
757         return NULL;
758 }
759
760 static struct hlist_node *
761 cfs_hash_multi_bd_findadd_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
762                                  unsigned n, const void *key,
763                                  struct hlist_node *hnode, int noref)
764 {
765         struct hlist_node *ehnode;
766         int               intent;
767         unsigned          i;
768
769         LASSERT(hnode != NULL);
770         intent = CFS_HS_LOOKUP_IT_PEEK | (!noref * CFS_HS_LOOKUP_MASK_REF);
771
772         cfs_hash_for_each_bd(bds, n, i) {
773                 ehnode = cfs_hash_bd_lookup_intent(hs, &bds[i], key,
774                                                    NULL, intent);
775                 if (ehnode != NULL)
776                         return ehnode;
777         }
778
779         if (i == 1) { /* only one bucket */
780                 cfs_hash_bd_add_locked(hs, &bds[0], hnode);
781         } else {
782                 struct cfs_hash_bd      mybd;
783
784                 cfs_hash_bd_get(hs, key, &mybd);
785                 cfs_hash_bd_add_locked(hs, &mybd, hnode);
786         }
787
788         return hnode;
789 }
790
791 static struct hlist_node *
792 cfs_hash_multi_bd_finddel_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
793                                  unsigned n, const void *key,
794                                  struct hlist_node *hnode)
795 {
796         struct hlist_node *ehnode;
797         unsigned           i;
798
799         cfs_hash_for_each_bd(bds, n, i) {
800                 ehnode = cfs_hash_bd_lookup_intent(hs, &bds[i], key, hnode,
801                                                    CFS_HS_LOOKUP_IT_FINDDEL);
802                 if (ehnode != NULL)
803                         return ehnode;
804         }
805         return NULL;
806 }
807
808 static void
809 cfs_hash_bd_order(struct cfs_hash_bd *bd1, struct cfs_hash_bd *bd2)
810 {
811         int     rc;
812
813         if (bd2->bd_bucket == NULL)
814                 return;
815
816         if (bd1->bd_bucket == NULL) {
817                 *bd1 = *bd2;
818                 bd2->bd_bucket = NULL;
819                 return;
820         }
821
822         rc = cfs_hash_bd_compare(bd1, bd2);
823         if (rc == 0) {
824                 bd2->bd_bucket = NULL;
825
826         } else if (rc > 0) { /* swab bd1 and bd2 */
827                 struct cfs_hash_bd tmp;
828
829                 tmp = *bd2;
830                 *bd2 = *bd1;
831                 *bd1 = tmp;
832         }
833 }
834
835 void
836 cfs_hash_dual_bd_get(struct cfs_hash *hs, const void *key,
837                      struct cfs_hash_bd *bds)
838 {
839         /* NB: caller should hold hs_lock.rw if REHASH is set */
840         cfs_hash_bd_from_key(hs, hs->hs_buckets,
841                              hs->hs_cur_bits, key, &bds[0]);
842         if (likely(hs->hs_rehash_buckets == NULL)) {
843                 /* no rehash or not rehashing */
844                 bds[1].bd_bucket = NULL;
845                 return;
846         }
847
848         LASSERT(hs->hs_rehash_bits != 0);
849         cfs_hash_bd_from_key(hs, hs->hs_rehash_buckets,
850                              hs->hs_rehash_bits, key, &bds[1]);
851
852         cfs_hash_bd_order(&bds[0], &bds[1]);
853 }
854 EXPORT_SYMBOL(cfs_hash_dual_bd_get);
855
856 void
857 cfs_hash_dual_bd_lock(struct cfs_hash *hs, struct cfs_hash_bd *bds, int excl)
858 {
859         cfs_hash_multi_bd_lock(hs, bds, 2, excl);
860 }
861 EXPORT_SYMBOL(cfs_hash_dual_bd_lock);
862
863 void
864 cfs_hash_dual_bd_unlock(struct cfs_hash *hs, struct cfs_hash_bd *bds, int excl)
865 {
866         cfs_hash_multi_bd_unlock(hs, bds, 2, excl);
867 }
868 EXPORT_SYMBOL(cfs_hash_dual_bd_unlock);
869
870 struct hlist_node *
871 cfs_hash_dual_bd_lookup_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
872                                const void *key)
873 {
874         return cfs_hash_multi_bd_lookup_locked(hs, bds, 2, key);
875 }
876 EXPORT_SYMBOL(cfs_hash_dual_bd_lookup_locked);
877
878 struct hlist_node *
879 cfs_hash_dual_bd_findadd_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
880                                 const void *key, struct hlist_node *hnode,
881                                 int noref)
882 {
883         return cfs_hash_multi_bd_findadd_locked(hs, bds, 2, key,
884                                                 hnode, noref);
885 }
886 EXPORT_SYMBOL(cfs_hash_dual_bd_findadd_locked);
887
888 struct hlist_node *
889 cfs_hash_dual_bd_finddel_locked(struct cfs_hash *hs, struct cfs_hash_bd *bds,
890                                 const void *key, struct hlist_node *hnode)
891 {
892         return cfs_hash_multi_bd_finddel_locked(hs, bds, 2, key, hnode);
893 }
894 EXPORT_SYMBOL(cfs_hash_dual_bd_finddel_locked);
895
896 static void
897 cfs_hash_buckets_free(struct cfs_hash_bucket **buckets,
898                       int bkt_size, int prev_size, int size)
899 {
900         int     i;
901
902         for (i = prev_size; i < size; i++) {
903                 if (buckets[i] != NULL)
904                         LIBCFS_FREE(buckets[i], bkt_size);
905         }
906
907         LIBCFS_FREE(buckets, sizeof(buckets[0]) * size);
908 }
909
910 /*
911  * Create or grow bucket memory. Return old_buckets if no allocation was
912  * needed, the newly allocated buckets if allocation was needed and
913  * successful, and NULL on error.
914  */
915 static struct cfs_hash_bucket **
916 cfs_hash_buckets_realloc(struct cfs_hash *hs, struct cfs_hash_bucket **old_bkts,
917                          unsigned int old_size, unsigned int new_size)
918 {
919         struct cfs_hash_bucket **new_bkts;
920         int                 i;
921
922         LASSERT(old_size == 0 || old_bkts != NULL);
923
924         if (old_bkts != NULL && old_size == new_size)
925                 return old_bkts;
926
927         LIBCFS_ALLOC(new_bkts, sizeof(new_bkts[0]) * new_size);
928         if (new_bkts == NULL)
929                 return NULL;
930
931         if (old_bkts != NULL) {
932                 memcpy(new_bkts, old_bkts,
933                        min(old_size, new_size) * sizeof(*old_bkts));
934         }
935
936         for (i = old_size; i < new_size; i++) {
937                 struct hlist_head *hhead;
938                 struct cfs_hash_bd     bd;
939
940                 LIBCFS_ALLOC(new_bkts[i], cfs_hash_bkt_size(hs));
941                 if (new_bkts[i] == NULL) {
942                         cfs_hash_buckets_free(new_bkts, cfs_hash_bkt_size(hs),
943                                               old_size, new_size);
944                         return NULL;
945                 }
946
947                 new_bkts[i]->hsb_index   = i;
948                 new_bkts[i]->hsb_version = 1;  /* shouldn't be zero */
949                 new_bkts[i]->hsb_depmax  = -1; /* unknown */
950                 bd.bd_bucket = new_bkts[i];
951                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead)
952                         INIT_HLIST_HEAD(hhead);
953
954                 if (cfs_hash_with_no_lock(hs) ||
955                     cfs_hash_with_no_bktlock(hs))
956                         continue;
957
958                 if (cfs_hash_with_rw_bktlock(hs))
959                         rwlock_init(&new_bkts[i]->hsb_lock.rw);
960                 else if (cfs_hash_with_spin_bktlock(hs))
961                         spin_lock_init(&new_bkts[i]->hsb_lock.spin);
962                 else
963                         LBUG(); /* invalid use-case */
964         }
965         return new_bkts;
966 }
967
968 /**
969  * Initialize new libcfs hash, where:
970  * @name     - Descriptive hash name
971  * @cur_bits - Initial hash table size, in bits
972  * @max_bits - Maximum allowed hash table resize, in bits
973  * @ops      - Registered hash table operations
974  * @flags    - CFS_HASH_REHASH enable synamic hash resizing
975  *           - CFS_HASH_SORT enable chained hash sort
976  */
977 static int cfs_hash_rehash_worker(cfs_workitem_t *wi);
978
979 #if CFS_HASH_DEBUG_LEVEL >= CFS_HASH_DEBUG_1
980 static int cfs_hash_dep_print(cfs_workitem_t *wi)
981 {
982         struct cfs_hash *hs = container_of(wi, struct cfs_hash, hs_dep_wi);
983         int         dep;
984         int         bkt;
985         int         off;
986         int         bits;
987
988         spin_lock(&hs->hs_dep_lock);
989         dep  = hs->hs_dep_max;
990         bkt  = hs->hs_dep_bkt;
991         off  = hs->hs_dep_off;
992         bits = hs->hs_dep_bits;
993         spin_unlock(&hs->hs_dep_lock);
994
995         LCONSOLE_WARN("#### HASH %s (bits: %d): max depth %d at bucket %d/%d\n",
996                       hs->hs_name, bits, dep, bkt, off);
997         spin_lock(&hs->hs_dep_lock);
998         hs->hs_dep_bits = 0; /* mark as workitem done */
999         spin_unlock(&hs->hs_dep_lock);
1000         return 0;
1001 }
1002
1003 static void cfs_hash_depth_wi_init(struct cfs_hash *hs)
1004 {
1005         spin_lock_init(&hs->hs_dep_lock);
1006         cfs_wi_init(&hs->hs_dep_wi, hs, cfs_hash_dep_print);
1007 }
1008
1009 static void cfs_hash_depth_wi_cancel(struct cfs_hash *hs)
1010 {
1011         if (cfs_wi_deschedule(cfs_sched_rehash, &hs->hs_dep_wi))
1012                 return;
1013
1014         spin_lock(&hs->hs_dep_lock);
1015         while (hs->hs_dep_bits != 0) {
1016                 spin_unlock(&hs->hs_dep_lock);
1017                 cond_resched();
1018                 spin_lock(&hs->hs_dep_lock);
1019         }
1020         spin_unlock(&hs->hs_dep_lock);
1021 }
1022
1023 #else /* CFS_HASH_DEBUG_LEVEL < CFS_HASH_DEBUG_1 */
1024
1025 static inline void cfs_hash_depth_wi_init(struct cfs_hash *hs) {}
1026 static inline void cfs_hash_depth_wi_cancel(struct cfs_hash *hs) {}
1027
1028 #endif /* CFS_HASH_DEBUG_LEVEL >= CFS_HASH_DEBUG_1 */
1029
1030 struct cfs_hash *
1031 cfs_hash_create(char *name, unsigned cur_bits, unsigned max_bits,
1032                 unsigned bkt_bits, unsigned extra_bytes,
1033                 unsigned min_theta, unsigned max_theta,
1034                 struct cfs_hash_ops *ops, unsigned flags)
1035 {
1036         struct cfs_hash *hs;
1037         int         len;
1038
1039         ENTRY;
1040
1041         CLASSERT(CFS_HASH_THETA_BITS < 15);
1042
1043         LASSERT(name != NULL);
1044         LASSERT(ops != NULL);
1045         LASSERT(ops->hs_key);
1046         LASSERT(ops->hs_hash);
1047         LASSERT(ops->hs_object);
1048         LASSERT(ops->hs_keycmp);
1049         LASSERT(ops->hs_get != NULL);
1050         LASSERT(ops->hs_put_locked != NULL);
1051
1052         if ((flags & CFS_HASH_REHASH) != 0)
1053                 flags |= CFS_HASH_COUNTER; /* must have counter */
1054
1055         LASSERT(cur_bits > 0);
1056         LASSERT(cur_bits >= bkt_bits);
1057         LASSERT(max_bits >= cur_bits && max_bits < 31);
1058         LASSERT(ergo((flags & CFS_HASH_REHASH) == 0, cur_bits == max_bits));
1059         LASSERT(ergo((flags & CFS_HASH_REHASH) != 0,
1060                      (flags & CFS_HASH_NO_LOCK) == 0));
1061         LASSERT(ergo((flags & CFS_HASH_REHASH_KEY) != 0,
1062                       ops->hs_keycpy != NULL));
1063
1064         len = (flags & CFS_HASH_BIGNAME) == 0 ?
1065               CFS_HASH_NAME_LEN : CFS_HASH_BIGNAME_LEN;
1066         LIBCFS_ALLOC(hs, offsetof(struct cfs_hash, hs_name[len]));
1067         if (hs == NULL)
1068                 RETURN(NULL);
1069
1070         strlcpy(hs->hs_name, name, len);
1071         hs->hs_flags = flags;
1072
1073         atomic_set(&hs->hs_refcount, 1);
1074         atomic_set(&hs->hs_count, 0);
1075
1076         cfs_hash_lock_setup(hs);
1077         cfs_hash_hlist_setup(hs);
1078
1079         hs->hs_cur_bits = (__u8)cur_bits;
1080         hs->hs_min_bits = (__u8)cur_bits;
1081         hs->hs_max_bits = (__u8)max_bits;
1082         hs->hs_bkt_bits = (__u8)bkt_bits;
1083
1084         hs->hs_ops         = ops;
1085         hs->hs_extra_bytes = extra_bytes;
1086         hs->hs_rehash_bits = 0;
1087         cfs_wi_init(&hs->hs_rehash_wi, hs, cfs_hash_rehash_worker);
1088         cfs_hash_depth_wi_init(hs);
1089
1090         if (cfs_hash_with_rehash(hs))
1091                 __cfs_hash_set_theta(hs, min_theta, max_theta);
1092
1093         hs->hs_buckets = cfs_hash_buckets_realloc(hs, NULL, 0,
1094                                                   CFS_HASH_NBKT(hs));
1095         if (hs->hs_buckets != NULL)
1096                 return hs;
1097
1098         LIBCFS_FREE(hs, offsetof(struct cfs_hash, hs_name[len]));
1099         RETURN(NULL);
1100 }
1101 EXPORT_SYMBOL(cfs_hash_create);
1102
1103 /**
1104  * Cleanup libcfs hash @hs.
1105  */
1106 static void
1107 cfs_hash_destroy(struct cfs_hash *hs)
1108 {
1109         struct hlist_node     *hnode;
1110         struct hlist_node     *pos;
1111         struct cfs_hash_bd         bd;
1112         int                   i;
1113         ENTRY;
1114
1115         LASSERT(hs != NULL);
1116         LASSERT(!cfs_hash_is_exiting(hs) &&
1117                 !cfs_hash_is_iterating(hs));
1118
1119         /**
1120          * prohibit further rehashes, don't need any lock because
1121          * I'm the only (last) one can change it.
1122          */
1123         hs->hs_exiting = 1;
1124         if (cfs_hash_with_rehash(hs))
1125                 cfs_hash_rehash_cancel(hs);
1126
1127         cfs_hash_depth_wi_cancel(hs);
1128         /* rehash should be done/canceled */
1129         LASSERT(hs->hs_buckets != NULL &&
1130                 hs->hs_rehash_buckets == NULL);
1131
1132         cfs_hash_for_each_bucket(hs, &bd, i) {
1133                 struct hlist_head *hhead;
1134
1135                 LASSERT(bd.bd_bucket != NULL);
1136                 /* no need to take this lock, just for consistent code */
1137                 cfs_hash_bd_lock(hs, &bd, 1);
1138
1139                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1140                         hlist_for_each_safe(hnode, pos, hhead) {
1141                                         LASSERTF(!cfs_hash_with_assert_empty(hs),
1142                                         "hash %s bucket %u(%u) is not "
1143                                         " empty: %u items left\n",
1144                                         hs->hs_name, bd.bd_bucket->hsb_index,
1145                                         bd.bd_offset, bd.bd_bucket->hsb_count);
1146                                 /* can't assert key valicate, because we
1147                                  * can interrupt rehash */
1148                                 cfs_hash_bd_del_locked(hs, &bd, hnode);
1149                                 cfs_hash_exit(hs, hnode);
1150                         }
1151                 }
1152                 LASSERT(bd.bd_bucket->hsb_count == 0);
1153                 cfs_hash_bd_unlock(hs, &bd, 1);
1154                 cond_resched();
1155         }
1156
1157         LASSERT(atomic_read(&hs->hs_count) == 0);
1158
1159         cfs_hash_buckets_free(hs->hs_buckets, cfs_hash_bkt_size(hs),
1160                               0, CFS_HASH_NBKT(hs));
1161         i = cfs_hash_with_bigname(hs) ?
1162             CFS_HASH_BIGNAME_LEN : CFS_HASH_NAME_LEN;
1163         LIBCFS_FREE(hs, offsetof(struct cfs_hash, hs_name[i]));
1164
1165         EXIT;
1166 }
1167
1168 struct cfs_hash *cfs_hash_getref(struct cfs_hash *hs)
1169 {
1170         if (atomic_inc_not_zero(&hs->hs_refcount))
1171                 return hs;
1172         return NULL;
1173 }
1174 EXPORT_SYMBOL(cfs_hash_getref);
1175
1176 void cfs_hash_putref(struct cfs_hash *hs)
1177 {
1178         if (atomic_dec_and_test(&hs->hs_refcount))
1179                 cfs_hash_destroy(hs);
1180 }
1181 EXPORT_SYMBOL(cfs_hash_putref);
1182
1183 static inline int
1184 cfs_hash_rehash_bits(struct cfs_hash *hs)
1185 {
1186         if (cfs_hash_with_no_lock(hs) ||
1187             !cfs_hash_with_rehash(hs))
1188                 return -EOPNOTSUPP;
1189
1190         if (unlikely(cfs_hash_is_exiting(hs)))
1191                 return -ESRCH;
1192
1193         if (unlikely(cfs_hash_is_rehashing(hs)))
1194                 return -EALREADY;
1195
1196         if (unlikely(cfs_hash_is_iterating(hs)))
1197                 return -EAGAIN;
1198
1199         /* XXX: need to handle case with max_theta != 2.0
1200          *      and the case with min_theta != 0.5 */
1201         if ((hs->hs_cur_bits < hs->hs_max_bits) &&
1202             (__cfs_hash_theta(hs) > hs->hs_max_theta))
1203                 return hs->hs_cur_bits + 1;
1204
1205         if (!cfs_hash_with_shrink(hs))
1206                 return 0;
1207
1208         if ((hs->hs_cur_bits > hs->hs_min_bits) &&
1209             (__cfs_hash_theta(hs) < hs->hs_min_theta))
1210                 return hs->hs_cur_bits - 1;
1211
1212         return 0;
1213 }
1214
1215 /**
1216  * don't allow inline rehash if:
1217  * - user wants non-blocking change (add/del) on hash table
1218  * - too many elements
1219  */
1220 static inline int
1221 cfs_hash_rehash_inline(struct cfs_hash *hs)
1222 {
1223         return !cfs_hash_with_nblk_change(hs) &&
1224                atomic_read(&hs->hs_count) < CFS_HASH_LOOP_HOG;
1225 }
1226
1227 /**
1228  * Add item @hnode to libcfs hash @hs using @key.  The registered
1229  * ops->hs_get function will be called when the item is added.
1230  */
1231 void
1232 cfs_hash_add(struct cfs_hash *hs, const void *key, struct hlist_node *hnode)
1233 {
1234         struct cfs_hash_bd   bd;
1235         int             bits;
1236
1237         LASSERT(hlist_unhashed(hnode));
1238
1239         cfs_hash_lock(hs, 0);
1240         cfs_hash_bd_get_and_lock(hs, key, &bd, 1);
1241
1242         cfs_hash_key_validate(hs, key, hnode);
1243         cfs_hash_bd_add_locked(hs, &bd, hnode);
1244
1245         cfs_hash_bd_unlock(hs, &bd, 1);
1246
1247         bits = cfs_hash_rehash_bits(hs);
1248         cfs_hash_unlock(hs, 0);
1249         if (bits > 0)
1250                 cfs_hash_rehash(hs, cfs_hash_rehash_inline(hs));
1251 }
1252 EXPORT_SYMBOL(cfs_hash_add);
1253
1254 static struct hlist_node *
1255 cfs_hash_find_or_add(struct cfs_hash *hs, const void *key,
1256                      struct hlist_node *hnode, int noref)
1257 {
1258         struct hlist_node *ehnode;
1259         struct cfs_hash_bd     bds[2];
1260         int               bits = 0;
1261
1262         LASSERT(hlist_unhashed(hnode));
1263
1264         cfs_hash_lock(hs, 0);
1265         cfs_hash_dual_bd_get_and_lock(hs, key, bds, 1);
1266
1267         cfs_hash_key_validate(hs, key, hnode);
1268         ehnode = cfs_hash_dual_bd_findadd_locked(hs, bds, key,
1269                                                  hnode, noref);
1270         cfs_hash_dual_bd_unlock(hs, bds, 1);
1271
1272         if (ehnode == hnode) /* new item added */
1273                 bits = cfs_hash_rehash_bits(hs);
1274         cfs_hash_unlock(hs, 0);
1275         if (bits > 0)
1276                 cfs_hash_rehash(hs, cfs_hash_rehash_inline(hs));
1277
1278         return ehnode;
1279 }
1280
1281 /**
1282  * Add item @hnode to libcfs hash @hs using @key.  The registered
1283  * ops->hs_get function will be called if the item was added.
1284  * Returns 0 on success or -EALREADY on key collisions.
1285  */
1286 int
1287 cfs_hash_add_unique(struct cfs_hash *hs, const void *key,
1288                     struct hlist_node *hnode)
1289 {
1290         return cfs_hash_find_or_add(hs, key, hnode, 1) != hnode ?
1291                -EALREADY : 0;
1292 }
1293 EXPORT_SYMBOL(cfs_hash_add_unique);
1294
1295 /**
1296  * Add item @hnode to libcfs hash @hs using @key.  If this @key
1297  * already exists in the hash then ops->hs_get will be called on the
1298  * conflicting entry and that entry will be returned to the caller.
1299  * Otherwise ops->hs_get is called on the item which was added.
1300  */
1301 void *
1302 cfs_hash_findadd_unique(struct cfs_hash *hs, const void *key,
1303                         struct hlist_node *hnode)
1304 {
1305         hnode = cfs_hash_find_or_add(hs, key, hnode, 0);
1306
1307         return cfs_hash_object(hs, hnode);
1308 }
1309 EXPORT_SYMBOL(cfs_hash_findadd_unique);
1310
1311 /**
1312  * Delete item @hnode from the libcfs hash @hs using @key.  The @key
1313  * is required to ensure the correct hash bucket is locked since there
1314  * is no direct linkage from the item to the bucket.  The object
1315  * removed from the hash will be returned and obs->hs_put is called
1316  * on the removed object.
1317  */
1318 void *
1319 cfs_hash_del(struct cfs_hash *hs, const void *key, struct hlist_node *hnode)
1320 {
1321         void           *obj  = NULL;
1322         int             bits = 0;
1323         struct cfs_hash_bd   bds[2];
1324
1325         cfs_hash_lock(hs, 0);
1326         cfs_hash_dual_bd_get_and_lock(hs, key, bds, 1);
1327
1328         /* NB: do nothing if @hnode is not in hash table */
1329         if (hnode == NULL || !hlist_unhashed(hnode)) {
1330                 if (bds[1].bd_bucket == NULL && hnode != NULL) {
1331                         cfs_hash_bd_del_locked(hs, &bds[0], hnode);
1332                 } else {
1333                         hnode = cfs_hash_dual_bd_finddel_locked(hs, bds,
1334                                                                 key, hnode);
1335                 }
1336         }
1337
1338         if (hnode != NULL) {
1339                 obj  = cfs_hash_object(hs, hnode);
1340                 bits = cfs_hash_rehash_bits(hs);
1341         }
1342
1343         cfs_hash_dual_bd_unlock(hs, bds, 1);
1344         cfs_hash_unlock(hs, 0);
1345         if (bits > 0)
1346                 cfs_hash_rehash(hs, cfs_hash_rehash_inline(hs));
1347
1348         return obj;
1349 }
1350 EXPORT_SYMBOL(cfs_hash_del);
1351
1352 /**
1353  * Delete item given @key in libcfs hash @hs.  The first @key found in
1354  * the hash will be removed, if the key exists multiple times in the hash
1355  * @hs this function must be called once per key.  The removed object
1356  * will be returned and ops->hs_put is called on the removed object.
1357  */
1358 void *
1359 cfs_hash_del_key(struct cfs_hash *hs, const void *key)
1360 {
1361         return cfs_hash_del(hs, key, NULL);
1362 }
1363 EXPORT_SYMBOL(cfs_hash_del_key);
1364
1365 /**
1366  * Lookup an item using @key in the libcfs hash @hs and return it.
1367  * If the @key is found in the hash hs->hs_get() is called and the
1368  * matching objects is returned.  It is the callers responsibility
1369  * to call the counterpart ops->hs_put using the cfs_hash_put() macro
1370  * when when finished with the object.  If the @key was not found
1371  * in the hash @hs NULL is returned.
1372  */
1373 void *
1374 cfs_hash_lookup(struct cfs_hash *hs, const void *key)
1375 {
1376         void                 *obj = NULL;
1377         struct hlist_node     *hnode;
1378         struct cfs_hash_bd         bds[2];
1379
1380         cfs_hash_lock(hs, 0);
1381         cfs_hash_dual_bd_get_and_lock(hs, key, bds, 0);
1382
1383         hnode = cfs_hash_dual_bd_lookup_locked(hs, bds, key);
1384         if (hnode != NULL)
1385                 obj = cfs_hash_object(hs, hnode);
1386
1387         cfs_hash_dual_bd_unlock(hs, bds, 0);
1388         cfs_hash_unlock(hs, 0);
1389
1390         return obj;
1391 }
1392 EXPORT_SYMBOL(cfs_hash_lookup);
1393
1394 static void
1395 cfs_hash_for_each_enter(struct cfs_hash *hs)
1396 {
1397         LASSERT(!cfs_hash_is_exiting(hs));
1398
1399         if (!cfs_hash_with_rehash(hs))
1400                 return;
1401         /*
1402          * NB: it's race on cfs_has_t::hs_iterating, but doesn't matter
1403          * because it's just an unreliable signal to rehash-thread,
1404          * rehash-thread will try to finish rehash ASAP when seeing this.
1405          */
1406         hs->hs_iterating = 1;
1407
1408         cfs_hash_lock(hs, 1);
1409         hs->hs_iterators++;
1410
1411         /* NB: iteration is mostly called by service thread,
1412          * we tend to cancel pending rehash-request, instead of
1413          * blocking service thread, we will relaunch rehash request
1414          * after iteration */
1415         if (cfs_hash_is_rehashing(hs))
1416                 cfs_hash_rehash_cancel_locked(hs);
1417         cfs_hash_unlock(hs, 1);
1418 }
1419
1420 static void
1421 cfs_hash_for_each_exit(struct cfs_hash *hs)
1422 {
1423         int remained;
1424         int bits;
1425
1426         if (!cfs_hash_with_rehash(hs))
1427                 return;
1428         cfs_hash_lock(hs, 1);
1429         remained = --hs->hs_iterators;
1430         bits = cfs_hash_rehash_bits(hs);
1431         cfs_hash_unlock(hs, 1);
1432         /* NB: it's race on cfs_has_t::hs_iterating, see above */
1433         if (remained == 0)
1434                 hs->hs_iterating = 0;
1435         if (bits > 0) {
1436                 cfs_hash_rehash(hs, atomic_read(&hs->hs_count) <
1437                                     CFS_HASH_LOOP_HOG);
1438         }
1439 }
1440
1441 /**
1442  * For each item in the libcfs hash @hs call the passed callback @func
1443  * and pass to it as an argument each hash item and the private @data.
1444  *
1445  * a) the function may sleep!
1446  * b) during the callback:
1447  *    . the bucket lock is held so the callback must never sleep.
1448  *    . if @removal_safe is true, use can remove current item by
1449  *      cfs_hash_bd_del_locked
1450  */
1451 static __u64
1452 cfs_hash_for_each_tight(struct cfs_hash *hs, cfs_hash_for_each_cb_t func,
1453                         void *data, int remove_safe)
1454 {
1455         struct hlist_node       *hnode;
1456         struct hlist_node       *pos;
1457         struct cfs_hash_bd      bd;
1458         __u64                   count = 0;
1459         int                     excl  = !!remove_safe;
1460         int                     loop  = 0;
1461         int                     i;
1462         ENTRY;
1463
1464         cfs_hash_for_each_enter(hs);
1465
1466         cfs_hash_lock(hs, 0);
1467         LASSERT(!cfs_hash_is_rehashing(hs));
1468
1469         cfs_hash_for_each_bucket(hs, &bd, i) {
1470                 struct hlist_head *hhead;
1471
1472                 cfs_hash_bd_lock(hs, &bd, excl);
1473                 if (func == NULL) { /* only glimpse size */
1474                         count += bd.bd_bucket->hsb_count;
1475                         cfs_hash_bd_unlock(hs, &bd, excl);
1476                         continue;
1477                 }
1478
1479                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1480                         hlist_for_each_safe(hnode, pos, hhead) {
1481                                 cfs_hash_bucket_validate(hs, &bd, hnode);
1482                                 count++;
1483                                 loop++;
1484                                 if (func(hs, &bd, hnode, data)) {
1485                                         cfs_hash_bd_unlock(hs, &bd, excl);
1486                                         goto out;
1487                                 }
1488                         }
1489                 }
1490                 cfs_hash_bd_unlock(hs, &bd, excl);
1491                 if (loop < CFS_HASH_LOOP_HOG)
1492                         continue;
1493                 loop = 0;
1494                 cfs_hash_unlock(hs, 0);
1495                 cond_resched();
1496                 cfs_hash_lock(hs, 0);
1497         }
1498  out:
1499         cfs_hash_unlock(hs, 0);
1500
1501         cfs_hash_for_each_exit(hs);
1502         RETURN(count);
1503 }
1504
1505 struct cfs_hash_cond_arg {
1506         cfs_hash_cond_opt_cb_t  func;
1507         void                   *arg;
1508 };
1509
1510 static int
1511 cfs_hash_cond_del_locked(struct cfs_hash *hs, struct cfs_hash_bd *bd,
1512                          struct hlist_node *hnode, void *data)
1513 {
1514         struct cfs_hash_cond_arg *cond = data;
1515
1516         if (cond->func(cfs_hash_object(hs, hnode), cond->arg))
1517                 cfs_hash_bd_del_locked(hs, bd, hnode);
1518         return 0;
1519 }
1520
1521 /**
1522  * Delete item from the libcfs hash @hs when @func return true.
1523  * The write lock being hold during loop for each bucket to avoid
1524  * any object be reference.
1525  */
1526 void
1527 cfs_hash_cond_del(struct cfs_hash *hs, cfs_hash_cond_opt_cb_t func, void *data)
1528 {
1529         struct cfs_hash_cond_arg arg = {
1530                 .func   = func,
1531                 .arg    = data,
1532         };
1533
1534         cfs_hash_for_each_tight(hs, cfs_hash_cond_del_locked, &arg, 1);
1535 }
1536 EXPORT_SYMBOL(cfs_hash_cond_del);
1537
1538 void
1539 cfs_hash_for_each(struct cfs_hash *hs,
1540                   cfs_hash_for_each_cb_t func, void *data)
1541 {
1542         cfs_hash_for_each_tight(hs, func, data, 0);
1543 }
1544 EXPORT_SYMBOL(cfs_hash_for_each);
1545
1546 void
1547 cfs_hash_for_each_safe(struct cfs_hash *hs,
1548                        cfs_hash_for_each_cb_t func, void *data)
1549 {
1550         cfs_hash_for_each_tight(hs, func, data, 1);
1551 }
1552 EXPORT_SYMBOL(cfs_hash_for_each_safe);
1553
1554 static int
1555 cfs_hash_peek(struct cfs_hash *hs, struct cfs_hash_bd *bd,
1556               struct hlist_node *hnode, void *data)
1557 {
1558         *(int *)data = 0;
1559         return 1; /* return 1 to break the loop */
1560 }
1561
1562 int
1563 cfs_hash_is_empty(struct cfs_hash *hs)
1564 {
1565         int empty = 1;
1566
1567         cfs_hash_for_each_tight(hs, cfs_hash_peek, &empty, 0);
1568         return empty;
1569 }
1570 EXPORT_SYMBOL(cfs_hash_is_empty);
1571
1572 __u64
1573 cfs_hash_size_get(struct cfs_hash *hs)
1574 {
1575         return cfs_hash_with_counter(hs) ?
1576                atomic_read(&hs->hs_count) :
1577                cfs_hash_for_each_tight(hs, NULL, NULL, 0);
1578 }
1579 EXPORT_SYMBOL(cfs_hash_size_get);
1580
1581 /*
1582  * cfs_hash_for_each_relax:
1583  * Iterate the hash table and call @func on each item without
1584  * any lock. This function can't guarantee to finish iteration
1585  * if these features are enabled:
1586  *
1587  *  a. if rehash_key is enabled, an item can be moved from
1588  *     one bucket to another bucket
1589  *  b. user can remove non-zero-ref item from hash-table,
1590  *     so the item can be removed from hash-table, even worse,
1591  *     it's possible that user changed key and insert to another
1592  *     hash bucket.
1593  * there's no way for us to finish iteration correctly on previous
1594  * two cases, so iteration has to be stopped on change.
1595  */
1596 static int
1597 cfs_hash_for_each_relax(struct cfs_hash *hs, cfs_hash_for_each_cb_t func,
1598                         void *data)
1599 {
1600         struct hlist_node       *hnode;
1601         struct hlist_node       *tmp;
1602         struct cfs_hash_bd      bd;
1603         __u32                   version;
1604         int                     count = 0;
1605         int                     stop_on_change;
1606         int                     rc;
1607         int                     i;
1608         ENTRY;
1609
1610         stop_on_change = cfs_hash_with_rehash_key(hs) ||
1611                          !cfs_hash_with_no_itemref(hs) ||
1612                          hs->hs_ops->hs_put_locked == NULL;
1613         cfs_hash_lock(hs, 0);
1614         LASSERT(!cfs_hash_is_rehashing(hs));
1615
1616         cfs_hash_for_each_bucket(hs, &bd, i) {
1617                 struct hlist_head *hhead;
1618
1619                 cfs_hash_bd_lock(hs, &bd, 0);
1620                 version = cfs_hash_bd_version_get(&bd);
1621
1622                 cfs_hash_bd_for_each_hlist(hs, &bd, hhead) {
1623                         for (hnode = hhead->first; hnode != NULL;) {
1624                                 cfs_hash_bucket_validate(hs, &bd, hnode);
1625                                 cfs_hash_get(hs, hnode);
1626                                 cfs_hash_bd_unlock(hs, &bd, 0);
1627                                 cfs_hash_unlock(hs, 0);
1628
1629                                 rc = func(hs, &bd, hnode, data);
1630                                 if (stop_on_change)
1631                                         cfs_hash_put(hs, hnode);
1632                                 cond_resched();
1633                                 count++;
1634
1635                                 cfs_hash_lock(hs, 0);
1636                                 cfs_hash_bd_lock(hs, &bd, 0);
1637                                 if (!stop_on_change) {
1638                                         tmp = hnode->next;
1639                                         cfs_hash_put_locked(hs, hnode);
1640                                         hnode = tmp;
1641                                 } else { /* bucket changed? */
1642                                         if (version !=
1643                                             cfs_hash_bd_version_get(&bd))
1644                                                 break;
1645                                         /* safe to continue because no change */
1646                                         hnode = hnode->next;
1647                                 }
1648                                 if (rc) /* callback wants to break iteration */
1649                                         break;
1650                         }
1651                         if (rc) /* callback wants to break iteration */
1652                                 break;
1653                 }
1654                 cfs_hash_bd_unlock(hs, &bd, 0);
1655                 if (rc) /* callback wants to break iteration */
1656                         break;
1657         }
1658         cfs_hash_unlock(hs, 0);
1659
1660         return count;
1661 }
1662
1663 int
1664 cfs_hash_for_each_nolock(struct cfs_hash *hs,
1665                          cfs_hash_for_each_cb_t func, void *data)
1666 {
1667         ENTRY;
1668
1669         if (cfs_hash_with_no_lock(hs) ||
1670             cfs_hash_with_rehash_key(hs) ||
1671             !cfs_hash_with_no_itemref(hs))
1672                 RETURN(-EOPNOTSUPP);
1673
1674         if (hs->hs_ops->hs_get == NULL ||
1675            (hs->hs_ops->hs_put == NULL &&
1676             hs->hs_ops->hs_put_locked == NULL))
1677                 RETURN(-EOPNOTSUPP);
1678
1679         cfs_hash_for_each_enter(hs);
1680         cfs_hash_for_each_relax(hs, func, data);
1681         cfs_hash_for_each_exit(hs);
1682
1683         RETURN(0);
1684 }
1685 EXPORT_SYMBOL(cfs_hash_for_each_nolock);
1686
1687 /**
1688  * For each hash bucket in the libcfs hash @hs call the passed callback
1689  * @func until all the hash buckets are empty.  The passed callback @func
1690  * or the previously registered callback hs->hs_put must remove the item
1691  * from the hash.  You may either use the cfs_hash_del() or hlist_del()
1692  * functions.  No rwlocks will be held during the callback @func it is
1693  * safe to sleep if needed.  This function will not terminate until the
1694  * hash is empty.  Note it is still possible to concurrently add new
1695  * items in to the hash.  It is the callers responsibility to ensure
1696  * the required locking is in place to prevent concurrent insertions.
1697  */
1698 int
1699 cfs_hash_for_each_empty(struct cfs_hash *hs,
1700                         cfs_hash_for_each_cb_t func, void *data)
1701 {
1702         unsigned  i = 0;
1703         ENTRY;
1704
1705         if (cfs_hash_with_no_lock(hs))
1706                 return -EOPNOTSUPP;
1707
1708         if (hs->hs_ops->hs_get == NULL ||
1709            (hs->hs_ops->hs_put == NULL &&
1710             hs->hs_ops->hs_put_locked == NULL))
1711                 return -EOPNOTSUPP;
1712
1713         cfs_hash_for_each_enter(hs);
1714         while (cfs_hash_for_each_relax(hs, func, data)) {
1715                 CDEBUG(D_INFO, "Try to empty hash: %s, loop: %u\n",
1716                        hs->hs_name, i++);
1717         }
1718         cfs_hash_for_each_exit(hs);
1719         RETURN(0);
1720 }
1721 EXPORT_SYMBOL(cfs_hash_for_each_empty);
1722
1723 void
1724 cfs_hash_hlist_for_each(struct cfs_hash *hs, unsigned hindex,
1725                         cfs_hash_for_each_cb_t func, void *data)
1726 {
1727         struct hlist_head *hhead;
1728         struct hlist_node *hnode;
1729         struct cfs_hash_bd         bd;
1730
1731         cfs_hash_for_each_enter(hs);
1732         cfs_hash_lock(hs, 0);
1733         if (hindex >= CFS_HASH_NHLIST(hs))
1734                 goto out;
1735
1736         cfs_hash_bd_index_set(hs, hindex, &bd);
1737
1738         cfs_hash_bd_lock(hs, &bd, 0);
1739         hhead = cfs_hash_bd_hhead(hs, &bd);
1740         hlist_for_each(hnode, hhead) {
1741                 if (func(hs, &bd, hnode, data))
1742                         break;
1743         }
1744         cfs_hash_bd_unlock(hs, &bd, 0);
1745 out:
1746         cfs_hash_unlock(hs, 0);
1747         cfs_hash_for_each_exit(hs);
1748 }
1749
1750 EXPORT_SYMBOL(cfs_hash_hlist_for_each);
1751
1752 /*
1753  * For each item in the libcfs hash @hs which matches the @key call
1754  * the passed callback @func and pass to it as an argument each hash
1755  * item and the private @data. During the callback the bucket lock
1756  * is held so the callback must never sleep.
1757    */
1758 void
1759 cfs_hash_for_each_key(struct cfs_hash *hs, const void *key,
1760                         cfs_hash_for_each_cb_t func, void *data)
1761 {
1762         struct hlist_node *hnode;
1763         struct cfs_hash_bd         bds[2];
1764         unsigned           i;
1765
1766         cfs_hash_lock(hs, 0);
1767
1768         cfs_hash_dual_bd_get_and_lock(hs, key, bds, 0);
1769
1770         cfs_hash_for_each_bd(bds, 2, i) {
1771                 struct hlist_head *hlist = cfs_hash_bd_hhead(hs, &bds[i]);
1772
1773                 hlist_for_each(hnode, hlist) {
1774                         cfs_hash_bucket_validate(hs, &bds[i], hnode);
1775
1776                         if (cfs_hash_keycmp(hs, key, hnode)) {
1777                                 if (func(hs, &bds[i], hnode, data))
1778                                         break;
1779                         }
1780                 }
1781         }
1782
1783         cfs_hash_dual_bd_unlock(hs, bds, 0);
1784         cfs_hash_unlock(hs, 0);
1785 }
1786 EXPORT_SYMBOL(cfs_hash_for_each_key);
1787
1788 /**
1789  * Rehash the libcfs hash @hs to the given @bits.  This can be used
1790  * to grow the hash size when excessive chaining is detected, or to
1791  * shrink the hash when it is larger than needed.  When the CFS_HASH_REHASH
1792  * flag is set in @hs the libcfs hash may be dynamically rehashed
1793  * during addition or removal if the hash's theta value exceeds
1794  * either the hs->hs_min_theta or hs->max_theta values.  By default
1795  * these values are tuned to keep the chained hash depth small, and
1796  * this approach assumes a reasonably uniform hashing function.  The
1797  * theta thresholds for @hs are tunable via cfs_hash_set_theta().
1798  */
1799 void
1800 cfs_hash_rehash_cancel_locked(struct cfs_hash *hs)
1801 {
1802         int     i;
1803
1804         /* need hold cfs_hash_lock(hs, 1) */
1805         LASSERT(cfs_hash_with_rehash(hs) &&
1806                 !cfs_hash_with_no_lock(hs));
1807
1808         if (!cfs_hash_is_rehashing(hs))
1809                 return;
1810
1811         if (cfs_wi_deschedule(cfs_sched_rehash, &hs->hs_rehash_wi)) {
1812                 hs->hs_rehash_bits = 0;
1813                 return;
1814         }
1815
1816         for (i = 2; cfs_hash_is_rehashing(hs); i++) {
1817                 cfs_hash_unlock(hs, 1);
1818                 /* raise console warning while waiting too long */
1819                 CDEBUG(IS_PO2(i >> 3) ? D_WARNING : D_INFO,
1820                        "hash %s is still rehashing, rescheded %d\n",
1821                        hs->hs_name, i - 1);
1822                 cond_resched();
1823                 cfs_hash_lock(hs, 1);
1824         }
1825 }
1826 EXPORT_SYMBOL(cfs_hash_rehash_cancel_locked);
1827
1828 void
1829 cfs_hash_rehash_cancel(struct cfs_hash *hs)
1830 {
1831         cfs_hash_lock(hs, 1);
1832         cfs_hash_rehash_cancel_locked(hs);
1833         cfs_hash_unlock(hs, 1);
1834 }
1835 EXPORT_SYMBOL(cfs_hash_rehash_cancel);
1836
1837 int
1838 cfs_hash_rehash(struct cfs_hash *hs, int do_rehash)
1839 {
1840         int     rc;
1841
1842         LASSERT(cfs_hash_with_rehash(hs) && !cfs_hash_with_no_lock(hs));
1843
1844         cfs_hash_lock(hs, 1);
1845
1846         rc = cfs_hash_rehash_bits(hs);
1847         if (rc <= 0) {
1848                 cfs_hash_unlock(hs, 1);
1849                 return rc;
1850         }
1851
1852         hs->hs_rehash_bits = rc;
1853         if (!do_rehash) {
1854                 /* launch and return */
1855                 cfs_wi_schedule(cfs_sched_rehash, &hs->hs_rehash_wi);
1856                 cfs_hash_unlock(hs, 1);
1857                 return 0;
1858         }
1859
1860         /* rehash right now */
1861         cfs_hash_unlock(hs, 1);
1862
1863         return cfs_hash_rehash_worker(&hs->hs_rehash_wi);
1864 }
1865 EXPORT_SYMBOL(cfs_hash_rehash);
1866
1867 static int
1868 cfs_hash_rehash_bd(struct cfs_hash *hs, struct cfs_hash_bd *old)
1869 {
1870         struct cfs_hash_bd      new;
1871         struct hlist_head *hhead;
1872         struct hlist_node *hnode;
1873         struct hlist_node *pos;
1874         void              *key;
1875         int                c = 0;
1876
1877         /* hold cfs_hash_lock(hs, 1), so don't need any bucket lock */
1878         cfs_hash_bd_for_each_hlist(hs, old, hhead) {
1879                 hlist_for_each_safe(hnode, pos, hhead) {
1880                         key = cfs_hash_key(hs, hnode);
1881                         LASSERT(key != NULL);
1882                         /* Validate hnode is in the correct bucket. */
1883                         cfs_hash_bucket_validate(hs, old, hnode);
1884                         /*
1885                          * Delete from old hash bucket; move to new bucket.
1886                          * ops->hs_key must be defined.
1887                          */
1888                         cfs_hash_bd_from_key(hs, hs->hs_rehash_buckets,
1889                                              hs->hs_rehash_bits, key, &new);
1890                         cfs_hash_bd_move_locked(hs, old, &new, hnode);
1891                         c++;
1892                 }
1893         }
1894         return c;
1895 }
1896
1897 static int
1898 cfs_hash_rehash_worker(cfs_workitem_t *wi)
1899 {
1900         struct cfs_hash         *hs =
1901                 container_of(wi, struct cfs_hash, hs_rehash_wi);
1902         struct cfs_hash_bucket **bkts;
1903         struct cfs_hash_bd      bd;
1904         unsigned int            old_size;
1905         unsigned int            new_size;
1906         int                     bsize;
1907         int                     count = 0;
1908         int                     rc = 0;
1909         int                     i;
1910
1911         LASSERT(hs != NULL && cfs_hash_with_rehash(hs));
1912
1913         cfs_hash_lock(hs, 0);
1914         LASSERT(cfs_hash_is_rehashing(hs));
1915
1916         old_size = CFS_HASH_NBKT(hs);
1917         new_size = CFS_HASH_RH_NBKT(hs);
1918
1919         cfs_hash_unlock(hs, 0);
1920
1921         /*
1922          * don't need hs::hs_rwlock for hs::hs_buckets,
1923          * because nobody can change bkt-table except me.
1924          */
1925         bkts = cfs_hash_buckets_realloc(hs, hs->hs_buckets,
1926                                         old_size, new_size);
1927         cfs_hash_lock(hs, 1);
1928         if (bkts == NULL) {
1929                 rc = -ENOMEM;
1930                 goto out;
1931         }
1932
1933         if (bkts == hs->hs_buckets) {
1934                 bkts = NULL; /* do nothing */
1935                 goto out;
1936         }
1937
1938         rc = __cfs_hash_theta(hs);
1939         if ((rc >= hs->hs_min_theta) && (rc <= hs->hs_max_theta)) {
1940                 /* free the new allocated bkt-table */
1941                 old_size = new_size;
1942                 new_size = CFS_HASH_NBKT(hs);
1943                 rc = -EALREADY;
1944                 goto out;
1945         }
1946
1947         LASSERT(hs->hs_rehash_buckets == NULL);
1948         hs->hs_rehash_buckets = bkts;
1949
1950         rc = 0;
1951         cfs_hash_for_each_bucket(hs, &bd, i) {
1952                 if (cfs_hash_is_exiting(hs)) {
1953                         rc = -ESRCH;
1954                         /* someone wants to destroy the hash, abort now */
1955                         if (old_size < new_size) /* OK to free old bkt-table */
1956                                 break;
1957                         /* it's shrinking, need free new bkt-table */
1958                         hs->hs_rehash_buckets = NULL;
1959                         old_size = new_size;
1960                         new_size = CFS_HASH_NBKT(hs);
1961                         goto out;
1962                 }
1963
1964                 count += cfs_hash_rehash_bd(hs, &bd);
1965                 if (count < CFS_HASH_LOOP_HOG ||
1966                     cfs_hash_is_iterating(hs)) { /* need to finish ASAP */
1967                         continue;
1968                 }
1969
1970                 count = 0;
1971                 cfs_hash_unlock(hs, 1);
1972                 cond_resched();
1973                 cfs_hash_lock(hs, 1);
1974         }
1975
1976         hs->hs_rehash_count++;
1977
1978         bkts = hs->hs_buckets;
1979         hs->hs_buckets = hs->hs_rehash_buckets;
1980         hs->hs_rehash_buckets = NULL;
1981
1982         hs->hs_cur_bits = hs->hs_rehash_bits;
1983  out:
1984         hs->hs_rehash_bits = 0;
1985         if (rc == -ESRCH) /* never be scheduled again */
1986                 cfs_wi_exit(cfs_sched_rehash, wi);
1987         bsize = cfs_hash_bkt_size(hs);
1988         cfs_hash_unlock(hs, 1);
1989         /* can't refer to @hs anymore because it could be destroyed */
1990         if (bkts != NULL)
1991                 cfs_hash_buckets_free(bkts, bsize, new_size, old_size);
1992         if (rc != 0)
1993                 CDEBUG(D_INFO, "early quit of rehashing: %d\n", rc);
1994         /* return 1 only if cfs_wi_exit is called */
1995         return rc == -ESRCH;
1996 }
1997
1998 /**
1999  * Rehash the object referenced by @hnode in the libcfs hash @hs.  The
2000  * @old_key must be provided to locate the objects previous location
2001  * in the hash, and the @new_key will be used to reinsert the object.
2002  * Use this function instead of a cfs_hash_add() + cfs_hash_del()
2003  * combo when it is critical that there is no window in time where the
2004  * object is missing from the hash.  When an object is being rehashed
2005  * the registered cfs_hash_get() and cfs_hash_put() functions will
2006  * not be called.
2007  */
2008 void cfs_hash_rehash_key(struct cfs_hash *hs, const void *old_key,
2009                          void *new_key, struct hlist_node *hnode)
2010 {
2011         struct cfs_hash_bd        bds[3];
2012         struct cfs_hash_bd        old_bds[2];
2013         struct cfs_hash_bd        new_bd;
2014
2015         LASSERT(!hlist_unhashed(hnode));
2016
2017         cfs_hash_lock(hs, 0);
2018
2019         cfs_hash_dual_bd_get(hs, old_key, old_bds);
2020         cfs_hash_bd_get(hs, new_key, &new_bd);
2021
2022         bds[0] = old_bds[0];
2023         bds[1] = old_bds[1];
2024         bds[2] = new_bd;
2025
2026         /* NB: bds[0] and bds[1] are ordered already */
2027         cfs_hash_bd_order(&bds[1], &bds[2]);
2028         cfs_hash_bd_order(&bds[0], &bds[1]);
2029
2030         cfs_hash_multi_bd_lock(hs, bds, 3, 1);
2031         if (likely(old_bds[1].bd_bucket == NULL)) {
2032                 cfs_hash_bd_move_locked(hs, &old_bds[0], &new_bd, hnode);
2033         } else {
2034                 cfs_hash_dual_bd_finddel_locked(hs, old_bds, old_key, hnode);
2035                 cfs_hash_bd_add_locked(hs, &new_bd, hnode);
2036         }
2037         /* overwrite key inside locks, otherwise may screw up with
2038          * other operations, i.e: rehash */
2039         cfs_hash_keycpy(hs, hnode, new_key);
2040
2041         cfs_hash_multi_bd_unlock(hs, bds, 3, 1);
2042         cfs_hash_unlock(hs, 0);
2043 }
2044 EXPORT_SYMBOL(cfs_hash_rehash_key);
2045
2046 int cfs_hash_debug_header(struct seq_file *m)
2047 {
2048         return seq_printf(m, "%-*s%6s%6s%6s%6s%6s%6s%6s%7s%8s%8s%8s%s\n",
2049                         CFS_HASH_BIGNAME_LEN,
2050                         "name", "cur", "min", "max", "theta", "t-min", "t-max",
2051                         "flags", "rehash", "count", "maxdep", "maxdepb",
2052                         " distribution");
2053 }
2054 EXPORT_SYMBOL(cfs_hash_debug_header);
2055
2056 static struct cfs_hash_bucket **
2057 cfs_hash_full_bkts(struct cfs_hash *hs)
2058 {
2059         /* NB: caller should hold hs->hs_rwlock if REHASH is set */
2060         if (hs->hs_rehash_buckets == NULL)
2061                 return hs->hs_buckets;
2062
2063         LASSERT(hs->hs_rehash_bits != 0);
2064         return hs->hs_rehash_bits > hs->hs_cur_bits ?
2065                hs->hs_rehash_buckets : hs->hs_buckets;
2066 }
2067
2068 static unsigned int
2069 cfs_hash_full_nbkt(struct cfs_hash *hs)
2070 {
2071         /* NB: caller should hold hs->hs_rwlock if REHASH is set */
2072         if (hs->hs_rehash_buckets == NULL)
2073                 return CFS_HASH_NBKT(hs);
2074
2075         LASSERT(hs->hs_rehash_bits != 0);
2076         return hs->hs_rehash_bits > hs->hs_cur_bits ?
2077                CFS_HASH_RH_NBKT(hs) : CFS_HASH_NBKT(hs);
2078 }
2079
2080 int cfs_hash_debug_str(struct cfs_hash *hs, struct seq_file *m)
2081 {
2082         int     dist[8] = { 0, };
2083         int     maxdep  = -1;
2084         int     maxdepb = -1;
2085         int     total   = 0;
2086         int     c       = 0;
2087         int     theta;
2088         int     i;
2089
2090         cfs_hash_lock(hs, 0);
2091         theta = __cfs_hash_theta(hs);
2092
2093         c += seq_printf(m, "%-*s ", CFS_HASH_BIGNAME_LEN, hs->hs_name);
2094         c += seq_printf(m, "%5d ",  1 << hs->hs_cur_bits);
2095         c += seq_printf(m, "%5d ",  1 << hs->hs_min_bits);
2096         c += seq_printf(m, "%5d ",  1 << hs->hs_max_bits);
2097         c += seq_printf(m, "%d.%03d ", __cfs_hash_theta_int(theta),
2098                         __cfs_hash_theta_frac(theta));
2099         c += seq_printf(m, "%d.%03d ", __cfs_hash_theta_int(hs->hs_min_theta),
2100                         __cfs_hash_theta_frac(hs->hs_min_theta));
2101         c += seq_printf(m, "%d.%03d ", __cfs_hash_theta_int(hs->hs_max_theta),
2102                         __cfs_hash_theta_frac(hs->hs_max_theta));
2103         c += seq_printf(m, " 0x%02x ", hs->hs_flags);
2104         c += seq_printf(m, "%6d ", hs->hs_rehash_count);
2105
2106         /*
2107          * The distribution is a summary of the chained hash depth in
2108          * each of the libcfs hash buckets.  Each buckets hsb_count is
2109          * divided by the hash theta value and used to generate a
2110          * histogram of the hash distribution.  A uniform hash will
2111          * result in all hash buckets being close to the average thus
2112          * only the first few entries in the histogram will be non-zero.
2113          * If you hash function results in a non-uniform hash the will
2114          * be observable by outlier bucks in the distribution histogram.
2115          *
2116          * Uniform hash distribution:           128/128/0/0/0/0/0/0
2117          * Non-Uniform hash distribution:       128/125/0/0/0/0/2/1
2118          */
2119         for (i = 0; i < cfs_hash_full_nbkt(hs); i++) {
2120                 struct cfs_hash_bd bd;
2121
2122                 bd.bd_bucket = cfs_hash_full_bkts(hs)[i];
2123                 cfs_hash_bd_lock(hs, &bd, 0);
2124                 if (maxdep < bd.bd_bucket->hsb_depmax) {
2125                         maxdep  = bd.bd_bucket->hsb_depmax;
2126                         maxdepb = ffz(~maxdep);
2127                 }
2128                 total += bd.bd_bucket->hsb_count;
2129                 dist[min(fls(bd.bd_bucket->hsb_count/max(theta,1)),7)]++;
2130                 cfs_hash_bd_unlock(hs, &bd, 0);
2131         }
2132
2133         c += seq_printf(m, "%7d ", total);
2134         c += seq_printf(m, "%7d ", maxdep);
2135         c += seq_printf(m, "%7d ", maxdepb);
2136         for (i = 0; i < 8; i++)
2137                 c += seq_printf(m, "%d%c",  dist[i], (i == 7) ? '\n' : '/');
2138
2139         cfs_hash_unlock(hs, 0);
2140         return c;
2141 }
2142 EXPORT_SYMBOL(cfs_hash_debug_str);