+2002-08-01 Theodore Ts'o <tytso@mit.edu>
+
+ * dict.c, dict.h: New file from kazlib 1.20 which implements a
+ red-black tree
+
+ * pass1b.c: Massive changes to take advantage of dict.c. This
+ removes several O(n**2) algorithms from the rare case
+ where there are a large number of blocks claimed by
+ multiple inodes.
+
2002-07-24 Theodore Ts'o <tytso@mit.edu>
* e2fsck.8.in, e2fsck.h, pass3.c (e2fsck_pass3), unix.c, rehash.c:
#
#MCHECK= -DMCHECK
-OBJS= unix.o e2fsck.o super.o pass1.o pass1b.o pass2.o pass3.o pass4.o \
+OBJS= dict.o unix.o e2fsck.o super.o pass1.o pass1b.o pass2.o pass3.o pass4.o \
pass5.o journal.o swapfs.o badblocks.o util.o dirinfo.o dx_dirinfo.o \
ehandler.o problem.o message.o recovery.o region.o revoke.o \
ea_refcount.o rehash.o $(MTRACE_OBJ)
-PROFILED_OBJS= profiled/unix.o profiled/e2fsck.o profiled/super.o \
- profiled/pass1.o profiled/pass1b.o \
+PROFILED_OBJS= profiled/dict.o profiled/unix.o profiled/e2fsck.o \
+ profiled/super.o profiled/pass1.o profiled/pass1b.o \
profiled/pass2.o profiled/pass3.o profiled/pass4.o profiled/pass5.o \
profiled/journal.o profiled/badblocks.o profiled/util.o \
profiled/dirinfo.o profiled/dx_dirinfo.o profiled/ehandler.o \
profiled/ea_refcount.o profiled/rehash.o
SRCS= $(srcdir)/e2fsck.c \
+ $(srcdir)/dict.c \
$(srcdir)/super.c \
$(srcdir)/pass1.c \
$(srcdir)/pass1b.c \
--- /dev/null
+/*
+ * Dictionary Abstract Data Type
+ * Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
+ *
+ * Free Software License:
+ *
+ * All rights are reserved by the author, with the following exceptions:
+ * Permission is granted to freely reproduce and distribute this software,
+ * possibly in exchange for a fee, provided that this copyright notice appears
+ * intact. Permission is also granted to adapt this software to produce
+ * derivative works, as long as the modified versions carry this copyright
+ * notice and additional notices stating that the work has been modified.
+ * This source code may be translated into executable form and incorporated
+ * into proprietary software; there is no requirement for such software to
+ * contain a copyright notice related to this source.
+ *
+ * $Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz Exp $
+ * $Name: kazlib_1_20 $
+ */
+
+#define NDEBUG
+
+#include <stdlib.h>
+#include <stddef.h>
+#include <assert.h>
+#define DICT_IMPLEMENTATION
+#include "dict.h"
+
+#ifdef KAZLIB_RCSID
+static const char rcsid[] = "$Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz Exp $";
+#endif
+
+/*
+ * These macros provide short convenient names for structure members,
+ * which are embellished with dict_ prefixes so that they are
+ * properly confined to the documented namespace. It's legal for a
+ * program which uses dict to define, for instance, a macro called ``parent''.
+ * Such a macro would interfere with the dnode_t struct definition.
+ * In general, highly portable and reusable C modules which expose their
+ * structures need to confine structure member names to well-defined spaces.
+ * The resulting identifiers aren't necessarily convenient to use, nor
+ * readable, in the implementation, however!
+ */
+
+#define left dict_left
+#define right dict_right
+#define parent dict_parent
+#define color dict_color
+#define key dict_key
+#define data dict_data
+
+#define nilnode dict_nilnode
+#define nodecount dict_nodecount
+#define maxcount dict_maxcount
+#define compare dict_compare
+#define allocnode dict_allocnode
+#define freenode dict_freenode
+#define context dict_context
+#define dupes dict_dupes
+
+#define dictptr dict_dictptr
+
+#define dict_root(D) ((D)->nilnode.left)
+#define dict_nil(D) (&(D)->nilnode)
+#define DICT_DEPTH_MAX 64
+
+static dnode_t *dnode_alloc(void *context);
+static void dnode_free(dnode_t *node, void *context);
+
+/*
+ * Perform a ``left rotation'' adjustment on the tree. The given node P and
+ * its right child C are rearranged so that the P instead becomes the left
+ * child of C. The left subtree of C is inherited as the new right subtree
+ * for P. The ordering of the keys within the tree is thus preserved.
+ */
+
+static void rotate_left(dnode_t *upper)
+{
+ dnode_t *lower, *lowleft, *upparent;
+
+ lower = upper->right;
+ upper->right = lowleft = lower->left;
+ lowleft->parent = upper;
+
+ lower->parent = upparent = upper->parent;
+
+ /* don't need to check for root node here because root->parent is
+ the sentinel nil node, and root->parent->left points back to root */
+
+ if (upper == upparent->left) {
+ upparent->left = lower;
+ } else {
+ assert (upper == upparent->right);
+ upparent->right = lower;
+ }
+
+ lower->left = upper;
+ upper->parent = lower;
+}
+
+/*
+ * This operation is the ``mirror'' image of rotate_left. It is
+ * the same procedure, but with left and right interchanged.
+ */
+
+static void rotate_right(dnode_t *upper)
+{
+ dnode_t *lower, *lowright, *upparent;
+
+ lower = upper->left;
+ upper->left = lowright = lower->right;
+ lowright->parent = upper;
+
+ lower->parent = upparent = upper->parent;
+
+ if (upper == upparent->right) {
+ upparent->right = lower;
+ } else {
+ assert (upper == upparent->left);
+ upparent->left = lower;
+ }
+
+ lower->right = upper;
+ upper->parent = lower;
+}
+
+/*
+ * Do a postorder traversal of the tree rooted at the specified
+ * node and free everything under it. Used by dict_free().
+ */
+
+static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
+{
+ if (node == nil)
+ return;
+ free_nodes(dict, node->left, nil);
+ free_nodes(dict, node->right, nil);
+ dict->freenode(node, dict->context);
+}
+
+/*
+ * This procedure performs a verification that the given subtree is a binary
+ * search tree. It performs an inorder traversal of the tree using the
+ * dict_next() successor function, verifying that the key of each node is
+ * strictly lower than that of its successor, if duplicates are not allowed,
+ * or lower or equal if duplicates are allowed. This function is used for
+ * debugging purposes.
+ */
+#ifndef NDEBUG
+static int verify_bintree(dict_t *dict)
+{
+ dnode_t *first, *next;
+
+ first = dict_first(dict);
+
+ if (dict->dupes) {
+ while (first && (next = dict_next(dict, first))) {
+ if (dict->compare(first->key, next->key) > 0)
+ return 0;
+ first = next;
+ }
+ } else {
+ while (first && (next = dict_next(dict, first))) {
+ if (dict->compare(first->key, next->key) >= 0)
+ return 0;
+ first = next;
+ }
+ }
+ return 1;
+}
+
+/*
+ * This function recursively verifies that the given binary subtree satisfies
+ * three of the red black properties. It checks that every red node has only
+ * black children. It makes sure that each node is either red or black. And it
+ * checks that every path has the same count of black nodes from root to leaf.
+ * It returns the blackheight of the given subtree; this allows blackheights to
+ * be computed recursively and compared for left and right siblings for
+ * mismatches. It does not check for every nil node being black, because there
+ * is only one sentinel nil node. The return value of this function is the
+ * black height of the subtree rooted at the node ``root'', or zero if the
+ * subtree is not red-black.
+ */
+
+static unsigned int verify_redblack(dnode_t *nil, dnode_t *root)
+{
+ unsigned height_left, height_right;
+
+ if (root != nil) {
+ height_left = verify_redblack(nil, root->left);
+ height_right = verify_redblack(nil, root->right);
+ if (height_left == 0 || height_right == 0)
+ return 0;
+ if (height_left != height_right)
+ return 0;
+ if (root->color == dnode_red) {
+ if (root->left->color != dnode_black)
+ return 0;
+ if (root->right->color != dnode_black)
+ return 0;
+ return height_left;
+ }
+ if (root->color != dnode_black)
+ return 0;
+ return height_left + 1;
+ }
+ return 1;
+}
+
+/*
+ * Compute the actual count of nodes by traversing the tree and
+ * return it. This could be compared against the stored count to
+ * detect a mismatch.
+ */
+
+static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root)
+{
+ if (root == nil)
+ return 0;
+ else
+ return 1 + verify_node_count(nil, root->left)
+ + verify_node_count(nil, root->right);
+}
+#endif
+
+/*
+ * Verify that the tree contains the given node. This is done by
+ * traversing all of the nodes and comparing their pointers to the
+ * given pointer. Returns 1 if the node is found, otherwise
+ * returns zero. It is intended for debugging purposes.
+ */
+
+static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
+{
+ if (root != nil) {
+ return root == node
+ || verify_dict_has_node(nil, root->left, node)
+ || verify_dict_has_node(nil, root->right, node);
+ }
+ return 0;
+}
+
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Dynamically allocate and initialize a dictionary object.
+ */
+
+dict_t *dict_create(dictcount_t maxcount, dict_comp_t comp)
+{
+ dict_t *new = malloc(sizeof *new);
+
+ if (new) {
+ new->compare = comp;
+ new->allocnode = dnode_alloc;
+ new->freenode = dnode_free;
+ new->context = NULL;
+ new->nodecount = 0;
+ new->maxcount = maxcount;
+ new->nilnode.left = &new->nilnode;
+ new->nilnode.right = &new->nilnode;
+ new->nilnode.parent = &new->nilnode;
+ new->nilnode.color = dnode_black;
+ new->dupes = 0;
+ }
+ return new;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Select a different set of node allocator routines.
+ */
+
+void dict_set_allocator(dict_t *dict, dnode_alloc_t al,
+ dnode_free_t fr, void *context)
+{
+ assert (dict_count(dict) == 0);
+ assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL));
+
+ dict->allocnode = al ? al : dnode_alloc;
+ dict->freenode = fr ? fr : dnode_free;
+ dict->context = context;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Free a dynamically allocated dictionary object. Removing the nodes
+ * from the tree before deleting it is required.
+ */
+
+void dict_destroy(dict_t *dict)
+{
+ assert (dict_isempty(dict));
+ free(dict);
+}
+#endif
+
+/*
+ * Free all the nodes in the dictionary by using the dictionary's
+ * installed free routine. The dictionary is emptied.
+ */
+
+void dict_free_nodes(dict_t *dict)
+{
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
+ free_nodes(dict, root, nil);
+ dict->nodecount = 0;
+ dict->nilnode.left = &dict->nilnode;
+ dict->nilnode.right = &dict->nilnode;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Obsolescent function, equivalent to dict_free_nodes
+ */
+void dict_free(dict_t *dict)
+{
+#ifdef KAZLIB_OBSOLESCENT_DEBUG
+ assert ("call to obsolescent function dict_free()" && 0);
+#endif
+ dict_free_nodes(dict);
+}
+#endif
+
+/*
+ * Initialize a user-supplied dictionary object.
+ */
+
+dict_t *dict_init(dict_t *dict, dictcount_t maxcount, dict_comp_t comp)
+{
+ dict->compare = comp;
+ dict->allocnode = dnode_alloc;
+ dict->freenode = dnode_free;
+ dict->context = NULL;
+ dict->nodecount = 0;
+ dict->maxcount = maxcount;
+ dict->nilnode.left = &dict->nilnode;
+ dict->nilnode.right = &dict->nilnode;
+ dict->nilnode.parent = &dict->nilnode;
+ dict->nilnode.color = dnode_black;
+ dict->dupes = 0;
+ return dict;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Initialize a dictionary in the likeness of another dictionary
+ */
+
+void dict_init_like(dict_t *dict, const dict_t *template)
+{
+ dict->compare = template->compare;
+ dict->allocnode = template->allocnode;
+ dict->freenode = template->freenode;
+ dict->context = template->context;
+ dict->nodecount = 0;
+ dict->maxcount = template->maxcount;
+ dict->nilnode.left = &dict->nilnode;
+ dict->nilnode.right = &dict->nilnode;
+ dict->nilnode.parent = &dict->nilnode;
+ dict->nilnode.color = dnode_black;
+ dict->dupes = template->dupes;
+
+ assert (dict_similar(dict, template));
+}
+
+/*
+ * Remove all nodes from the dictionary (without freeing them in any way).
+ */
+
+static void dict_clear(dict_t *dict)
+{
+ dict->nodecount = 0;
+ dict->nilnode.left = &dict->nilnode;
+ dict->nilnode.right = &dict->nilnode;
+ dict->nilnode.parent = &dict->nilnode;
+ assert (dict->nilnode.color == dnode_black);
+}
+
+
+/*
+ * Verify the integrity of the dictionary structure. This is provided for
+ * debugging purposes, and should be placed in assert statements. Just because
+ * this function succeeds doesn't mean that the tree is not corrupt. Certain
+ * corruptions in the tree may simply cause undefined behavior.
+ */
+
+int dict_verify(dict_t *dict)
+{
+#ifndef NDEBUG
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
+
+ /* check that the sentinel node and root node are black */
+ if (root->color != dnode_black)
+ return 0;
+ if (nil->color != dnode_black)
+ return 0;
+ if (nil->right != nil)
+ return 0;
+ /* nil->left is the root node; check that its parent pointer is nil */
+ if (nil->left->parent != nil)
+ return 0;
+ /* perform a weak test that the tree is a binary search tree */
+ if (!verify_bintree(dict))
+ return 0;
+ /* verify that the tree is a red-black tree */
+ if (!verify_redblack(nil, root))
+ return 0;
+ if (verify_node_count(nil, root) != dict_count(dict))
+ return 0;
+#endif
+ return 1;
+}
+
+/*
+ * Determine whether two dictionaries are similar: have the same comparison and
+ * allocator functions, and same status as to whether duplicates are allowed.
+ */
+
+int dict_similar(const dict_t *left, const dict_t *right)
+{
+ if (left->compare != right->compare)
+ return 0;
+
+ if (left->allocnode != right->allocnode)
+ return 0;
+
+ if (left->freenode != right->freenode)
+ return 0;
+
+ if (left->context != right->context)
+ return 0;
+
+ if (left->dupes != right->dupes)
+ return 0;
+
+ return 1;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Locate a node in the dictionary having the given key.
+ * If the node is not found, a null a pointer is returned (rather than
+ * a pointer that dictionary's nil sentinel node), otherwise a pointer to the
+ * located node is returned.
+ */
+
+dnode_t *dict_lookup(dict_t *dict, const void *key)
+{
+ dnode_t *root = dict_root(dict);
+ dnode_t *nil = dict_nil(dict);
+ dnode_t *saved;
+ int result;
+
+ /* simple binary search adapted for trees that contain duplicate keys */
+
+ while (root != nil) {
+ result = dict->compare(key, root->key);
+ if (result < 0)
+ root = root->left;
+ else if (result > 0)
+ root = root->right;
+ else {
+ if (!dict->dupes) { /* no duplicates, return match */
+ return root;
+ } else { /* could be dupes, find leftmost one */
+ do {
+ saved = root;
+ root = root->left;
+ while (root != nil && dict->compare(key, root->key))
+ root = root->right;
+ } while (root != nil);
+ return saved;
+ }
+ }
+ }
+
+ return NULL;
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Look for the node corresponding to the lowest key that is equal to or
+ * greater than the given key. If there is no such node, return null.
+ */
+
+dnode_t *dict_lower_bound(dict_t *dict, const void *key)
+{
+ dnode_t *root = dict_root(dict);
+ dnode_t *nil = dict_nil(dict);
+ dnode_t *tentative = 0;
+
+ while (root != nil) {
+ int result = dict->compare(key, root->key);
+
+ if (result > 0) {
+ root = root->right;
+ } else if (result < 0) {
+ tentative = root;
+ root = root->left;
+ } else {
+ if (!dict->dupes) {
+ return root;
+ } else {
+ tentative = root;
+ root = root->left;
+ }
+ }
+ }
+
+ return tentative;
+}
+
+/*
+ * Look for the node corresponding to the greatest key that is equal to or
+ * lower than the given key. If there is no such node, return null.
+ */
+
+dnode_t *dict_upper_bound(dict_t *dict, const void *key)
+{
+ dnode_t *root = dict_root(dict);
+ dnode_t *nil = dict_nil(dict);
+ dnode_t *tentative = 0;
+
+ while (root != nil) {
+ int result = dict->compare(key, root->key);
+
+ if (result < 0) {
+ root = root->left;
+ } else if (result > 0) {
+ tentative = root;
+ root = root->right;
+ } else {
+ if (!dict->dupes) {
+ return root;
+ } else {
+ tentative = root;
+ root = root->right;
+ }
+ }
+ }
+
+ return tentative;
+}
+#endif
+
+/*
+ * Insert a node into the dictionary. The node should have been
+ * initialized with a data field. All other fields are ignored.
+ * The behavior is undefined if the user attempts to insert into
+ * a dictionary that is already full (for which the dict_isfull()
+ * function returns true).
+ */
+
+void dict_insert(dict_t *dict, dnode_t *node, const void *key)
+{
+ dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
+ dnode_t *parent = nil, *uncle, *grandpa;
+ int result = -1;
+
+ node->key = key;
+
+ assert (!dict_isfull(dict));
+ assert (!dict_contains(dict, node));
+ assert (!dnode_is_in_a_dict(node));
+
+ /* basic binary tree insert */
+
+ while (where != nil) {
+ parent = where;
+ result = dict->compare(key, where->key);
+ /* trap attempts at duplicate key insertion unless it's explicitly allowed */
+ assert (dict->dupes || result != 0);
+ if (result < 0)
+ where = where->left;
+ else
+ where = where->right;
+ }
+
+ assert (where == nil);
+
+ if (result < 0)
+ parent->left = node;
+ else
+ parent->right = node;
+
+ node->parent = parent;
+ node->left = nil;
+ node->right = nil;
+
+ dict->nodecount++;
+
+ /* red black adjustments */
+
+ node->color = dnode_red;
+
+ while (parent->color == dnode_red) {
+ grandpa = parent->parent;
+ if (parent == grandpa->left) {
+ uncle = grandpa->right;
+ if (uncle->color == dnode_red) { /* red parent, red uncle */
+ parent->color = dnode_black;
+ uncle->color = dnode_black;
+ grandpa->color = dnode_red;
+ node = grandpa;
+ parent = grandpa->parent;
+ } else { /* red parent, black uncle */
+ if (node == parent->right) {
+ rotate_left(parent);
+ parent = node;
+ assert (grandpa == parent->parent);
+ /* rotation between parent and child preserves grandpa */
+ }
+ parent->color = dnode_black;
+ grandpa->color = dnode_red;
+ rotate_right(grandpa);
+ break;
+ }
+ } else { /* symmetric cases: parent == parent->parent->right */
+ uncle = grandpa->left;
+ if (uncle->color == dnode_red) {
+ parent->color = dnode_black;
+ uncle->color = dnode_black;
+ grandpa->color = dnode_red;
+ node = grandpa;
+ parent = grandpa->parent;
+ } else {
+ if (node == parent->left) {
+ rotate_right(parent);
+ parent = node;
+ assert (grandpa == parent->parent);
+ }
+ parent->color = dnode_black;
+ grandpa->color = dnode_red;
+ rotate_left(grandpa);
+ break;
+ }
+ }
+ }
+
+ dict_root(dict)->color = dnode_black;
+
+ assert (dict_verify(dict));
+}
+
+#ifdef E2FSCK_NOTUSED
+/*
+ * Delete the given node from the dictionary. If the given node does not belong
+ * to the given dictionary, undefined behavior results. A pointer to the
+ * deleted node is returned.
+ */
+
+dnode_t *dict_delete(dict_t *dict, dnode_t *delete)
+{
+ dnode_t *nil = dict_nil(dict), *child, *delparent = delete->parent;
+
+ /* basic deletion */
+
+ assert (!dict_isempty(dict));
+ assert (dict_contains(dict, delete));
+
+ /*
+ * If the node being deleted has two children, then we replace it with its
+ * successor (i.e. the leftmost node in the right subtree.) By doing this,
+ * we avoid the traditional algorithm under which the successor's key and
+ * value *only* move to the deleted node and the successor is spliced out
+ * from the tree. We cannot use this approach because the user may hold
+ * pointers to the successor, or nodes may be inextricably tied to some
+ * other structures by way of embedding, etc. So we must splice out the
+ * node we are given, not some other node, and must not move contents from
+ * one node to another behind the user's back.
+ */
+
+ if (delete->left != nil && delete->right != nil) {
+ dnode_t *next = dict_next(dict, delete);
+ dnode_t *nextparent = next->parent;
+ dnode_color_t nextcolor = next->color;
+
+ assert (next != nil);
+ assert (next->parent != nil);
+ assert (next->left == nil);
+
+ /*
+ * First, splice out the successor from the tree completely, by
+ * moving up its right child into its place.
+ */
+
+ child = next->right;
+ child->parent = nextparent;
+
+ if (nextparent->left == next) {
+ nextparent->left = child;
+ } else {
+ assert (nextparent->right == next);
+ nextparent->right = child;
+ }
+
+ /*
+ * Now that the successor has been extricated from the tree, install it
+ * in place of the node that we want deleted.
+ */
+
+ next->parent = delparent;
+ next->left = delete->left;
+ next->right = delete->right;
+ next->left->parent = next;
+ next->right->parent = next;
+ next->color = delete->color;
+ delete->color = nextcolor;
+
+ if (delparent->left == delete) {
+ delparent->left = next;
+ } else {
+ assert (delparent->right == delete);
+ delparent->right = next;
+ }
+
+ } else {
+ assert (delete != nil);
+ assert (delete->left == nil || delete->right == nil);
+
+ child = (delete->left != nil) ? delete->left : delete->right;
+
+ child->parent = delparent = delete->parent;
+
+ if (delete == delparent->left) {
+ delparent->left = child;
+ } else {
+ assert (delete == delparent->right);
+ delparent->right = child;
+ }
+ }
+
+ delete->parent = NULL;
+ delete->right = NULL;
+ delete->left = NULL;
+
+ dict->nodecount--;
+
+ assert (verify_bintree(dict));
+
+ /* red-black adjustments */
+
+ if (delete->color == dnode_black) {
+ dnode_t *parent, *sister;
+
+ dict_root(dict)->color = dnode_red;
+
+ while (child->color == dnode_black) {
+ parent = child->parent;
+ if (child == parent->left) {
+ sister = parent->right;
+ assert (sister != nil);
+ if (sister->color == dnode_red) {
+ sister->color = dnode_black;
+ parent->color = dnode_red;
+ rotate_left(parent);
+ sister = parent->right;
+ assert (sister != nil);
+ }
+ if (sister->left->color == dnode_black
+ && sister->right->color == dnode_black) {
+ sister->color = dnode_red;
+ child = parent;
+ } else {
+ if (sister->right->color == dnode_black) {
+ assert (sister->left->color == dnode_red);
+ sister->left->color = dnode_black;
+ sister->color = dnode_red;
+ rotate_right(sister);
+ sister = parent->right;
+ assert (sister != nil);
+ }
+ sister->color = parent->color;
+ sister->right->color = dnode_black;
+ parent->color = dnode_black;
+ rotate_left(parent);
+ break;
+ }
+ } else { /* symmetric case: child == child->parent->right */
+ assert (child == parent->right);
+ sister = parent->left;
+ assert (sister != nil);
+ if (sister->color == dnode_red) {
+ sister->color = dnode_black;
+ parent->color = dnode_red;
+ rotate_right(parent);
+ sister = parent->left;
+ assert (sister != nil);
+ }
+ if (sister->right->color == dnode_black
+ && sister->left->color == dnode_black) {
+ sister->color = dnode_red;
+ child = parent;
+ } else {
+ if (sister->left->color == dnode_black) {
+ assert (sister->right->color == dnode_red);
+ sister->right->color = dnode_black;
+ sister->color = dnode_red;
+ rotate_left(sister);
+ sister = parent->left;
+ assert (sister != nil);
+ }
+ sister->color = parent->color;
+ sister->left->color = dnode_black;
+ parent->color = dnode_black;
+ rotate_right(parent);
+ break;
+ }
+ }
+ }
+
+ child->color = dnode_black;
+ dict_root(dict)->color = dnode_black;
+ }
+
+ assert (dict_verify(dict));
+
+ return delete;
+}
+#endif /* E2FSCK_NOTUSED */
+
+/*
+ * Allocate a node using the dictionary's allocator routine, give it
+ * the data item.
+ */
+
+int dict_alloc_insert(dict_t *dict, const void *key, void *data)
+{
+ dnode_t *node = dict->allocnode(dict->context);
+
+ if (node) {
+ dnode_init(node, data);
+ dict_insert(dict, node, key);
+ return 1;
+ }
+ return 0;
+}
+
+#ifdef E2FSCK_NOTUSED
+void dict_delete_free(dict_t *dict, dnode_t *node)
+{
+ dict_delete(dict, node);
+ dict->freenode(node, dict->context);
+}
+#endif
+
+/*
+ * Return the node with the lowest (leftmost) key. If the dictionary is empty
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
+ */
+
+dnode_t *dict_first(dict_t *dict)
+{
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
+
+ if (root != nil)
+ while ((left = root->left) != nil)
+ root = left;
+
+ return (root == nil) ? NULL : root;
+}
+
+/*
+ * Return the node with the highest (rightmost) key. If the dictionary is empty
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
+ */
+
+dnode_t *dict_last(dict_t *dict)
+{
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right;
+
+ if (root != nil)
+ while ((right = root->right) != nil)
+ root = right;
+
+ return (root == nil) ? NULL : root;
+}
+
+/*
+ * Return the given node's successor node---the node which has the
+ * next key in the the left to right ordering. If the node has
+ * no successor, a null pointer is returned rather than a pointer to
+ * the nil node.
+ */
+
+dnode_t *dict_next(dict_t *dict, dnode_t *curr)
+{
+ dnode_t *nil = dict_nil(dict), *parent, *left;
+
+ if (curr->right != nil) {
+ curr = curr->right;
+ while ((left = curr->left) != nil)
+ curr = left;
+ return curr;
+ }
+
+ parent = curr->parent;
+
+ while (parent != nil && curr == parent->right) {
+ curr = parent;
+ parent = curr->parent;
+ }
+
+ return (parent == nil) ? NULL : parent;
+}
+
+/*
+ * Return the given node's predecessor, in the key order.
+ * The nil sentinel node is returned if there is no predecessor.
+ */
+
+dnode_t *dict_prev(dict_t *dict, dnode_t *curr)
+{
+ dnode_t *nil = dict_nil(dict), *parent, *right;
+
+ if (curr->left != nil) {
+ curr = curr->left;
+ while ((right = curr->right) != nil)
+ curr = right;
+ return curr;
+ }
+
+ parent = curr->parent;
+
+ while (parent != nil && curr == parent->left) {
+ curr = parent;
+ parent = curr->parent;
+ }
+
+ return (parent == nil) ? NULL : parent;
+}
+
+void dict_allow_dupes(dict_t *dict)
+{
+ dict->dupes = 1;
+}
+
+#undef dict_count
+#undef dict_isempty
+#undef dict_isfull
+#undef dnode_get
+#undef dnode_put
+#undef dnode_getkey
+
+dictcount_t dict_count(dict_t *dict)
+{
+ return dict->nodecount;
+}
+
+int dict_isempty(dict_t *dict)
+{
+ return dict->nodecount == 0;
+}
+
+int dict_isfull(dict_t *dict)
+{
+ return dict->nodecount == dict->maxcount;
+}
+
+int dict_contains(dict_t *dict, dnode_t *node)
+{
+ return verify_dict_has_node(dict_nil(dict), dict_root(dict), node);
+}
+
+static dnode_t *dnode_alloc(void *context)
+{
+ return malloc(sizeof *dnode_alloc(NULL));
+}
+
+static void dnode_free(dnode_t *node, void *context)
+{
+ free(node);
+}
+
+dnode_t *dnode_create(void *data)
+{
+ dnode_t *new = malloc(sizeof *new);
+ if (new) {
+ new->data = data;
+ new->parent = NULL;
+ new->left = NULL;
+ new->right = NULL;
+ }
+ return new;
+}
+
+dnode_t *dnode_init(dnode_t *dnode, void *data)
+{
+ dnode->data = data;
+ dnode->parent = NULL;
+ dnode->left = NULL;
+ dnode->right = NULL;
+ return dnode;
+}
+
+void dnode_destroy(dnode_t *dnode)
+{
+ assert (!dnode_is_in_a_dict(dnode));
+ free(dnode);
+}
+
+void *dnode_get(dnode_t *dnode)
+{
+ return dnode->data;
+}
+
+const void *dnode_getkey(dnode_t *dnode)
+{
+ return dnode->key;
+}
+
+#ifdef E2FSCK_NOTUSED
+void dnode_put(dnode_t *dnode, void *data)
+{
+ dnode->data = data;
+}
+
+int dnode_is_in_a_dict(dnode_t *dnode)
+{
+ return (dnode->parent && dnode->left && dnode->right);
+}
+
+void dict_process(dict_t *dict, void *context, dnode_process_t function)
+{
+ dnode_t *node = dict_first(dict), *next;
+
+ while (node != NULL) {
+ /* check for callback function deleting */
+ /* the next node from under us */
+ assert (dict_contains(dict, node));
+ next = dict_next(dict, node);
+ function(dict, node, context);
+ node = next;
+ }
+}
+
+static void load_begin_internal(dict_load_t *load, dict_t *dict)
+{
+ load->dictptr = dict;
+ load->nilnode.left = &load->nilnode;
+ load->nilnode.right = &load->nilnode;
+}
+
+void dict_load_begin(dict_load_t *load, dict_t *dict)
+{
+ assert (dict_isempty(dict));
+ load_begin_internal(load, dict);
+}
+
+void dict_load_next(dict_load_t *load, dnode_t *newnode, const void *key)
+{
+ dict_t *dict = load->dictptr;
+ dnode_t *nil = &load->nilnode;
+
+ assert (!dnode_is_in_a_dict(newnode));
+ assert (dict->nodecount < dict->maxcount);
+
+ #ifndef NDEBUG
+ if (dict->nodecount > 0) {
+ if (dict->dupes)
+ assert (dict->compare(nil->left->key, key) <= 0);
+ else
+ assert (dict->compare(nil->left->key, key) < 0);
+ }
+ #endif
+
+ newnode->key = key;
+ nil->right->left = newnode;
+ nil->right = newnode;
+ newnode->left = nil;
+ dict->nodecount++;
+}
+
+void dict_load_end(dict_load_t *load)
+{
+ dict_t *dict = load->dictptr;
+ dnode_t *tree[DICT_DEPTH_MAX] = { 0 };
+ dnode_t *curr, *dictnil = dict_nil(dict), *loadnil = &load->nilnode, *next;
+ dnode_t *complete = 0;
+ dictcount_t fullcount = DICTCOUNT_T_MAX, nodecount = dict->nodecount;
+ dictcount_t botrowcount;
+ unsigned baselevel = 0, level = 0, i;
+
+ assert (dnode_red == 0 && dnode_black == 1);
+
+ while (fullcount >= nodecount && fullcount)
+ fullcount >>= 1;
+
+ botrowcount = nodecount - fullcount;
+
+ for (curr = loadnil->left; curr != loadnil; curr = next) {
+ next = curr->left;
+
+ if (complete == NULL && botrowcount-- == 0) {
+ assert (baselevel == 0);
+ assert (level == 0);
+ baselevel = level = 1;
+ complete = tree[0];
+
+ if (complete != 0) {
+ tree[0] = 0;
+ complete->right = dictnil;
+ while (tree[level] != 0) {
+ tree[level]->right = complete;
+ complete->parent = tree[level];
+ complete = tree[level];
+ tree[level++] = 0;
+ }
+ }
+ }
+
+ if (complete == NULL) {
+ curr->left = dictnil;
+ curr->right = dictnil;
+ curr->color = level % 2;
+ complete = curr;
+
+ assert (level == baselevel);
+ while (tree[level] != 0) {
+ tree[level]->right = complete;
+ complete->parent = tree[level];
+ complete = tree[level];
+ tree[level++] = 0;
+ }
+ } else {
+ curr->left = complete;
+ curr->color = (level + 1) % 2;
+ complete->parent = curr;
+ tree[level] = curr;
+ complete = 0;
+ level = baselevel;
+ }
+ }
+
+ if (complete == NULL)
+ complete = dictnil;
+
+ for (i = 0; i < DICT_DEPTH_MAX; i++) {
+ if (tree[i] != 0) {
+ tree[i]->right = complete;
+ complete->parent = tree[i];
+ complete = tree[i];
+ }
+ }
+
+ dictnil->color = dnode_black;
+ dictnil->right = dictnil;
+ complete->parent = dictnil;
+ complete->color = dnode_black;
+ dict_root(dict) = complete;
+
+ assert (dict_verify(dict));
+}
+
+void dict_merge(dict_t *dest, dict_t *source)
+{
+ dict_load_t load;
+ dnode_t *leftnode = dict_first(dest), *rightnode = dict_first(source);
+
+ assert (dict_similar(dest, source));
+
+ if (source == dest)
+ return;
+
+ dest->nodecount = 0;
+ load_begin_internal(&load, dest);
+
+ for (;;) {
+ if (leftnode != NULL && rightnode != NULL) {
+ if (dest->compare(leftnode->key, rightnode->key) < 0)
+ goto copyleft;
+ else
+ goto copyright;
+ } else if (leftnode != NULL) {
+ goto copyleft;
+ } else if (rightnode != NULL) {
+ goto copyright;
+ } else {
+ assert (leftnode == NULL && rightnode == NULL);
+ break;
+ }
+
+ copyleft:
+ {
+ dnode_t *next = dict_next(dest, leftnode);
+ #ifndef NDEBUG
+ leftnode->left = NULL; /* suppress assertion in dict_load_next */
+ #endif
+ dict_load_next(&load, leftnode, leftnode->key);
+ leftnode = next;
+ continue;
+ }
+
+ copyright:
+ {
+ dnode_t *next = dict_next(source, rightnode);
+ #ifndef NDEBUG
+ rightnode->left = NULL;
+ #endif
+ dict_load_next(&load, rightnode, rightnode->key);
+ rightnode = next;
+ continue;
+ }
+ }
+
+ dict_clear(source);
+ dict_load_end(&load);
+}
+#endif /* E2FSCK_NOTUSED */
+
+#ifdef KAZLIB_TEST_MAIN
+
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+#include <stdarg.h>
+
+typedef char input_t[256];
+
+static int tokenize(char *string, ...)
+{
+ char **tokptr;
+ va_list arglist;
+ int tokcount = 0;
+
+ va_start(arglist, string);
+ tokptr = va_arg(arglist, char **);
+ while (tokptr) {
+ while (*string && isspace((unsigned char) *string))
+ string++;
+ if (!*string)
+ break;
+ *tokptr = string;
+ while (*string && !isspace((unsigned char) *string))
+ string++;
+ tokptr = va_arg(arglist, char **);
+ tokcount++;
+ if (!*string)
+ break;
+ *string++ = 0;
+ }
+ va_end(arglist);
+
+ return tokcount;
+}
+
+static int comparef(const void *key1, const void *key2)
+{
+ return strcmp(key1, key2);
+}
+
+static char *dupstring(char *str)
+{
+ int sz = strlen(str) + 1;
+ char *new = malloc(sz);
+ if (new)
+ memcpy(new, str, sz);
+ return new;
+}
+
+static dnode_t *new_node(void *c)
+{
+ static dnode_t few[5];
+ static int count;
+
+ if (count < 5)
+ return few + count++;
+
+ return NULL;
+}
+
+static void del_node(dnode_t *n, void *c)
+{
+}
+
+static int prompt = 0;
+
+static void construct(dict_t *d)
+{
+ input_t in;
+ int done = 0;
+ dict_load_t dl;
+ dnode_t *dn;
+ char *tok1, *tok2, *val;
+ const char *key;
+ char *help =
+ "p turn prompt on\n"
+ "q finish construction\n"
+ "a <key> <val> add new entry\n";
+
+ if (!dict_isempty(d))
+ puts("warning: dictionary not empty!");
+
+ dict_load_begin(&dl, d);
+
+ while (!done) {
+ if (prompt)
+ putchar('>');
+ fflush(stdout);
+
+ if (!fgets(in, sizeof(input_t), stdin))
+ break;
+
+ switch (in[0]) {
+ case '?':
+ puts(help);
+ break;
+ case 'p':
+ prompt = 1;
+ break;
+ case 'q':
+ done = 1;
+ break;
+ case 'a':
+ if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+ puts("what?");
+ break;
+ }
+ key = dupstring(tok1);
+ val = dupstring(tok2);
+ dn = dnode_create(val);
+
+ if (!key || !val || !dn) {
+ puts("out of memory");
+ free((void *) key);
+ free(val);
+ if (dn)
+ dnode_destroy(dn);
+ }
+
+ dict_load_next(&dl, dn, key);
+ break;
+ default:
+ putchar('?');
+ putchar('\n');
+ break;
+ }
+ }
+
+ dict_load_end(&dl);
+}
+
+int main(void)
+{
+ input_t in;
+ dict_t darray[10];
+ dict_t *d = &darray[0];
+ dnode_t *dn;
+ int i;
+ char *tok1, *tok2, *val;
+ const char *key;
+
+ char *help =
+ "a <key> <val> add value to dictionary\n"
+ "d <key> delete value from dictionary\n"
+ "l <key> lookup value in dictionary\n"
+ "( <key> lookup lower bound\n"
+ ") <key> lookup upper bound\n"
+ "# <num> switch to alternate dictionary (0-9)\n"
+ "j <num> <num> merge two dictionaries\n"
+ "f free the whole dictionary\n"
+ "k allow duplicate keys\n"
+ "c show number of entries\n"
+ "t dump whole dictionary in sort order\n"
+ "m make dictionary out of sorted items\n"
+ "p turn prompt on\n"
+ "s switch to non-functioning allocator\n"
+ "q quit";
+
+ for (i = 0; i < sizeof darray / sizeof *darray; i++)
+ dict_init(&darray[i], DICTCOUNT_T_MAX, comparef);
+
+ for (;;) {
+ if (prompt)
+ putchar('>');
+ fflush(stdout);
+
+ if (!fgets(in, sizeof(input_t), stdin))
+ break;
+
+ switch(in[0]) {
+ case '?':
+ puts(help);
+ break;
+ case 'a':
+ if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+ puts("what?");
+ break;
+ }
+ key = dupstring(tok1);
+ val = dupstring(tok2);
+
+ if (!key || !val) {
+ puts("out of memory");
+ free((void *) key);
+ free(val);
+ }
+
+ if (!dict_alloc_insert(d, key, val)) {
+ puts("dict_alloc_insert failed");
+ free((void *) key);
+ free(val);
+ break;
+ }
+ break;
+ case 'd':
+ if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+ puts("what?");
+ break;
+ }
+ dn = dict_lookup(d, tok1);
+ if (!dn) {
+ puts("dict_lookup failed");
+ break;
+ }
+ val = dnode_get(dn);
+ key = dnode_getkey(dn);
+ dict_delete_free(d, dn);
+
+ free(val);
+ free((void *) key);
+ break;
+ case 'f':
+ dict_free(d);
+ break;
+ case 'l':
+ case '(':
+ case ')':
+ if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+ puts("what?");
+ break;
+ }
+ dn = 0;
+ switch (in[0]) {
+ case 'l':
+ dn = dict_lookup(d, tok1);
+ break;
+ case '(':
+ dn = dict_lower_bound(d, tok1);
+ break;
+ case ')':
+ dn = dict_upper_bound(d, tok1);
+ break;
+ }
+ if (!dn) {
+ puts("lookup failed");
+ break;
+ }
+ val = dnode_get(dn);
+ puts(val);
+ break;
+ case 'm':
+ construct(d);
+ break;
+ case 'k':
+ dict_allow_dupes(d);
+ break;
+ case 'c':
+ printf("%lu\n", (unsigned long) dict_count(d));
+ break;
+ case 't':
+ for (dn = dict_first(d); dn; dn = dict_next(d, dn)) {
+ printf("%s\t%s\n", (char *) dnode_getkey(dn),
+ (char *) dnode_get(dn));
+ }
+ break;
+ case 'q':
+ exit(0);
+ break;
+ case '\0':
+ break;
+ case 'p':
+ prompt = 1;
+ break;
+ case 's':
+ dict_set_allocator(d, new_node, del_node, NULL);
+ break;
+ case '#':
+ if (tokenize(in+1, &tok1, (char **) 0) != 1) {
+ puts("what?");
+ break;
+ } else {
+ int dictnum = atoi(tok1);
+ if (dictnum < 0 || dictnum > 9) {
+ puts("invalid number");
+ break;
+ }
+ d = &darray[dictnum];
+ }
+ break;
+ case 'j':
+ if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
+ puts("what?");
+ break;
+ } else {
+ int dict1 = atoi(tok1), dict2 = atoi(tok2);
+ if (dict1 < 0 || dict1 > 9 || dict2 < 0 || dict2 > 9) {
+ puts("invalid number");
+ break;
+ }
+ dict_merge(&darray[dict1], &darray[dict2]);
+ }
+ break;
+ default:
+ putchar('?');
+ putchar('\n');
+ break;
+ }
+ }
+
+ return 0;
+}
+
+#endif
--- /dev/null
+/*
+ * Dictionary Abstract Data Type
+ * Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
+ *
+ * Free Software License:
+ *
+ * All rights are reserved by the author, with the following exceptions:
+ * Permission is granted to freely reproduce and distribute this software,
+ * possibly in exchange for a fee, provided that this copyright notice appears
+ * intact. Permission is also granted to adapt this software to produce
+ * derivative works, as long as the modified versions carry this copyright
+ * notice and additional notices stating that the work has been modified.
+ * This source code may be translated into executable form and incorporated
+ * into proprietary software; there is no requirement for such software to
+ * contain a copyright notice related to this source.
+ *
+ * $Id: dict.h,v 1.22.2.6 2000/11/13 01:36:44 kaz Exp $
+ * $Name: kazlib_1_20 $
+ */
+
+#ifndef DICT_H
+#define DICT_H
+
+#include <limits.h>
+#ifdef KAZLIB_SIDEEFFECT_DEBUG
+#include "sfx.h"
+#endif
+
+/*
+ * Blurb for inclusion into C++ translation units
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef unsigned long dictcount_t;
+#define DICTCOUNT_T_MAX ULONG_MAX
+
+/*
+ * The dictionary is implemented as a red-black tree
+ */
+
+typedef enum { dnode_red, dnode_black } dnode_color_t;
+
+typedef struct dnode_t {
+ #if defined(DICT_IMPLEMENTATION) || !defined(KAZLIB_OPAQUE_DEBUG)
+ struct dnode_t *dict_left;
+ struct dnode_t *dict_right;
+ struct dnode_t *dict_parent;
+ dnode_color_t dict_color;
+ const void *dict_key;
+ void *dict_data;
+ #else
+ int dict_dummy;
+ #endif
+} dnode_t;
+
+typedef int (*dict_comp_t)(const void *, const void *);
+typedef dnode_t *(*dnode_alloc_t)(void *);
+typedef void (*dnode_free_t)(dnode_t *, void *);
+
+typedef struct dict_t {
+ #if defined(DICT_IMPLEMENTATION) || !defined(KAZLIB_OPAQUE_DEBUG)
+ dnode_t dict_nilnode;
+ dictcount_t dict_nodecount;
+ dictcount_t dict_maxcount;
+ dict_comp_t dict_compare;
+ dnode_alloc_t dict_allocnode;
+ dnode_free_t dict_freenode;
+ void *dict_context;
+ int dict_dupes;
+ #else
+ int dict_dummmy;
+ #endif
+} dict_t;
+
+typedef void (*dnode_process_t)(dict_t *, dnode_t *, void *);
+
+typedef struct dict_load_t {
+ #if defined(DICT_IMPLEMENTATION) || !defined(KAZLIB_OPAQUE_DEBUG)
+ dict_t *dict_dictptr;
+ dnode_t dict_nilnode;
+ #else
+ int dict_dummmy;
+ #endif
+} dict_load_t;
+
+extern dict_t *dict_create(dictcount_t, dict_comp_t);
+extern void dict_set_allocator(dict_t *, dnode_alloc_t, dnode_free_t, void *);
+extern void dict_destroy(dict_t *);
+extern void dict_free_nodes(dict_t *);
+extern void dict_free(dict_t *);
+extern dict_t *dict_init(dict_t *, dictcount_t, dict_comp_t);
+extern void dict_init_like(dict_t *, const dict_t *);
+extern int dict_verify(dict_t *);
+extern int dict_similar(const dict_t *, const dict_t *);
+extern dnode_t *dict_lookup(dict_t *, const void *);
+extern dnode_t *dict_lower_bound(dict_t *, const void *);
+extern dnode_t *dict_upper_bound(dict_t *, const void *);
+extern void dict_insert(dict_t *, dnode_t *, const void *);
+extern dnode_t *dict_delete(dict_t *, dnode_t *);
+extern int dict_alloc_insert(dict_t *, const void *, void *);
+extern void dict_delete_free(dict_t *, dnode_t *);
+extern dnode_t *dict_first(dict_t *);
+extern dnode_t *dict_last(dict_t *);
+extern dnode_t *dict_next(dict_t *, dnode_t *);
+extern dnode_t *dict_prev(dict_t *, dnode_t *);
+extern dictcount_t dict_count(dict_t *);
+extern int dict_isempty(dict_t *);
+extern int dict_isfull(dict_t *);
+extern int dict_contains(dict_t *, dnode_t *);
+extern void dict_allow_dupes(dict_t *);
+extern int dnode_is_in_a_dict(dnode_t *);
+extern dnode_t *dnode_create(void *);
+extern dnode_t *dnode_init(dnode_t *, void *);
+extern void dnode_destroy(dnode_t *);
+extern void *dnode_get(dnode_t *);
+extern const void *dnode_getkey(dnode_t *);
+extern void dnode_put(dnode_t *, void *);
+extern void dict_process(dict_t *, void *, dnode_process_t);
+extern void dict_load_begin(dict_load_t *, dict_t *);
+extern void dict_load_next(dict_load_t *, dnode_t *, const void *);
+extern void dict_load_end(dict_load_t *);
+extern void dict_merge(dict_t *, dict_t *);
+
+#if defined(DICT_IMPLEMENTATION) || !defined(KAZLIB_OPAQUE_DEBUG)
+#ifdef KAZLIB_SIDEEFFECT_DEBUG
+#define dict_isfull(D) (SFX_CHECK(D)->dict_nodecount == (D)->dict_maxcount)
+#else
+#define dict_isfull(D) ((D)->dict_nodecount == (D)->dict_maxcount)
+#endif
+#define dict_count(D) ((D)->dict_nodecount)
+#define dict_isempty(D) ((D)->dict_nodecount == 0)
+#define dnode_get(N) ((N)->dict_data)
+#define dnode_getkey(N) ((N)->dict_key)
+#define dnode_put(N, X) ((N)->dict_data = (X))
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
#include "e2fsck.h"
#include "problem.h"
+#include "dict.h"
/* Define an extension to the ext2 library's block count information */
#define BLOCK_COUNT_EXTATTR (-5)
-/*
- * This is structure is allocated for each time that a block is
- * claimed by more than one file. So if a particular block is claimed
- * by 3 files, then three copies of this structure will be allocated,
- * one for each conflict.
- *
- * The linked list structure is as follows:
- *
- * dup_blk --> block #34 --> block #35 --> block #47
- * inode #12 inode #14 inode #17
- * num_bad = 3 num_bad = 2 num_bad = 2
- * | | |
- * V V V
- * block #34 block #35 block #47
- * inode #14 inode #15 inode #23
- * |
- * V
- * block #34
- * inode #15
- *
- * The num_bad field indicates how many inodes are sharing a
- * particular block, and is only stored in the first element of the
- * linked list for a particular block. As the block conflicts are
- * resolved, num_bad is decremented; when it reaches 1, then we no
- * longer need to worry about that block.
- */
+struct block_el {
+ blk_t block;
+ struct block_el *next;
+};
+
+struct inode_el {
+ ext2_ino_t inode;
+ struct inode_el *next;
+};
+
struct dup_block {
- blk_t block; /* Block number */
- ext2_ino_t ino; /* Inode number */
int num_bad;
- int flags;
- /* Pointer to next dup record with different block */
- struct dup_block *next_block;
- /* Pointer to next dup record with different inode */
- struct dup_block *next_inode;
+ struct inode_el *inode_list;
};
-#define FLAG_EXTATTR (1)
-
/*
* This structure stores information about a particular inode which
* is sharing blocks with other inodes. This information is collected
* of multiply-claimed blocks.
*/
struct dup_inode {
- ext2_ino_t ino, dir;
+ ext2_ino_t dir;
int num_dupblocks;
struct ext2_inode inode;
- struct dup_inode *next;
+ struct block_el *block_list;
};
static int process_pass1b_block(ext2_filsys fs, blk_t *blocknr,
e2_blkcnt_t blockcnt, blk_t ref_blk,
int ref_offset, void *priv_data);
-static void delete_file(e2fsck_t ctx, struct dup_inode *dp,
- char *block_buf);
-static int clone_file(e2fsck_t ctx, struct dup_inode *dp, char* block_buf);
+static void delete_file(e2fsck_t ctx, ext2_ino_t ino,
+ struct dup_inode *dp, char *block_buf);
+static int clone_file(e2fsck_t ctx, ext2_ino_t ino,
+ struct dup_inode *dp, char* block_buf);
static int check_if_fs_block(e2fsck_t ctx, blk_t test_blk);
static void pass1b(e2fsck_t ctx, char *block_buf);
static void pass1c(e2fsck_t ctx, char *block_buf);
static void pass1d(e2fsck_t ctx, char *block_buf);
-static struct dup_block *dup_blk = 0;
-static struct dup_inode *dup_ino = 0;
static int dup_inode_count = 0;
+static dict_t blk_dict, ino_dict;
+
static ext2fs_inode_bitmap inode_dup_map;
+static int dict_int_cmp(const void *a, const void *b)
+{
+ int ia, ib;
+
+ ia = (int) a;
+ ib = (int) b;
+
+ return (ia-ib);
+}
+
+/*
+ * Add a duplicate block record
+ */
+static void add_dupe(e2fsck_t ctx, ext2_ino_t ino, blk_t blk,
+ struct ext2_inode *inode)
+{
+ dnode_t *n;
+ struct dup_block *db;
+ struct dup_inode *di;
+ struct block_el *blk_el;
+ struct inode_el *ino_el;
+
+ n = dict_lookup(&blk_dict, (void *) blk);
+ if (n)
+ db = (struct dup_block *) dnode_get(n);
+ else {
+ db = (struct dup_block *) e2fsck_allocate_memory(ctx,
+ sizeof(struct dup_block), "duplicate block header");
+ db->num_bad = 0;
+ db->inode_list = 0;
+ dict_alloc_insert(&blk_dict, (void *) blk, db);
+ }
+ ino_el = (struct inode_el *) e2fsck_allocate_memory(ctx,
+ sizeof(struct inode_el), "inode element");
+ ino_el->inode = ino;
+ ino_el->next = db->inode_list;
+ db->inode_list = ino_el;
+ db->num_bad++;
+
+ n = dict_lookup(&ino_dict, (void *) ino);
+ if (n)
+ di = (struct dup_inode *) dnode_get(n);
+ else {
+ di = (struct dup_inode *) e2fsck_allocate_memory(ctx,
+ sizeof(struct dup_inode), "duplicate inode header");
+ di->dir = (ino == EXT2_ROOT_INO) ? EXT2_ROOT_INO : 0 ;
+ di->num_dupblocks = 0;
+ di->block_list = 0;
+ di->inode = *inode;
+ dict_alloc_insert(&ino_dict, (void *) ino, di);
+ }
+ blk_el = (struct block_el *) e2fsck_allocate_memory(ctx,
+ sizeof(struct block_el), "block element");
+ blk_el->block = blk;
+ blk_el->next = di->block_list;
+ di->block_list = blk_el;
+ di->num_dupblocks++;
+}
+
+/*
+ * Free a duplicate inode record
+ */
+static void inode_dnode_free(dnode_t *node, void *context)
+{
+ struct dup_inode *di;
+ struct block_el *p, *next;
+
+ di = (struct dup_inode *) dnode_get(node);
+ for (p = di->block_list; p; p = next) {
+ next = p->next;
+ free(p);
+ }
+ free(node);
+}
+
+/*
+ * Free a duplicate block record
+ */
+static void block_dnode_free(dnode_t *node, void *context)
+{
+ struct dup_block *db;
+ struct inode_el *p, *next;
+
+ db = (struct dup_block *) dnode_get(node);
+ for (p = db->inode_list; p; p = next) {
+ next = p->next;
+ free(p);
+ }
+ free(node);
+}
+
+
/*
* Main procedure for handling duplicate blocks
*/
void e2fsck_pass1_dupblocks(e2fsck_t ctx, char *block_buf)
{
ext2_filsys fs = ctx->fs;
- struct dup_block *p, *q, *next_p, *next_q;
- struct dup_inode *r, *next_r;
struct problem_context pctx;
clear_problem_context(&pctx);
ctx->flags |= E2F_FLAG_ABORT;
return;
}
+
+ dict_init(&ino_dict, DICTCOUNT_T_MAX, dict_int_cmp);
+ dict_init(&blk_dict, DICTCOUNT_T_MAX, dict_int_cmp);
+ dict_set_allocator(&ino_dict, NULL, inode_dnode_free, NULL);
+ dict_set_allocator(&blk_dict, NULL, block_dnode_free, NULL);
pass1b(ctx, block_buf);
pass1c(ctx, block_buf);
* Time to free all of the accumulated data structures that we
* don't need anymore.
*/
- ext2fs_free_inode_bitmap(inode_dup_map); inode_dup_map = 0;
- ext2fs_free_block_bitmap(ctx->block_dup_map); ctx->block_dup_map = 0;
- for (p = dup_blk; p; p = next_p) {
- next_p = p->next_block;
- for (q = p; q; q = next_q) {
- next_q = q->next_inode;
- ext2fs_free_mem((void **) &q);
- }
- }
- for (r = dup_ino; r; r = next_r) {
- next_r = r->next;
- ext2fs_free_mem((void **) &r);
- }
+ dict_free_nodes(&ino_dict);
+ dict_free_nodes(&blk_dict);
}
/*
* Scan the inodes looking for inodes that contain duplicate blocks.
*/
struct process_block_struct {
+ e2fsck_t ctx;
ext2_ino_t ino;
int dup_blocks;
- e2fsck_t ctx;
+ struct ext2_inode *inode;
struct problem_context *pctx;
};
struct ext2_inode inode;
ext2_inode_scan scan;
struct process_block_struct pb;
- struct dup_inode *dp;
- struct dup_block *q, *r;
struct problem_context pctx;
- int i, ea_flag;
clear_problem_context(&pctx);
pb.ino = ino;
pb.dup_blocks = 0;
+ pb.inode = &inode;
pctx.errcode = ext2fs_block_iterate2(fs, ino, 0, block_buf,
process_pass1b_block, &pb);
if (inode.i_file_acl)
BLOCK_COUNT_EXTATTR, 0, 0, &pb);
if (pb.dup_blocks) {
end_problem_latch(ctx, PR_LATCH_DBLOCK);
- dp = (struct dup_inode *) e2fsck_allocate_memory(ctx,
- sizeof(struct dup_inode),
- "duplicate inode record");
- dp->ino = ino;
- dp->dir = 0;
- dp->inode = inode;
- dp->num_dupblocks = pb.dup_blocks;
- dp->next = dup_ino;
- dup_ino = dp;
- if (ino != EXT2_BAD_INO)
+ if (ino >= EXT2_FIRST_INODE(fs->super) ||
+ ino == EXT2_ROOT_INO)
dup_inode_count++;
}
if (pctx.errcode)
}
ext2fs_close_inode_scan(scan);
e2fsck_use_inode_shortcuts(ctx, 0);
- /*
- * Set the num_bad field
- */
- for (q = dup_blk; q; q = q->next_block) {
- i = 0;
- ea_flag = 0;
- for (r = q; r; r = r->next_inode) {
- if (r->flags & FLAG_EXTATTR) {
- if (ea_flag++)
- continue;
- }
- i++;
- }
- q->num_bad = i;
- }
}
static int process_pass1b_block(ext2_filsys fs,
void *priv_data)
{
struct process_block_struct *p;
- struct dup_block *dp, *q;
e2fsck_t ctx;
if (HOLE_BLKADDR(*block_nr))
p = (struct process_block_struct *) priv_data;
ctx = p->ctx;
- if (ext2fs_test_block_bitmap(ctx->block_dup_map, *block_nr)) {
- /* OK, this is a duplicate block */
- if (p->ino != EXT2_BAD_INO) {
- p->pctx->blk = *block_nr;
- fix_problem(ctx, PR_1B_DUP_BLOCK, p->pctx);
- }
- p->dup_blocks++;
- ext2fs_mark_block_bitmap(ctx->block_dup_map, *block_nr);
- ext2fs_mark_inode_bitmap(inode_dup_map, p->ino);
- dp = (struct dup_block *) e2fsck_allocate_memory(ctx,
- sizeof(struct dup_block),
- "duplicate block record");
- dp->block = *block_nr;
- dp->ino = p->ino;
- dp->num_bad = 0;
- dp->flags = (blockcnt == BLOCK_COUNT_EXTATTR) ?
- FLAG_EXTATTR : 0;
- q = dup_blk;
- while (q) {
- if (q->block == *block_nr)
- break;
- q = q->next_block;
- }
- if (q) {
- dp->next_inode = q->next_inode;
- q->next_inode = dp;
- } else {
- dp->next_block = dup_blk;
- dup_blk = dp;
- }
+ if (!ext2fs_test_block_bitmap(ctx->block_dup_map, *block_nr))
+ return 0;
+
+ /* OK, this is a duplicate block */
+ if (p->ino != EXT2_BAD_INO) {
+ p->pctx->blk = *block_nr;
+ fix_problem(ctx, PR_1B_DUP_BLOCK, p->pctx);
}
+ p->dup_blocks++;
+ ext2fs_mark_inode_bitmap(inode_dup_map, p->ino);
+
+ add_dupe(ctx, p->ino, *block_nr, p->inode);
+
return 0;
}
{
struct search_dir_struct *sd;
struct dup_inode *p;
+ dnode_t *n;
sd = (struct search_dir_struct *) priv_data;
/* Should abort this inode, but not everything */
return 0;
- if (!dirent->inode || (entry < DIRENT_OTHER_FILE) ||
+ if ((dirent->inode < sd->first_inode) || (entry < DIRENT_OTHER_FILE) ||
!ext2fs_test_inode_bitmap(inode_dup_map, dirent->inode))
return 0;
- for (p = dup_ino; p; p = p->next) {
- if ((p->ino >= sd->first_inode) &&
- (p->ino == dirent->inode))
- break;
- }
-
- if (!p || p->dir)
+ n = dict_lookup(&ino_dict, (void *) dirent->inode);
+ if (!n)
return 0;
-
+ p = (struct dup_inode *) dnode_get(n);
p->dir = dir;
sd->count--;
static void pass1c(e2fsck_t ctx, char *block_buf)
{
ext2_filsys fs = ctx->fs;
- struct dup_inode *p;
- int inodes_left = dup_inode_count;
struct search_dir_struct sd;
struct problem_context pctx;
fix_problem(ctx, PR_1C_PASS_HEADER, &pctx);
/*
- * First check to see if any of the inodes with dup blocks is
- * a special inode. (Note that the bad block inode isn't
- * counted.)
- */
- for (p = dup_ino; p; p = p->next) {
- if ((p->ino < EXT2_FIRST_INODE(fs->super)) &&
- (p->ino != EXT2_BAD_INO))
- inodes_left--;
- }
-
- /*
* Search through all directories to translate inodes to names
* (by searching for the containing directory for that inode.)
*/
- sd.count = inodes_left;
+ sd.count = dup_inode_count;
sd.first_inode = EXT2_FIRST_INODE(fs->super);
sd.max_inode = fs->super->s_inodes_count;
ext2fs_dblist_dir_iterate(fs->dblist, 0, block_buf,
static void pass1d(e2fsck_t ctx, char *block_buf)
{
ext2_filsys fs = ctx->fs;
- struct dup_inode *p, *s;
- struct dup_block *q, *r;
- ext2_ino_t *shared;
+ struct dup_inode *p, *t;
+ struct dup_block *q;
+ ext2_ino_t *shared, ino;
int shared_len;
int i;
int file_ok;
int meta_data = 0;
struct problem_context pctx;
-
+ dnode_t *n, *m;
+ struct block_el *s;
+ struct inode_el *r;
+
clear_problem_context(&pctx);
fix_problem(ctx, PR_1D_PASS_HEADER, &pctx);
e2fsck_read_bitmaps(ctx);
- pctx.num = dup_inode_count;
+ pctx.num = dup_inode_count; /* dict_count(&ino_dict); */
fix_problem(ctx, PR_1D_NUM_DUP_INODES, &pctx);
shared = (ext2_ino_t *) e2fsck_allocate_memory(ctx,
- sizeof(ext2_ino_t) * dup_inode_count,
+ sizeof(ext2_ino_t) * dict_count(&ino_dict),
"Shared inode list");
- for (p = dup_ino; p; p = p->next) {
+ for (n = dict_first(&ino_dict); n; n = dict_next(&ino_dict, n)) {
+ p = (struct dup_inode *) dnode_get(n);
shared_len = 0;
file_ok = 1;
- if (p->ino == EXT2_BAD_INO)
+ ino = (ext2_ino_t) dnode_getkey(n);
+ if (ino == EXT2_BAD_INO)
continue;
/*
- * Search through the duplicate records to see which
- * inodes share blocks with this one
+ * Find all of the inodes which share blocks with this
+ * one. First we find all of the duplicate blocks
+ * belonging to this inode, and then search each block
+ * get the list of inodes, and merge them together.
*/
- for (q = dup_blk; q; q = q->next_block) {
- /*
- * See if this block is used by this inode.
- * If it isn't, continue.
- */
- for (r = q; r; r = r->next_inode)
- if (r->ino == p->ino)
- break;
- if (!r)
- continue;
+ for (s = p->block_list; s; s = s->next) {
+ m = dict_lookup(&blk_dict, (void *) s->block);
+ if (!m)
+ continue; /* Should never happen... */
+ q = (struct dup_block *) dnode_get(m);
if (q->num_bad > 1)
file_ok = 0;
- if (check_if_fs_block(ctx, q->block)) {
+ if (check_if_fs_block(ctx, s->block)) {
file_ok = 0;
meta_data = 1;
}
* if an inode is already in shared[], don't
* add it again.
*/
- for (r = q; r; r = r->next_inode) {
- if (r->ino == p->ino)
+ for (r = q->inode_list; r; r = r->next) {
+ if (r->inode == ino)
continue;
for (i = 0; i < shared_len; i++)
- if (shared[i] == r->ino)
+ if (shared[i] == r->inode)
break;
if (i == shared_len) {
- shared[shared_len++] = r->ino;
+ shared[shared_len++] = r->inode;
}
}
}
* Report the inode that we are working on
*/
pctx.inode = &p->inode;
- pctx.ino = p->ino;
+ pctx.ino = ino;
pctx.dir = p->dir;
pctx.blkcount = p->num_dupblocks;
pctx.num = meta_data ? shared_len+1 : shared_len;
fix_problem(ctx, PR_1D_SHARE_METADATA, &pctx);
for (i = 0; i < shared_len; i++) {
- for (s = dup_ino; s; s = s->next)
- if (s->ino == shared[i])
- break;
- if (!s)
- continue;
+ m = dict_lookup(&ino_dict, (void *) shared[i]);
+ if (!m)
+ continue; /* should never happen */
+ t = (struct dup_inode *) dnode_get(m);
/*
* Report the inode that we are sharing with
*/
- pctx.inode = &s->inode;
- pctx.ino = s->ino;
- pctx.dir = s->dir;
+ pctx.inode = &t->inode;
+ pctx.ino = shared[i];
+ pctx.dir = t->dir;
fix_problem(ctx, PR_1D_DUP_FILE_LIST, &pctx);
}
if (file_ok) {
continue;
}
if (fix_problem(ctx, PR_1D_CLONE_QUESTION, &pctx)) {
- pctx.errcode = clone_file(ctx, p, block_buf);
+ pctx.errcode = clone_file(ctx, ino, p, block_buf);
if (pctx.errcode)
fix_problem(ctx, PR_1D_CLONE_ERROR, &pctx);
else
continue;
}
if (fix_problem(ctx, PR_1D_DELETE_QUESTION, &pctx))
- delete_file(ctx, p, block_buf);
+ delete_file(ctx, ino, p, block_buf);
else
ext2fs_unmark_valid(fs);
}
* Drop the refcount on the dup_block structure, and clear the entry
* in the block_dup_map if appropriate.
*/
-static void decrement_badcount(e2fsck_t ctx, struct dup_block *p)
+static void decrement_badcount(e2fsck_t ctx, blk_t block, struct dup_block *p)
{
p->num_bad--;
if (p->num_bad <= 0 ||
- (p->num_bad == 1 && !check_if_fs_block(ctx, p->block)))
- ext2fs_unmark_block_bitmap(ctx->block_dup_map, p->block);
+ (p->num_bad == 1 && !check_if_fs_block(ctx, block)))
+ ext2fs_unmark_block_bitmap(ctx->block_dup_map, block);
}
static int delete_file_block(ext2_filsys fs,
{
struct process_block_struct *pb;
struct dup_block *p;
+ dnode_t *n;
e2fsck_t ctx;
pb = (struct process_block_struct *) priv_data;
return 0;
if (ext2fs_test_block_bitmap(ctx->block_dup_map, *block_nr)) {
- for (p = dup_blk; p; p = p->next_block)
- if (p->block == *block_nr)
- break;
- if (p) {
- decrement_badcount(ctx, p);
+ n = dict_lookup(&blk_dict, (void *) *block_nr);
+ if (n) {
+ p = (struct dup_block *) dnode_get(n);
+ decrement_badcount(ctx, *block_nr, p);
} else
com_err("delete_file_block", 0,
_("internal error; can't find dup_blk for %d\n"),
return 0;
}
-static void delete_file(e2fsck_t ctx, struct dup_inode *dp, char* block_buf)
+static void delete_file(e2fsck_t ctx, ext2_ino_t ino,
+ struct dup_inode *dp, char* block_buf)
{
ext2_filsys fs = ctx->fs;
struct process_block_struct pb;
struct problem_context pctx;
clear_problem_context(&pctx);
- pctx.ino = pb.ino = dp->ino;
+ pctx.ino = pb.ino = ino;
pb.dup_blocks = dp->num_dupblocks;
pb.ctx = ctx;
pctx.str = "delete_file";
- pctx.errcode = ext2fs_block_iterate2(fs, dp->ino, 0, block_buf,
+ pctx.errcode = ext2fs_block_iterate2(fs, ino, 0, block_buf,
delete_file_block, &pb);
if (pctx.errcode)
fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx);
- ext2fs_unmark_inode_bitmap(ctx->inode_used_map, dp->ino);
- ext2fs_unmark_inode_bitmap(ctx->inode_dir_map, dp->ino);
+ ext2fs_unmark_inode_bitmap(ctx->inode_used_map, ino);
+ ext2fs_unmark_inode_bitmap(ctx->inode_dir_map, ino);
if (ctx->inode_bad_map)
- ext2fs_unmark_inode_bitmap(ctx->inode_bad_map, dp->ino);
- ext2fs_unmark_inode_bitmap(fs->inode_map, dp->ino);
+ ext2fs_unmark_inode_bitmap(ctx->inode_bad_map, ino);
+ ext2fs_unmark_inode_bitmap(fs->inode_map, ino);
ext2fs_mark_ib_dirty(fs);
ext2fs_mark_bb_dirty(fs);
- e2fsck_read_inode(ctx, dp->ino, &inode, "delete_file");
+ e2fsck_read_inode(ctx, ino, &inode, "delete_file");
inode.i_links_count = 0;
inode.i_dtime = time(0);
if (inode.i_file_acl)
delete_file_block(fs, &inode.i_file_acl,
BLOCK_COUNT_EXTATTR, 0, 0, &pb);
- e2fsck_write_inode(ctx, dp->ino, &inode, "delete_file");
+ e2fsck_write_inode(ctx, ino, &inode, "delete_file");
}
struct clone_struct {
blk_t new_block;
errcode_t retval;
struct clone_struct *cs = (struct clone_struct *) priv_data;
+ dnode_t *n;
e2fsck_t ctx;
ctx = cs->ctx;
return 0;
if (ext2fs_test_block_bitmap(ctx->block_dup_map, *block_nr)) {
- for (p = dup_blk; p; p = p->next_block)
- if (p->block == *block_nr)
- break;
- if (p) {
+ n = dict_lookup(&blk_dict, (void *) *block_nr);
+ if (n) {
+ p = (struct dup_block *) dnode_get(n);
retval = ext2fs_new_block(fs, 0, ctx->block_found_map,
&new_block);
if (retval) {
cs->errcode = retval;
return BLOCK_ABORT;
}
- decrement_badcount(ctx, p);
+ decrement_badcount(ctx, *block_nr, p);
*block_nr = new_block;
ext2fs_mark_block_bitmap(ctx->block_found_map,
new_block);
return 0;
}
-static int clone_file(e2fsck_t ctx, struct dup_inode *dp, char* block_buf)
+static int clone_file(e2fsck_t ctx, ext2_ino_t ino,
+ struct dup_inode *dp, char* block_buf)
{
ext2_filsys fs = ctx->fs;
errcode_t retval;
struct clone_struct cs;
struct problem_context pctx;
blk_t blk;
+ dnode_t *n;
+ struct inode_el *ino_el;
+ struct dup_block *db;
+ struct dup_inode *di;
clear_problem_context(&pctx);
cs.errcode = 0;
if (retval)
return retval;
- if (ext2fs_test_inode_bitmap(ctx->inode_dir_map, dp->ino))
- cs.dir = dp->ino;
+ if (ext2fs_test_inode_bitmap(ctx->inode_dir_map, ino))
+ cs.dir = ino;
- pctx.ino = dp->ino;
+ pctx.ino = ino;
pctx.str = "clone_file";
- pctx.errcode = ext2fs_block_iterate2(fs, dp->ino, 0, block_buf,
+ pctx.errcode = ext2fs_block_iterate2(fs, ino, 0, block_buf,
clone_file_block, &cs);
ext2fs_mark_bb_dirty(fs);
if (pctx.errcode) {
if (blk && (clone_file_block(fs, &dp->inode.i_file_acl,
BLOCK_COUNT_EXTATTR, 0, 0, &cs) ==
BLOCK_CHANGED)) {
- struct dup_block *p, *q;
- struct dup_inode *r;
-
+ e2fsck_write_inode(ctx, ino, &dp->inode, "clone file EA");
/*
* If we cloned the EA block, find all other inodes
* which refered to that EA block, and modify
* them to point to the new EA block.
*/
- for (p = dup_blk; p; p = p->next_block) {
- if (p->block == blk)
- break;
- }
- for (q = p; q ; q = q->next_inode) {
- if (!(q->flags & FLAG_EXTATTR))
+ n = dict_lookup(&blk_dict, (void *) blk);
+ db = (struct dup_block *) dnode_get(n);
+ for (ino_el = db->inode_list; ino_el; ino_el = ino_el->next) {
+ if (ino_el->inode == ino)
continue;
- for (r = dup_ino; r; r = r->next)
- if (r->ino == q->ino)
- break;
- if (r) {
- r->inode.i_file_acl = dp->inode.i_file_acl;
- e2fsck_write_inode(ctx, q->ino, &r->inode,
- "clone file EA");
+ n = dict_lookup(&ino_dict, (void *) ino_el->inode);
+ di = (struct dup_inode *) dnode_get(n);
+ if (di->inode.i_file_acl == blk) {
+ di->inode.i_file_acl = dp->inode.i_file_acl;
+ e2fsck_write_inode(ctx, ino_el->inode,
+ &dp->inode, "clone file EA");
+ decrement_badcount(ctx, blk, db);
}
- q->ino = 0; /* Should free the structure... */
- decrement_badcount(ctx, p);
}
}
retval = 0;
+2002-08-01 Theodore Ts'o <tytso@mit.edu>
+
+ * f_dup, f_dup2, f_dup3, f_bbfile, f_dupfsblks: Update expect
+ scripts to deal with ordering changes caused by use of a
+ red-block tree in pass1b.
+
2002-07-19 Theodore Ts'o <tytso@mit.edu>
* f_expand, f_h_badnode, f_h_badroot: Modify the expect scripts to
Pass 1D: Reconciling duplicate blocks
(There are 3 inodes containing duplicate/bad blocks.)
-File /termcap (inode #12, mod time Sun Jan 2 08:29:13 1994)
- has 2 duplicate block(s), shared with 1 file(s):
+File / (inode #2, mod time Sun Jan 2 08:29:13 1994)
+ has 1 duplicate block(s), shared with 1 file(s):
<The bad blocks inode> (inode #1, mod time Sun Jul 17 00:47:58 1994)
Clone duplicate/bad blocks? yes
<The bad blocks inode> (inode #1, mod time Sun Jul 17 00:47:58 1994)
Clone duplicate/bad blocks? yes
-File / (inode #2, mod time Sun Jan 2 08:29:13 1994)
- has 1 duplicate block(s), shared with 1 file(s):
+File /termcap (inode #12, mod time Sun Jan 2 08:29:13 1994)
+ has 2 duplicate block(s), shared with 1 file(s):
<The bad blocks inode> (inode #1, mod time Sun Jul 17 00:47:58 1994)
Clone duplicate/bad blocks? yes
Pass 1D: Reconciling duplicate blocks
(There are 2 inodes containing duplicate/bad blocks.)
-File /motd (inode #13, mod time Tue Sep 21 03:19:20 1993)
+File /termcap (inode #12, mod time Tue Sep 21 03:19:14 1993)
has 2 duplicate block(s), shared with 1 file(s):
- /termcap (inode #12, mod time Tue Sep 21 03:19:14 1993)
+ /motd (inode #13, mod time Tue Sep 21 03:19:20 1993)
Clone duplicate/bad blocks? yes
-File /termcap (inode #12, mod time Tue Sep 21 03:19:14 1993)
+File /motd (inode #13, mod time Tue Sep 21 03:19:20 1993)
has 2 duplicate block(s), shared with 1 file(s):
- /motd (inode #13, mod time Tue Sep 21 03:19:20 1993)
+ /termcap (inode #12, mod time Tue Sep 21 03:19:14 1993)
Duplicated blocks already reassigned or cloned.
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
-test_filesys: 13/16 files (7.7% non-contiguous), 40/100 blocks
+test_filesys: 13/16 files (15.4% non-contiguous), 40/100 blocks
Exit status is 0
Pass 1D: Reconciling duplicate blocks
(There are 3 inodes containing duplicate/bad blocks.)
-File /pass1.c (inode #14, mod time Tue Sep 21 04:28:37 1993)
+File /termcap (inode #12, mod time Tue Sep 21 03:19:14 1993)
has 2 duplicate block(s), shared with 1 file(s):
/motd (inode #13, mod time Tue Sep 21 03:19:20 1993)
Clone duplicate/bad blocks? yes
/termcap (inode #12, mod time Tue Sep 21 03:19:14 1993)
Clone duplicate/bad blocks? yes
-File /termcap (inode #12, mod time Tue Sep 21 03:19:14 1993)
+File /pass1.c (inode #14, mod time Tue Sep 21 04:28:37 1993)
has 2 duplicate block(s), shared with 1 file(s):
/motd (inode #13, mod time Tue Sep 21 03:19:20 1993)
Duplicated blocks already reassigned or cloned.
Pass 1D: Reconciling duplicate blocks
(There are 3 inodes containing duplicate/bad blocks.)
-File /e2fsck (inode #16, mod time Tue Sep 21 04:32:22 1993)
+File /lost+found (inode #11, mod time Mon Sep 20 03:26:36 1993)
has 2 duplicate block(s), shared with 0 file(s):
Clone duplicate/bad blocks? yes
has 2 duplicate block(s), shared with 0 file(s):
Clone duplicate/bad blocks? yes
-File /lost+found (inode #11, mod time Mon Sep 20 03:26:36 1993)
+File /e2fsck (inode #16, mod time Tue Sep 21 04:32:22 1993)
has 2 duplicate block(s), shared with 0 file(s):
Clone duplicate/bad blocks? yes
Pass 1D: Reconciling duplicate blocks
(There are 3 inodes containing duplicate/bad blocks.)
-File /quux (inode #14, mod time Thu Aug 5 07:18:09 1999)
- has 1 duplicate block(s), shared with 2 file(s):
+File /foo (inode #12, mod time Thu Apr 28 17:57:53 1994)
+ has 4 duplicate block(s), shared with 2 file(s):
<filesystem metadata>
/bar (inode #13, mod time Thu Aug 5 07:17:17 1999)
Clone duplicate/bad blocks? yes
File /bar (inode #13, mod time Thu Aug 5 07:17:17 1999)
has 2 duplicate block(s), shared with 3 file(s):
<filesystem metadata>
- /quux (inode #14, mod time Thu Aug 5 07:18:09 1999)
/foo (inode #12, mod time Thu Apr 28 17:57:53 1994)
+ /quux (inode #14, mod time Thu Aug 5 07:18:09 1999)
Clone duplicate/bad blocks? yes
-File /foo (inode #12, mod time Thu Apr 28 17:57:53 1994)
- has 4 duplicate block(s), shared with 2 file(s):
+File /quux (inode #14, mod time Thu Aug 5 07:18:09 1999)
+ has 1 duplicate block(s), shared with 2 file(s):
<filesystem metadata>
/bar (inode #13, mod time Thu Aug 5 07:17:17 1999)
Clone duplicate/bad blocks? yes
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
-test_filesys: 14/32 files (7.1% non-contiguous), 30/100 blocks
+test_filesys: 14/32 files (0.0% non-contiguous), 30/100 blocks
Exit status is 0