Whamcloud - gitweb
b=22309 get and validate lock before issuing readahead
[fs/lustre-release.git] / lustre / llite / rw.c
1 /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
2  * vim:expandtab:shiftwidth=8:tabstop=8:
3  *
4  * GPL HEADER START
5  *
6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 only,
10  * as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License version 2 for more details (a copy is included
16  * in the LICENSE file that accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License
19  * version 2 along with this program; If not, see
20  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
21  *
22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
23  * CA 95054 USA or visit www.sun.com if you need additional information or
24  * have any questions.
25  *
26  * GPL HEADER END
27  */
28 /*
29  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
30  * Use is subject to license terms.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/llite/rw.c
37  *
38  * Lustre Lite I/O page cache routines shared by different kernel revs
39  */
40
41 #ifndef AUTOCONF_INCLUDED
42 #include <linux/config.h>
43 #endif
44 #include <linux/kernel.h>
45 #include <linux/mm.h>
46 #include <linux/string.h>
47 #include <linux/stat.h>
48 #include <linux/errno.h>
49 #include <linux/smp_lock.h>
50 #include <linux/unistd.h>
51 #include <linux/version.h>
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54
55 #include <linux/fs.h>
56 #include <linux/stat.h>
57 #include <asm/uaccess.h>
58 #include <linux/mm.h>
59 #include <linux/pagemap.h>
60 #include <linux/smp_lock.h>
61
62 #define DEBUG_SUBSYSTEM S_LLITE
63
64 #include <linux/page-flags.h>
65
66 #include <lustre_lite.h>
67 #include "llite_internal.h"
68 #include <linux/lustre_compat25.h>
69
70 #ifndef list_for_each_prev_safe
71 #define list_for_each_prev_safe(pos, n, head) \
72         for (pos = (head)->prev, n = pos->prev; pos != (head); \
73                 pos = n, n = pos->prev )
74 #endif
75
76 cfs_mem_cache_t *ll_async_page_slab = NULL;
77 size_t ll_async_page_slab_size = 0;
78
79 /* SYNCHRONOUS I/O to object storage for an inode */
80 static int ll_brw(int cmd, struct inode *inode, struct obdo *oa,
81                   struct page *page, int flags)
82 {
83         struct ll_inode_info *lli = ll_i2info(inode);
84         struct lov_stripe_md *lsm = lli->lli_smd;
85         struct obd_info oinfo = { { { 0 } } };
86         struct brw_page pg;
87         int rc;
88         ENTRY;
89
90         pg.pg = page;
91         pg.off = ((obd_off)page->index) << CFS_PAGE_SHIFT;
92
93         if ((cmd & OBD_BRW_WRITE) && (pg.off+CFS_PAGE_SIZE>i_size_read(inode)))
94                 pg.count = i_size_read(inode) % CFS_PAGE_SIZE;
95         else
96                 pg.count = CFS_PAGE_SIZE;
97
98         LL_CDEBUG_PAGE(D_PAGE, page, "%s %d bytes ino %lu at "LPU64"/"LPX64"\n",
99                        cmd & OBD_BRW_WRITE ? "write" : "read", pg.count,
100                        inode->i_ino, pg.off, pg.off);
101         if (pg.count == 0) {
102                 CERROR("ZERO COUNT: ino %lu: size %p:%Lu(%p:%Lu) idx %lu off "
103                        LPU64"\n", inode->i_ino, inode, i_size_read(inode),
104                        page->mapping->host, i_size_read(page->mapping->host),
105                        page->index, pg.off);
106         }
107
108         pg.flag = flags;
109
110         if (cmd & OBD_BRW_WRITE)
111                 ll_stats_ops_tally(ll_i2sbi(inode), LPROC_LL_BRW_WRITE,
112                                    pg.count);
113         else
114                 ll_stats_ops_tally(ll_i2sbi(inode), LPROC_LL_BRW_READ,
115                            pg.count);
116         oinfo.oi_oa = oa;
117         oinfo.oi_md = lsm;
118         rc = obd_brw(cmd, ll_i2obdexp(inode), &oinfo, 1, &pg, NULL);
119         if (rc == 0)
120                 obdo_to_inode(inode, oa, OBD_MD_FLBLOCKS);
121         else if (rc != -EIO)
122                 CERROR("error from obd_brw: rc = %d\n", rc);
123         RETURN(rc);
124 }
125
126 int ll_file_punch(struct inode * inode, loff_t new_size, int srvlock)
127 {
128         struct ll_inode_info *lli = ll_i2info(inode);
129         struct obd_info oinfo = { { { 0 } } };
130         struct obdo oa = { 0 };
131         obd_valid valid;
132         int rc;
133
134         ENTRY;
135         CDEBUG(D_INFO, "calling punch for "LPX64" (new size %Lu=%#Lx)\n",
136                lli->lli_smd->lsm_object_id, new_size, new_size);
137
138         oinfo.oi_md = lli->lli_smd;
139         oinfo.oi_policy.l_extent.start = new_size;
140         oinfo.oi_policy.l_extent.end = OBD_OBJECT_EOF;
141         oinfo.oi_oa = &oa;
142         oa.o_id = lli->lli_smd->lsm_object_id;
143         oa.o_gr = lli->lli_smd->lsm_object_gr;
144         oa.o_valid = OBD_MD_FLID | OBD_MD_FLGROUP;
145
146         valid = OBD_MD_FLTYPE | OBD_MD_FLMODE |OBD_MD_FLFID |
147                 OBD_MD_FLATIME | OBD_MD_FLUID | OBD_MD_FLGID | OBD_MD_FLGENER |
148                 OBD_MD_FLBLOCKS;
149         if (srvlock) {
150                 /* set OBD_MD_FLFLAGS in o_valid, only if we
151                  * set OBD_FL_TRUNCLOCK, otherwise ost_punch
152                  * and filter_setattr get confused, see the comment
153                  * in ost_punch */
154                 oa.o_flags = OBD_FL_TRUNCLOCK;
155                 oa.o_valid |= OBD_MD_FLFLAGS;
156
157                 /* lockless truncate
158                  *
159                  * 1. do not use inode's timestamps because concurrent
160                  * stat might fill the inode with out-of-date times,
161                  * send current instead
162                  *
163                  * 2.do no update lsm, as long as stat (via
164                  * ll_glimpse_size) will bring attributes from osts
165                  * anyway */
166                 oa.o_mtime = oa.o_ctime = LTIME_S(CURRENT_TIME);
167                 oa.o_valid |= OBD_MD_FLMTIME | OBD_MD_FLCTIME;
168         } else {
169                 struct ost_lvb *xtimes;
170                 /* truncate under locks
171                  *
172                  * 1. update inode's mtime and ctime as long as
173                  * concurrent stat (via ll_glimpse_size) might bring
174                  * out-of-date ones
175                  *
176                  * 2. update lsm so that next stat (via
177                  * ll_glimpse_size) could get correct values in lsm */
178                 OBD_ALLOC_PTR(xtimes);
179                 if (NULL == xtimes)
180                         RETURN(-ENOMEM);
181
182                 lov_stripe_lock(lli->lli_smd);
183                 LTIME_S(inode->i_mtime) = LTIME_S(CURRENT_TIME);
184                 LTIME_S(inode->i_ctime) = LTIME_S(CURRENT_TIME);
185                 xtimes->lvb_mtime = LTIME_S(inode->i_mtime);
186                 xtimes->lvb_ctime = LTIME_S(inode->i_ctime);
187                 obd_update_lvb(ll_i2obdexp(inode), lli->lli_smd, xtimes,
188                                OBD_MD_FLMTIME | OBD_MD_FLCTIME);
189                 lov_stripe_unlock(lli->lli_smd);
190                 OBD_FREE_PTR(xtimes);
191
192                 valid |= OBD_MD_FLMTIME | OBD_MD_FLCTIME;
193         }
194         obdo_from_inode(&oa, inode, valid);
195
196         rc = obd_punch_rqset(ll_i2obdexp(inode), &oinfo, NULL);
197         if (rc) {
198                 CERROR("obd_truncate fails (%d) ino %lu\n", rc, inode->i_ino);
199                 RETURN(rc);
200         }
201         obdo_to_inode(inode, &oa, OBD_MD_FLSIZE | OBD_MD_FLBLOCKS |
202                       OBD_MD_FLATIME | OBD_MD_FLMTIME | OBD_MD_FLCTIME);
203         RETURN(0);
204 }
205 /* this isn't where truncate starts.   roughly:
206  * sys_truncate->ll_setattr_raw->vmtruncate->ll_truncate. setattr_raw grabs
207  * DLM lock on [size, EOF], i_mutex, ->lli_size_sem, and WRITE_I_ALLOC_SEM to
208  * avoid races.
209  *
210  * must be called under ->lli_size_sem */
211 void ll_truncate(struct inode *inode)
212 {
213         struct ll_inode_info *lli = ll_i2info(inode);
214         int srvlock = test_bit(LLI_F_SRVLOCK, &lli->lli_flags);
215         loff_t new_size;
216         ENTRY;
217         CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu/%u(%p) to %Lu=%#Lx\n",
218                inode->i_ino, inode->i_generation, inode, i_size_read(inode),
219                i_size_read(inode));
220
221         ll_stats_ops_tally(ll_i2sbi(inode), LPROC_LL_TRUNC, 1);
222         if (lli->lli_size_sem_owner != current) {
223                 EXIT;
224                 return;
225         }
226
227         if (!lli->lli_smd) {
228                 CDEBUG(D_INODE, "truncate on inode %lu with no objects\n",
229                        inode->i_ino);
230                 GOTO(out_unlock, 0);
231         }
232
233         LASSERT(SEM_COUNT(&lli->lli_size_sem) <= 0);
234
235         if (!srvlock) {
236                 struct ost_lvb lvb;
237                 int rc;
238
239                 /* XXX I'm pretty sure this is a hack to paper over a more
240                  * fundamental race condition. */
241                 lov_stripe_lock(lli->lli_smd);
242                 inode_init_lvb(inode, &lvb);
243                 rc = obd_merge_lvb(ll_i2obdexp(inode), lli->lli_smd, &lvb, 0);
244                 inode->i_blocks = lvb.lvb_blocks;
245                 if (lvb.lvb_size == i_size_read(inode) && rc == 0) {
246                         CDEBUG(D_VFSTRACE, "skipping punch for obj "LPX64
247                                ", %Lu=%#Lx\n",
248                                lli->lli_smd->lsm_object_id, i_size_read(inode),
249                                i_size_read(inode));
250                         lov_stripe_unlock(lli->lli_smd);
251                         GOTO(out_unlock, 0);
252                 }
253
254                 obd_adjust_kms(ll_i2obdexp(inode), lli->lli_smd,
255                                i_size_read(inode), 1);
256                 lov_stripe_unlock(lli->lli_smd);
257         }
258
259         if (unlikely((ll_i2sbi(inode)->ll_flags & LL_SBI_LLITE_CHECKSUM) &&
260                      (i_size_read(inode) & ~CFS_PAGE_MASK))) {
261                 /* If the truncate leaves a partial page, update its checksum */
262                 struct page *page = find_get_page(inode->i_mapping,
263                                                   i_size_read(inode) >>
264                                                   CFS_PAGE_SHIFT);
265                 if (page != NULL) {
266                         struct ll_async_page *llap = llap_cast_private(page);
267                         if (llap != NULL) {
268                                 char *kaddr = kmap_atomic(page, KM_USER0);
269                                 llap->llap_checksum =
270                                         init_checksum(OSC_DEFAULT_CKSUM);
271                                 llap->llap_checksum =
272                                         compute_checksum(llap->llap_checksum,
273                                                          kaddr, CFS_PAGE_SIZE,
274                                                          OSC_DEFAULT_CKSUM);
275                                 kunmap_atomic(kaddr, KM_USER0);
276                         }
277                         page_cache_release(page);
278                 }
279         }
280
281         new_size = i_size_read(inode);
282         ll_inode_size_unlock(inode, 0);
283         if (!srvlock)
284                 ll_file_punch(inode, new_size, 0);
285         else
286                 ll_stats_ops_tally(ll_i2sbi(inode), LPROC_LL_LOCKLESS_TRUNC, 1);
287
288         EXIT;
289         return;
290
291  out_unlock:
292         ll_inode_size_unlock(inode, 0);
293 } /* ll_truncate */
294
295 int ll_prepare_write(struct file *file, struct page *page, unsigned from,
296                      unsigned to)
297 {
298         struct inode *inode = page->mapping->host;
299         struct ll_inode_info *lli = ll_i2info(inode);
300         struct lov_stripe_md *lsm = lli->lli_smd;
301         obd_off offset = ((obd_off)page->index) << CFS_PAGE_SHIFT;
302         struct obd_info oinfo = { { { 0 } } };
303         struct brw_page pga;
304         struct obdo oa = { 0 };
305         struct ost_lvb lvb;
306         int rc = 0;
307         ENTRY;
308
309         LASSERT(PageLocked(page));
310         (void)llap_cast_private(page); /* assertion */
311
312         /* Check to see if we should return -EIO right away */
313         pga.pg = page;
314         pga.off = offset;
315         pga.count = CFS_PAGE_SIZE;
316         pga.flag = 0;
317
318         oa.o_mode = inode->i_mode;
319         oa.o_id = lsm->lsm_object_id;
320         oa.o_gr = lsm->lsm_object_gr;
321         oa.o_valid = OBD_MD_FLID   | OBD_MD_FLMODE |
322                      OBD_MD_FLTYPE | OBD_MD_FLGROUP;
323         obdo_from_inode(&oa, inode, OBD_MD_FLFID | OBD_MD_FLGENER);
324
325         oinfo.oi_oa = &oa;
326         oinfo.oi_md = lsm;
327         rc = obd_brw(OBD_BRW_CHECK, ll_i2obdexp(inode), &oinfo, 1, &pga, NULL);
328         if (rc)
329                 RETURN(rc);
330
331         if (PageUptodate(page)) {
332                 LL_CDEBUG_PAGE(D_PAGE, page, "uptodate\n");
333                 RETURN(0);
334         }
335
336         /* We're completely overwriting an existing page, so _don't_ set it up
337          * to date until commit_write */
338         if (from == 0 && to == CFS_PAGE_SIZE) {
339                 LL_CDEBUG_PAGE(D_PAGE, page, "full page write\n");
340                 POISON_PAGE(page, 0x11);
341                 RETURN(0);
342         }
343
344         /* If are writing to a new page, no need to read old data.  The extent
345          * locking will have updated the KMS, and for our purposes here we can
346          * treat it like i_size. */
347         lov_stripe_lock(lsm);
348         inode_init_lvb(inode, &lvb);
349         obd_merge_lvb(ll_i2obdexp(inode), lsm, &lvb, 1);
350         lov_stripe_unlock(lsm);
351         if (lvb.lvb_size <= offset) {
352                 char *kaddr = kmap_atomic(page, KM_USER0);
353                 LL_CDEBUG_PAGE(D_PAGE, page, "kms "LPU64" <= offset "LPU64"\n",
354                                lvb.lvb_size, offset);
355                 memset(kaddr, 0, CFS_PAGE_SIZE);
356                 kunmap_atomic(kaddr, KM_USER0);
357                 GOTO(prepare_done, rc = 0);
358         }
359
360         /* XXX could be an async ocp read.. read-ahead? */
361         rc = ll_brw(OBD_BRW_READ, inode, &oa, page, 0);
362         if (rc == 0) {
363                 /* bug 1598: don't clobber blksize */
364                 oa.o_valid &= ~(OBD_MD_FLSIZE | OBD_MD_FLBLKSZ);
365                 obdo_refresh_inode(inode, &oa, oa.o_valid);
366         }
367
368         EXIT;
369  prepare_done:
370         if (rc == 0)
371                 SetPageUptodate(page);
372
373         return rc;
374 }
375
376 /**
377  * make page ready for ASYNC write
378  * \param data - pointer to llap cookie
379  * \param cmd - is OBD_BRW_* macroses
380  *
381  * \retval 0 is page successfully prepared to send
382  * \retval -EAGAIN is page not need to send
383  */
384 static int ll_ap_make_ready(void *data, int cmd)
385 {
386         struct ll_async_page *llap;
387         struct page *page;
388         ENTRY;
389
390         llap = LLAP_FROM_COOKIE(data);
391         page = llap->llap_page;
392
393         /* we're trying to write, but the page is locked.. come back later */
394         if (TryLockPage(page))
395                 RETURN(-EAGAIN);
396
397         LASSERTF(!(cmd & OBD_BRW_READ) || !PageWriteback(page),
398                 "cmd %x page %p ino %lu index %lu fl %lx\n", cmd, page,
399                  page->mapping->host->i_ino, page->index, (long)page->flags);
400
401         /* if we left PageDirty we might get another writepage call
402          * in the future.  list walkers are bright enough
403          * to check page dirty so we can leave it on whatever list
404          * its on.  XXX also, we're called with the cli list so if
405          * we got the page cache list we'd create a lock inversion
406          * with the removepage path which gets the page lock then the
407          * cli lock */
408         if(!clear_page_dirty_for_io(page)) {
409                 unlock_page(page);
410                 RETURN(-EAGAIN);
411         }
412
413         /* This actually clears the dirty bit in the radix tree.*/
414         set_page_writeback(page);
415
416         LL_CDEBUG_PAGE(D_PAGE, page, "made ready\n");
417         page_cache_get(page);
418
419         RETURN(0);
420 }
421
422 /* We have two reasons for giving llite the opportunity to change the
423  * write length of a given queued page as it builds the RPC containing
424  * the page:
425  *
426  * 1) Further extending writes may have landed in the page cache
427  *    since a partial write first queued this page requiring us
428  *    to write more from the page cache.  (No further races are possible,
429  *    since by the time this is called, the page is locked.)
430  * 2) We might have raced with truncate and want to avoid performing
431  *    write RPCs that are just going to be thrown away by the
432  *    truncate's punch on the storage targets.
433  *
434  * The kms serves these purposes as it is set at both truncate and extending
435  * writes.
436  */
437 static int ll_ap_refresh_count(void *data, int cmd)
438 {
439         struct ll_inode_info *lli;
440         struct ll_async_page *llap;
441         struct lov_stripe_md *lsm;
442         struct page *page;
443         struct inode *inode;
444         struct ost_lvb lvb;
445         __u64 kms;
446         ENTRY;
447
448         /* readpage queues with _COUNT_STABLE, shouldn't get here. */
449         LASSERT(cmd != OBD_BRW_READ);
450
451         llap = LLAP_FROM_COOKIE(data);
452         page = llap->llap_page;
453         inode = page->mapping->host;
454         lli = ll_i2info(inode);
455         lsm = lli->lli_smd;
456
457         lov_stripe_lock(lsm);
458         inode_init_lvb(inode, &lvb);
459         obd_merge_lvb(ll_i2obdexp(inode), lsm, &lvb, 1);
460         kms = lvb.lvb_size;
461         lov_stripe_unlock(lsm);
462
463         /* catch race with truncate */
464         if (((__u64)page->index << CFS_PAGE_SHIFT) >= kms)
465                 return 0;
466
467         /* catch sub-page write at end of file */
468         if (((__u64)page->index << CFS_PAGE_SHIFT) + CFS_PAGE_SIZE > kms)
469                 return kms % CFS_PAGE_SIZE;
470
471         return CFS_PAGE_SIZE;
472 }
473
474 void ll_inode_fill_obdo(struct inode *inode, int cmd, struct obdo *oa)
475 {
476         struct lov_stripe_md *lsm;
477         obd_flag valid_flags;
478
479         lsm = ll_i2info(inode)->lli_smd;
480
481         oa->o_id = lsm->lsm_object_id;
482         oa->o_gr = lsm->lsm_object_gr;
483         oa->o_valid = OBD_MD_FLID | OBD_MD_FLGROUP;
484         valid_flags = OBD_MD_FLTYPE | OBD_MD_FLATIME;
485         if (cmd & OBD_BRW_WRITE) {
486                 oa->o_valid |= OBD_MD_FLEPOCH;
487                 oa->o_easize = ll_i2info(inode)->lli_io_epoch;
488
489                 valid_flags |= OBD_MD_FLMTIME | OBD_MD_FLCTIME |
490                         OBD_MD_FLUID | OBD_MD_FLGID |
491                         OBD_MD_FLFID | OBD_MD_FLGENER;
492         }
493
494         obdo_from_inode(oa, inode, valid_flags);
495         /* Bug11742 - set the OBD_FL_MMAP flag for memory mapped files */
496         if (atomic_read(&(ll_i2info(inode)->lli_mmap_cnt)) != 0) 
497                 oa->o_flags |= OBD_FL_MMAP;
498 }
499
500 static void ll_ap_fill_obdo(void *data, int cmd, struct obdo *oa)
501 {
502         struct ll_async_page *llap;
503         ENTRY;
504
505         llap = LLAP_FROM_COOKIE(data);
506         ll_inode_fill_obdo(llap->llap_page->mapping->host, cmd, oa);
507
508         EXIT;
509 }
510
511 static void ll_ap_update_obdo(void *data, int cmd, struct obdo *oa,
512                               obd_valid valid)
513 {
514         struct ll_async_page *llap;
515         ENTRY;
516
517         llap = LLAP_FROM_COOKIE(data);
518         obdo_from_inode(oa, llap->llap_page->mapping->host, valid);
519
520         EXIT;
521 }
522
523 static struct obd_async_page_ops ll_async_page_ops = {
524         .ap_make_ready =        ll_ap_make_ready,
525         .ap_refresh_count =     ll_ap_refresh_count,
526         .ap_fill_obdo =         ll_ap_fill_obdo,
527         .ap_update_obdo =       ll_ap_update_obdo,
528         .ap_completion =        ll_ap_completion,
529 };
530
531 struct ll_async_page *llap_cast_private(struct page *page)
532 {
533         struct ll_async_page *llap = (struct ll_async_page *)page_private(page);
534
535         LASSERTF(llap == NULL || llap->llap_magic == LLAP_MAGIC,
536                  "page %p private %lu gave magic %d which != %d\n",
537                  page, page_private(page), llap->llap_magic, LLAP_MAGIC);
538
539         return llap;
540 }
541
542 /* Try to reap @target pages in the specific @cpu's async page list.
543  *
544  * There is an llap attached onto every page in lustre, linked off @sbi.
545  * We add an llap to the list so we don't lose our place during list walking.
546  * If llaps in the list are being moved they will only move to the end
547  * of the LRU, and we aren't terribly interested in those pages here (we
548  * start at the beginning of the list where the least-used llaps are. */
549 static inline int llap_shrink_cache_internal(struct ll_sb_info *sbi,
550         int cpu, int target)
551 {
552         struct ll_async_page *llap, dummy_llap = { .llap_magic = 0xd11ad11a };
553         struct ll_pglist_data *pd;
554         struct list_head *head;
555         int count = 0;
556
557         pd = ll_pglist_cpu_lock(sbi, cpu);
558         head = &pd->llpd_list;
559         list_add(&dummy_llap.llap_pglist_item, head);
560         while (count < target) {
561                 struct page *page;
562                 int keep;
563
564                 if (unlikely(need_resched())) {
565                         list_del(&dummy_llap.llap_pglist_item);
566                         ll_pglist_cpu_unlock(sbi, cpu);
567                         /* vmscan::shrink_slab() have own schedule() */
568                         return count;
569                 }
570
571                 llap = llite_pglist_next_llap(head,
572                         &dummy_llap.llap_pglist_item);
573                 list_del_init(&dummy_llap.llap_pglist_item);
574                 if (llap == NULL)
575                         break;
576
577                 page = llap->llap_page;
578                 LASSERT(page != NULL);
579
580                 list_add(&dummy_llap.llap_pglist_item, &llap->llap_pglist_item);
581
582                 /* Page needs/undergoing IO */
583                 if (TryLockPage(page)) {
584                         LL_CDEBUG_PAGE(D_PAGE, page, "can't lock\n");
585                         continue;
586                 }
587
588                keep = (llap->llap_write_queued || PageDirty(page) ||
589                       PageWriteback(page) || (!PageUptodate(page) &&
590                       llap->llap_origin != LLAP_ORIGIN_READAHEAD));
591
592                 LL_CDEBUG_PAGE(D_PAGE, page,
593                                "%s LRU page: %s%s%s%s%s origin %s\n",
594                                keep ? "keep" : "drop",
595                                llap->llap_write_queued ? "wq " : "",
596                                PageDirty(page) ? "pd " : "",
597                                PageUptodate(page) ? "" : "!pu ",
598                                PageWriteback(page) ? "wb" : "",
599                                llap->llap_defer_uptodate ? "" : "!du",
600                                llap_origins[llap->llap_origin]);
601
602                 /* If page is dirty or undergoing IO don't discard it */
603                 if (keep) {
604                         unlock_page(page);
605                         continue;
606                 }
607
608                 page_cache_get(page);
609                 ll_pglist_cpu_unlock(sbi, cpu);
610
611                 if (page->mapping != NULL) {
612                         ll_teardown_mmaps(page->mapping,
613                                          (__u64)page->index << CFS_PAGE_SHIFT,
614                                          ((__u64)page->index << CFS_PAGE_SHIFT)|
615                                           ~CFS_PAGE_MASK);
616                         if (!PageDirty(page) && !page_mapped(page)) {
617                                 ll_ra_accounting(llap, page->mapping);
618                                 ll_truncate_complete_page(page);
619                                 ++count;
620                         } else {
621                                 LL_CDEBUG_PAGE(D_PAGE, page,
622                                                "Not dropping page because it is"
623                                                " %s\n", PageDirty(page) ?
624                                                "dirty" : "mapped");
625                         }
626                 }
627                 unlock_page(page);
628                 page_cache_release(page);
629
630                 ll_pglist_cpu_lock(sbi, cpu);
631         }
632         list_del(&dummy_llap.llap_pglist_item);
633         ll_pglist_cpu_unlock(sbi, cpu);
634
635         CDEBUG(D_CACHE, "shrank %d, expected %d however. \n", count, target);
636         return count;
637 }
638
639
640 /* Try to shrink the page cache for the @sbi filesystem by 1/@shrink_fraction.
641  *
642  * At first, this code calculates total pages wanted by @shrink_fraction, then
643  * it deduces how many pages should be reaped from each cpu in proportion as
644  * their own # of page count(llpd_count).
645  */
646 int llap_shrink_cache(struct ll_sb_info *sbi, int nr_to_scan)
647 {
648         unsigned long total, want, percpu_want, count = 0;
649         int cpu, nr_cpus;
650
651         total = lcounter_read_positive(&sbi->ll_async_page_count);
652         if (total == 0 || nr_to_scan == 0)
653                 return total;
654
655         want = nr_to_scan;
656
657         /* Since we are freeing pages also, we don't necessarily want to
658          * shrink so much.  Limit to 40MB of pages + llaps per call. */
659         if (want > 40 << (20 - CFS_PAGE_SHIFT))
660                 want = 40 << (20 - CFS_PAGE_SHIFT);
661
662         CDEBUG(D_CACHE, "shrinking %lu of %lu pages (asked for %u)\n",
663                want, total, nr_to_scan);
664
665         nr_cpus = num_possible_cpus();
666         cpu = sbi->ll_async_page_clock_hand;
667         /* we at most do one round */
668         do {
669                 int c;
670
671                 cpu = (cpu + 1) % nr_cpus;
672                 c = LL_PGLIST_DATA_CPU(sbi, cpu)->llpd_count;
673                 if (!cpu_online(cpu))
674                         percpu_want = c;
675                 else
676                         percpu_want = want / ((total / (c + 1)) + 1);
677                 if (percpu_want == 0)
678                         continue;
679
680                 count += llap_shrink_cache_internal(sbi, cpu, percpu_want);
681                 if (count >= want)
682                         sbi->ll_async_page_clock_hand = cpu;
683         } while (cpu != sbi->ll_async_page_clock_hand);
684
685         CDEBUG(D_CACHE, "shrank %lu/%lu and left %lu unscanned\n",
686                count, want, total);
687
688         return lcounter_read_positive(&sbi->ll_async_page_count);
689 }
690
691 /* Rebalance the async page queue len for each cpu. We hope that the cpu
692  * which do much IO job has a relative longer queue len.
693  * This function should be called with preempt disabled.
694  */
695 static inline int llap_async_cache_rebalance(struct ll_sb_info *sbi)
696 {
697         unsigned long sample = 0, *cpu_sample, bias, slice;
698         struct ll_pglist_data *pd;
699         cpumask_t mask;
700         int cpu, surplus;
701         int w1 = 7, w2 = 3, base = (w1 + w2); /* weight value */
702         atomic_t *pcnt;
703
704         if (!spin_trylock(&sbi->ll_async_page_reblnc_lock)) {
705                 /* someone else is doing the job */
706                 return 1;
707         }
708
709         pcnt = &LL_PGLIST_DATA(sbi)->llpd_sample_count;
710         if (!atomic_read(pcnt)) {
711                 /* rare case, somebody else has gotten this job done */
712                 spin_unlock(&sbi->ll_async_page_reblnc_lock);
713                 return 1;
714         }
715
716         sbi->ll_async_page_reblnc_count++;
717         cpu_sample = sbi->ll_async_page_sample;
718         memset(cpu_sample, 0, num_possible_cpus() * sizeof(unsigned long));
719         for_each_online_cpu(cpu) {
720                 pcnt = &LL_PGLIST_DATA_CPU(sbi, cpu)->llpd_sample_count;
721                 cpu_sample[cpu] = atomic_read(pcnt);
722                 atomic_set(pcnt, 0);
723                 sample += cpu_sample[cpu];
724         }
725
726         cpus_clear(mask);
727         surplus = sbi->ll_async_page_max;
728         slice = surplus / sample + 1;
729         sample /= num_online_cpus();
730         bias = sample >> 4;
731         for_each_online_cpu(cpu) {
732                 pd = LL_PGLIST_DATA_CPU(sbi, cpu);
733                 if (labs((long int)sample - cpu_sample[cpu]) > bias) {
734                         unsigned long budget = pd->llpd_budget;
735                         /* weighted original queue length and expected queue
736                          * length to avoid thrashing. */
737                         pd->llpd_budget = (budget * w1) / base +
738                                         (slice * cpu_sample[cpu]) * w2 / base;
739                         cpu_set(cpu, mask);
740                 }
741                 surplus -= min_t(int, pd->llpd_budget, surplus);
742         }
743         surplus /= cpus_weight(mask) ?: 1;
744         for_each_cpu_mask(cpu, mask)
745                 LL_PGLIST_DATA_CPU(sbi, cpu)->llpd_budget += surplus;
746         spin_unlock(&sbi->ll_async_page_reblnc_lock);
747
748         /* We need to call llap_shrink_cache_internal() for every cpu to
749          * ensure the sbi->ll_async_page_max limit is enforced. */
750         for_each_cpu_mask(cpu, mask) {
751                 pd = LL_PGLIST_DATA_CPU(sbi, cpu);
752                 llap_shrink_cache_internal(sbi, cpu, max_t(int, pd->llpd_count-
753                                            pd->llpd_budget, 0) + 32);
754         }
755
756         return 0;
757 }
758
759 static struct ll_async_page *llap_from_page_with_lockh(struct page *page,
760                                                        unsigned origin,
761                                                        struct lustre_handle *lockh,
762                                                        int flags)
763 {
764         struct ll_async_page *llap;
765         struct obd_export *exp;
766         struct inode *inode = page->mapping->host;
767         struct ll_sb_info *sbi;
768         struct ll_pglist_data *pd;
769         int rc, cpu, target;
770         ENTRY;
771
772         if (!inode) {
773                 static int triggered;
774
775                 if (!triggered) {
776                         LL_CDEBUG_PAGE(D_ERROR, page, "Bug 10047. Wrong anon "
777                                        "page received\n");
778                         libcfs_debug_dumpstack(NULL);
779                         triggered = 1;
780                 }
781                 RETURN(ERR_PTR(-EINVAL));
782         }
783         sbi = ll_i2sbi(inode);
784         LASSERT(ll_async_page_slab);
785         LASSERTF(origin < LLAP__ORIGIN_MAX, "%u\n", origin);
786
787         exp = ll_i2obdexp(page->mapping->host);
788         if (exp == NULL)
789                 RETURN(ERR_PTR(-EINVAL));
790
791         llap = llap_cast_private(page);
792         if (llap != NULL) {
793 #if 0 /* disabled since we take lock ref in readahead, see bug 16774/21252 */
794                 if (origin == LLAP_ORIGIN_READAHEAD && lockh) {
795                         /* the page could belong to another lock for which
796                          * we don't hold a reference. We need to check that
797                          * a reference is taken on a lock covering this page.
798                          * For readpage origin, this is fine because
799                          * ll_file_readv() took a reference on lock(s) covering
800                          * the whole read. However, for readhead, we don't have
801                          * this guarantee, so we need to check that the lock
802                          * matched in ll_file_readv() also covers this page */
803                         __u64 offset = ((loff_t)page->index) << CFS_PAGE_SHIFT;
804                         if (!obd_get_lock(exp, ll_i2info(inode)->lli_smd, 
805                                           &llap->llap_cookie, OBD_BRW_READ,
806                                           offset, offset + CFS_PAGE_SIZE - 1,
807                                           lockh, flags))
808                                 RETURN(ERR_PTR(-ENOLCK));
809                 }
810 #endif
811                 /* move to end of LRU list, except when page is just about to
812                  * die */
813                 if (origin != LLAP_ORIGIN_REMOVEPAGE) {
814                         int old_cpu = llap->llap_pglist_cpu;
815                         struct ll_pglist_data *old_pd;
816
817                         pd = ll_pglist_double_lock(sbi, old_cpu, &old_pd);
818                         pd->llpd_hit++;
819                         while (old_cpu != llap->llap_pglist_cpu) {
820                                 /* rarely case, someone else is touching this
821                                  * page too. */
822                                 ll_pglist_double_unlock(sbi, old_cpu);
823                                 old_cpu = llap->llap_pglist_cpu;
824                                 pd=ll_pglist_double_lock(sbi, old_cpu, &old_pd);
825                         }
826
827                         list_move(&llap->llap_pglist_item,
828                                   &pd->llpd_list);
829                         old_pd->llpd_gen++;
830                         if (pd->llpd_cpu != old_cpu) {
831                                 pd->llpd_count++;
832                                 old_pd->llpd_count--;
833                                 old_pd->llpd_gen++;
834                                 llap->llap_pglist_cpu = pd->llpd_cpu;
835                                 pd->llpd_cross++;
836                         }
837                         ll_pglist_double_unlock(sbi, old_cpu);
838                 }
839                 GOTO(out, llap);
840         }
841
842         /* limit the number of lustre-cached pages */
843         cpu = cfs_get_cpu();
844         pd = LL_PGLIST_DATA(sbi);
845         target = pd->llpd_count - pd->llpd_budget;
846         if (target > 0) {
847                 rc = 0;
848                 atomic_inc(&pd->llpd_sample_count);
849                 if (atomic_read(&pd->llpd_sample_count) >
850                     sbi->ll_async_page_sample_max) {
851                         pd->llpd_reblnc_count++;
852                         rc = llap_async_cache_rebalance(sbi);
853                         if (rc == 0)
854                                 target = pd->llpd_count - pd->llpd_budget;
855                 }
856                 /* if rc equals 1, it means other cpu is doing the rebalance
857                  * job, and our budget # would be modified when we read it.
858                  * Furthermore, it is much likely being increased because
859                  * we have already reached the rebalance threshold. In this
860                  * case, we skip to shrink cache here. */
861                 if ((rc == 0) && target > 0)
862                         llap_shrink_cache_internal(sbi, cpu, target + 32);
863         }
864         cfs_put_cpu();
865
866         OBD_SLAB_ALLOC(llap, ll_async_page_slab, CFS_ALLOC_IO,
867                        ll_async_page_slab_size);
868         if (llap == NULL)
869                 RETURN(ERR_PTR(-ENOMEM));
870         llap->llap_magic = LLAP_MAGIC;
871         llap->llap_cookie = (void *)llap + size_round(sizeof(*llap));
872
873         rc = obd_prep_async_page(exp, ll_i2info(inode)->lli_smd, NULL, page,
874                                  (obd_off)page->index << CFS_PAGE_SHIFT,
875                                  &ll_async_page_ops, llap, &llap->llap_cookie,
876                                  flags, lockh);
877         if (rc) {
878                 OBD_SLAB_FREE(llap, ll_async_page_slab,
879                               ll_async_page_slab_size);
880                 RETURN(ERR_PTR(rc));
881         }
882
883         CDEBUG(D_CACHE, "llap %p page %p cookie %p obj off "LPU64"\n", llap,
884                page, llap->llap_cookie, (obd_off)page->index << CFS_PAGE_SHIFT);
885         /* also zeroing the PRIVBITS low order bitflags */
886         __set_page_ll_data(page, llap);
887         llap->llap_page = page;
888
889         lcounter_inc(&sbi->ll_async_page_count);
890         pd = ll_pglist_lock(sbi);
891         list_add_tail(&llap->llap_pglist_item, &pd->llpd_list);
892         pd->llpd_count++;
893         pd->llpd_gen++;
894         pd->llpd_miss++;
895         llap->llap_pglist_cpu = pd->llpd_cpu;
896         ll_pglist_unlock(sbi);
897
898  out:
899         if (unlikely(sbi->ll_flags & LL_SBI_LLITE_CHECKSUM)) {
900                 __u32 csum;
901                 char *kaddr = kmap_atomic(page, KM_USER0);
902                 csum = init_checksum(OSC_DEFAULT_CKSUM);
903                 csum = compute_checksum(csum, kaddr, CFS_PAGE_SIZE,
904                                         OSC_DEFAULT_CKSUM);
905                 kunmap_atomic(kaddr, KM_USER0);
906                 if (origin == LLAP_ORIGIN_READAHEAD ||
907                     origin == LLAP_ORIGIN_READPAGE) {
908                         llap->llap_checksum = 0;
909                 } else if (origin == LLAP_ORIGIN_COMMIT_WRITE ||
910                            llap->llap_checksum == 0) {
911                         llap->llap_checksum = csum;
912                         CDEBUG(D_PAGE, "page %p cksum %x\n", page, csum);
913                 } else if (llap->llap_checksum == csum) {
914                         /* origin == LLAP_ORIGIN_WRITEPAGE */
915                         CDEBUG(D_PAGE, "page %p cksum %x confirmed\n",
916                                page, csum);
917                 } else {
918                         /* origin == LLAP_ORIGIN_WRITEPAGE */
919                         if (!atomic_read(&(ll_i2info(inode)->lli_mmap_cnt))) {
920                                 LL_CDEBUG_PAGE(D_ERROR, page,
921                                                "old cksum %x != new %x!\n",
922                                                llap->llap_checksum, csum);
923                         } else {
924                                 /* mmapped page was modified */
925                                 CDEBUG(D_PAGE,
926                                        "page %p old cksum %x != new %x\n",
927                                        page, llap->llap_checksum, csum);
928                         }
929                         llap->llap_checksum = csum;
930                 }
931         }
932
933         llap->llap_origin = origin;
934         RETURN(llap);
935 }
936
937 static inline struct ll_async_page *llap_from_page(struct page *page,
938                                                    unsigned origin)
939 {
940         return llap_from_page_with_lockh(page, origin, NULL, 0);
941 }
942
943 static int queue_or_sync_write(struct obd_export *exp, struct inode *inode,
944                                struct ll_async_page *llap,
945                                unsigned to, obd_flag async_flags)
946 {
947         unsigned long size_index = i_size_read(inode) >> CFS_PAGE_SHIFT;
948         struct obd_io_group *oig;
949         struct ll_sb_info *sbi = ll_i2sbi(inode);
950         int rc, noquot = llap->llap_ignore_quota ? OBD_BRW_NOQUOTA : 0;
951         int brwflags = OBD_BRW_ASYNC;
952         ENTRY;
953
954         /* _make_ready only sees llap once we've unlocked the page */
955         llap->llap_write_queued = 1;
956         rc = obd_queue_async_io(exp, ll_i2info(inode)->lli_smd, NULL,
957                                 llap->llap_cookie, OBD_BRW_WRITE | noquot,
958                                 0, 0, brwflags, async_flags);
959         if (rc == 0) {
960                 LL_CDEBUG_PAGE(D_PAGE, llap->llap_page, "write queued\n");
961                 llap_write_pending(inode, llap);
962                 GOTO(out, 0);
963         }
964
965         llap->llap_write_queued = 0;
966
967         rc = oig_init(&oig);
968         if (rc)
969                 GOTO(out, rc);
970
971         /* make full-page requests if we are not at EOF (bug 4410) */
972         if (to != CFS_PAGE_SIZE && llap->llap_page->index < size_index) {
973                 LL_CDEBUG_PAGE(D_PAGE, llap->llap_page,
974                                "sync write before EOF: size_index %lu, to %d\n",
975                                size_index, to);
976                 to = CFS_PAGE_SIZE;
977         } else if (to != CFS_PAGE_SIZE && llap->llap_page->index == size_index){
978                 int size_to = i_size_read(inode) & ~CFS_PAGE_MASK;
979                 LL_CDEBUG_PAGE(D_PAGE, llap->llap_page,
980                                "sync write at EOF: size_index %lu, to %d/%d\n",
981                                size_index, to, size_to);
982                 if (to < size_to)
983                         to = size_to;
984         }
985
986         /* compare the checksum once before the page leaves llite */
987         if (unlikely((sbi->ll_flags & LL_SBI_LLITE_CHECKSUM) &&
988                      llap->llap_checksum != 0)) {
989                 __u32 csum;
990                 struct page *page = llap->llap_page;
991                 char *kaddr = kmap_atomic(page, KM_USER0);
992                 csum = init_checksum(OSC_DEFAULT_CKSUM);
993                 csum = compute_checksum(csum, kaddr, CFS_PAGE_SIZE,
994                                         OSC_DEFAULT_CKSUM);
995                 kunmap_atomic(kaddr, KM_USER0);
996                 if (llap->llap_checksum == csum) {
997                         CDEBUG(D_PAGE, "page %p cksum %x confirmed\n",
998                                page, csum);
999                 } else {
1000                         CERROR("page %p old cksum %x != new cksum %x!\n",
1001                                page, llap->llap_checksum, csum);
1002                 }
1003         }
1004
1005         rc = obd_queue_group_io(exp, ll_i2info(inode)->lli_smd, NULL, oig,
1006                                 llap->llap_cookie, OBD_BRW_WRITE | noquot,
1007                                 0, to, 0, ASYNC_READY | ASYNC_URGENT |
1008                                 ASYNC_COUNT_STABLE | ASYNC_GROUP_SYNC);
1009         if (rc)
1010                 GOTO(free_oig, rc);
1011
1012         rc = obd_trigger_group_io(exp, ll_i2info(inode)->lli_smd, NULL, oig);
1013         if (rc)
1014                 GOTO(free_oig, rc);
1015
1016         rc = oig_wait(oig);
1017
1018         if (!rc && async_flags & ASYNC_READY) {
1019                 unlock_page(llap->llap_page);
1020                 if (PageWriteback(llap->llap_page))
1021                         end_page_writeback(llap->llap_page);
1022         }
1023
1024         LL_CDEBUG_PAGE(D_PAGE, llap->llap_page, "sync write returned %d\n", rc);
1025
1026 free_oig:
1027         oig_release(oig);
1028 out:
1029         RETURN(rc);
1030 }
1031
1032 /* update our write count to account for i_size increases that may have
1033  * happened since we've queued the page for io. */
1034
1035 /* be careful not to return success without setting the page Uptodate or
1036  * the next pass through prepare_write will read in stale data from disk. */
1037 int ll_commit_write(struct file *file, struct page *page, unsigned from,
1038                     unsigned to)
1039 {
1040         struct ll_file_data *fd = LUSTRE_FPRIVATE(file);
1041         struct inode *inode = page->mapping->host;
1042         struct ll_inode_info *lli = ll_i2info(inode);
1043         struct lov_stripe_md *lsm = lli->lli_smd;
1044         struct obd_export *exp;
1045         struct ll_async_page *llap;
1046         loff_t size;
1047         struct lustre_handle *lockh = NULL;
1048         int rc = 0;
1049         ENTRY;
1050
1051         SIGNAL_MASK_ASSERT(); /* XXX BUG 1511 */
1052         LASSERT(inode == file->f_dentry->d_inode);
1053         LASSERT(PageLocked(page));
1054
1055         CDEBUG(D_INODE, "inode %p is writing page %p from %d to %d at %lu\n",
1056                inode, page, from, to, page->index);
1057
1058         if (fd->fd_flags & LL_FILE_GROUP_LOCKED)
1059                 lockh = &fd->fd_cwlockh;
1060
1061         llap = llap_from_page_with_lockh(page, LLAP_ORIGIN_COMMIT_WRITE, lockh,
1062                                          0);
1063         if (IS_ERR(llap))
1064                 RETURN(PTR_ERR(llap));
1065
1066         exp = ll_i2obdexp(inode);
1067         if (exp == NULL)
1068                 RETURN(-EINVAL);
1069
1070         llap->llap_ignore_quota = cfs_capable(CFS_CAP_SYS_RESOURCE);
1071
1072         /* queue a write for some time in the future the first time we
1073          * dirty the page */
1074         if (!PageDirty(page)) {
1075                 ll_stats_ops_tally(ll_i2sbi(inode), LPROC_LL_DIRTY_MISSES, 1);
1076
1077                 rc = queue_or_sync_write(exp, inode, llap, to, 0);
1078                 if (rc)
1079                         GOTO(out, rc);
1080         } else {
1081                 ll_stats_ops_tally(ll_i2sbi(inode), LPROC_LL_DIRTY_HITS, 1);
1082         }
1083
1084         /* put the page in the page cache, from now on ll_removepage is
1085          * responsible for cleaning up the llap.
1086          * only set page dirty when it's queued to be write out */
1087         if (llap->llap_write_queued)
1088                 set_page_dirty(page);
1089
1090 out:
1091         size = (((obd_off)page->index) << CFS_PAGE_SHIFT) + to;
1092         ll_inode_size_lock(inode, 0);
1093         if (rc == 0) {
1094                 lov_stripe_lock(lsm);
1095                 obd_adjust_kms(exp, lsm, size, 0);
1096                 lov_stripe_unlock(lsm);
1097                 if (size > i_size_read(inode))
1098                         i_size_write(inode, size);
1099                 SetPageUptodate(page);
1100         } else if (size > i_size_read(inode)) {
1101                 /* this page beyond the pales of i_size, so it can't be
1102                  * truncated in ll_p_r_e during lock revoking. we must
1103                  * teardown our book-keeping here. */
1104                 ll_removepage(page);
1105         }
1106         ll_inode_size_unlock(inode, 0);
1107         RETURN(rc);
1108 }
1109
1110 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
1111
1112 /* WARNING: This algorithm is used to reduce the contention on
1113  * sbi->ll_lock. It should work well if the ra_max_pages is much
1114  * greater than the single file's read-ahead window.
1115  *
1116  * TODO: There may exist a `global sync problem' in this implementation.
1117  * Considering the global ra window is 100M, and each file's ra window is 10M,
1118  * there are over 10 files trying to get its ra budget and reach
1119  * ll_ra_count_get at the exactly same time. All of them will get a zero ra
1120  * window, although the global window is 100M. -jay
1121  */
1122 static unsigned long ll_ra_count_get(struct ll_sb_info *sbi, unsigned long len)
1123 {
1124         struct ll_ra_info *ra = &sbi->ll_ra_info;
1125         unsigned long ret = 0;
1126         ENTRY;
1127
1128         /**
1129          * If read-ahead pages left are less than 1M, do not do read-ahead,
1130          * otherwise it will form small read RPC(< 1M), which hurt server
1131          * performance a lot.
1132          */
1133         ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages), len);
1134         if ((int)ret < min((unsigned long)PTLRPC_MAX_BRW_PAGES, len))
1135                 GOTO(out, ret = 0);
1136
1137         if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
1138                 atomic_sub(ret, &ra->ra_cur_pages);
1139                 ret = 0;
1140         }
1141 out:
1142         RETURN(ret);
1143 }
1144
1145 static void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len)
1146 {
1147         struct ll_ra_info *ra = &sbi->ll_ra_info;
1148         atomic_sub(len, &ra->ra_cur_pages);
1149 }
1150
1151 /* called for each page in a completed rpc.*/
1152 int ll_ap_completion(void *data, int cmd, struct obdo *oa, int rc)
1153 {
1154         struct ll_async_page *llap;
1155         struct page *page;
1156         struct obd_export *exp;
1157         obd_off end;
1158         int ret = 0;
1159         ENTRY;
1160
1161         llap = LLAP_FROM_COOKIE(data);
1162         page = llap->llap_page;
1163         LASSERT(PageLocked(page));
1164         LASSERT(CheckWriteback(page,cmd));
1165
1166         LL_CDEBUG_PAGE(D_PAGE, page, "completing cmd %d with %d\n", cmd, rc);
1167
1168         if (cmd & OBD_BRW_READ && llap->llap_defer_uptodate) {
1169                 ll_ra_count_put(ll_i2sbi(page->mapping->host), 1);
1170  
1171                 LASSERT(lustre_handle_is_used(&llap->llap_lockh_granted));
1172                 exp = ll_i2obdexp(page->mapping->host);
1173                 end = ((loff_t)page->index) << CFS_PAGE_SHIFT;
1174                 end += CFS_PAGE_SIZE - 1;
1175                 obd_cancel(exp, ll_i2info(page->mapping->host)->lli_smd, LCK_PR,
1176                            &llap->llap_lockh_granted, OBD_FAST_LOCK, end);
1177         }
1178
1179         if (rc == 0)  {
1180                 if (cmd & OBD_BRW_READ) {
1181                         if (!llap->llap_defer_uptodate)
1182                                 SetPageUptodate(page);
1183                 } else {
1184                         llap->llap_write_queued = 0;
1185                 }
1186                 ClearPageError(page);
1187         } else {
1188                 if (cmd & OBD_BRW_READ) {
1189                         llap->llap_defer_uptodate = 0;
1190                 }
1191                 SetPageError(page);
1192                 if (rc == -ENOSPC)
1193                         set_bit(AS_ENOSPC, &page->mapping->flags);
1194                 else
1195                         set_bit(AS_EIO, &page->mapping->flags);
1196         }
1197
1198         /* be carefull about clear WB.
1199          * if WB will cleared after page lock is released - paralel IO can be
1200          * started before ap_make_ready is finished - so we will be have page
1201          * with PG_Writeback set from ->writepage() and completed READ which
1202          * clear this flag */
1203         if ((cmd & OBD_BRW_WRITE) && PageWriteback(page))
1204                 end_page_writeback(page);
1205
1206         unlock_page(page);
1207
1208         if (cmd & OBD_BRW_WRITE) {
1209                 llap_write_complete(page->mapping->host, llap);
1210                 ll_try_done_writing(page->mapping->host);
1211         }
1212
1213         page_cache_release(page);
1214
1215         RETURN(ret);
1216 }
1217
1218 static void __ll_put_llap(struct page *page)
1219 {
1220         struct inode *inode = page->mapping->host;
1221         struct obd_export *exp;
1222         struct ll_async_page *llap;
1223         struct ll_sb_info *sbi = ll_i2sbi(inode);
1224         struct ll_pglist_data *pd;
1225         int rc, cpu;
1226         ENTRY;
1227
1228         exp = ll_i2obdexp(inode);
1229         if (exp == NULL) {
1230                 CERROR("page %p ind %lu gave null export\n", page, page->index);
1231                 EXIT;
1232                 return;
1233         }
1234
1235         llap = llap_from_page(page, LLAP_ORIGIN_REMOVEPAGE);
1236         if (IS_ERR(llap)) {
1237                 CERROR("page %p ind %lu couldn't find llap: %ld\n", page,
1238                        page->index, PTR_ERR(llap));
1239                 EXIT;
1240                 return;
1241         }
1242
1243         //llap_write_complete(inode, llap);
1244         rc = obd_teardown_async_page(exp, ll_i2info(inode)->lli_smd, NULL,
1245                                      llap->llap_cookie);
1246         if (rc != 0)
1247                 CERROR("page %p ind %lu failed: %d\n", page, page->index, rc);
1248
1249         /* this unconditional free is only safe because the page lock
1250          * is providing exclusivity to memory pressure/truncate/writeback..*/
1251         __clear_page_ll_data(page);
1252
1253         lcounter_dec(&sbi->ll_async_page_count);
1254         cpu = llap->llap_pglist_cpu;
1255         pd = ll_pglist_cpu_lock(sbi, cpu);
1256         pd->llpd_gen++;
1257         pd->llpd_count--;
1258         if (!list_empty(&llap->llap_pglist_item))
1259                 list_del_init(&llap->llap_pglist_item);
1260         ll_pglist_cpu_unlock(sbi, cpu);
1261         OBD_SLAB_FREE(llap, ll_async_page_slab, ll_async_page_slab_size);
1262
1263         EXIT;
1264 }
1265
1266 /* the kernel calls us here when a page is unhashed from the page cache.
1267  * the page will be locked and the kernel is holding a spinlock, so
1268  * we need to be careful.  we're just tearing down our book-keeping
1269  * here. */
1270 void ll_removepage(struct page *page)
1271 {
1272         struct ll_async_page *llap = llap_cast_private(page);
1273         ENTRY;
1274
1275         LASSERT(!in_interrupt());
1276
1277         /* sync pages or failed read pages can leave pages in the page
1278          * cache that don't have our data associated with them anymore */
1279         if (page_private(page) == 0) {
1280                 EXIT;
1281                 return;
1282         }
1283
1284         ll_ra_accounting(llap, page->mapping);
1285         LL_CDEBUG_PAGE(D_PAGE, page, "being evicted\n");
1286         __ll_put_llap(page);
1287
1288         EXIT;
1289 }
1290
1291 static int ll_issue_page_read(struct obd_export *exp,
1292                               struct ll_async_page *llap,
1293                               struct obd_io_group *oig, int defer)
1294 {
1295         struct page *page = llap->llap_page;
1296         int rc;
1297
1298         page_cache_get(page);
1299         llap->llap_defer_uptodate = defer;
1300         llap->llap_ra_used = 0;
1301         rc = obd_queue_group_io(exp, ll_i2info(page->mapping->host)->lli_smd,
1302                                 NULL, oig, llap->llap_cookie, OBD_BRW_READ, 0,
1303                                 CFS_PAGE_SIZE, 0, ASYNC_COUNT_STABLE |
1304                                 ASYNC_READY | ASYNC_URGENT);
1305         if (rc) {
1306                 LL_CDEBUG_PAGE(D_ERROR, page, "read queue failed: rc %d\n", rc);
1307                 page_cache_release(page);
1308         }
1309         RETURN(rc);
1310 }
1311
1312 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
1313 {
1314         LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which);
1315         lprocfs_counter_incr(sbi->ll_ra_stats, which);
1316 }
1317
1318 static void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which)
1319 {
1320         struct ll_sb_info *sbi = ll_i2sbi(mapping->host);
1321         ll_ra_stats_inc_sbi(sbi, which);
1322 }
1323
1324 void ll_ra_accounting(struct ll_async_page *llap, struct address_space *mapping)
1325 {
1326         if (!llap->llap_defer_uptodate || llap->llap_ra_used)
1327                 return;
1328
1329         ll_ra_stats_inc(mapping, RA_STAT_DISCARDED);
1330 }
1331
1332 #define RAS_CDEBUG(ras) \
1333         CDEBUG(D_READA,                                                      \
1334                "lrp %lu cr %lu cp %lu ws %lu wl %lu nra %lu r %lu ri %lu"    \
1335                "csr %lu sf %lu sp %lu sl %lu \n",                            \
1336                ras->ras_last_readpage, ras->ras_consecutive_requests,        \
1337                ras->ras_consecutive_pages, ras->ras_window_start,            \
1338                ras->ras_window_len, ras->ras_next_readahead,                 \
1339                ras->ras_requests, ras->ras_request_index,                    \
1340                ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
1341                ras->ras_stride_pages, ras->ras_stride_length)
1342
1343 static int index_in_window(unsigned long index, unsigned long point,
1344                            unsigned long before, unsigned long after)
1345 {
1346         unsigned long start = point - before, end = point + after;
1347
1348         if (start > point)
1349                start = 0;
1350         if (end < point)
1351                end = ~0;
1352
1353         return start <= index && index <= end;
1354 }
1355
1356 struct ll_thread_data *ll_td_get()
1357 {
1358 #if 0
1359         struct ll_thread_data *ltd = current->journal_info;
1360
1361         LASSERT(ltd == NULL || ltd->ltd_magic == LTD_MAGIC);
1362         return ltd;
1363 #else
1364         return NULL;
1365 #endif
1366 }
1367
1368 void ll_td_set(struct ll_thread_data *ltd)
1369 {
1370 #if 0
1371         if (ltd == NULL) {
1372                 ltd = current->journal_info;
1373                 LASSERT(ltd == NULL || ltd->ltd_magic == LTD_MAGIC);
1374                 current->journal_info = NULL;
1375                 return;
1376         }
1377
1378         LASSERT(current->journal_info == NULL);
1379         LASSERT(ltd->ltd_magic == LTD_MAGIC);
1380         current->journal_info = ltd;
1381 #endif
1382 }
1383
1384 static struct ll_readahead_state *ll_ras_get(struct file *f)
1385 {
1386         struct ll_file_data       *fd;
1387
1388         fd = LUSTRE_FPRIVATE(f);
1389         return &fd->fd_ras;
1390 }
1391
1392 void ll_ra_read_init(struct file *f, struct ll_ra_read *rar,
1393                      loff_t offset, size_t count)
1394 {
1395         struct ll_readahead_state *ras;
1396
1397         ras = ll_ras_get(f);
1398
1399         rar->lrr_start = offset >> CFS_PAGE_SHIFT;
1400         rar->lrr_count = (count + CFS_PAGE_SIZE - 1) >> CFS_PAGE_SHIFT;
1401
1402         spin_lock(&ras->ras_lock);
1403         ras->ras_requests++;
1404         ras->ras_request_index = 0;
1405         ras->ras_consecutive_requests++;
1406         rar->lrr_reader = current;
1407
1408         list_add(&rar->lrr_linkage, &ras->ras_read_beads);
1409         spin_unlock(&ras->ras_lock);
1410 }
1411
1412 void ll_ra_read_ex(struct file *f, struct ll_ra_read *rar)
1413 {
1414         struct ll_readahead_state *ras;
1415
1416         ras = ll_ras_get(f);
1417
1418         spin_lock(&ras->ras_lock);
1419         list_del_init(&rar->lrr_linkage);
1420         spin_unlock(&ras->ras_lock);
1421 }
1422
1423 static struct ll_ra_read *ll_ra_read_get_locked(struct ll_readahead_state *ras)
1424 {
1425         struct ll_ra_read *scan;
1426
1427         list_for_each_entry(scan, &ras->ras_read_beads, lrr_linkage) {
1428                 if (scan->lrr_reader == current)
1429                         return scan;
1430         }
1431         return NULL;
1432 }
1433
1434 struct ll_ra_read *ll_ra_read_get(struct file *f)
1435 {
1436         struct ll_readahead_state *ras;
1437         struct ll_ra_read         *bead;
1438
1439         ras = ll_ras_get(f);
1440
1441         spin_lock(&ras->ras_lock);
1442         bead = ll_ra_read_get_locked(ras);
1443         spin_unlock(&ras->ras_lock);
1444         return bead;
1445 }
1446
1447 static int ll_read_ahead_page(struct obd_export *exp, struct obd_io_group *oig,
1448                               pgoff_t index, struct address_space *mapping)
1449 {
1450         struct ll_async_page *llap;
1451         struct page *page;
1452         unsigned int gfp_mask = 0;
1453         int rc = 0, flags = 0;
1454         struct lustre_handle lockh = { 0 };
1455         obd_off start, end;
1456
1457         gfp_mask = GFP_HIGHUSER & ~__GFP_WAIT;
1458 #ifdef __GFP_NOWARN
1459         gfp_mask |= __GFP_NOWARN;
1460 #endif
1461         page = grab_cache_page_nowait_gfp(mapping, index, gfp_mask);
1462         if (page == NULL) {
1463                 ll_ra_stats_inc(mapping, RA_STAT_FAILED_GRAB_PAGE);
1464                 CDEBUG(D_READA, "g_c_p_n failed\n");
1465                 return 0;
1466         }
1467
1468         /* Check if page was truncated or reclaimed */
1469         if (page->mapping != mapping) {
1470                 ll_ra_stats_inc(mapping, RA_STAT_WRONG_GRAB_PAGE);
1471                 CDEBUG(D_READA, "g_c_p_n returned invalid page\n");
1472                 GOTO(unlock_page, rc = 0);
1473         }
1474
1475 #if 0 /* the fast lock stored in ltd can't be guaranteed to be the lock used
1476        * by the llap returned by "llap_from_page_with_lockh" if there is a
1477        * ready llap, for lock check against readahead is disabled. 
1478        * see bug 16774/21252 */
1479
1480         ltd = ll_td_get();
1481         if (ltd && ltd->lock_style > 0) {
1482                 __u64 offset = ((loff_t)page->index) << CFS_PAGE_SHIFT;
1483                 lockh = ltd2lockh(ltd, offset,
1484                                   offset + CFS_PAGE_SIZE - 1);
1485                 if (ltd->lock_style == LL_LOCK_STYLE_FASTLOCK)
1486                         flags = OBD_FAST_LOCK;
1487         }
1488 #endif
1489
1490         /* we do this first so that we can see the page in the /proc
1491          * accounting */
1492         llap = llap_from_page_with_lockh(page, LLAP_ORIGIN_READAHEAD, &lockh,
1493                                          flags);
1494         if (IS_ERR(llap) || llap->llap_defer_uptodate) {
1495                 /* bail out when we hit the end of the lock. */
1496                 if (PTR_ERR(llap) == -ENOLCK) {
1497                         ll_ra_stats_inc(mapping, RA_STAT_FAILED_MATCH);
1498                         CDEBUG(D_READA | D_PAGE,
1499                                "Adding page to cache failed index "
1500                                 "%ld\n", index);
1501                                 CDEBUG(D_READA, "nolock page\n");
1502                                 GOTO(unlock_page, rc = -ENOLCK);
1503                 }
1504                 CDEBUG(D_READA, "read-ahead page\n");
1505                 GOTO(unlock_page, rc = 0);
1506         }
1507
1508         /* skip completed pages */
1509         if (Page_Uptodate(page))
1510                 GOTO(unlock_page, rc = 0);
1511
1512         if (!lustre_handle_is_used(&lockh)) {
1513                 start = ((loff_t)index) << CFS_PAGE_SHIFT;
1514                 end = start + CFS_PAGE_SIZE - 1;
1515                 rc = obd_get_lock(exp,
1516                                   ll_i2info(mapping->host)->lli_smd,
1517                                   &llap->llap_cookie, OBD_BRW_READ, 
1518                                   start, end, &lockh, OBD_FAST_LOCK);
1519                 /* Is the lock being cancelling? */
1520                 if (rc <= 0)
1521                         GOTO(unlock_page, rc = 0);
1522         }
1523
1524         llap->llap_lockh_granted = lockh;
1525
1526         rc = ll_issue_page_read(exp, llap, oig, 1);
1527         if (rc == 0) {
1528                 LL_CDEBUG_PAGE(D_READA | D_PAGE, page, "started read-ahead\n");
1529                 rc = 1;
1530         } else {
1531                 llap->llap_lockh_granted.cookie = 0;
1532 unlock_page:
1533                 if (lustre_handle_is_used(&lockh))
1534                         ldlm_lock_decref(&lockh, LCK_PR);
1535
1536                 unlock_page(page);
1537                 LL_CDEBUG_PAGE(D_READA | D_PAGE, page, "skipping read-ahead\n");
1538         }
1539         page_cache_release(page);
1540         return rc;
1541 }
1542
1543 /* ra_io_arg will be filled in the beginning of ll_readahead with
1544  * ras_lock, then the following ll_read_ahead_pages will read RA
1545  * pages according to this arg, all the items in this structure are
1546  * counted by page index.
1547  */
1548 struct ra_io_arg {
1549         unsigned long ria_start;  /* start offset of read-ahead*/
1550         unsigned long ria_end;    /* end offset of read-ahead*/
1551         /* If stride read pattern is detected, ria_stoff means where
1552          * stride read is started. Note: for normal read-ahead, the
1553          * value here is meaningless, and also it will not be accessed*/
1554         pgoff_t ria_stoff;
1555         /* ria_length and ria_pages are the length and pages length in the
1556          * stride I/O mode. And they will also be used to check whether
1557          * it is stride I/O read-ahead in the read-ahead pages*/
1558         unsigned long ria_length;
1559         unsigned long ria_pages;
1560 };
1561
1562 #define RIA_DEBUG(ria)                                                \
1563         CDEBUG(D_READA, "rs %lu re %lu ro %lu rl %lu rp %lu\n",       \
1564         ria->ria_start, ria->ria_end, ria->ria_stoff, ria->ria_length,\
1565         ria->ria_pages)
1566
1567 #define INIT_RAS_WINDOW_PAGES PTLRPC_MAX_BRW_PAGES
1568
1569 static inline int stride_io_mode(struct ll_readahead_state *ras)
1570 {
1571         return ras->ras_consecutive_stride_requests > 1;
1572 }
1573
1574 /* The function calculates how much pages will be read in
1575  * [off, off + length], in such stride IO area,
1576  * stride_offset = st_off, stride_lengh = st_len,
1577  * stride_pages = st_pgs
1578  *
1579  *   |------------------|*****|------------------|*****|------------|*****|....
1580  * st_off
1581  *   |--- st_pgs     ---|
1582  *   |-----     st_len   -----|
1583  *
1584  *              How many pages it should read in such pattern
1585  *              |-------------------------------------------------------------|
1586  *              off
1587  *              |<------                  length                      ------->|
1588  *
1589  *          =   |<----->|  +  |-------------------------------------| +   |---|
1590  *             start_left                 st_pgs * i                    end_left
1591  */
1592 static unsigned long
1593 stride_pg_count(pgoff_t st_off, unsigned long st_len, unsigned long st_pgs,
1594                 unsigned long off, unsigned long length)
1595 {
1596         __u64 start = off > st_off ? off - st_off : 0;
1597         __u64 end = off + length > st_off ? off + length - st_off : 0;
1598         unsigned long start_left = 0;
1599         unsigned long end_left = 0;
1600         unsigned long pg_count;
1601
1602         if (st_len == 0 || length == 0 || end == 0)
1603                 return length;
1604
1605         start_left = do_div(start, st_len);
1606         if (start_left < st_pgs)
1607                 start_left = st_pgs - start_left;
1608         else
1609                 start_left = 0;
1610
1611         end_left = do_div(end, st_len);
1612         if (end_left > st_pgs)
1613                 end_left = st_pgs;
1614
1615         CDEBUG(D_READA, "start "LPU64", end "LPU64" start_left %lu end_left %lu \n",
1616                start, end, start_left, end_left);
1617
1618         if (start == end)
1619                 pg_count = end_left - (st_pgs - start_left);
1620         else
1621                 pg_count = start_left + st_pgs * (end - start - 1) + end_left;
1622
1623         CDEBUG(D_READA, "st_off %lu, st_len %lu st_pgs %lu off %lu length %lu"
1624                "pgcount %lu\n", st_off, st_len, st_pgs, off, length, pg_count);
1625
1626         return pg_count;
1627 }
1628
1629 static int ria_page_count(struct ra_io_arg *ria)
1630 {
1631         __u64 length = ria->ria_end >= ria->ria_start ?
1632                        ria->ria_end - ria->ria_start + 1 : 0;
1633
1634         return stride_pg_count(ria->ria_stoff, ria->ria_length,
1635                                ria->ria_pages, ria->ria_start,
1636                                length);
1637 }
1638
1639 /*Check whether the index is in the defined ra-window */
1640 static int ras_inside_ra_window(unsigned long idx, struct ra_io_arg *ria)
1641 {
1642         /* If ria_length == ria_pages, it means non-stride I/O mode,
1643          * idx should always inside read-ahead window in this case
1644          * For stride I/O mode, just check whether the idx is inside
1645          * the ria_pages. */
1646         return ria->ria_length == 0 || ria->ria_length == ria->ria_pages ||
1647                (idx >= ria->ria_stoff && (idx - ria->ria_stoff) %
1648                 ria->ria_length < ria->ria_pages);
1649 }
1650
1651 static int ll_read_ahead_pages(struct obd_export *exp,
1652                                struct obd_io_group *oig,
1653                                struct ra_io_arg *ria,
1654                                unsigned long *reserved_pages,
1655                                struct address_space *mapping,
1656                                unsigned long *ra_end)
1657 {
1658         int rc, count = 0, stride_ria;
1659         unsigned long page_idx;
1660
1661         LASSERT(ria != NULL);
1662         RIA_DEBUG(ria);
1663
1664         stride_ria = ria->ria_length > ria->ria_pages && ria->ria_pages > 0;
1665         for (page_idx = ria->ria_start; page_idx <= ria->ria_end &&
1666                         *reserved_pages > 0; page_idx++) {
1667                 if (ras_inside_ra_window(page_idx, ria)) {
1668                         /* If the page is inside the read-ahead window*/
1669                         rc = ll_read_ahead_page(exp, oig, page_idx, mapping);
1670                         if (rc == 1) {
1671                                 (*reserved_pages)--;
1672                                 count ++;
1673                         } else if (rc == -ENOLCK)
1674                                 break;
1675                 } else if (stride_ria) {
1676                         /* If it is not in the read-ahead window, and it is
1677                          * read-ahead mode, then check whether it should skip
1678                          * the stride gap */
1679                         pgoff_t offset;
1680                         /* FIXME: This assertion only is valid when it is for
1681                          * forward read-ahead, it will be fixed when backward
1682                          * read-ahead is implemented */
1683                         LASSERTF(page_idx > ria->ria_stoff, "Invalid page_idx %lu"
1684                                  "rs %lu re %lu ro %lu rl %lu rp %lu\n", page_idx,
1685                                  ria->ria_start, ria->ria_end, ria->ria_stoff,
1686                                  ria->ria_length, ria->ria_pages);
1687
1688                         offset = page_idx - ria->ria_stoff;
1689                         offset = offset % (ria->ria_length);
1690                         if (offset > ria->ria_pages) {
1691                                 page_idx += ria->ria_length - offset;
1692                                 CDEBUG(D_READA, "i %lu skip %lu \n", page_idx,
1693                                        ria->ria_length - offset);
1694                                 continue;
1695                         }
1696                 }
1697         }
1698         *ra_end = page_idx;
1699         return count;
1700 }
1701
1702
1703 /**
1704  * Current readahead process 
1705  *          read_syscall
1706  *              |
1707  *       ll_file_readv (init ll_readahead_state for the open file)
1708  *              |
1709  *              |
1710  *   |---> ll_readpage (read page)
1711  *   |          |
1712  *   |          |
1713  *   |     ras_update  (update read-ahead window according to read pattern) 
1714  *   |          | 
1715  *   |          |
1716  *   |--- ll_readahead  (read_ahead pages)
1717  *
1718  *
1719  *  During this process, ras_update controls how many ahead pages it should
1720  *  read by adjusting read-ahead window(RA window).The window is represented 
1721  *  by following three varibles (all these values are counted by pages)
1722  *        
1723  *      1. ras_window_start: start offset of the read-ahead window. It is 
1724  *                           initialized as the read offset, then as pages
1725  *                           are being read, it will be set as the last 
1726  *                           page(Note: it is 1M aligned, so it actually
1727  *                           is last_page_index & ~index & (~(256 - 1)); 
1728  *      
1729  *      2. ras_window_len: length of the read-ahead window. The read-ahead window
1730  *                         length is decided by two factors
1731  *                         
1732  *                         a. It is at least >= current read syscall length.
1733  *                         b. If continguous read is detected, (Note: it is syscall
1734  *                            continguous, intead of page-read contingous) the
1735  *                            read-ahead window len will be increased by 1M each
1736  *                            time.
1737  *                         c. If stride read pattern is detected, the read-ahead
1738  *                            window will also be increased 1M but by stride pattern.
1739  *                            stride pattern is defined by ras_stride_length, 
1740  *                            ras_stride_pages and ras_stride_gap. (see 
1741  *                            ll_readahead_states comments)
1742  *
1743  *      3. ras_next_readahead: current offset in the read-ahead window, i.e. where
1744  *                             ll_readahead will start in next next-ahead.
1745  * 
1746  *   
1747  *  Cache miss: If memory load is very high, it begins to evicted the page from cache,
1748  *  also includes read-ahead pages, once we found read-ahead page is being evicted before
1749  *  it is "really" accessed, it will reset the read-ahead window to the current read extent 
1750  *  i.e. from current page to the end of this read.
1751  *
1752  *  In flight read-ahead amount is controlled by 2 varible (read-ahead rate)
1753  *       ra_max_pages: how much max in-flight read-ahead pages on the client.
1754  *       ra_max_pages_per_file: how much max in-flight read-ahead pages per file.
1755  **/
1756
1757
1758
1759 static int ll_readahead(struct ll_readahead_state *ras,
1760                         struct obd_export *exp, struct address_space *mapping,
1761                         struct obd_io_group *oig, int flags)
1762 {
1763         unsigned long start = 0, end = 0, reserved;
1764         unsigned long ra_end, len;
1765         struct inode *inode;
1766         struct lov_stripe_md *lsm;
1767         struct ll_ra_read *bead;
1768         struct ost_lvb lvb;
1769         struct ra_io_arg ria = { 0 };
1770         int ret = 0;
1771         __u64 kms;
1772         ENTRY;
1773
1774         inode = mapping->host;
1775         lsm = ll_i2info(inode)->lli_smd;
1776
1777         lov_stripe_lock(lsm);
1778         inode_init_lvb(inode, &lvb);
1779         obd_merge_lvb(ll_i2obdexp(inode), lsm, &lvb, 1);
1780         kms = lvb.lvb_size;
1781         lov_stripe_unlock(lsm);
1782         if (kms == 0) {
1783                 ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN);
1784                 RETURN(0);
1785         }
1786
1787         spin_lock(&ras->ras_lock);
1788         bead = ll_ra_read_get_locked(ras);
1789         /* Enlarge the RA window to encompass the full read */
1790         if (bead != NULL && ras->ras_window_start + ras->ras_window_len <
1791             bead->lrr_start + bead->lrr_count) {
1792                 obd_off read_end = ((obd_off)(bead->lrr_start +
1793                                               bead->lrr_count))<<CFS_PAGE_SHIFT;
1794                 obd_extent_calc(exp, lsm, OBD_CALC_STRIPE_RPC_END_ALIGN,
1795                                 &read_end);
1796                 ras->ras_window_len = ((read_end + 1) >> CFS_PAGE_SHIFT) -
1797                                       ras->ras_window_start;
1798         }
1799         /* Reserve a part of the read-ahead window that we'll be issuing */
1800         if (ras->ras_window_len) {
1801                 start = ras->ras_next_readahead;
1802                 end = ras->ras_window_start + ras->ras_window_len - 1;
1803         }
1804         if (end != 0) {
1805                 /* Truncate RA window to end of file */
1806                 end = min(end, (unsigned long)((kms - 1) >> CFS_PAGE_SHIFT));
1807                 ras->ras_next_readahead = max(end, end + 1);
1808                 RAS_CDEBUG(ras);
1809         }
1810         ria.ria_start = start;
1811         ria.ria_end = end;
1812         /* If stride I/O mode is detected, get stride window*/
1813         if (stride_io_mode(ras)) {
1814                 ria.ria_stoff = ras->ras_stride_offset;
1815                 ria.ria_length = ras->ras_stride_length;
1816                 ria.ria_pages = ras->ras_stride_pages;
1817         }
1818         spin_unlock(&ras->ras_lock);
1819
1820         if (end == 0) {
1821                 ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW);
1822                 RETURN(0);
1823         }
1824
1825         len = ria_page_count(&ria);
1826         if (len == 0)
1827                 RETURN(0);
1828
1829         reserved = ll_ra_count_get(ll_i2sbi(inode), len);
1830         if (reserved < len)
1831                 ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT);
1832
1833         CDEBUG(D_READA, "reserved page %lu \n", reserved);
1834
1835         ret = ll_read_ahead_pages(exp, oig, &ria, &reserved, mapping, &ra_end);
1836
1837         LASSERTF(reserved >= 0, "reserved %lu\n", reserved);
1838         if (reserved != 0)
1839                 ll_ra_count_put(ll_i2sbi(inode), reserved);
1840
1841         if (ra_end == end + 1 && ra_end == (kms >> CFS_PAGE_SHIFT))
1842                 ll_ra_stats_inc(mapping, RA_STAT_EOF);
1843
1844         /* if we didn't get to the end of the region we reserved from
1845          * the ras we need to go back and update the ras so that the
1846          * next read-ahead tries from where we left off.  we only do so
1847          * if the region we failed to issue read-ahead on is still ahead
1848          * of the app and behind the next index to start read-ahead from */
1849         CDEBUG(D_READA, "ra_end %lu end %lu stride end %lu \n",
1850                ra_end, end, ria.ria_end);
1851
1852         if (ra_end != (end + 1)) {
1853                 spin_lock(&ras->ras_lock);
1854                 if (ra_end < ras->ras_next_readahead &&
1855                     index_in_window(ra_end, ras->ras_window_start, 0,
1856                                     ras->ras_window_len)) {
1857                         ras->ras_next_readahead = ra_end;
1858                         RAS_CDEBUG(ras);
1859                 }
1860                 spin_unlock(&ras->ras_lock);
1861         }
1862
1863         RETURN(ret);
1864 }
1865
1866 static void ras_set_start(struct ll_readahead_state *ras, unsigned long index)
1867 {
1868         /* Since stride readahead is sentivite to the offset
1869          * of read-ahead, so we use original offset here,
1870          * instead of ras_window_start, which is 1M aligned*/
1871         if (stride_io_mode(ras))
1872                 ras->ras_window_start = index;
1873         else
1874                 ras->ras_window_start = index & (~(INIT_RAS_WINDOW_PAGES - 1));
1875 }
1876
1877 /* called with the ras_lock held or from places where it doesn't matter */
1878 static void ras_reset(struct ll_readahead_state *ras, unsigned long index)
1879 {
1880         ras->ras_last_readpage = index;
1881         ras->ras_consecutive_requests = 0;
1882         ras->ras_consecutive_pages = 0;
1883         ras->ras_window_len = 0;
1884         ras_set_start(ras, index);
1885         ras->ras_next_readahead = max(ras->ras_window_start, index);
1886
1887         RAS_CDEBUG(ras);
1888 }
1889
1890 /* called with the ras_lock held or from places where it doesn't matter */
1891 static void ras_stride_reset(struct ll_readahead_state *ras)
1892 {
1893         ras->ras_consecutive_stride_requests = 0;
1894         ras->ras_stride_length = 0;
1895         ras->ras_stride_pages = 0;
1896         RAS_CDEBUG(ras);
1897 }
1898
1899 void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
1900 {
1901         spin_lock_init(&ras->ras_lock);
1902         ras_reset(ras, 0);
1903         ras->ras_requests = 0;
1904         INIT_LIST_HEAD(&ras->ras_read_beads);
1905 }
1906
1907 /*
1908  * Check whether the read request is in the stride window.
1909  * If it is in the stride window, return 1, otherwise return 0.
1910  */
1911 static int index_in_stride_window(unsigned long index,
1912                                   struct ll_readahead_state *ras,
1913                                   struct inode *inode)
1914 {
1915         unsigned long stride_gap = index - ras->ras_last_readpage - 1;
1916
1917         if (ras->ras_stride_length == 0 || ras->ras_stride_pages == 0 ||
1918             ras->ras_stride_pages == ras->ras_stride_length)
1919                 return 0;
1920
1921         /* If it is contiguous read */
1922         if (stride_gap == 0)
1923                 return ras->ras_consecutive_pages + 1 <= ras->ras_stride_pages;
1924
1925         /*Otherwise check the stride by itself */
1926         return (ras->ras_stride_length - ras->ras_stride_pages) == stride_gap &&
1927              ras->ras_consecutive_pages == ras->ras_stride_pages;
1928 }
1929
1930 static void ras_update_stride_detector(struct ll_readahead_state *ras,
1931                                        unsigned long index)
1932 {
1933         unsigned long stride_gap = index - ras->ras_last_readpage - 1;
1934
1935         if (!stride_io_mode(ras) && (stride_gap != 0 ||
1936              ras->ras_consecutive_stride_requests == 0)) {
1937                 ras->ras_stride_pages = ras->ras_consecutive_pages;
1938                 ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
1939         }
1940         LASSERT(ras->ras_request_index == 0);
1941         LASSERT(ras->ras_consecutive_stride_requests == 0);
1942
1943         if (index <= ras->ras_last_readpage) {
1944                 /*Reset stride window for forward read*/
1945                 ras_stride_reset(ras);
1946                 return;
1947         }
1948
1949         ras->ras_stride_pages = ras->ras_consecutive_pages;
1950         ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
1951
1952         RAS_CDEBUG(ras);
1953         return;
1954 }
1955
1956 static unsigned long
1957 stride_page_count(struct ll_readahead_state *ras, unsigned long len)
1958 {
1959         return stride_pg_count(ras->ras_stride_offset, ras->ras_stride_length,
1960                                ras->ras_stride_pages, ras->ras_stride_offset,
1961                                len);
1962 }
1963
1964 /* Stride Read-ahead window will be increased inc_len according to
1965  * the stride I/O pattern.
1966  *
1967  *      |------------------------|------------------------|--------------------|
1968  * ras_stride_offset      ras_window_start          ras_window_end
1969  *                               |<---ras_window_len----->|<---ras_inc_len---->|
1970  *
1971  * ras_stride_offset: where the stride IO mode started,
1972  * Note: stride_page is always in front of stride_gap page, see comments in
1973  * ll_readahead_states and stride_pg_count
1974  *
1975  * This function calculates how much ras_window should increase(ras_inc_len)
1976  * according to @Inc_len, Note: in stride read-ahead algorithm, stride_gap is
1977  * also acconted in the ras_window_len, so basically,
1978  *
1979  * ras_inc_len = (inc_len/ stride_page) * (stride_page + stride_gap)
1980  *
1981  * */
1982 static void ras_stride_increase_window(struct ll_readahead_state *ras,
1983                                        struct ll_ra_info *ra,
1984                                        unsigned long inc_len)
1985 {
1986         unsigned long left, step, window_len;
1987         unsigned long stride_len;
1988
1989         LASSERT(ras->ras_stride_length > 0);
1990         LASSERTF(ras->ras_window_start + ras->ras_window_len
1991                  >= ras->ras_stride_offset, "window_start %lu, window_len %lu"
1992                  " stride_offset %lu sp %lu sl %lu\n", ras->ras_window_start,
1993                  ras->ras_window_len, ras->ras_stride_offset, ras->ras_stride_pages,
1994                  ras->ras_stride_length);
1995
1996         stride_len = ras->ras_window_start + ras->ras_window_len -
1997                      ras->ras_stride_offset;
1998
1999         left = stride_len % ras->ras_stride_length;
2000         window_len = ras->ras_window_len - left;
2001
2002         if (left < ras->ras_stride_pages)
2003                 left += inc_len;
2004         else
2005                 left = ras->ras_stride_pages + inc_len;
2006
2007         LASSERT(ras->ras_stride_pages != 0);
2008
2009         step = left / ras->ras_stride_pages;
2010         left %= ras->ras_stride_pages;
2011
2012         window_len += step * ras->ras_stride_length + left;
2013
2014         if (stride_page_count(ras, window_len) <= ra->ra_max_pages_per_file)
2015                 ras->ras_window_len = window_len;
2016
2017         RAS_CDEBUG(ras);
2018 }
2019
2020 static void ras_increase_window(struct ll_readahead_state *ras,
2021                                 struct ll_ra_info *ra, struct inode *inode)
2022 {
2023         __u64 step = INIT_RAS_WINDOW_PAGES;
2024
2025         if (stride_io_mode(ras))
2026                 ras_stride_increase_window(ras, ra, (unsigned long)step);
2027         else
2028                 ras->ras_window_len = min(ras->ras_window_len +
2029                                           (unsigned long)step,
2030                                           ra->ra_max_pages);
2031 }
2032
2033 static void ras_update(struct ll_sb_info *sbi, struct inode *inode,
2034                        struct ll_readahead_state *ras, unsigned long index,
2035                        unsigned hit)
2036 {
2037         struct ll_ra_info *ra = &sbi->ll_ra_info;
2038         int zero = 0, stride_detect = 0, ra_miss = 0;
2039         ENTRY;
2040
2041         spin_lock(&ras->ras_lock);
2042
2043         ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
2044
2045         /* reset the read-ahead window in two cases.  First when the app seeks
2046          * or reads to some other part of the file.  Secondly if we get a
2047          * read-ahead miss that we think we've previously issued.  This can
2048          * be a symptom of there being so many read-ahead pages that the VM is
2049          * reclaiming it before we get to it. */
2050         if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) {
2051                 zero = 1;
2052                 ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
2053         } else if (!hit && ras->ras_window_len &&
2054                    index < ras->ras_next_readahead &&
2055                    index_in_window(index, ras->ras_window_start, 0,
2056                                    ras->ras_window_len)) {
2057                 ra_miss = 1;
2058                 ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
2059         }
2060
2061         /* On the second access to a file smaller than the tunable
2062          * ra_max_read_ahead_whole_pages trigger RA on all pages in the
2063          * file up to ra_max_pages_per_file.  This is simply a best effort
2064          * and only occurs once per open file.  Normal RA behavior is reverted
2065          * to for subsequent IO.  The mmap case does not increment
2066          * ras_requests and thus can never trigger this behavior. */
2067         if (ras->ras_requests == 2 && !ras->ras_request_index) {
2068                 __u64 kms_pages;
2069
2070                 kms_pages = (i_size_read(inode) + CFS_PAGE_SIZE - 1) >>
2071                             CFS_PAGE_SHIFT;
2072
2073                 CDEBUG(D_READA, "kmsp "LPU64" mwp %lu mp %lu\n", kms_pages,
2074                        ra->ra_max_read_ahead_whole_pages,
2075                        ra->ra_max_pages_per_file);
2076
2077                 if (kms_pages &&
2078                     kms_pages <= ra->ra_max_read_ahead_whole_pages) {
2079                         ras->ras_window_start = 0;
2080                         ras->ras_last_readpage = 0;
2081                         ras->ras_next_readahead = 0;
2082                         ras->ras_window_len = min(ra->ra_max_pages_per_file,
2083                                 ra->ra_max_read_ahead_whole_pages);
2084                         GOTO(out_unlock, 0);
2085                 }
2086         }
2087         if (zero) {
2088                 /* check whether it is in stride I/O mode*/
2089                 if (!index_in_stride_window(index, ras, inode)) {
2090                         if (ras->ras_consecutive_stride_requests == 0 &&
2091                             ras->ras_request_index == 0) {
2092                                 ras_update_stride_detector(ras, index);
2093                                 ras->ras_consecutive_stride_requests ++;
2094                         } else {
2095                                 ras_stride_reset(ras);
2096                         }
2097                         ras_reset(ras, index);
2098                         ras->ras_consecutive_pages++;
2099                         GOTO(out_unlock, 0);
2100                 } else {
2101                         ras->ras_consecutive_pages = 0;
2102                         ras->ras_consecutive_requests = 0;
2103                         if (++ras->ras_consecutive_stride_requests > 1)
2104                                 stride_detect = 1;
2105                         RAS_CDEBUG(ras);
2106                 }
2107         } else {
2108                 if (ra_miss) {
2109                         if (index_in_stride_window(index, ras, inode) &&
2110                             stride_io_mode(ras)) {
2111                                 /*If stride-RA hit cache miss, the stride dector
2112                                  *will not be reset to avoid the overhead of
2113                                  *redetecting read-ahead mode */
2114                                 if (index != ras->ras_last_readpage + 1)
2115                                        ras->ras_consecutive_pages = 0;
2116                                 ras_reset(ras, index);
2117                                 RAS_CDEBUG(ras);
2118                         } else {
2119                                 /* Reset both stride window and normal RA
2120                                  * window */
2121                                 ras_reset(ras, index);
2122                                 ras->ras_consecutive_pages++;
2123                                 ras_stride_reset(ras);
2124                                 GOTO(out_unlock, 0);
2125                         }
2126                 } else if (stride_io_mode(ras)) {
2127                         /* If this is contiguous read but in stride I/O mode
2128                          * currently, check whether stride step still is valid,
2129                          * if invalid, it will reset the stride ra window*/
2130                         if (!index_in_stride_window(index, ras, inode)) {
2131                                 /* Shrink stride read-ahead window to be zero */
2132                                 ras_stride_reset(ras);
2133                                 ras->ras_window_len = 0;
2134                                 ras->ras_next_readahead = index;
2135                         }
2136                 }
2137         }
2138         ras->ras_consecutive_pages++;
2139         ras->ras_last_readpage = index;
2140         ras_set_start(ras, index);
2141         ras->ras_next_readahead = max(ras->ras_window_start,
2142                                       ras->ras_next_readahead);
2143         RAS_CDEBUG(ras);
2144
2145         /* Trigger RA in the mmap case where ras_consecutive_requests
2146          * is not incremented and thus can't be used to trigger RA */
2147         if (!ras->ras_window_len && ras->ras_consecutive_pages == 4) {
2148                 ras->ras_window_len = INIT_RAS_WINDOW_PAGES;
2149                 GOTO(out_unlock, 0);
2150         }
2151
2152         /* Initially reset the stride window offset to next_readahead*/
2153         if (ras->ras_consecutive_stride_requests == 2 && stride_detect) {
2154                 /**
2155                  * Once stride IO mode is detected, next_readahead should be
2156                  * reset to make sure next_readahead > stride offset
2157                  */
2158                 ras->ras_next_readahead = max(index, ras->ras_next_readahead);
2159                 ras->ras_stride_offset = index;
2160                 ras->ras_window_len = INIT_RAS_WINDOW_PAGES;
2161         }
2162
2163         /* The initial ras_window_len is set to the request size.  To avoid
2164          * uselessly reading and discarding pages for random IO the window is
2165          * only increased once per consecutive request received. */
2166         if ((ras->ras_consecutive_requests > 1 || stride_detect) &&
2167             !ras->ras_request_index)
2168                 ras_increase_window(ras, ra, inode);
2169         EXIT;
2170 out_unlock:
2171         RAS_CDEBUG(ras);
2172         ras->ras_request_index++;
2173         spin_unlock(&ras->ras_lock);
2174         return;
2175 }
2176
2177 int ll_writepage(struct page *page)
2178 {
2179         struct inode *inode = page->mapping->host;
2180         struct ll_inode_info *lli = ll_i2info(inode);
2181         struct obd_export *exp;
2182         struct ll_async_page *llap;
2183         struct ll_thread_data *ltd;
2184         struct lustre_handle *lockh = NULL;
2185         int rc = 0;
2186         ENTRY;
2187
2188         LASSERT(PageLocked(page));
2189
2190         exp = ll_i2obdexp(inode);
2191         if (exp == NULL)
2192                 GOTO(out, rc = -EINVAL);
2193
2194         ltd = ll_td_get();
2195         /* currently, no FAST lock in write path */
2196         if (ltd && ltd->lock_style == LL_LOCK_STYLE_TREELOCK) {
2197                 __u64 offset = ((loff_t)page->index) << CFS_PAGE_SHIFT;
2198                 lockh = ltd2lockh(ltd, offset, offset + CFS_PAGE_SIZE - 1);
2199         }
2200
2201         llap = llap_from_page_with_lockh(page, LLAP_ORIGIN_WRITEPAGE, lockh, 0);
2202         if (IS_ERR(llap))
2203                 GOTO(out, rc = PTR_ERR(llap));
2204
2205         LASSERT(!PageWriteback(page));
2206         set_page_writeback(page);
2207
2208         page_cache_get(page);
2209         if (llap->llap_write_queued) {
2210                 LL_CDEBUG_PAGE(D_PAGE, page, "marking urgent\n");
2211                 rc = obd_set_async_flags(exp, lli->lli_smd, NULL,
2212                                          llap->llap_cookie,
2213                                          ASYNC_READY | ASYNC_URGENT);
2214         } else {
2215                 rc = queue_or_sync_write(exp, inode, llap, CFS_PAGE_SIZE,
2216                                          ASYNC_READY | ASYNC_URGENT);
2217         }
2218         if (rc) {
2219                 /* re-dirty page on error so it retries write */
2220                 if (PageWriteback(page))
2221                         end_page_writeback(page);
2222
2223                 /* resend page only for not started IO*/
2224                 if (!PageError(page))
2225                         ll_redirty_page(page);
2226
2227                 page_cache_release(page);
2228         }
2229 out:
2230         if (rc) {
2231                 if (!lli->lli_async_rc)
2232                         lli->lli_async_rc = rc;
2233                 /* resend page only for not started IO*/
2234                 unlock_page(page);
2235         }
2236         RETURN(rc);
2237 }
2238
2239 /*
2240  * for now we do our readpage the same on both 2.4 and 2.5.  The kernel's
2241  * read-ahead assumes it is valid to issue readpage all the way up to
2242  * i_size, but our dlm locks make that not the case.  We disable the
2243  * kernel's read-ahead and do our own by walking ahead in the page cache
2244  * checking for dlm lock coverage.  the main difference between 2.4 and
2245  * 2.6 is how read-ahead gets batched and issued, but we're using our own,
2246  * so they look the same.
2247  */
2248 int ll_readpage(struct file *filp, struct page *page)
2249 {
2250         struct ll_file_data *fd = LUSTRE_FPRIVATE(filp);
2251         struct inode *inode = page->mapping->host;
2252         struct obd_export *exp;
2253         struct ll_async_page *llap;
2254         struct obd_io_group *oig = NULL;
2255         struct lustre_handle *lockh = NULL;
2256         int rc, flags = 0;
2257         ENTRY;
2258
2259         LASSERT(PageLocked(page));
2260         LASSERT(!PageUptodate(page));
2261         CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu/%u(%p),offset=%Lu=%#Lx\n",
2262                inode->i_ino, inode->i_generation, inode,
2263                (((loff_t)page->index) << CFS_PAGE_SHIFT),
2264                (((loff_t)page->index) << CFS_PAGE_SHIFT));
2265         LASSERT(atomic_read(&filp->f_dentry->d_inode->i_count) > 0);
2266
2267         if (!ll_i2info(inode)->lli_smd) {
2268                 /* File with no objects - one big hole */
2269                 /* We use this just for remove_from_page_cache that is not
2270                  * exported, we'd make page back up to date. */
2271                 ll_truncate_complete_page(page);
2272                 clear_page(kmap(page));
2273                 kunmap(page);
2274                 SetPageUptodate(page);
2275                 unlock_page(page);
2276                 RETURN(0);
2277         }
2278
2279         rc = oig_init(&oig);
2280         if (rc < 0)
2281                 GOTO(out, rc);
2282
2283         exp = ll_i2obdexp(inode);
2284         if (exp == NULL)
2285                 GOTO(out, rc = -EINVAL);
2286
2287         if (fd->fd_flags & LL_FILE_GROUP_LOCKED) {
2288                 lockh = &fd->fd_cwlockh;
2289         } else {
2290                 struct ll_thread_data *ltd;
2291                 ltd = ll_td_get();
2292                 if (ltd && ltd->lock_style > 0) {
2293                         __u64 offset = ((loff_t)page->index) << CFS_PAGE_SHIFT;
2294                         lockh = ltd2lockh(ltd, offset,
2295                                           offset + CFS_PAGE_SIZE - 1);
2296                         if (ltd->lock_style == LL_LOCK_STYLE_FASTLOCK)
2297                                 flags = OBD_FAST_LOCK;
2298                 }
2299         }
2300
2301         llap = llap_from_page_with_lockh(page, LLAP_ORIGIN_READPAGE, lockh,
2302                                          flags);
2303         if (IS_ERR(llap)) {
2304                 if (PTR_ERR(llap) == -ENOLCK) {
2305                         CWARN("ino %lu page %lu (%llu) not covered by "
2306                               "a lock (mmap?).  check debug logs.\n",
2307                               inode->i_ino, page->index,
2308                               (long long)page->index << PAGE_CACHE_SHIFT);
2309                 }
2310                 GOTO(out, rc = PTR_ERR(llap));
2311         }
2312
2313         if (ll_i2sbi(inode)->ll_ra_info.ra_max_pages_per_file)
2314                 ras_update(ll_i2sbi(inode), inode, &fd->fd_ras, page->index,
2315                            llap->llap_defer_uptodate);
2316
2317
2318         if (llap->llap_defer_uptodate) {
2319                 /* This is the callpath if we got the page from a readahead */
2320                 llap->llap_ra_used = 1;
2321                 rc = ll_readahead(&fd->fd_ras, exp, page->mapping, oig,
2322                                   fd->fd_flags);
2323                 if (rc > 0)
2324                         obd_trigger_group_io(exp, ll_i2info(inode)->lli_smd,
2325                                              NULL, oig);
2326                 LL_CDEBUG_PAGE(D_PAGE, page, "marking uptodate from defer\n");
2327                 SetPageUptodate(page);
2328                 unlock_page(page);
2329                 GOTO(out_oig, rc = 0);
2330         }
2331
2332         rc = ll_issue_page_read(exp, llap, oig, 0);
2333         if (rc)
2334                 GOTO(out, rc);
2335
2336         LL_CDEBUG_PAGE(D_PAGE, page, "queued readpage\n");
2337         /* We have just requested the actual page we want, see if we can tack
2338          * on some readahead to that page's RPC before it is sent. */
2339         if (ll_i2sbi(inode)->ll_ra_info.ra_max_pages_per_file)
2340                 ll_readahead(&fd->fd_ras, exp, page->mapping, oig,
2341                              fd->fd_flags);
2342
2343         rc = obd_trigger_group_io(exp, ll_i2info(inode)->lli_smd, NULL, oig);
2344
2345 out:
2346         if (rc)
2347                 unlock_page(page);
2348 out_oig:
2349         if (oig != NULL)
2350                 oig_release(oig);
2351         RETURN(rc);
2352 }
2353