X-Git-Url: https://git.whamcloud.com/?p=fs%2Flustre-release.git;a=blobdiff_plain;f=lustre%2Fptlrpc%2Fptlrpcd.c;h=669b0d76888cd417d4447f0285c5bcd0b9668e9c;hp=c9c565cf76b34bac1989fc6c4c4eb236339315ae;hb=d821adb626e050206f1b4605f1159cf65ad22af5;hpb=2800ca6728b00c7ab1f98a27a399ed916cb1be4e diff --git a/lustre/ptlrpc/ptlrpcd.c b/lustre/ptlrpc/ptlrpcd.c index c9c565c..669b0d7 100644 --- a/lustre/ptlrpc/ptlrpcd.c +++ b/lustre/ptlrpc/ptlrpcd.c @@ -1,6 +1,4 @@ -/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- - * vim:expandtab:shiftwidth=8:tabstop=8: - * +/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. @@ -26,8 +24,10 @@ * GPL HEADER END */ /* - * Copyright 2008 Sun Microsystems, Inc. All rights reserved + * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. + * + * Copyright (c) 2011, 2012, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ @@ -71,43 +71,28 @@ #include /* cl_env_{get,put}() */ #include -enum pscope_thread { - PT_NORMAL, - PT_RECOVERY, - PT_NR -}; +#include "ptlrpc_internal.h" -struct ptlrpcd_scope_ctl { - struct ptlrpcd_thread { - const char *pt_name; - struct ptlrpcd_ctl pt_ctl; - } pscope_thread[PT_NR]; +struct ptlrpcd { + int pd_size; + int pd_index; + int pd_nthreads; + struct ptlrpcd_ctl pd_thread_rcv; + struct ptlrpcd_ctl pd_threads[0]; }; -static struct ptlrpcd_scope_ctl ptlrpcd_scopes[PSCOPE_NR] = { - [PSCOPE_BRW] = { - .pscope_thread = { - [PT_NORMAL] = { - .pt_name = "ptlrpcd-brw" - }, - [PT_RECOVERY] = { - .pt_name = "ptlrpcd-brw-rcv" - } - } - }, - [PSCOPE_OTHER] = { - .pscope_thread = { - [PT_NORMAL] = { - .pt_name = "ptlrpcd" - }, - [PT_RECOVERY] = { - .pt_name = "ptlrpcd-rcv" - } - } - } -}; +#ifdef __KERNEL__ +static int max_ptlrpcds; +CFS_MODULE_PARM(max_ptlrpcds, "i", int, 0644, + "Max ptlrpcd thread count to be started."); -cfs_semaphore_t ptlrpcd_sem; +static int ptlrpcd_bind_policy = PDB_POLICY_PAIR; +CFS_MODULE_PARM(ptlrpcd_bind_policy, "i", int, 0644, + "Ptlrpcd threads binding mode."); +#endif +static struct ptlrpcd *ptlrpcds; + +struct mutex ptlrpcd_mutex; static int ptlrpcd_users = 0; void ptlrpcd_wake(struct ptlrpc_request *req) @@ -118,6 +103,51 @@ void ptlrpcd_wake(struct ptlrpc_request *req) cfs_waitq_signal(&rq_set->set_waitq); } +EXPORT_SYMBOL(ptlrpcd_wake); + +static struct ptlrpcd_ctl * +ptlrpcd_select_pc(struct ptlrpc_request *req, pdl_policy_t policy, int index) +{ + int idx = 0; + + if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL) + return &ptlrpcds->pd_thread_rcv; + +#ifdef __KERNEL__ + switch (policy) { + case PDL_POLICY_SAME: + idx = cfs_smp_processor_id() % ptlrpcds->pd_nthreads; + break; + case PDL_POLICY_LOCAL: + /* Before CPU partition patches available, process it the same + * as "PDL_POLICY_ROUND". */ +# ifdef CFS_CPU_MODE_NUMA +# warning "fix this code to use new CPU partition APIs" +# endif + /* Fall through to PDL_POLICY_ROUND until the CPU + * CPU partition patches are available. */ + index = -1; + case PDL_POLICY_PREFERRED: + if (index >= 0 && index < cfs_num_online_cpus()) { + idx = index % ptlrpcds->pd_nthreads; + break; + } + /* Fall through to PDL_POLICY_ROUND for bad index. */ + default: + /* Fall through to PDL_POLICY_ROUND for unknown policy. */ + case PDL_POLICY_ROUND: + /* We do not care whether it is strict load balance. */ + idx = ptlrpcds->pd_index + 1; + if (idx == cfs_smp_processor_id()) + idx++; + idx %= ptlrpcds->pd_nthreads; + ptlrpcds->pd_index = idx; + break; + } +#endif /* __KERNEL__ */ + + return &ptlrpcds->pd_threads[idx]; +} /** * Move all request from an existing request set to the ptlrpcd queue. @@ -126,6 +156,14 @@ void ptlrpcd_wake(struct ptlrpc_request *req) void ptlrpcd_add_rqset(struct ptlrpc_request_set *set) { cfs_list_t *tmp, *pos; +#ifdef __KERNEL__ + struct ptlrpcd_ctl *pc; + struct ptlrpc_request_set *new; + int count, i; + + pc = ptlrpcd_select_pc(NULL, PDL_POLICY_LOCAL, -1); + new = pc->pc_set; +#endif cfs_list_for_each_safe(pos, tmp, &set->set_requests) { struct ptlrpc_request *req = @@ -133,119 +171,179 @@ void ptlrpcd_add_rqset(struct ptlrpc_request_set *set) rq_set_chain); LASSERT(req->rq_phase == RQ_PHASE_NEW); +#ifdef __KERNEL__ + req->rq_set = new; + req->rq_queued_time = cfs_time_current(); +#else cfs_list_del_init(&req->rq_set_chain); req->rq_set = NULL; - ptlrpcd_add_req(req, PSCOPE_OTHER); + ptlrpcd_add_req(req, PDL_POLICY_LOCAL, -1); cfs_atomic_dec(&set->set_remaining); +#endif + } + +#ifdef __KERNEL__ + spin_lock(&new->set_new_req_lock); + cfs_list_splice_init(&set->set_requests, &new->set_new_requests); + i = cfs_atomic_read(&set->set_remaining); + count = cfs_atomic_add_return(i, &new->set_new_count); + cfs_atomic_set(&set->set_remaining, 0); + spin_unlock(&new->set_new_req_lock); + if (count == i) { + cfs_waitq_signal(&new->set_waitq); + + /* XXX: It maybe unnecessary to wakeup all the partners. But to + * guarantee the async RPC can be processed ASAP, we have + * no other better choice. It maybe fixed in future. */ + for (i = 0; i < pc->pc_npartners; i++) + cfs_waitq_signal(&pc->pc_partners[i]->pc_set->set_waitq); } - LASSERT(cfs_atomic_read(&set->set_remaining) == 0); +#endif } EXPORT_SYMBOL(ptlrpcd_add_rqset); +#ifdef __KERNEL__ +/** + * Return transferred RPCs count. + */ +static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des, + struct ptlrpc_request_set *src) +{ + cfs_list_t *tmp, *pos; + struct ptlrpc_request *req; + int rc = 0; + + spin_lock(&src->set_new_req_lock); + if (likely(!cfs_list_empty(&src->set_new_requests))) { + cfs_list_for_each_safe(pos, tmp, &src->set_new_requests) { + req = cfs_list_entry(pos, struct ptlrpc_request, + rq_set_chain); + req->rq_set = des; + } + cfs_list_splice_init(&src->set_new_requests, + &des->set_requests); + rc = cfs_atomic_read(&src->set_new_count); + cfs_atomic_add(rc, &des->set_remaining); + cfs_atomic_set(&src->set_new_count, 0); + } + spin_unlock(&src->set_new_req_lock); + return rc; +} +#endif + /** * Requests that are added to the ptlrpcd queue are sent via * ptlrpcd_check->ptlrpc_check_set(). */ -int ptlrpcd_add_req(struct ptlrpc_request *req, enum ptlrpcd_scope scope) +void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx) { struct ptlrpcd_ctl *pc; - enum pscope_thread pt; - int rc; - LASSERT(scope < PSCOPE_NR); - - cfs_spin_lock(&req->rq_lock); + if (req->rq_reqmsg) + lustre_msg_set_jobid(req->rq_reqmsg, NULL); + + spin_lock(&req->rq_lock); if (req->rq_invalid_rqset) { - cfs_duration_t timeout; - struct l_wait_info lwi; + struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5), + back_to_sleep, NULL); req->rq_invalid_rqset = 0; - cfs_spin_unlock(&req->rq_lock); - - timeout = cfs_time_seconds(5); - lwi = LWI_TIMEOUT(timeout, back_to_sleep, NULL); + spin_unlock(&req->rq_lock); l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi); } else if (req->rq_set) { + /* If we have a vaid "rq_set", just reuse it to avoid double + * linked. */ LASSERT(req->rq_phase == RQ_PHASE_NEW); LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY); /* ptlrpc_check_set will decrease the count */ cfs_atomic_inc(&req->rq_set->set_remaining); - cfs_spin_unlock(&req->rq_lock); - - cfs_waitq_signal(&req->rq_set->set_waitq); - } else { - cfs_spin_unlock(&req->rq_lock); + spin_unlock(&req->rq_lock); + cfs_waitq_signal(&req->rq_set->set_waitq); + return; + } else { + spin_unlock(&req->rq_lock); } - pt = req->rq_send_state == LUSTRE_IMP_FULL ? PT_NORMAL : PT_RECOVERY; - pc = &ptlrpcd_scopes[scope].pscope_thread[pt].pt_ctl; - rc = ptlrpc_set_add_new_req(pc, req); - /* - * XXX disable this for CLIO: environment is needed for interpreter. - * add debug temporary to check rc. - */ - LASSERTF(rc == 0, "ptlrpcd_add_req failed (rc = %d)\n", rc); - if (rc && 0) { - /* - * Thread is probably in stop now so we need to - * kill this rpc as it was not added. Let's call - * interpret for it to let know we're killing it - * so that higher levels might free associated - * resources. - */ - ptlrpc_req_interpret(NULL, req, -EBADR); - req->rq_set = NULL; - ptlrpc_req_finished(req); - } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING) { - /* - * The request is for recovery, should be sent ASAP. - */ - cfs_waitq_signal(&pc->pc_set->set_waitq); - } + pc = ptlrpcd_select_pc(req, policy, idx); - return rc; + DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]", + req, pc->pc_name, pc->pc_index); + + ptlrpc_set_add_new_req(pc, req); +} +EXPORT_SYMBOL(ptlrpcd_add_req); + +static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set) +{ + cfs_atomic_inc(&set->set_refcount); } /** * Check if there is more work to do on ptlrpcd set. * Returns 1 if yes. */ -static int ptlrpcd_check(const struct lu_env *env, struct ptlrpcd_ctl *pc) +static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc) { cfs_list_t *tmp, *pos; struct ptlrpc_request *req; + struct ptlrpc_request_set *set = pc->pc_set; int rc = 0; + int rc2; ENTRY; - cfs_spin_lock(&pc->pc_set->set_new_req_lock); - cfs_list_for_each_safe(pos, tmp, &pc->pc_set->set_new_requests) { - req = cfs_list_entry(pos, struct ptlrpc_request, rq_set_chain); - cfs_list_del_init(&req->rq_set_chain); - ptlrpc_set_add_req(pc->pc_set, req); + if (cfs_atomic_read(&set->set_new_count)) { + spin_lock(&set->set_new_req_lock); + if (likely(!cfs_list_empty(&set->set_new_requests))) { + cfs_list_splice_init(&set->set_new_requests, + &set->set_requests); + cfs_atomic_add(cfs_atomic_read(&set->set_new_count), + &set->set_remaining); + cfs_atomic_set(&set->set_new_count, 0); + /* + * Need to calculate its timeout. + */ + rc = 1; + } + spin_unlock(&set->set_new_req_lock); + } + + /* We should call lu_env_refill() before handling new requests to make + * sure that env key the requests depending on really exists. + */ + rc2 = lu_env_refill(env); + if (rc2 != 0) { /* - * Need to calculate its timeout. + * XXX This is very awkward situation, because + * execution can neither continue (request + * interpreters assume that env is set up), nor repeat + * the loop (as this potentially results in a tight + * loop of -ENOMEM's). + * + * Fortunately, refill only ever does something when + * new modules are loaded, i.e., early during boot up. */ - rc = 1; + CERROR("Failure to refill session: %d\n", rc2); + RETURN(rc); } - cfs_spin_unlock(&pc->pc_set->set_new_req_lock); - if (cfs_atomic_read(&pc->pc_set->set_remaining)) { - rc = rc | ptlrpc_check_set(env, pc->pc_set); + if (cfs_atomic_read(&set->set_remaining)) + rc |= ptlrpc_check_set(env, set); + if (!cfs_list_empty(&set->set_requests)) { /* * XXX: our set never completes, so we prune the completed * reqs after each iteration. boy could this be smarter. */ - cfs_list_for_each_safe(pos, tmp, &pc->pc_set->set_requests) { + cfs_list_for_each_safe(pos, tmp, &set->set_requests) { req = cfs_list_entry(pos, struct ptlrpc_request, - rq_set_chain); + rq_set_chain); if (req->rq_phase != RQ_PHASE_COMPLETE) continue; cfs_list_del_init(&req->rq_set_chain); req->rq_set = NULL; - ptlrpc_req_finished (req); + ptlrpc_req_finished(req); } } @@ -253,9 +351,45 @@ static int ptlrpcd_check(const struct lu_env *env, struct ptlrpcd_ctl *pc) /* * If new requests have been added, make sure to wake up. */ - cfs_spin_lock(&pc->pc_set->set_new_req_lock); - rc = !cfs_list_empty(&pc->pc_set->set_new_requests); - cfs_spin_unlock(&pc->pc_set->set_new_req_lock); + rc = cfs_atomic_read(&set->set_new_count); + +#ifdef __KERNEL__ + /* If we have nothing to do, check whether we can take some + * work from our partner threads. */ + if (rc == 0 && pc->pc_npartners > 0) { + struct ptlrpcd_ctl *partner; + struct ptlrpc_request_set *ps; + int first = pc->pc_cursor; + + do { + partner = pc->pc_partners[pc->pc_cursor++]; + if (pc->pc_cursor >= pc->pc_npartners) + pc->pc_cursor = 0; + if (partner == NULL) + continue; + + spin_lock(&partner->pc_lock); + ps = partner->pc_set; + if (ps == NULL) { + spin_unlock(&partner->pc_lock); + continue; + } + + ptlrpc_reqset_get(ps); + spin_unlock(&partner->pc_lock); + + if (cfs_atomic_read(&ps->set_new_count)) { + rc = ptlrpcd_steal_rqset(set, ps); + if (rc > 0) + CDEBUG(D_RPCTRACE, "transfer %d" + " async RPCs [%d->%d]\n", + rc, partner->pc_index, + pc->pc_index); + } + ptlrpc_reqset_put(ps); + } while (rc == 0 && pc->pc_cursor != first); + } +#endif } RETURN(rc); @@ -271,26 +405,38 @@ static int ptlrpcd_check(const struct lu_env *env, struct ptlrpcd_ctl *pc) static int ptlrpcd(void *arg) { struct ptlrpcd_ctl *pc = arg; + struct ptlrpc_request_set *set = pc->pc_set; struct lu_env env = { .le_ses = NULL }; int rc, exit = 0; ENTRY; - rc = cfs_daemonize_ctxt(pc->pc_name); - if (rc == 0) { - /* - * XXX So far only "client" ptlrpcd uses an environment. In - * the future, ptlrpcd thread (or a thread-set) has to given - * an argument, describing its "scope". - */ - rc = lu_context_init(&env.le_ctx, - LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF); - } - - cfs_complete(&pc->pc_starting); + cfs_daemonize_ctxt(pc->pc_name); +#if defined(CONFIG_SMP) && \ +(defined(HAVE_CPUMASK_OF_NODE) || defined(HAVE_NODE_TO_CPUMASK)) + if (test_bit(LIOD_BIND, &pc->pc_flags)) { + int index = pc->pc_index; + + if (index >= 0 && index < cfs_num_possible_cpus()) { + while (!cpu_online(index)) { + if (++index >= cfs_num_possible_cpus()) + index = 0; + } + cfs_set_cpus_allowed(cfs_current(), + *cpumask_of_node(cpu_to_node(index))); + } + } +#endif + /* + * XXX So far only "client" ptlrpcd uses an environment. In + * the future, ptlrpcd thread (or a thread-set) has to given + * an argument, describing its "scope". + */ + rc = lu_context_init(&env.le_ctx, + LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF); + complete(&pc->pc_starting); if (rc != 0) RETURN(rc); - env.le_ctx.lc_cookie = 0x7; /* * This mainloop strongly resembles ptlrpc_set_wait() except that our @@ -302,37 +448,21 @@ static int ptlrpcd(void *arg) struct l_wait_info lwi; int timeout; - rc = lu_env_refill(&env); - if (rc != 0) { - /* - * XXX This is very awkward situation, because - * execution can neither continue (request - * interpreters assume that env is set up), nor repeat - * the loop (as this potentially results in a tight - * loop of -ENOMEM's). - * - * Fortunately, refill only ever does something when - * new modules are loaded, i.e., early during boot up. - */ - CERROR("Failure to refill session: %d\n", rc); - continue; - } - - timeout = ptlrpc_set_next_timeout(pc->pc_set); + timeout = ptlrpc_set_next_timeout(set); lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1), - ptlrpc_expired_set, pc->pc_set); + ptlrpc_expired_set, set); lu_context_enter(&env.le_ctx); - l_wait_event(pc->pc_set->set_waitq, + l_wait_event(set->set_waitq, ptlrpcd_check(&env, pc), &lwi); lu_context_exit(&env.le_ctx); /* * Abort inflight rpcs for forced stop case. */ - if (cfs_test_bit(LIOD_STOP, &pc->pc_flags)) { - if (cfs_test_bit(LIOD_FORCE, &pc->pc_flags)) - ptlrpc_abort_set(pc->pc_set); + if (test_bit(LIOD_STOP, &pc->pc_flags)) { + if (test_bit(LIOD_FORCE, &pc->pc_flags)) + ptlrpc_abort_set(set); exit++; } @@ -345,17 +475,159 @@ static int ptlrpcd(void *arg) /* * Wait for inflight requests to drain. */ - if (!cfs_list_empty(&pc->pc_set->set_requests)) - ptlrpc_set_wait(pc->pc_set); + if (!cfs_list_empty(&set->set_requests)) + ptlrpc_set_wait(set); lu_context_fini(&env.le_ctx); - cfs_complete(&pc->pc_finishing); - cfs_clear_bit(LIOD_START, &pc->pc_flags); - cfs_clear_bit(LIOD_STOP, &pc->pc_flags); - cfs_clear_bit(LIOD_FORCE, &pc->pc_flags); + complete(&pc->pc_finishing); + return 0; } +/* XXX: We want multiple CPU cores to share the async RPC load. So we start many + * ptlrpcd threads. We also want to reduce the ptlrpcd overhead caused by + * data transfer cross-CPU cores. So we bind ptlrpcd thread to specified + * CPU core. But binding all ptlrpcd threads maybe cause response delay + * because of some CPU core(s) busy with other loads. + * + * For example: "ls -l", some async RPCs for statahead are assigned to + * ptlrpcd_0, and ptlrpcd_0 is bound to CPU_0, but CPU_0 may be quite busy + * with other non-ptlrpcd, like "ls -l" itself (we want to the "ls -l" + * thread, statahead thread, and ptlrpcd thread can run in parallel), under + * such case, the statahead async RPCs can not be processed in time, it is + * unexpected. If ptlrpcd_0 can be re-scheduled on other CPU core, it may + * be better. But it breaks former data transfer policy. + * + * So we shouldn't be blind for avoiding the data transfer. We make some + * compromise: divide the ptlrpcd threds pool into two parts. One part is + * for bound mode, each ptlrpcd thread in this part is bound to some CPU + * core. The other part is for free mode, all the ptlrpcd threads in the + * part can be scheduled on any CPU core. We specify some partnership + * between bound mode ptlrpcd thread(s) and free mode ptlrpcd thread(s), + * and the async RPC load within the partners are shared. + * + * It can partly avoid data transfer cross-CPU (if the bound mode ptlrpcd + * thread can be scheduled in time), and try to guarantee the async RPC + * processed ASAP (as long as the free mode ptlrpcd thread can be scheduled + * on any CPU core). + * + * As for how to specify the partnership between bound mode ptlrpcd + * thread(s) and free mode ptlrpcd thread(s), the simplest way is to use + * pair. In future, we can specify some more complex + * partnership based on the patches for CPU partition. But before such + * patches are available, we prefer to use the simplest one. + */ +# ifdef CFS_CPU_MODE_NUMA +# warning "fix ptlrpcd_bind() to use new CPU partition APIs" +# endif +static int ptlrpcd_bind(int index, int max) +{ + struct ptlrpcd_ctl *pc; + int rc = 0; +#if defined(CONFIG_NUMA) && \ +(defined(HAVE_CPUMASK_OF_NODE) || defined(HAVE_NODE_TO_CPUMASK)) + cpumask_t mask; +#endif + ENTRY; + + LASSERT(index <= max - 1); + pc = &ptlrpcds->pd_threads[index]; + switch (ptlrpcd_bind_policy) { + case PDB_POLICY_NONE: + pc->pc_npartners = -1; + break; + case PDB_POLICY_FULL: + pc->pc_npartners = 0; + set_bit(LIOD_BIND, &pc->pc_flags); + break; + case PDB_POLICY_PAIR: + LASSERT(max % 2 == 0); + pc->pc_npartners = 1; + break; + case PDB_POLICY_NEIGHBOR: +#if defined(CONFIG_NUMA) && \ +(defined(HAVE_CPUMASK_OF_NODE) || defined(HAVE_NODE_TO_CPUMASK)) + { + int i; + mask = *cpumask_of_node(cpu_to_node(index)); + for (i = max; i < cfs_num_online_cpus(); i++) + cpu_clear(i, mask); + pc->pc_npartners = cpus_weight(mask) - 1; + set_bit(LIOD_BIND, &pc->pc_flags); + } +#else + LASSERT(max >= 3); + pc->pc_npartners = 2; +#endif + break; + default: + CERROR("unknown ptlrpcd bind policy %d\n", ptlrpcd_bind_policy); + rc = -EINVAL; + } + + if (rc == 0 && pc->pc_npartners > 0) { + OBD_ALLOC(pc->pc_partners, + sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners); + if (pc->pc_partners == NULL) { + pc->pc_npartners = 0; + rc = -ENOMEM; + } else { + switch (ptlrpcd_bind_policy) { + case PDB_POLICY_PAIR: + if (index & 0x1) { + set_bit(LIOD_BIND, &pc->pc_flags); + pc->pc_partners[0] = &ptlrpcds-> + pd_threads[index - 1]; + ptlrpcds->pd_threads[index - 1]. + pc_partners[0] = pc; + } + break; + case PDB_POLICY_NEIGHBOR: +#if defined(CONFIG_NUMA) && \ +(defined(HAVE_CPUMASK_OF_NODE) || defined(HAVE_NODE_TO_CPUMASK)) + { + struct ptlrpcd_ctl *ppc; + int i, pidx; + /* partners are cores in the same NUMA node. + * setup partnership only with ptlrpcd threads + * that are already initialized + */ + for (pidx = 0, i = 0; i < index; i++) { + if (cpu_isset(i, mask)) { + ppc = &ptlrpcds->pd_threads[i]; + pc->pc_partners[pidx++] = ppc; + ppc->pc_partners[ppc-> + pc_npartners++] = pc; + } + } + /* adjust number of partners to the number + * of partnership really setup */ + pc->pc_npartners = pidx; + } +#else + if (index & 0x1) + set_bit(LIOD_BIND, &pc->pc_flags); + if (index > 0) { + pc->pc_partners[0] = &ptlrpcds-> + pd_threads[index - 1]; + ptlrpcds->pd_threads[index - 1]. + pc_partners[1] = pc; + if (index == max - 1) { + pc->pc_partners[1] = + &ptlrpcds->pd_threads[0]; + ptlrpcds->pd_threads[0]. + pc_partners[0] = pc; + } + } +#endif + break; + } + } + } + + RETURN(rc); +} + #else /* !__KERNEL__ */ /** @@ -378,14 +650,14 @@ int ptlrpcd_check_async_rpcs(void *arg) if (rc == 0) { lu_context_enter(&pc->pc_env.le_ctx); rc = ptlrpcd_check(&pc->pc_env, pc); - lu_context_exit(&pc->pc_env.le_ctx); if (!rc) ptlrpc_expired_set(pc->pc_set); /* * XXX: send replay requests. */ - if (cfs_test_bit(LIOD_RECOVERY, &pc->pc_flags)) + if (test_bit(LIOD_RECOVERY, &pc->pc_flags)) rc = ptlrpcd_check(&pc->pc_env, pc); + lu_context_exit(&pc->pc_env.le_ctx); } } @@ -397,29 +669,31 @@ int ptlrpcd_idle(void *arg) { struct ptlrpcd_ctl *pc = arg; - return (cfs_list_empty(&pc->pc_set->set_new_requests) && + return (cfs_atomic_read(&pc->pc_set->set_new_count) == 0 && cfs_atomic_read(&pc->pc_set->set_remaining) == 0); } #endif -int ptlrpcd_start(const char *name, struct ptlrpcd_ctl *pc) +int ptlrpcd_start(int index, int max, const char *name, struct ptlrpcd_ctl *pc) { int rc; + int env = 0; ENTRY; /* * Do not allow start second thread for one pc. */ - if (cfs_test_and_set_bit(LIOD_START, &pc->pc_flags)) { - CERROR("Starting second thread (%s) for same pc %p\n", - name, pc); - RETURN(-EALREADY); - } - - cfs_init_completion(&pc->pc_starting); - cfs_init_completion(&pc->pc_finishing); - cfs_spin_lock_init(&pc->pc_lock); + if (test_and_set_bit(LIOD_START, &pc->pc_flags)) { + CWARN("Starting second thread (%s) for same pc %p\n", + name, pc); + RETURN(0); + } + + pc->pc_index = index; + init_completion(&pc->pc_starting); + init_completion(&pc->pc_finishing); + spin_lock_init(&pc->pc_lock); strncpy(pc->pc_name, name, sizeof(pc->pc_name) - 1); pc->pc_set = ptlrpc_prep_set(); if (pc->pc_set == NULL) @@ -430,20 +704,23 @@ int ptlrpcd_start(const char *name, struct ptlrpcd_ctl *pc) * describing its "scope". */ rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER); - if (rc != 0) { - ptlrpc_set_destroy(pc->pc_set); + if (rc != 0) GOTO(out, rc); - } + env = 1; #ifdef __KERNEL__ - rc = cfs_kernel_thread(ptlrpcd, pc, 0); - if (rc < 0) { - lu_context_fini(&pc->pc_env.le_ctx); - ptlrpc_set_destroy(pc->pc_set); - GOTO(out, rc); + if (index >= 0) { + rc = ptlrpcd_bind(index, max); + if (rc < 0) + GOTO(out, rc); } + + rc = cfs_create_thread(ptlrpcd, pc, 0); + if (rc < 0) + GOTO(out, rc); + rc = 0; - cfs_wait_for_completion(&pc->pc_starting); + wait_for_completion(&pc->pc_starting); #else pc->pc_wait_callback = liblustre_register_wait_callback("ptlrpcd_check_async_rpcs", @@ -453,87 +730,194 @@ int ptlrpcd_start(const char *name, struct ptlrpcd_ctl *pc) &ptlrpcd_idle, pc); #endif out: - if (rc) - cfs_clear_bit(LIOD_START, &pc->pc_flags); - RETURN(rc); + if (rc) { +#ifdef __KERNEL__ + if (pc->pc_set != NULL) { + struct ptlrpc_request_set *set = pc->pc_set; + + spin_lock(&pc->pc_lock); + pc->pc_set = NULL; + spin_unlock(&pc->pc_lock); + ptlrpc_set_destroy(set); + } + if (env != 0) + lu_context_fini(&pc->pc_env.le_ctx); + clear_bit(LIOD_BIND, &pc->pc_flags); +#else + SET_BUT_UNUSED(env); +#endif + clear_bit(LIOD_START, &pc->pc_flags); + } + RETURN(rc); } void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force) { - if (!cfs_test_bit(LIOD_START, &pc->pc_flags)) { - CERROR("Thread for pc %p was not started\n", pc); - return; - } + ENTRY; + + if (!test_bit(LIOD_START, &pc->pc_flags)) { + CWARN("Thread for pc %p was not started\n", pc); + goto out; + } + + set_bit(LIOD_STOP, &pc->pc_flags); + if (force) + set_bit(LIOD_FORCE, &pc->pc_flags); + cfs_waitq_signal(&pc->pc_set->set_waitq); + +out: + EXIT; +} + +void ptlrpcd_free(struct ptlrpcd_ctl *pc) +{ + struct ptlrpc_request_set *set = pc->pc_set; + ENTRY; + + if (!test_bit(LIOD_START, &pc->pc_flags)) { + CWARN("Thread for pc %p was not started\n", pc); + goto out; + } - cfs_set_bit(LIOD_STOP, &pc->pc_flags); - if (force) - cfs_set_bit(LIOD_FORCE, &pc->pc_flags); - cfs_waitq_signal(&pc->pc_set->set_waitq); #ifdef __KERNEL__ - cfs_wait_for_completion(&pc->pc_finishing); + wait_for_completion(&pc->pc_finishing); #else - liblustre_deregister_wait_callback(pc->pc_wait_callback); - liblustre_deregister_idle_callback(pc->pc_idle_callback); + liblustre_deregister_wait_callback(pc->pc_wait_callback); + liblustre_deregister_idle_callback(pc->pc_idle_callback); +#endif + lu_context_fini(&pc->pc_env.le_ctx); + + spin_lock(&pc->pc_lock); + pc->pc_set = NULL; + spin_unlock(&pc->pc_lock); + ptlrpc_set_destroy(set); + + clear_bit(LIOD_START, &pc->pc_flags); + clear_bit(LIOD_STOP, &pc->pc_flags); + clear_bit(LIOD_FORCE, &pc->pc_flags); + clear_bit(LIOD_BIND, &pc->pc_flags); + +out: +#ifdef __KERNEL__ + if (pc->pc_npartners > 0) { + LASSERT(pc->pc_partners != NULL); + + OBD_FREE(pc->pc_partners, + sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners); + pc->pc_partners = NULL; + } + pc->pc_npartners = 0; #endif - lu_context_fini(&pc->pc_env.le_ctx); - ptlrpc_set_destroy(pc->pc_set); + EXIT; } -void ptlrpcd_fini(void) +static void ptlrpcd_fini(void) { - int i; - int j; + int i; + ENTRY; + + if (ptlrpcds != NULL) { + for (i = 0; i < ptlrpcds->pd_nthreads; i++) + ptlrpcd_stop(&ptlrpcds->pd_threads[i], 0); + for (i = 0; i < ptlrpcds->pd_nthreads; i++) + ptlrpcd_free(&ptlrpcds->pd_threads[i]); + ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0); + ptlrpcd_free(&ptlrpcds->pd_thread_rcv); + OBD_FREE(ptlrpcds, ptlrpcds->pd_size); + ptlrpcds = NULL; + } + + EXIT; +} +static int ptlrpcd_init(void) +{ + int nthreads = cfs_num_online_cpus(); + char name[16]; + int size, i = -1, j, rc = 0; ENTRY; - for (i = 0; i < PSCOPE_NR; ++i) { - for (j = 0; j < PT_NR; ++j) { - struct ptlrpcd_ctl *pc; +#ifdef __KERNEL__ + if (max_ptlrpcds > 0 && max_ptlrpcds < nthreads) + nthreads = max_ptlrpcds; + if (nthreads < 2) + nthreads = 2; + if (nthreads < 3 && ptlrpcd_bind_policy == PDB_POLICY_NEIGHBOR) + ptlrpcd_bind_policy = PDB_POLICY_PAIR; + else if (nthreads % 2 != 0 && ptlrpcd_bind_policy == PDB_POLICY_PAIR) + nthreads &= ~1; /* make sure it is even */ +#else + nthreads = 1; +#endif + + size = offsetof(struct ptlrpcd, pd_threads[nthreads]); + OBD_ALLOC(ptlrpcds, size); + if (ptlrpcds == NULL) + GOTO(out, rc = -ENOMEM); - pc = &ptlrpcd_scopes[i].pscope_thread[j].pt_ctl; + snprintf(name, 15, "ptlrpcd_rcv"); + set_bit(LIOD_RECOVERY, &ptlrpcds->pd_thread_rcv.pc_flags); + rc = ptlrpcd_start(-1, nthreads, name, &ptlrpcds->pd_thread_rcv); + if (rc < 0) + GOTO(out, rc); - if (cfs_test_bit(LIOD_START, &pc->pc_flags)) - ptlrpcd_stop(pc, 0); - } + /* XXX: We start nthreads ptlrpc daemons. Each of them can process any + * non-recovery async RPC to improve overall async RPC efficiency. + * + * But there are some issues with async I/O RPCs and async non-I/O + * RPCs processed in the same set under some cases. The ptlrpcd may + * be blocked by some async I/O RPC(s), then will cause other async + * non-I/O RPC(s) can not be processed in time. + * + * Maybe we should distinguish blocked async RPCs from non-blocked + * async RPCs, and process them in different ptlrpcd sets to avoid + * unnecessary dependency. But how to distribute async RPCs load + * among all the ptlrpc daemons becomes another trouble. */ + for (i = 0; i < nthreads; i++) { + snprintf(name, 15, "ptlrpcd_%d", i); + rc = ptlrpcd_start(i, nthreads, name, &ptlrpcds->pd_threads[i]); + if (rc < 0) + GOTO(out, rc); } - EXIT; + + ptlrpcds->pd_size = size; + ptlrpcds->pd_index = 0; + ptlrpcds->pd_nthreads = nthreads; + +out: + if (rc != 0 && ptlrpcds != NULL) { + for (j = 0; j <= i; j++) + ptlrpcd_stop(&ptlrpcds->pd_threads[j], 0); + for (j = 0; j <= i; j++) + ptlrpcd_free(&ptlrpcds->pd_threads[j]); + ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0); + ptlrpcd_free(&ptlrpcds->pd_thread_rcv); + OBD_FREE(ptlrpcds, size); + ptlrpcds = NULL; + } + + RETURN(0); } int ptlrpcd_addref(void) { int rc = 0; - int i; - int j; ENTRY; - cfs_mutex_down(&ptlrpcd_sem); - if (++ptlrpcd_users == 1) { - for (i = 0; rc == 0 && i < PSCOPE_NR; ++i) { - for (j = 0; rc == 0 && j < PT_NR; ++j) { - struct ptlrpcd_thread *pt; - struct ptlrpcd_ctl *pc; - - pt = &ptlrpcd_scopes[i].pscope_thread[j]; - pc = &pt->pt_ctl; - if (j == PT_RECOVERY) - cfs_set_bit(LIOD_RECOVERY, &pc->pc_flags); - rc = ptlrpcd_start(pt->pt_name, pc); - } - } - if (rc != 0) { - --ptlrpcd_users; - ptlrpcd_fini(); - } - } - cfs_mutex_up(&ptlrpcd_sem); + mutex_lock(&ptlrpcd_mutex); + if (++ptlrpcd_users == 1) + rc = ptlrpcd_init(); + mutex_unlock(&ptlrpcd_mutex); RETURN(rc); } +EXPORT_SYMBOL(ptlrpcd_addref); void ptlrpcd_decref(void) { - cfs_mutex_down(&ptlrpcd_sem); + mutex_lock(&ptlrpcd_mutex); if (--ptlrpcd_users == 0) ptlrpcd_fini(); - cfs_mutex_up(&ptlrpcd_sem); + mutex_unlock(&ptlrpcd_mutex); } +EXPORT_SYMBOL(ptlrpcd_decref); /** @} ptlrpcd */