X-Git-Url: https://git.whamcloud.com/?p=fs%2Flustre-release.git;a=blobdiff_plain;f=lustre%2Fptlrpc%2Fptlrpcd.c;h=4f646a1260c17eb8f4b2d319073e552dd5833726;hp=fc60e297386de4b7b9bba8a7d589601d77a2b0cb;hb=db8a6829cb1c9869d998920c095a14de2d5300bf;hpb=2dc9c16e770415d56839e1996015fec5fab93f29 diff --git a/lustre/ptlrpc/ptlrpcd.c b/lustre/ptlrpc/ptlrpcd.c index fc60e29..4f646a1 100644 --- a/lustre/ptlrpc/ptlrpcd.c +++ b/lustre/ptlrpc/ptlrpcd.c @@ -1,282 +1,888 @@ /* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * - * Copyright (C) 2001-2003 Cluster File Systems, Inc. - * Author Peter Braam + * GPL HEADER START * - * This file is part of Lustre, http://www.lustre.org. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * - * Lustre is free software; you can redistribute it and/or - * modify it under the terms of version 2 of the GNU General Public - * License as published by the Free Software Foundation. + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 only, + * as published by the Free Software Foundation. * - * Lustre is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License version 2 for more details (a copy is included + * in the LICENSE file that accompanied this code). * - * You should have received a copy of the GNU General Public License - * along with Lustre; if not, write to the Free Software - * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * You should have received a copy of the GNU General Public License + * version 2 along with this program; If not, see + * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + * GPL HEADER END + */ +/* + * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. + * Use is subject to license terms. + * + * Copyright (c) 2011, 2012, Whamcloud, Inc. + */ +/* + * This file is part of Lustre, http://www.lustre.org/ + * Lustre is a trademark of Sun Microsystems, Inc. + * + * lustre/ptlrpc/ptlrpcd.c + */ + +/** \defgroup ptlrpcd PortalRPC daemon + * + * ptlrpcd is a special thread with its own set where other user might add + * requests when they don't want to wait for their completion. + * PtlRPCD will take care of sending such requests and then processing their + * replies and calling completion callbacks as necessary. + * The callbacks are called directly from ptlrpcd context. + * It is important to never significantly block (esp. on RPCs!) within such + * completion handler or a deadlock might occur where ptlrpcd enters some + * callback that attempts to send another RPC and wait for it to return, + * during which time ptlrpcd is completely blocked, so e.g. if import + * fails, recovery cannot progress because connection requests are also + * sent by ptlrpcd. + * + * @{ */ #define DEBUG_SUBSYSTEM S_RPC #ifdef __KERNEL__ -# include -# include -# include -# include -# include -# if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)) -# include -# include -# else -# include -# endif +# include #else /* __KERNEL__ */ # include +# include #endif -#include -#include +#include +# include -#ifndef __CYGWIN__ -# include -#else -# include -#endif +#include +#include /* for obd_zombie */ +#include /* for OBD_FAIL_CHECK */ +#include /* cl_env_{get,put}() */ +#include -#include -#include /* for OBD_FAIL_CHECK */ -#include - -#define LIOD_STOP 0 -struct ptlrpcd_ctl { - unsigned long pc_flags; - spinlock_t pc_lock; - struct completion pc_starting; - struct completion pc_finishing; - struct list_head pc_req_list; - wait_queue_head_t pc_waitq; - struct ptlrpc_request_set *pc_set; -#ifndef __KERNEL__ - int pc_recurred; - void *pc_callback; -#endif +#include "ptlrpc_internal.h" + +struct ptlrpcd { + int pd_size; + int pd_index; + int pd_nthreads; + struct ptlrpcd_ctl pd_thread_rcv; + struct ptlrpcd_ctl pd_threads[0]; }; -static struct ptlrpcd_ctl ptlrpcd_pc; -static struct ptlrpcd_ctl ptlrpcd_recovery_pc; +#ifdef __KERNEL__ +static int max_ptlrpcds; +CFS_MODULE_PARM(max_ptlrpcds, "i", int, 0644, + "Max ptlrpcd thread count to be started."); -static DECLARE_MUTEX(ptlrpcd_sem); +static int ptlrpcd_bind_policy = PDB_POLICY_PAIR; +CFS_MODULE_PARM(ptlrpcd_bind_policy, "i", int, 0644, + "Ptlrpcd threads binding mode."); +#endif +static struct ptlrpcd *ptlrpcds; + +cfs_mutex_t ptlrpcd_mutex; static int ptlrpcd_users = 0; void ptlrpcd_wake(struct ptlrpc_request *req) { - struct ptlrpcd_ctl *pc = req->rq_ptlrpcd_data; + struct ptlrpc_request_set *rq_set = req->rq_set; - LASSERT(pc != NULL); + LASSERT(rq_set != NULL); - wake_up(&pc->pc_waitq); + cfs_waitq_signal(&rq_set->set_waitq); } -void ptlrpcd_add_req(struct ptlrpc_request *req) +static struct ptlrpcd_ctl * +ptlrpcd_select_pc(struct ptlrpc_request *req, pdl_policy_t policy, int index) { + int idx = 0; + + if (req != NULL && req->rq_send_state != LUSTRE_IMP_FULL) + return &ptlrpcds->pd_thread_rcv; + +#ifdef __KERNEL__ + switch (policy) { + case PDL_POLICY_SAME: + idx = cfs_smp_processor_id() % ptlrpcds->pd_nthreads; + break; + case PDL_POLICY_LOCAL: + /* Before CPU partition patches available, process it the same + * as "PDL_POLICY_ROUND". */ +# ifdef CFS_CPU_MODE_NUMA +# warning "fix this code to use new CPU partition APIs" +# endif + /* Fall through to PDL_POLICY_ROUND until the CPU + * CPU partition patches are available. */ + index = -1; + case PDL_POLICY_PREFERRED: + if (index >= 0 && index < cfs_num_online_cpus()) { + idx = index % ptlrpcds->pd_nthreads; + break; + } + /* Fall through to PDL_POLICY_ROUND for bad index. */ + default: + /* Fall through to PDL_POLICY_ROUND for unknown policy. */ + case PDL_POLICY_ROUND: + /* We do not care whether it is strict load balance. */ + idx = ptlrpcds->pd_index + 1; + if (idx == cfs_smp_processor_id()) + idx++; + idx %= ptlrpcds->pd_nthreads; + ptlrpcds->pd_index = idx; + break; + } +#endif /* __KERNEL__ */ + + return &ptlrpcds->pd_threads[idx]; +} + +/** + * Move all request from an existing request set to the ptlrpcd queue. + * All requests from the set must be in phase RQ_PHASE_NEW. + */ +void ptlrpcd_add_rqset(struct ptlrpc_request_set *set) +{ + cfs_list_t *tmp, *pos; +#ifdef __KERNEL__ struct ptlrpcd_ctl *pc; + struct ptlrpc_request_set *new; + int count, i; + + pc = ptlrpcd_select_pc(NULL, PDL_POLICY_LOCAL, -1); + new = pc->pc_set; +#endif - if (req->rq_send_state == LUSTRE_IMP_FULL) - pc = &ptlrpcd_pc; - else - pc = &ptlrpcd_recovery_pc; + cfs_list_for_each_safe(pos, tmp, &set->set_requests) { + struct ptlrpc_request *req = + cfs_list_entry(pos, struct ptlrpc_request, + rq_set_chain); - ptlrpc_set_add_new_req(pc->pc_set, req); - req->rq_ptlrpcd_data = pc; - - ptlrpcd_wake(req); + LASSERT(req->rq_phase == RQ_PHASE_NEW); +#ifdef __KERNEL__ + req->rq_set = new; + req->rq_queued_time = cfs_time_current(); +#else + cfs_list_del_init(&req->rq_set_chain); + req->rq_set = NULL; + ptlrpcd_add_req(req, PDL_POLICY_LOCAL, -1); + cfs_atomic_dec(&set->set_remaining); +#endif + } + +#ifdef __KERNEL__ + cfs_spin_lock(&new->set_new_req_lock); + cfs_list_splice_init(&set->set_requests, &new->set_new_requests); + i = cfs_atomic_read(&set->set_remaining); + count = cfs_atomic_add_return(i, &new->set_new_count); + cfs_atomic_set(&set->set_remaining, 0); + cfs_spin_unlock(&new->set_new_req_lock); + if (count == i) { + cfs_waitq_signal(&new->set_waitq); + + /* XXX: It maybe unnecessary to wakeup all the partners. But to + * guarantee the async RPC can be processed ASAP, we have + * no other better choice. It maybe fixed in future. */ + for (i = 0; i < pc->pc_npartners; i++) + cfs_waitq_signal(&pc->pc_partners[i]->pc_set->set_waitq); + } +#endif } +EXPORT_SYMBOL(ptlrpcd_add_rqset); -static int ptlrpcd_check(struct ptlrpcd_ctl *pc) +#ifdef __KERNEL__ +/** + * Return transferred RPCs count. + */ +static int ptlrpcd_steal_rqset(struct ptlrpc_request_set *des, + struct ptlrpc_request_set *src) { - struct list_head *tmp, *pos; + cfs_list_t *tmp, *pos; struct ptlrpc_request *req; - unsigned long flags; int rc = 0; - ENTRY; - if (test_bit(LIOD_STOP, &pc->pc_flags)) - RETURN(1); + cfs_spin_lock(&src->set_new_req_lock); + if (likely(!cfs_list_empty(&src->set_new_requests))) { + cfs_list_for_each_safe(pos, tmp, &src->set_new_requests) { + req = cfs_list_entry(pos, struct ptlrpc_request, + rq_set_chain); + req->rq_set = des; + } + cfs_list_splice_init(&src->set_new_requests, + &des->set_requests); + rc = cfs_atomic_read(&src->set_new_count); + cfs_atomic_add(rc, &des->set_remaining); + cfs_atomic_set(&src->set_new_count, 0); + } + cfs_spin_unlock(&src->set_new_req_lock); + return rc; +} +#endif + +/** + * Requests that are added to the ptlrpcd queue are sent via + * ptlrpcd_check->ptlrpc_check_set(). + */ +void ptlrpcd_add_req(struct ptlrpc_request *req, pdl_policy_t policy, int idx) +{ + struct ptlrpcd_ctl *pc; + + cfs_spin_lock(&req->rq_lock); + if (req->rq_invalid_rqset) { + struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(5), + back_to_sleep, NULL); + + req->rq_invalid_rqset = 0; + cfs_spin_unlock(&req->rq_lock); + l_wait_event(req->rq_set_waitq, (req->rq_set == NULL), &lwi); + } else if (req->rq_set) { + /* If we have a vaid "rq_set", just reuse it to avoid double + * linked. */ + LASSERT(req->rq_phase == RQ_PHASE_NEW); + LASSERT(req->rq_send_state == LUSTRE_IMP_REPLAY); + + /* ptlrpc_check_set will decrease the count */ + cfs_atomic_inc(&req->rq_set->set_remaining); + cfs_spin_unlock(&req->rq_lock); + cfs_waitq_signal(&req->rq_set->set_waitq); + return; + } else { + cfs_spin_unlock(&req->rq_lock); + } + + pc = ptlrpcd_select_pc(req, policy, idx); + + DEBUG_REQ(D_INFO, req, "add req [%p] to pc [%s:%d]", + req, pc->pc_name, pc->pc_index); + + ptlrpc_set_add_new_req(pc, req); +} + +static inline void ptlrpc_reqset_get(struct ptlrpc_request_set *set) +{ + cfs_atomic_inc(&set->set_refcount); +} + +/** + * Check if there is more work to do on ptlrpcd set. + * Returns 1 if yes. + */ +static int ptlrpcd_check(struct lu_env *env, struct ptlrpcd_ctl *pc) +{ + cfs_list_t *tmp, *pos; + struct ptlrpc_request *req; + struct ptlrpc_request_set *set = pc->pc_set; + int rc = 0; + int rc2; + ENTRY; - spin_lock_irqsave(&pc->pc_set->set_new_req_lock, flags); - list_for_each_safe(pos, tmp, &pc->pc_set->set_new_requests) { - req = list_entry(pos, struct ptlrpc_request, rq_set_chain); - list_del_init(&req->rq_set_chain); - ptlrpc_set_add_req(pc->pc_set, req); - rc = 1; /* need to calculate its timeout */ + if (cfs_atomic_read(&set->set_new_count)) { + cfs_spin_lock(&set->set_new_req_lock); + if (likely(!cfs_list_empty(&set->set_new_requests))) { + cfs_list_splice_init(&set->set_new_requests, + &set->set_requests); + cfs_atomic_add(cfs_atomic_read(&set->set_new_count), + &set->set_remaining); + cfs_atomic_set(&set->set_new_count, 0); + /* + * Need to calculate its timeout. + */ + rc = 1; + } + cfs_spin_unlock(&set->set_new_req_lock); } - spin_unlock_irqrestore(&pc->pc_set->set_new_req_lock, flags); - if (pc->pc_set->set_remaining) { - rc = rc | ptlrpc_check_set(pc->pc_set); + /* We should call lu_env_refill() before handling new requests to make + * sure that env key the requests depending on really exists. + */ + rc2 = lu_env_refill(env); + if (rc2 != 0) { + /* + * XXX This is very awkward situation, because + * execution can neither continue (request + * interpreters assume that env is set up), nor repeat + * the loop (as this potentially results in a tight + * loop of -ENOMEM's). + * + * Fortunately, refill only ever does something when + * new modules are loaded, i.e., early during boot up. + */ + CERROR("Failure to refill session: %d\n", rc2); + RETURN(rc); + } - /* XXX our set never completes, so we prune the completed - * reqs after each iteration. boy could this be smarter. */ - list_for_each_safe(pos, tmp, &pc->pc_set->set_requests) { - req = list_entry(pos, struct ptlrpc_request, - rq_set_chain); + if (cfs_atomic_read(&set->set_remaining)) + rc |= ptlrpc_check_set(env, set); + + if (!cfs_list_empty(&set->set_requests)) { + /* + * XXX: our set never completes, so we prune the completed + * reqs after each iteration. boy could this be smarter. + */ + cfs_list_for_each_safe(pos, tmp, &set->set_requests) { + req = cfs_list_entry(pos, struct ptlrpc_request, + rq_set_chain); if (req->rq_phase != RQ_PHASE_COMPLETE) continue; - list_del_init(&req->rq_set_chain); + cfs_list_del_init(&req->rq_set_chain); req->rq_set = NULL; - ptlrpc_req_finished (req); + ptlrpc_req_finished(req); } } + if (rc == 0) { + /* + * If new requests have been added, make sure to wake up. + */ + rc = cfs_atomic_read(&set->set_new_count); + +#ifdef __KERNEL__ + /* If we have nothing to do, check whether we can take some + * work from our partner threads. */ + if (rc == 0 && pc->pc_npartners > 0) { + struct ptlrpcd_ctl *partner; + struct ptlrpc_request_set *ps; + int first = pc->pc_cursor; + + do { + partner = pc->pc_partners[pc->pc_cursor++]; + if (pc->pc_cursor >= pc->pc_npartners) + pc->pc_cursor = 0; + if (partner == NULL) + continue; + + cfs_spin_lock(&partner->pc_lock); + ps = partner->pc_set; + if (ps == NULL) { + cfs_spin_unlock(&partner->pc_lock); + continue; + } + + ptlrpc_reqset_get(ps); + cfs_spin_unlock(&partner->pc_lock); + + if (cfs_atomic_read(&ps->set_new_count)) { + rc = ptlrpcd_steal_rqset(set, ps); + if (rc > 0) + CDEBUG(D_RPCTRACE, "transfer %d" + " async RPCs [%d->%d]\n", + rc, partner->pc_index, + pc->pc_index); + } + ptlrpc_reqset_put(ps); + } while (rc == 0 && pc->pc_cursor != first); + } +#endif + } + RETURN(rc); } #ifdef __KERNEL__ -/* ptlrpc's code paths like to execute in process context, so we have this - * thread which spins on a set which contains the io rpcs. llite specifies - * ptlrpcd's set when it pushes pages down into the oscs */ +/** + * Main ptlrpcd thread. + * ptlrpc's code paths like to execute in process context, so we have this + * thread which spins on a set which contains the rpcs and sends them. + * + */ static int ptlrpcd(void *arg) { struct ptlrpcd_ctl *pc = arg; - unsigned long flags; + struct ptlrpc_request_set *set = pc->pc_set; + struct lu_env env = { .le_ses = NULL }; + int rc, exit = 0; ENTRY; - kportal_daemonize("ptlrpcd"); - - SIGNAL_MASK_LOCK(current, flags); - sigfillset(¤t->blocked); - RECALC_SIGPENDING; - SIGNAL_MASK_UNLOCK(current, flags); - - complete(&pc->pc_starting); - - /* this mainloop strongly resembles ptlrpc_set_wait except - * that our set never completes. ptlrpcd_check calls ptlrpc_check_set - * when there are requests in the set. new requests come in - * on the set's new_req_list and ptlrpcd_check moves them into - * the set. */ - while (1) { - wait_queue_t set_wait; + cfs_daemonize_ctxt(pc->pc_name); +#if defined(CONFIG_SMP) && defined(HAVE_NODE_TO_CPUMASK) + if (cfs_test_bit(LIOD_BIND, &pc->pc_flags)) { + int index = pc->pc_index; + + if (index >= 0 && index < cfs_num_possible_cpus()) { + while (!cpu_online(index)) { + if (++index >= cfs_num_possible_cpus()) + index = 0; + } + cfs_set_cpus_allowed(cfs_current(), + node_to_cpumask(cpu_to_node(index))); + } + } +#endif + /* + * XXX So far only "client" ptlrpcd uses an environment. In + * the future, ptlrpcd thread (or a thread-set) has to given + * an argument, describing its "scope". + */ + rc = lu_context_init(&env.le_ctx, + LCT_CL_THREAD|LCT_REMEMBER|LCT_NOREF); + cfs_complete(&pc->pc_starting); + + if (rc != 0) + RETURN(rc); + + /* + * This mainloop strongly resembles ptlrpc_set_wait() except that our + * set never completes. ptlrpcd_check() calls ptlrpc_check_set() when + * there are requests in the set. New requests come in on the set's + * new_req_list and ptlrpcd_check() moves them into the set. + */ + do { struct l_wait_info lwi; int timeout; - timeout = ptlrpc_set_next_timeout(pc->pc_set) * HZ; - lwi = LWI_TIMEOUT(timeout, ptlrpc_expired_set, pc->pc_set); - - /* ala the pinger, wait on pc's waitqueue and the set's */ - init_waitqueue_entry(&set_wait, current); - add_wait_queue(&pc->pc_set->set_waitq, &set_wait); - l_wait_event(pc->pc_waitq, ptlrpcd_check(pc), &lwi); - remove_wait_queue(&pc->pc_set->set_waitq, &set_wait); + timeout = ptlrpc_set_next_timeout(set); + lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1), + ptlrpc_expired_set, set); + + lu_context_enter(&env.le_ctx); + l_wait_event(set->set_waitq, + ptlrpcd_check(&env, pc), &lwi); + lu_context_exit(&env.le_ctx); + + /* + * Abort inflight rpcs for forced stop case. + */ + if (cfs_test_bit(LIOD_STOP, &pc->pc_flags)) { + if (cfs_test_bit(LIOD_FORCE, &pc->pc_flags)) + ptlrpc_abort_set(set); + exit++; + } - if (test_bit(LIOD_STOP, &pc->pc_flags)) - break; - } - /* wait for inflight requests to drain */ - if (!list_empty(&pc->pc_set->set_requests)) - ptlrpc_set_wait(pc->pc_set); - complete(&pc->pc_finishing); + /* + * Let's make one more loop to make sure that ptlrpcd_check() + * copied all raced new rpcs into the set so we can kill them. + */ + } while (exit < 2); + + /* + * Wait for inflight requests to drain. + */ + if (!cfs_list_empty(&set->set_requests)) + ptlrpc_set_wait(set); + lu_context_fini(&env.le_ctx); + cfs_complete(&pc->pc_finishing); + + cfs_clear_bit(LIOD_START, &pc->pc_flags); + cfs_clear_bit(LIOD_STOP, &pc->pc_flags); + cfs_clear_bit(LIOD_FORCE, &pc->pc_flags); + cfs_clear_bit(LIOD_BIND, &pc->pc_flags); return 0; } + +/* XXX: We want multiple CPU cores to share the async RPC load. So we start many + * ptlrpcd threads. We also want to reduce the ptlrpcd overhead caused by + * data transfer cross-CPU cores. So we bind ptlrpcd thread to specified + * CPU core. But binding all ptlrpcd threads maybe cause response delay + * because of some CPU core(s) busy with other loads. + * + * For example: "ls -l", some async RPCs for statahead are assigned to + * ptlrpcd_0, and ptlrpcd_0 is bound to CPU_0, but CPU_0 may be quite busy + * with other non-ptlrpcd, like "ls -l" itself (we want to the "ls -l" + * thread, statahead thread, and ptlrpcd thread can run in parallel), under + * such case, the statahead async RPCs can not be processed in time, it is + * unexpected. If ptlrpcd_0 can be re-scheduled on other CPU core, it may + * be better. But it breaks former data transfer policy. + * + * So we shouldn't be blind for avoiding the data transfer. We make some + * compromise: divide the ptlrpcd threds pool into two parts. One part is + * for bound mode, each ptlrpcd thread in this part is bound to some CPU + * core. The other part is for free mode, all the ptlrpcd threads in the + * part can be scheduled on any CPU core. We specify some partnership + * between bound mode ptlrpcd thread(s) and free mode ptlrpcd thread(s), + * and the async RPC load within the partners are shared. + * + * It can partly avoid data transfer cross-CPU (if the bound mode ptlrpcd + * thread can be scheduled in time), and try to guarantee the async RPC + * processed ASAP (as long as the free mode ptlrpcd thread can be scheduled + * on any CPU core). + * + * As for how to specify the partnership between bound mode ptlrpcd + * thread(s) and free mode ptlrpcd thread(s), the simplest way is to use + * pair. In future, we can specify some more complex + * partnership based on the patches for CPU partition. But before such + * patches are available, we prefer to use the simplest one. + */ +# ifdef CFS_CPU_MODE_NUMA +# warning "fix ptlrpcd_bind() to use new CPU partition APIs" +# endif +static int ptlrpcd_bind(int index, int max) +{ + struct ptlrpcd_ctl *pc; + int rc = 0; +#if defined(CONFIG_NUMA) && defined(HAVE_NODE_TO_CPUMASK) + struct ptlrpcd_ctl *ppc; + int node, i, pidx; + cpumask_t mask; +#endif + ENTRY; + + LASSERT(index <= max - 1); + pc = &ptlrpcds->pd_threads[index]; + switch (ptlrpcd_bind_policy) { + case PDB_POLICY_NONE: + pc->pc_npartners = -1; + break; + case PDB_POLICY_FULL: + pc->pc_npartners = 0; + cfs_set_bit(LIOD_BIND, &pc->pc_flags); + break; + case PDB_POLICY_PAIR: + LASSERT(max % 2 == 0); + pc->pc_npartners = 1; + break; + case PDB_POLICY_NEIGHBOR: +#if defined(CONFIG_NUMA) && defined(HAVE_NODE_TO_CPUMASK) + node = cpu_to_node(index); + mask = node_to_cpumask(node); + for (i = max; i < cfs_num_online_cpus(); i++) + cpu_clear(i, mask); + pc->pc_npartners = cpus_weight(mask) - 1; + cfs_set_bit(LIOD_BIND, &pc->pc_flags); +#else + LASSERT(max >= 3); + pc->pc_npartners = 2; +#endif + break; + default: + CERROR("unknown ptlrpcd bind policy %d\n", ptlrpcd_bind_policy); + rc = -EINVAL; + } + + if (rc == 0 && pc->pc_npartners > 0) { + OBD_ALLOC(pc->pc_partners, + sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners); + if (pc->pc_partners == NULL) { + pc->pc_npartners = 0; + rc = -ENOMEM; + } else { + switch (ptlrpcd_bind_policy) { + case PDB_POLICY_PAIR: + if (index & 0x1) { + cfs_set_bit(LIOD_BIND, &pc->pc_flags); + pc->pc_partners[0] = &ptlrpcds-> + pd_threads[index - 1]; + ptlrpcds->pd_threads[index - 1]. + pc_partners[0] = pc; + } + break; + case PDB_POLICY_NEIGHBOR: +#if defined(CONFIG_NUMA) && defined(HAVE_NODE_TO_CPUMASK) + /* partners are cores in the same NUMA node. + * setup partnership only with ptlrpcd threads + * that are already initialized + */ + for (pidx = 0, i = 0; i < index; i++) { + if (cpu_isset(i, mask)) { + ppc = &ptlrpcds->pd_threads[i]; + pc->pc_partners[pidx++] = ppc; + ppc->pc_partners[ppc-> + pc_npartners++] = pc; + } + } + /* adjust number of partners to the number + * of partnership really setup */ + pc->pc_npartners = pidx; #else + if (index & 0x1) + cfs_set_bit(LIOD_BIND, &pc->pc_flags); + if (index > 0) { + pc->pc_partners[0] = &ptlrpcds-> + pd_threads[index - 1]; + ptlrpcds->pd_threads[index - 1]. + pc_partners[1] = pc; + if (index == max - 1) { + pc->pc_partners[1] = + &ptlrpcds->pd_threads[0]; + ptlrpcds->pd_threads[0]. + pc_partners[0] = pc; + } + } +#endif + break; + } + } + } + + RETURN(rc); +} + +#else /* !__KERNEL__ */ +/** + * In liblustre we do not have separate threads, so this function + * is called from time to time all across common code to see + * if something needs to be processed on ptlrpcd set. + */ int ptlrpcd_check_async_rpcs(void *arg) { struct ptlrpcd_ctl *pc = arg; - int rc = 0; + int rc = 0; - /* single threaded!! */ + /* + * Single threaded!! + */ pc->pc_recurred++; - if (pc->pc_recurred == 1) - rc = ptlrpcd_check(pc); + if (pc->pc_recurred == 1) { + rc = lu_env_refill(&pc->pc_env); + if (rc == 0) { + lu_context_enter(&pc->pc_env.le_ctx); + rc = ptlrpcd_check(&pc->pc_env, pc); + if (!rc) + ptlrpc_expired_set(pc->pc_set); + /* + * XXX: send replay requests. + */ + if (cfs_test_bit(LIOD_RECOVERY, &pc->pc_flags)) + rc = ptlrpcd_check(&pc->pc_env, pc); + lu_context_exit(&pc->pc_env.le_ctx); + } + } pc->pc_recurred--; return rc; } + +int ptlrpcd_idle(void *arg) +{ + struct ptlrpcd_ctl *pc = arg; + + return (cfs_atomic_read(&pc->pc_set->set_new_count) == 0 && + cfs_atomic_read(&pc->pc_set->set_remaining) == 0); +} + #endif -static int ptlrpcd_start(struct ptlrpcd_ctl *pc) +int ptlrpcd_start(int index, int max, const char *name, struct ptlrpcd_ctl *pc) { - int rc = 0; + int rc; + int env = 0; + ENTRY; - memset(pc, 0, sizeof(*pc)); - init_completion(&pc->pc_starting); - init_completion(&pc->pc_finishing); - init_waitqueue_head(&pc->pc_waitq); - pc->pc_flags = 0; - spin_lock_init(&pc->pc_lock); - INIT_LIST_HEAD(&pc->pc_req_list); + /* + * Do not allow start second thread for one pc. + */ + if (cfs_test_and_set_bit(LIOD_START, &pc->pc_flags)) { + CWARN("Starting second thread (%s) for same pc %p\n", + name, pc); + RETURN(0); + } + pc->pc_index = index; + cfs_init_completion(&pc->pc_starting); + cfs_init_completion(&pc->pc_finishing); + cfs_spin_lock_init(&pc->pc_lock); + strncpy(pc->pc_name, name, sizeof(pc->pc_name) - 1); pc->pc_set = ptlrpc_prep_set(); if (pc->pc_set == NULL) GOTO(out, rc = -ENOMEM); + /* + * So far only "client" ptlrpcd uses an environment. In the future, + * ptlrpcd thread (or a thread-set) has to be given an argument, + * describing its "scope". + */ + rc = lu_context_init(&pc->pc_env.le_ctx, LCT_CL_THREAD|LCT_REMEMBER); + if (rc != 0) + GOTO(out, rc); + env = 1; #ifdef __KERNEL__ - if (kernel_thread(ptlrpcd, pc, 0) < 0) { - ptlrpc_set_destroy(pc->pc_set); - GOTO(out, rc = -ECHILD); + if (index >= 0) { + rc = ptlrpcd_bind(index, max); + if (rc < 0) + GOTO(out, rc); } - wait_for_completion(&pc->pc_starting); + rc = cfs_create_thread(ptlrpcd, pc, 0); + if (rc < 0) + GOTO(out, rc); + + rc = 0; + cfs_wait_for_completion(&pc->pc_starting); #else - pc->pc_callback = - liblustre_register_wait_callback(&ptlrpcd_check_async_rpcs, pc); + pc->pc_wait_callback = + liblustre_register_wait_callback("ptlrpcd_check_async_rpcs", + &ptlrpcd_check_async_rpcs, pc); + pc->pc_idle_callback = + liblustre_register_idle_callback("ptlrpcd_check_idle_rpcs", + &ptlrpcd_idle, pc); #endif out: + if (rc) { +#ifdef __KERNEL__ + if (pc->pc_set != NULL) { + struct ptlrpc_request_set *set = pc->pc_set; + + cfs_spin_lock(&pc->pc_lock); + pc->pc_set = NULL; + cfs_spin_unlock(&pc->pc_lock); + ptlrpc_set_destroy(set); + } + if (env != 0) + lu_context_fini(&pc->pc_env.le_ctx); + cfs_clear_bit(LIOD_BIND, &pc->pc_flags); +#else + SET_BUT_UNUSED(env); +#endif + cfs_clear_bit(LIOD_START, &pc->pc_flags); + } RETURN(rc); } -static void ptlrpcd_stop(struct ptlrpcd_ctl *pc) +void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force) { - set_bit(LIOD_STOP, &pc->pc_flags); - wake_up(&pc->pc_waitq); + struct ptlrpc_request_set *set = pc->pc_set; + ENTRY; + + if (!cfs_test_bit(LIOD_START, &pc->pc_flags)) { + CWARN("Thread for pc %p was not started\n", pc); + goto out; + } + + cfs_set_bit(LIOD_STOP, &pc->pc_flags); + if (force) + cfs_set_bit(LIOD_FORCE, &pc->pc_flags); + cfs_waitq_signal(&pc->pc_set->set_waitq); #ifdef __KERNEL__ - wait_for_completion(&pc->pc_finishing); + cfs_wait_for_completion(&pc->pc_finishing); #else - liblustre_deregister_wait_callback(pc->pc_callback); + liblustre_deregister_wait_callback(pc->pc_wait_callback); + liblustre_deregister_idle_callback(pc->pc_idle_callback); +#endif + lu_context_fini(&pc->pc_env.le_ctx); + + cfs_spin_lock(&pc->pc_lock); + pc->pc_set = NULL; + cfs_spin_unlock(&pc->pc_lock); + ptlrpc_set_destroy(set); + +out: +#ifdef __KERNEL__ + if (pc->pc_npartners > 0) { + LASSERT(pc->pc_partners != NULL); + + OBD_FREE(pc->pc_partners, + sizeof(struct ptlrpcd_ctl *) * pc->pc_npartners); + pc->pc_partners = NULL; + } + pc->pc_npartners = 0; #endif - ptlrpc_set_destroy(pc->pc_set); + EXIT; } -int ptlrpcd_addref(void) +static void ptlrpcd_fini(void) { - int rc = 0; + int i; ENTRY; - down(&ptlrpcd_sem); - if (++ptlrpcd_users != 1) - GOTO(out, rc); - - rc = ptlrpcd_start(&ptlrpcd_pc); - if (rc) { - --ptlrpcd_users; - GOTO(out, rc); + if (ptlrpcds != NULL) { + for (i = 0; i < ptlrpcds->pd_nthreads; i++) + ptlrpcd_stop(&ptlrpcds->pd_threads[i], 0); + ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0); + OBD_FREE(ptlrpcds, ptlrpcds->pd_size); + ptlrpcds = NULL; } - rc = ptlrpcd_start(&ptlrpcd_recovery_pc); - if (rc) { - ptlrpcd_stop(&ptlrpcd_pc); - --ptlrpcd_users; + EXIT; +} + +static int ptlrpcd_init(void) +{ + int nthreads = cfs_num_online_cpus(); + char name[16]; + int size, i = -1, j, rc = 0; + ENTRY; + +#ifdef __KERNEL__ + if (max_ptlrpcds > 0 && max_ptlrpcds < nthreads) + nthreads = max_ptlrpcds; + if (nthreads < 2) + nthreads = 2; + if (nthreads < 3 && ptlrpcd_bind_policy == PDB_POLICY_NEIGHBOR) + ptlrpcd_bind_policy = PDB_POLICY_PAIR; + else if (nthreads % 2 != 0 && ptlrpcd_bind_policy == PDB_POLICY_PAIR) + nthreads &= ~1; /* make sure it is even */ +#else + nthreads = 1; +#endif + + size = offsetof(struct ptlrpcd, pd_threads[nthreads]); + OBD_ALLOC(ptlrpcds, size); + if (ptlrpcds == NULL) + GOTO(out, rc = -ENOMEM); + + snprintf(name, 15, "ptlrpcd_rcv"); + cfs_set_bit(LIOD_RECOVERY, &ptlrpcds->pd_thread_rcv.pc_flags); + rc = ptlrpcd_start(-1, nthreads, name, &ptlrpcds->pd_thread_rcv); + if (rc < 0) GOTO(out, rc); + + /* XXX: We start nthreads ptlrpc daemons. Each of them can process any + * non-recovery async RPC to improve overall async RPC efficiency. + * + * But there are some issues with async I/O RPCs and async non-I/O + * RPCs processed in the same set under some cases. The ptlrpcd may + * be blocked by some async I/O RPC(s), then will cause other async + * non-I/O RPC(s) can not be processed in time. + * + * Maybe we should distinguish blocked async RPCs from non-blocked + * async RPCs, and process them in different ptlrpcd sets to avoid + * unnecessary dependency. But how to distribute async RPCs load + * among all the ptlrpc daemons becomes another trouble. */ + for (i = 0; i < nthreads; i++) { + snprintf(name, 15, "ptlrpcd_%d", i); + rc = ptlrpcd_start(i, nthreads, name, &ptlrpcds->pd_threads[i]); + if (rc < 0) + GOTO(out, rc); } + + ptlrpcds->pd_size = size; + ptlrpcds->pd_index = 0; + ptlrpcds->pd_nthreads = nthreads; + out: - up(&ptlrpcd_sem); + if (rc != 0 && ptlrpcds != NULL) { + for (j = 0; j <= i; j++) + ptlrpcd_stop(&ptlrpcds->pd_threads[j], 0); + ptlrpcd_stop(&ptlrpcds->pd_thread_rcv, 0); + OBD_FREE(ptlrpcds, size); + ptlrpcds = NULL; + } + + RETURN(0); +} + +int ptlrpcd_addref(void) +{ + int rc = 0; + ENTRY; + + cfs_mutex_lock(&ptlrpcd_mutex); + if (++ptlrpcd_users == 1) + rc = ptlrpcd_init(); + cfs_mutex_unlock(&ptlrpcd_mutex); RETURN(rc); } void ptlrpcd_decref(void) { - down(&ptlrpcd_sem); - if (--ptlrpcd_users == 0) { - ptlrpcd_stop(&ptlrpcd_pc); - ptlrpcd_stop(&ptlrpcd_recovery_pc); - } - up(&ptlrpcd_sem); + cfs_mutex_lock(&ptlrpcd_mutex); + if (--ptlrpcd_users == 0) + ptlrpcd_fini(); + cfs_mutex_unlock(&ptlrpcd_mutex); } +/** @} ptlrpcd */