#ifndef _LSTDDEF_H #define _LSTDDEF_H #include #include #include #include #include #define __ALIGN_LSTDDEF_MASK(x, mask) (((x) + (mask)) & ~(mask)) #define __ALIGN_LSTDDEF(x, a) __ALIGN_LSTDDEF_MASK(x, (typeof(x))(a) - 1) #define __LSTDDEF_DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) #define ALIGN(x, a) __ALIGN_LSTDDEF((x), (a)) #define ALIGN_DOWN(x, a) __ALIGN_LSTDDEF((x) - ((a) - 1), (a)) #define __ALIGN_MASK(x, mask) __ALIGN_LSTDDEF_MASK((x), (mask)) #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) #ifndef __must_be_array # define __must_be_array(arr) 0 #endif #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) /* * This looks more complex than it should be. But we need to * get the type for the ~ right in round_down (it needs to be * as wide as the result!), and we want to evaluate the macro * arguments just once each. */ #define __round_mask(x, y) ((__typeof__(x))((y) - 1)) #define round_up(x, y) ((((x) - 1) | __round_mask(x, y)) + 1) #define round_down(x, y) ((x) & ~__round_mask(x, y)) #define DIV_ROUND_UP __USER_DIV_ROUND_UP #define DIV_ROUND_DOWN_ULL(ll, d) \ ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) #define DIV_ROUND_UP_ULL(ll, d) DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d)) #if BITS_PER_LONG == 32 # define DIV_ROUND_UP_SECTOR_T(ll, d) DIV_ROUND_UP_ULL(ll, d) #else # define DIV_ROUND_UP_SECTOR_T(ll, d) DIV_ROUND_UP(ll, d) #endif #define rounddown(x, y) ({ \ typeof(x) __x = (x); \ __x - (__x % (y)); \ }) /* * Divide positive or negative dividend by positive divisor and round * to closest integer. Result is undefined for negative divisors and * for negative dividends if the divisor variable type is unsigned. */ #define DIV_ROUND_CLOSEST(x, divisor) ({ \ typeof(x) __x = x; \ typeof(divisor) __d = divisor; \ (((typeof(x))-1) > 0 || \ ((typeof(divisor))-1) > 0 || (__x) > 0) ? \ (((__x) + ((__d) / 2)) / (__d)) : \ (((__x) - ((__d) / 2)) / (__d)); \ }) /* * Same as above but for u64 dividends. divisor must be a 32-bit * number. */ #define DIV_ROUND_CLOSEST_ULL(x, divisor) ({ \ typeof(divisor) __d = divisor; \ unsigned long long _tmp = (x) + (__d) / 2; \ do_div(_tmp, __d); \ _tmp; \ }) /* * Multiplies an integer by a fraction, while avoiding unnecessary * overflow or loss of precision. */ #define mult_frac(x, numer, denom) ({ \ typeof(x) quot = (x) / (denom); \ typeof(x) rem = (x) % (denom); \ (quot * (numer)) + ((rem * (numer)) / (denom)); \ }) /** * upper_32_bits - return bits 32-63 of a number * @n: the number we're accessing * * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress * the "right shift count >= width of type" warning when that quantity is * 32-bits. */ #define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16)) /** * lower_32_bits - return bits 0-31 of a number * @n: the number we're accessing */ #define lower_32_bits(n) ((__u32)(n)) /** * abs - return absolute value of an argument * @x: the value. If it is unsigned type, it is converted to signed type first * (s64, long or int depending on its size). * * Return: an absolute value of x. If x is 64-bit, macro's return type is s64, * otherwise it is signed long. */ #define abs(x) __builtin_choose_expr(sizeof(x) == sizeof(__s64), ({ \ __s64 __x = (x); \ (__x < 0) ? -__x : __x; \ }), ({ \ long ret; \ if (sizeof(x) == sizeof(long)) { \ long __x = (x); \ ret = (__x < 0) ? -__x : __x; \ } else { \ int __x = (x); \ ret = (__x < 0) ? -__x : __x; \ } \ ret; \ })) /** * reciprocal_scale - "scale" a value into range [0, ep_ro) * @val: value * @ep_ro: right open interval endpoint * * Perform a "reciprocal multiplication" in order to "scale" a value into * range [0, ep_ro), where the upper interval endpoint is right-open. * This is useful, e.g. for accessing a index of an array containing * ep_ro elements, for example. Think of it as sort of modulus, only that * the result isn't that of modulo. ;) Note that if initial input is a * small value, then result will return 0. * * Return: a result based on val in interval [0, ep_ro). */ static inline __u32 reciprocal_scale(__u32 val, __u32 ep_ro) { return (__u32)(((__u64) val * ep_ro) >> 32); } /* * min()/max()/clamp() macros that also do * strict type-checking.. See the * "unnecessary" pointer comparison. */ #define min(x, y) ({ \ typeof(x) _min1 = (x); \ typeof(y) _min2 = (y); \ (void) (&_min1 == &_min2); \ _min1 < _min2 ? _min1 : _min2; \ }) #define max(x, y) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ (void) (&_max1 == &_max2); \ _max1 > _max2 ? _max1 : _max2; \ }) #define min3(x, y, z) ({ \ typeof(x) _min1 = (x); \ typeof(y) _min2 = (y); \ typeof(z) _min3 = (z); \ (void) (&_min1 == &_min2); \ (void) (&_min1 == &_min3); \ _min1 < _min2 ? (_min1 < _min3 ? _min1 : _min3) : \ (_min2 < _min3 ? _min2 : _min3); \ }) #define max3(x, y, z) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ typeof(z) _max3 = (z); \ (void) (&_max1 == &_max2); \ (void) (&_max1 == &_max3); \ _max1 > _max2 ? (_max1 > _max3 ? _max1 : _max3) : \ (_max2 > _max3 ? _max2 : _max3); \ }) /** * min_not_zero - return the minimum that is _not_ zero, unless both are zero * @x: value1 * @y: value2 */ #define min_not_zero(x, y) ({ \ typeof(x) __x = (x); \ typeof(y) __y = (y); \ __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); \ }) /** * clamp - return a value clamped to a given range with strict typechecking * @val: current value * @min: minimum allowable value * @max: maximum allowable value * * This macro does strict typechecking of min/max to make sure they are of the * same type as val. See the unnecessary pointer comparisons. */ #define clamp(val, min, max) ({ \ typeof(val) __val = (val); \ typeof(min) __min = (min); \ typeof(max) __max = (max); \ (void) (&__val == &__min); \ (void) (&__val == &__max); \ __val = __val < __min ? __min : __val; \ __val > __max ? __max : __val; \ }) /* * ..and if you can't take the strict * types, you can specify one yourself. * * Or not use min/max/clamp at all, of course. */ #define min_t(type, x, y) ({ \ type __min1 = (x); \ type __min2 = (y); \ __min1 < __min2 ? __min1 : __min2; \ }) #define max_t(type, x, y) ({ \ type __max1 = (x); \ type __max2 = (y); \ __max1 > __max2 ? __max1 : __max2; \ }) /** * clamp_t - return a value clamped to a given range using a given type * @type: the type of variable to use * @val: current value * @min: minimum allowable value * @max: maximum allowable value * * This macro does no typechecking and uses temporary variables of type * 'type' to make all the comparisons. */ #define clamp_t(type, val, min, max) ({ \ type __val = (val); \ type __min = (min); \ type __max = (max); \ __val = __val < __min ? __min : __val; \ __val > __max ? __max : __val; \ }) /** * clamp_val - return a value clamped to a given range using val's type * @val: current value * @min: minimum allowable value * @max: maximum allowable value * * This macro does no typechecking and uses temporary variables of whatever * type the input argument 'val' is. This is useful when val is an unsigned * type and min and max are literals that will otherwise be assigned a signed * integer type. */ #define clamp_val(val, min, max) ({ \ typeof(val) __val = (val); \ typeof(val) __min = (min); \ typeof(val) __max = (max); \ __val = __val < __min ? __min : __val; \ __val > __max ? __max : __val; \ }) /* * swap - swap value of @a and @b */ #define swap(a, b) do { \ typeof(a) __tmp = (a); \ (a) = (b); \ (b) = __tmp; \ } while (0) /** * container_of - cast a member of a structure out to the containing structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. * */ #define container_of(ptr, type, member) ({ \ const typeof(((type *)0)->member) *__mptr = (ptr); \ (type *)((char *)__mptr - offsetof(type, member)); \ }) #ifndef HAVE_COPY_FILE_RANGE #ifndef __NR_copy_file_range #if defined(_ASM_X86_UNISTD_64_H) #define __NR_copy_file_range 326 #elif defined(_ASM_X86_UNISTD_32_H) #define __NR_copy_file_range 285 #else #define __NR_copy_file_range 285 #endif #endif static inline loff_t copy_file_range(int fd_in, loff_t *off_in, int fd_out, loff_t *off_out, size_t len, unsigned int flags) { return syscall(__NR_copy_file_range, fd_in, off_in, fd_out, off_out, len, flags); } #endif /* !HAVE_COPY_FILE_RANGE */ #endif /* !_LSTDDEF_H */