/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved * Use is subject to license terms. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/ptlrpc/sec_bulk.c * * Author: Eric Mei */ #ifndef EXPORT_SYMTAB #define EXPORT_SYMTAB #endif #define DEBUG_SUBSYSTEM S_SEC #include #ifndef __KERNEL__ #include #include #else #include #endif #include #include #include #include #include #include #include #include #include "ptlrpc_internal.h" /**************************************** * bulk encryption page pools * ****************************************/ #ifdef __KERNEL__ #define PTRS_PER_PAGE (CFS_PAGE_SIZE / sizeof(void *)) #define PAGES_PER_POOL (PTRS_PER_PAGE) #define IDLE_IDX_MAX (100) #define IDLE_IDX_WEIGHT (3) #define CACHE_QUIESCENT_PERIOD (20) static struct ptlrpc_enc_page_pool { /* * constants */ unsigned long epp_max_pages; /* maximum pages can hold, const */ unsigned int epp_max_pools; /* number of pools, const */ /* * wait queue in case of not enough free pages. */ cfs_waitq_t epp_waitq; /* waiting threads */ unsigned int epp_waitqlen; /* wait queue length */ unsigned long epp_pages_short; /* # of pages wanted of in-q users */ unsigned int epp_growing:1; /* during adding pages */ /* * indicating how idle the pools are, from 0 to MAX_IDLE_IDX * this is counted based on each time when getting pages from * the pools, not based on time. which means in case that system * is idled for a while but the idle_idx might still be low if no * activities happened in the pools. */ unsigned long epp_idle_idx; /* last shrink time due to mem tight */ long epp_last_shrink; long epp_last_access; /* * in-pool pages bookkeeping */ spinlock_t epp_lock; /* protect following fields */ unsigned long epp_total_pages; /* total pages in pools */ unsigned long epp_free_pages; /* current pages available */ /* * statistics */ unsigned long epp_st_max_pages; /* # of pages ever reached */ unsigned int epp_st_grows; /* # of grows */ unsigned int epp_st_grow_fails; /* # of add pages failures */ unsigned int epp_st_shrinks; /* # of shrinks */ unsigned long epp_st_access; /* # of access */ unsigned long epp_st_missings; /* # of cache missing */ unsigned long epp_st_lowfree; /* lowest free pages reached */ unsigned int epp_st_max_wqlen; /* highest waitqueue length */ cfs_time_t epp_st_max_wait; /* in jeffies */ /* * pointers to pools */ cfs_page_t ***epp_pools; } page_pools; /* * memory shrinker */ const int pools_shrinker_seeks = DEFAULT_SEEKS; static struct shrinker *pools_shrinker = NULL; /* * /proc/fs/lustre/sptlrpc/encrypt_page_pools */ int sptlrpc_proc_read_enc_pool(char *page, char **start, off_t off, int count, int *eof, void *data) { int rc; spin_lock(&page_pools.epp_lock); rc = snprintf(page, count, "physical pages: %lu\n" "pages per pool: %lu\n" "max pages: %lu\n" "max pools: %u\n" "total pages: %lu\n" "total free: %lu\n" "idle index: %lu/100\n" "last shrink: %lds\n" "last access: %lds\n" "max pages reached: %lu\n" "grows: %u\n" "grows failure: %u\n" "shrinks: %u\n" "cache access: %lu\n" "cache missing: %lu\n" "low free mark: %lu\n" "max waitqueue depth: %u\n" "max wait time: "CFS_TIME_T"/%u\n" , num_physpages, PAGES_PER_POOL, page_pools.epp_max_pages, page_pools.epp_max_pools, page_pools.epp_total_pages, page_pools.epp_free_pages, page_pools.epp_idle_idx, cfs_time_current_sec() - page_pools.epp_last_shrink, cfs_time_current_sec() - page_pools.epp_last_access, page_pools.epp_st_max_pages, page_pools.epp_st_grows, page_pools.epp_st_grow_fails, page_pools.epp_st_shrinks, page_pools.epp_st_access, page_pools.epp_st_missings, page_pools.epp_st_lowfree, page_pools.epp_st_max_wqlen, page_pools.epp_st_max_wait, HZ ); spin_unlock(&page_pools.epp_lock); return rc; } static void enc_pools_release_free_pages(long npages) { int p_idx, g_idx; int p_idx_max1, p_idx_max2; LASSERT(npages > 0); LASSERT(npages <= page_pools.epp_free_pages); LASSERT(page_pools.epp_free_pages <= page_pools.epp_total_pages); /* max pool index before the release */ p_idx_max2 = (page_pools.epp_total_pages - 1) / PAGES_PER_POOL; page_pools.epp_free_pages -= npages; page_pools.epp_total_pages -= npages; /* max pool index after the release */ p_idx_max1 = page_pools.epp_total_pages == 0 ? -1 : ((page_pools.epp_total_pages - 1) / PAGES_PER_POOL); p_idx = page_pools.epp_free_pages / PAGES_PER_POOL; g_idx = page_pools.epp_free_pages % PAGES_PER_POOL; LASSERT(page_pools.epp_pools[p_idx]); while (npages--) { LASSERT(page_pools.epp_pools[p_idx]); LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL); cfs_free_page(page_pools.epp_pools[p_idx][g_idx]); page_pools.epp_pools[p_idx][g_idx] = NULL; if (++g_idx == PAGES_PER_POOL) { p_idx++; g_idx = 0; } }; /* free unused pools */ while (p_idx_max1 < p_idx_max2) { LASSERT(page_pools.epp_pools[p_idx_max2]); OBD_FREE(page_pools.epp_pools[p_idx_max2], CFS_PAGE_SIZE); page_pools.epp_pools[p_idx_max2] = NULL; p_idx_max2--; } } /* * could be called frequently for query (@nr_to_scan == 0). * we try to keep at least PTLRPC_MAX_BRW_PAGES pages in the pool. */ static int enc_pools_shrink(int nr_to_scan, unsigned int gfp_mask) { if (unlikely(nr_to_scan != 0)) { spin_lock(&page_pools.epp_lock); nr_to_scan = min(nr_to_scan, (int) page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES); if (nr_to_scan > 0) { enc_pools_release_free_pages(nr_to_scan); CDEBUG(D_SEC, "released %d pages, %ld left\n", nr_to_scan, page_pools.epp_free_pages); page_pools.epp_st_shrinks++; page_pools.epp_last_shrink = cfs_time_current_sec(); } spin_unlock(&page_pools.epp_lock); } /* * if no pool access for a long time, we consider it's fully idle. * a little race here is fine. */ if (unlikely(cfs_time_current_sec() - page_pools.epp_last_access > CACHE_QUIESCENT_PERIOD)) { spin_lock(&page_pools.epp_lock); page_pools.epp_idle_idx = IDLE_IDX_MAX; spin_unlock(&page_pools.epp_lock); } LASSERT(page_pools.epp_idle_idx <= IDLE_IDX_MAX); return max((int) page_pools.epp_free_pages - PTLRPC_MAX_BRW_PAGES, 0) * (IDLE_IDX_MAX - page_pools.epp_idle_idx) / IDLE_IDX_MAX; } static inline int npages_to_npools(unsigned long npages) { return (int) ((npages + PAGES_PER_POOL - 1) / PAGES_PER_POOL); } /* * return how many pages cleaned up. */ static unsigned long enc_pools_cleanup(cfs_page_t ***pools, int npools) { unsigned long cleaned = 0; int i, j; for (i = 0; i < npools; i++) { if (pools[i]) { for (j = 0; j < PAGES_PER_POOL; j++) { if (pools[i][j]) { cfs_free_page(pools[i][j]); cleaned++; } } OBD_FREE(pools[i], CFS_PAGE_SIZE); pools[i] = NULL; } } return cleaned; } /* * merge @npools pointed by @pools which contains @npages new pages * into current pools. * * we have options to avoid most memory copy with some tricks. but we choose * the simplest way to avoid complexity. It's not frequently called. */ static void enc_pools_insert(cfs_page_t ***pools, int npools, int npages) { int freeslot; int op_idx, np_idx, og_idx, ng_idx; int cur_npools, end_npools; LASSERT(npages > 0); LASSERT(page_pools.epp_total_pages+npages <= page_pools.epp_max_pages); LASSERT(npages_to_npools(npages) == npools); LASSERT(page_pools.epp_growing); spin_lock(&page_pools.epp_lock); /* * (1) fill all the free slots of current pools. */ /* free slots are those left by rent pages, and the extra ones with * index >= total_pages, locate at the tail of last pool. */ freeslot = page_pools.epp_total_pages % PAGES_PER_POOL; if (freeslot != 0) freeslot = PAGES_PER_POOL - freeslot; freeslot += page_pools.epp_total_pages - page_pools.epp_free_pages; op_idx = page_pools.epp_free_pages / PAGES_PER_POOL; og_idx = page_pools.epp_free_pages % PAGES_PER_POOL; np_idx = npools - 1; ng_idx = (npages - 1) % PAGES_PER_POOL; while (freeslot) { LASSERT(page_pools.epp_pools[op_idx][og_idx] == NULL); LASSERT(pools[np_idx][ng_idx] != NULL); page_pools.epp_pools[op_idx][og_idx] = pools[np_idx][ng_idx]; pools[np_idx][ng_idx] = NULL; freeslot--; if (++og_idx == PAGES_PER_POOL) { op_idx++; og_idx = 0; } if (--ng_idx < 0) { if (np_idx == 0) break; np_idx--; ng_idx = PAGES_PER_POOL - 1; } } /* * (2) add pools if needed. */ cur_npools = (page_pools.epp_total_pages + PAGES_PER_POOL - 1) / PAGES_PER_POOL; end_npools = (page_pools.epp_total_pages + npages + PAGES_PER_POOL -1) / PAGES_PER_POOL; LASSERT(end_npools <= page_pools.epp_max_pools); np_idx = 0; while (cur_npools < end_npools) { LASSERT(page_pools.epp_pools[cur_npools] == NULL); LASSERT(np_idx < npools); LASSERT(pools[np_idx] != NULL); page_pools.epp_pools[cur_npools++] = pools[np_idx]; pools[np_idx++] = NULL; } page_pools.epp_total_pages += npages; page_pools.epp_free_pages += npages; page_pools.epp_st_lowfree = page_pools.epp_free_pages; if (page_pools.epp_total_pages > page_pools.epp_st_max_pages) page_pools.epp_st_max_pages = page_pools.epp_total_pages; CDEBUG(D_SEC, "add %d pages to total %lu\n", npages, page_pools.epp_total_pages); spin_unlock(&page_pools.epp_lock); } static int enc_pools_add_pages(int npages) { static DECLARE_MUTEX(sem_add_pages); cfs_page_t ***pools; int npools, alloced = 0; int i, j, rc = -ENOMEM; if (npages < PTLRPC_MAX_BRW_PAGES) npages = PTLRPC_MAX_BRW_PAGES; down(&sem_add_pages); if (npages + page_pools.epp_total_pages > page_pools.epp_max_pages) npages = page_pools.epp_max_pages - page_pools.epp_total_pages; LASSERT(npages > 0); page_pools.epp_st_grows++; npools = npages_to_npools(npages); OBD_ALLOC(pools, npools * sizeof(*pools)); if (pools == NULL) goto out; for (i = 0; i < npools; i++) { OBD_ALLOC(pools[i], CFS_PAGE_SIZE); if (pools[i] == NULL) goto out_pools; for (j = 0; j < PAGES_PER_POOL && alloced < npages; j++) { pools[i][j] = cfs_alloc_page(CFS_ALLOC_IO | CFS_ALLOC_HIGH); if (pools[i][j] == NULL) goto out_pools; alloced++; } } LASSERT(alloced == npages); enc_pools_insert(pools, npools, npages); CDEBUG(D_SEC, "added %d pages into pools\n", npages); rc = 0; out_pools: enc_pools_cleanup(pools, npools); OBD_FREE(pools, npools * sizeof(*pools)); out: if (rc) { page_pools.epp_st_grow_fails++; CERROR("Failed to allocate %d enc pages\n", npages); } up(&sem_add_pages); return rc; } static inline void enc_pools_wakeup(void) { LASSERT_SPIN_LOCKED(&page_pools.epp_lock); LASSERT(page_pools.epp_waitqlen >= 0); if (unlikely(page_pools.epp_waitqlen)) { LASSERT(cfs_waitq_active(&page_pools.epp_waitq)); cfs_waitq_broadcast(&page_pools.epp_waitq); } } static int enc_pools_should_grow(int page_needed, long now) { /* don't grow if someone else is growing the pools right now, * or the pools has reached its full capacity */ if (page_pools.epp_growing || page_pools.epp_total_pages == page_pools.epp_max_pages) return 0; /* if total pages is not enough, we need to grow */ if (page_pools.epp_total_pages < page_needed) return 1; /* * we wanted to return 0 here if there was a shrink just happened * moment ago, but this may cause deadlock if both client and ost * live on single node. */ #if 0 if (now - page_pools.epp_last_shrink < 2) return 0; #endif /* * here we perhaps need consider other factors like wait queue * length, idle index, etc. ? */ /* grow the pools in any other cases */ return 1; } /* * we allocate the requested pages atomically. */ int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc) { cfs_waitlink_t waitlink; unsigned long this_idle = -1; cfs_time_t tick = 0; long now; int p_idx, g_idx; int i; LASSERT(desc->bd_iov_count > 0); LASSERT(desc->bd_iov_count <= page_pools.epp_max_pages); /* resent bulk, enc iov might have been allocated previously */ if (desc->bd_enc_iov != NULL) return 0; OBD_ALLOC(desc->bd_enc_iov, desc->bd_iov_count * sizeof(*desc->bd_enc_iov)); if (desc->bd_enc_iov == NULL) return -ENOMEM; spin_lock(&page_pools.epp_lock); page_pools.epp_st_access++; again: if (unlikely(page_pools.epp_free_pages < desc->bd_iov_count)) { if (tick == 0) tick = cfs_time_current(); now = cfs_time_current_sec(); page_pools.epp_st_missings++; page_pools.epp_pages_short += desc->bd_iov_count; if (enc_pools_should_grow(desc->bd_iov_count, now)) { page_pools.epp_growing = 1; spin_unlock(&page_pools.epp_lock); enc_pools_add_pages(page_pools.epp_pages_short / 2); spin_lock(&page_pools.epp_lock); page_pools.epp_growing = 0; enc_pools_wakeup(); } else { if (++page_pools.epp_waitqlen > page_pools.epp_st_max_wqlen) page_pools.epp_st_max_wqlen = page_pools.epp_waitqlen; set_current_state(CFS_TASK_UNINT); cfs_waitlink_init(&waitlink); cfs_waitq_add(&page_pools.epp_waitq, &waitlink); spin_unlock(&page_pools.epp_lock); cfs_waitq_wait(&waitlink, CFS_TASK_UNINT); cfs_waitq_del(&page_pools.epp_waitq, &waitlink); LASSERT(page_pools.epp_waitqlen > 0); spin_lock(&page_pools.epp_lock); page_pools.epp_waitqlen--; } LASSERT(page_pools.epp_pages_short >= desc->bd_iov_count); page_pools.epp_pages_short -= desc->bd_iov_count; this_idle = 0; goto again; } /* record max wait time */ if (unlikely(tick != 0)) { tick = cfs_time_current() - tick; if (tick > page_pools.epp_st_max_wait) page_pools.epp_st_max_wait = tick; } /* proceed with rest of allocation */ page_pools.epp_free_pages -= desc->bd_iov_count; p_idx = page_pools.epp_free_pages / PAGES_PER_POOL; g_idx = page_pools.epp_free_pages % PAGES_PER_POOL; for (i = 0; i < desc->bd_iov_count; i++) { LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL); desc->bd_enc_iov[i].kiov_page = page_pools.epp_pools[p_idx][g_idx]; page_pools.epp_pools[p_idx][g_idx] = NULL; if (++g_idx == PAGES_PER_POOL) { p_idx++; g_idx = 0; } } if (page_pools.epp_free_pages < page_pools.epp_st_lowfree) page_pools.epp_st_lowfree = page_pools.epp_free_pages; /* * new idle index = (old * weight + new) / (weight + 1) */ if (this_idle == -1) { this_idle = page_pools.epp_free_pages * IDLE_IDX_MAX / page_pools.epp_total_pages; } page_pools.epp_idle_idx = (page_pools.epp_idle_idx * IDLE_IDX_WEIGHT + this_idle) / (IDLE_IDX_WEIGHT + 1); page_pools.epp_last_access = cfs_time_current_sec(); spin_unlock(&page_pools.epp_lock); return 0; } EXPORT_SYMBOL(sptlrpc_enc_pool_get_pages); void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc) { int p_idx, g_idx; int i; if (desc->bd_enc_iov == NULL) return; LASSERT(desc->bd_iov_count > 0); spin_lock(&page_pools.epp_lock); p_idx = page_pools.epp_free_pages / PAGES_PER_POOL; g_idx = page_pools.epp_free_pages % PAGES_PER_POOL; LASSERT(page_pools.epp_free_pages + desc->bd_iov_count <= page_pools.epp_total_pages); LASSERT(page_pools.epp_pools[p_idx]); for (i = 0; i < desc->bd_iov_count; i++) { LASSERT(desc->bd_enc_iov[i].kiov_page != NULL); LASSERT(g_idx != 0 || page_pools.epp_pools[p_idx]); LASSERT(page_pools.epp_pools[p_idx][g_idx] == NULL); page_pools.epp_pools[p_idx][g_idx] = desc->bd_enc_iov[i].kiov_page; if (++g_idx == PAGES_PER_POOL) { p_idx++; g_idx = 0; } } page_pools.epp_free_pages += desc->bd_iov_count; enc_pools_wakeup(); spin_unlock(&page_pools.epp_lock); OBD_FREE(desc->bd_enc_iov, desc->bd_iov_count * sizeof(*desc->bd_enc_iov)); desc->bd_enc_iov = NULL; } EXPORT_SYMBOL(sptlrpc_enc_pool_put_pages); /* * we don't do much stuff for add_user/del_user anymore, except adding some * initial pages in add_user() if current pools are empty, rest would be * handled by the pools's self-adaption. */ int sptlrpc_enc_pool_add_user(void) { int need_grow = 0; spin_lock(&page_pools.epp_lock); if (page_pools.epp_growing == 0 && page_pools.epp_total_pages == 0) { page_pools.epp_growing = 1; need_grow = 1; } spin_unlock(&page_pools.epp_lock); if (need_grow) { enc_pools_add_pages(PTLRPC_MAX_BRW_PAGES + PTLRPC_MAX_BRW_PAGES); spin_lock(&page_pools.epp_lock); page_pools.epp_growing = 0; enc_pools_wakeup(); spin_unlock(&page_pools.epp_lock); } return 0; } EXPORT_SYMBOL(sptlrpc_enc_pool_add_user); int sptlrpc_enc_pool_del_user(void) { return 0; } EXPORT_SYMBOL(sptlrpc_enc_pool_del_user); static inline void enc_pools_alloc(void) { LASSERT(page_pools.epp_max_pools); /* * on system with huge memory but small page size, this might lead to * high-order allocation. but it's not common, and we suppose memory * be not too much fragmented at module loading time. */ OBD_ALLOC(page_pools.epp_pools, page_pools.epp_max_pools * sizeof(*page_pools.epp_pools)); } static inline void enc_pools_free(void) { LASSERT(page_pools.epp_max_pools); LASSERT(page_pools.epp_pools); OBD_FREE(page_pools.epp_pools, page_pools.epp_max_pools * sizeof(*page_pools.epp_pools)); } int sptlrpc_enc_pool_init(void) { /* * maximum capacity is 1/8 of total physical memory. * is the 1/8 a good number? */ page_pools.epp_max_pages = num_physpages / 8; page_pools.epp_max_pools = npages_to_npools(page_pools.epp_max_pages); cfs_waitq_init(&page_pools.epp_waitq); page_pools.epp_waitqlen = 0; page_pools.epp_pages_short = 0; page_pools.epp_growing = 0; page_pools.epp_idle_idx = 0; page_pools.epp_last_shrink = cfs_time_current_sec(); page_pools.epp_last_access = cfs_time_current_sec(); spin_lock_init(&page_pools.epp_lock); page_pools.epp_total_pages = 0; page_pools.epp_free_pages = 0; page_pools.epp_st_max_pages = 0; page_pools.epp_st_grows = 0; page_pools.epp_st_grow_fails = 0; page_pools.epp_st_shrinks = 0; page_pools.epp_st_access = 0; page_pools.epp_st_missings = 0; page_pools.epp_st_lowfree = 0; page_pools.epp_st_max_wqlen = 0; page_pools.epp_st_max_wait = 0; enc_pools_alloc(); if (page_pools.epp_pools == NULL) return -ENOMEM; pools_shrinker = set_shrinker(pools_shrinker_seeks, enc_pools_shrink); if (pools_shrinker == NULL) { enc_pools_free(); return -ENOMEM; } return 0; } void sptlrpc_enc_pool_fini(void) { unsigned long cleaned, npools; LASSERT(pools_shrinker); LASSERT(page_pools.epp_pools); LASSERT(page_pools.epp_total_pages == page_pools.epp_free_pages); remove_shrinker(pools_shrinker); npools = npages_to_npools(page_pools.epp_total_pages); cleaned = enc_pools_cleanup(page_pools.epp_pools, npools); LASSERT(cleaned == page_pools.epp_total_pages); enc_pools_free(); if (page_pools.epp_st_access > 0) { CWARN("max pages %lu, grows %u, grow fails %u, shrinks %u, " "access %lu, missing %lu, max qlen %u, max wait " CFS_TIME_T"/%d\n", page_pools.epp_st_max_pages, page_pools.epp_st_grows, page_pools.epp_st_grow_fails, page_pools.epp_st_shrinks, page_pools.epp_st_access, page_pools.epp_st_missings, page_pools.epp_st_max_wqlen, page_pools.epp_st_max_wait, HZ); } } #else /* !__KERNEL__ */ int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc) { return 0; } void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc) { } int sptlrpc_enc_pool_init(void) { return 0; } void sptlrpc_enc_pool_fini(void) { } #endif /**************************************** * Helpers to assist policy modules to * * implement checksum funcationality * ****************************************/ static struct sptlrpc_hash_type hash_types[] = { [BULK_HASH_ALG_NULL] = { "null", "null", 0 }, [BULK_HASH_ALG_ADLER32] = { "adler32", "adler32", 4 }, [BULK_HASH_ALG_CRC32] = { "crc32", "crc32", 4 }, [BULK_HASH_ALG_MD5] = { "md5", "md5", 16 }, [BULK_HASH_ALG_SHA1] = { "sha1", "sha1", 20 }, [BULK_HASH_ALG_SHA256] = { "sha256", "sha256", 32 }, [BULK_HASH_ALG_SHA384] = { "sha384", "sha384", 48 }, [BULK_HASH_ALG_SHA512] = { "sha512", "sha512", 64 }, }; const struct sptlrpc_hash_type *sptlrpc_get_hash_type(__u8 hash_alg) { struct sptlrpc_hash_type *ht; if (hash_alg < BULK_HASH_ALG_MAX) { ht = &hash_types[hash_alg]; if (ht->sht_tfm_name) return ht; } return NULL; } EXPORT_SYMBOL(sptlrpc_get_hash_type); const char * sptlrpc_get_hash_name(__u8 hash_alg) { const struct sptlrpc_hash_type *ht; ht = sptlrpc_get_hash_type(hash_alg); if (ht) return ht->sht_name; else return "unknown"; } EXPORT_SYMBOL(sptlrpc_get_hash_name); __u8 sptlrpc_get_hash_alg(const char *algname) { int i; for (i = 0; i < BULK_HASH_ALG_MAX; i++) if (!strcmp(hash_types[i].sht_name, algname)) break; return i; } EXPORT_SYMBOL(sptlrpc_get_hash_alg); int bulk_sec_desc_unpack(struct lustre_msg *msg, int offset, int swabbed) { struct ptlrpc_bulk_sec_desc *bsd; int size = msg->lm_buflens[offset]; bsd = lustre_msg_buf(msg, offset, sizeof(*bsd)); if (bsd == NULL) { CERROR("Invalid bulk sec desc: size %d\n", size); return -EINVAL; } if (swabbed) { __swab32s(&bsd->bsd_nob); } if (unlikely(bsd->bsd_version != 0)) { CERROR("Unexpected version %u\n", bsd->bsd_version); return -EPROTO; } if (unlikely(bsd->bsd_type >= SPTLRPC_BULK_MAX)) { CERROR("Invalid type %u\n", bsd->bsd_type); return -EPROTO; } /* FIXME more sanity check here */ if (unlikely(bsd->bsd_svc != SPTLRPC_BULK_SVC_NULL && bsd->bsd_svc != SPTLRPC_BULK_SVC_INTG && bsd->bsd_svc != SPTLRPC_BULK_SVC_PRIV)) { CERROR("Invalid svc %u\n", bsd->bsd_svc); return -EPROTO; } return 0; } EXPORT_SYMBOL(bulk_sec_desc_unpack); #ifdef __KERNEL__ #ifdef HAVE_ADLER static int do_bulk_checksum_adler32(struct ptlrpc_bulk_desc *desc, void *buf) { struct page *page; int off; char *ptr; __u32 adler32 = 1; int len, i; for (i = 0; i < desc->bd_iov_count; i++) { page = desc->bd_iov[i].kiov_page; off = desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK; ptr = cfs_kmap(page) + off; len = desc->bd_iov[i].kiov_len; adler32 = adler32(adler32, ptr, len); cfs_kunmap(page); } adler32 = cpu_to_le32(adler32); memcpy(buf, &adler32, sizeof(adler32)); return 0; } #endif static int do_bulk_checksum_crc32(struct ptlrpc_bulk_desc *desc, void *buf) { struct page *page; int off; char *ptr; __u32 crc32 = ~0; int len, i; for (i = 0; i < desc->bd_iov_count; i++) { page = desc->bd_iov[i].kiov_page; off = desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK; ptr = cfs_kmap(page) + off; len = desc->bd_iov[i].kiov_len; crc32 = crc32_le(crc32, ptr, len); cfs_kunmap(page); } crc32 = cpu_to_le32(crc32); memcpy(buf, &crc32, sizeof(crc32)); return 0; } int sptlrpc_get_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u8 alg, void *buf, int buflen) { struct hash_desc hdesc; int hashsize; char hashbuf[64]; struct scatterlist sl; int i; LASSERT(alg > BULK_HASH_ALG_NULL && alg < BULK_HASH_ALG_MAX); LASSERT(buflen >= 4); switch (alg) { case BULK_HASH_ALG_ADLER32: #ifdef HAVE_ADLER return do_bulk_checksum_adler32(desc, buf); #else CERROR("Adler32 not supported\n"); return -EINVAL; #endif case BULK_HASH_ALG_CRC32: return do_bulk_checksum_crc32(desc, buf); } hdesc.tfm = ll_crypto_alloc_hash(hash_types[alg].sht_tfm_name, 0, 0); if (hdesc.tfm == NULL) { CERROR("Unable to allocate TFM %s\n", hash_types[alg].sht_name); return -ENOMEM; } hdesc.flags = 0; ll_crypto_hash_init(&hdesc); hashsize = ll_crypto_hash_digestsize(hdesc.tfm); for (i = 0; i < desc->bd_iov_count; i++) { sg_set_page(&sl, desc->bd_iov[i].kiov_page, desc->bd_iov[i].kiov_len, desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK); ll_crypto_hash_update(&hdesc, &sl, sl.length); } if (hashsize > buflen) { ll_crypto_hash_final(&hdesc, hashbuf); memcpy(buf, hashbuf, buflen); } else { ll_crypto_hash_final(&hdesc, buf); } ll_crypto_free_hash(hdesc.tfm); return 0; } EXPORT_SYMBOL(sptlrpc_get_bulk_checksum); #else /* !__KERNEL__ */ int sptlrpc_get_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u8 alg, void *buf, int buflen) { __u32 csum32; int i; LASSERT(alg == BULK_HASH_ALG_ADLER32 || alg == BULK_HASH_ALG_CRC32); if (alg == BULK_HASH_ALG_ADLER32) csum32 = 1; else csum32 = ~0; for (i = 0; i < desc->bd_iov_count; i++) { unsigned char *ptr = desc->bd_iov[i].iov_base; int len = desc->bd_iov[i].iov_len; switch (alg) { case BULK_HASH_ALG_ADLER32: #ifdef HAVE_ADLER csum32 = adler32(csum32, ptr, len); #else CERROR("Adler32 not supported\n"); return -EINVAL; #endif break; case BULK_HASH_ALG_CRC32: csum32 = crc32_le(csum32, ptr, len); break; } } csum32 = cpu_to_le32(csum32); memcpy(buf, &csum32, sizeof(csum32)); return 0; } #endif /* __KERNEL__ */