/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * Copyright (C) 2006 Cluster File Systems, Inc. * Author: Eric Mei * * This file is part of Lustre, http://www.lustre.org. * * Lustre is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * Lustre is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Lustre; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef EXPORT_SYMTAB #define EXPORT_SYMTAB #endif #define DEBUG_SUBSYSTEM S_SEC #include #ifndef __KERNEL__ #include #include #else #include #endif #include #include #include #include #include #include #include #include "ptlrpc_internal.h" /**************************************** * bulk encryption page pools * ****************************************/ #ifdef __KERNEL__ #define PTRS_PER_PAGE (CFS_PAGE_SIZE / sizeof(void *)) #define PAGES_PER_POOL (PTRS_PER_PAGE) static struct ptlrpc_enc_page_pool { /* * constants */ unsigned long epp_max_pages; /* maximum pages can hold, const */ unsigned int epp_max_pools; /* number of pools, const */ /* * users of the pools. the capacity grow as more user added, * but doesn't shrink when users gone -- just current policy. * during failover there might be user add/remove activities. */ atomic_t epp_users; /* shared by how many users (osc) */ atomic_t epp_users_gone; /* users removed */ /* * wait queue in case of not enough free pages. */ cfs_waitq_t epp_waitq; /* waiting threads */ unsigned int epp_waitqlen; /* wait queue length */ unsigned long epp_pages_short; /* # of pages wanted of in-q users */ unsigned long epp_adding:1, /* during adding pages */ epp_full:1; /* pools are all full */ /* * in-pool pages bookkeeping */ spinlock_t epp_lock; /* protect following fields */ unsigned long epp_total_pages; /* total pages in pools */ unsigned long epp_free_pages; /* current pages available */ /* * statistics */ unsigned int epp_st_adds; unsigned int epp_st_failadds; /* # of add pages failures */ unsigned long epp_st_reqs; /* # of get_pages requests */ unsigned long epp_st_missings; /* # of cache missing */ unsigned long epp_st_lowfree; /* lowest free pages ever reached */ unsigned long epp_st_max_wqlen;/* highest waitqueue length ever */ cfs_time_t epp_st_max_wait; /* in jeffies */ /* * pointers to pools */ cfs_page_t ***epp_pools; } page_pools; int sptlrpc_proc_read_enc_pool(char *page, char **start, off_t off, int count, int *eof, void *data) { int rc; spin_lock(&page_pools.epp_lock); rc = snprintf(page, count, "physical pages: %lu\n" "pages per pool: %lu\n" "max pages: %lu\n" "max pools: %u\n" "users: %d - %d\n" "current waitqueue len: %u\n" "current pages in short: %lu\n" "total pages: %lu\n" "total free: %lu\n" "add page times: %u\n" "add page failed times: %u\n" "total requests: %lu\n" "cache missing: %lu\n" "lowest free pages: %lu\n" "max waitqueue depth: %lu\n" "max wait time: "CFS_TIME_T"\n" , num_physpages, PAGES_PER_POOL, page_pools.epp_max_pages, page_pools.epp_max_pools, atomic_read(&page_pools.epp_users), atomic_read(&page_pools.epp_users_gone), page_pools.epp_waitqlen, page_pools.epp_pages_short, page_pools.epp_total_pages, page_pools.epp_free_pages, page_pools.epp_st_adds, page_pools.epp_st_failadds, page_pools.epp_st_reqs, page_pools.epp_st_missings, page_pools.epp_st_lowfree, page_pools.epp_st_max_wqlen, page_pools.epp_st_max_wait ); spin_unlock(&page_pools.epp_lock); return rc; } static inline int npages_to_npools(unsigned long npages) { return (int) ((npages + PAGES_PER_POOL - 1) / PAGES_PER_POOL); } /* * return how many pages cleaned up. */ static unsigned long enc_cleanup_pools(cfs_page_t ***pools, int npools) { unsigned long cleaned = 0; int i, j; for (i = 0; i < npools; i++) { if (pools[i]) { for (j = 0; j < PAGES_PER_POOL; j++) { if (pools[i][j]) { cfs_free_page(pools[i][j]); cleaned++; } } OBD_FREE(pools[i], CFS_PAGE_SIZE); pools[i] = NULL; } } return cleaned; } /* * merge @npools pointed by @pools which contains @npages new pages * into current pools. * * we have options to avoid most memory copy with some tricks. but we choose * the simplest way to avoid complexity. It's not frequently called. */ static void enc_insert_pool(cfs_page_t ***pools, int npools, int npages) { int freeslot; int op_idx, np_idx, og_idx, ng_idx; int cur_npools, end_npools; LASSERT(npages > 0); LASSERT(page_pools.epp_total_pages+npages <= page_pools.epp_max_pages); LASSERT(npages_to_npools(npages) == npools); spin_lock(&page_pools.epp_lock); /* * (1) fill all the free slots of current pools. */ /* free slots are those left by rent pages, and the extra ones with * index >= eep_total_pages, locate at the tail of last pool. */ freeslot = page_pools.epp_total_pages % PAGES_PER_POOL; if (freeslot != 0) freeslot = PAGES_PER_POOL - freeslot; freeslot += page_pools.epp_total_pages - page_pools.epp_free_pages; op_idx = page_pools.epp_free_pages / PAGES_PER_POOL; og_idx = page_pools.epp_free_pages % PAGES_PER_POOL; np_idx = npools - 1; ng_idx = (npages - 1) % PAGES_PER_POOL; while (freeslot) { LASSERT(page_pools.epp_pools[op_idx][og_idx] == NULL); LASSERT(pools[np_idx][ng_idx] != NULL); page_pools.epp_pools[op_idx][og_idx] = pools[np_idx][ng_idx]; pools[np_idx][ng_idx] = NULL; freeslot--; if (++og_idx == PAGES_PER_POOL) { op_idx++; og_idx = 0; } if (--ng_idx < 0) { if (np_idx == 0) break; np_idx--; ng_idx = PAGES_PER_POOL - 1; } } /* * (2) add pools if needed. */ cur_npools = (page_pools.epp_total_pages + PAGES_PER_POOL - 1) / PAGES_PER_POOL; end_npools = (page_pools.epp_total_pages + npages + PAGES_PER_POOL -1) / PAGES_PER_POOL; LASSERT(end_npools <= page_pools.epp_max_pools); np_idx = 0; while (cur_npools < end_npools) { LASSERT(page_pools.epp_pools[cur_npools] == NULL); LASSERT(np_idx < npools); LASSERT(pools[np_idx] != NULL); page_pools.epp_pools[cur_npools++] = pools[np_idx]; pools[np_idx++] = NULL; } page_pools.epp_total_pages += npages; page_pools.epp_free_pages += npages; page_pools.epp_st_lowfree = page_pools.epp_free_pages; if (page_pools.epp_total_pages == page_pools.epp_max_pages) page_pools.epp_full = 1; CDEBUG(D_SEC, "add %d pages to total %lu\n", npages, page_pools.epp_total_pages); spin_unlock(&page_pools.epp_lock); } static int enc_pools_add_pages(int npages) { static DECLARE_MUTEX(sem_add_pages); cfs_page_t ***pools; int npools, alloced = 0; int i, j, rc = -ENOMEM; down(&sem_add_pages); if (npages > page_pools.epp_max_pages - page_pools.epp_total_pages) npages = page_pools.epp_max_pages - page_pools.epp_total_pages; if (npages == 0) { rc = 0; goto out; } page_pools.epp_st_adds++; npools = npages_to_npools(npages); OBD_ALLOC(pools, npools * sizeof(*pools)); if (pools == NULL) goto out; for (i = 0; i < npools; i++) { OBD_ALLOC(pools[i], CFS_PAGE_SIZE); if (pools[i] == NULL) goto out_pools; for (j = 0; j < PAGES_PER_POOL && alloced < npages; j++) { pools[i][j] = cfs_alloc_page(CFS_ALLOC_IO | CFS_ALLOC_HIGH); if (pools[i][j] == NULL) goto out_pools; alloced++; } } enc_insert_pool(pools, npools, npages); CDEBUG(D_SEC, "add %d pages into enc page pools\n", npages); rc = 0; out_pools: enc_cleanup_pools(pools, npools); OBD_FREE(pools, npools * sizeof(*pools)); out: if (rc) { page_pools.epp_st_failadds++; CERROR("Failed to pre-allocate %d enc pages\n", npages); } up(&sem_add_pages); return rc; } /* * both "max bulk rpcs inflight" and "lnet MTU" are tunable, we use the * default fixed value initially. */ int sptlrpc_enc_pool_add_user(void) { int page_plus = PTLRPC_MAX_BRW_PAGES * OSC_MAX_RIF_DEFAULT; int users, users_gone, shift, rc; LASSERT(!in_interrupt()); LASSERT(atomic_read(&page_pools.epp_users) >= 0); users_gone = atomic_dec_return(&page_pools.epp_users_gone); if (users_gone >= 0) { CWARN("%d users gone, skip\n", users_gone + 1); return 0; } atomic_inc(&page_pools.epp_users_gone); /* * prepare full pages for first 2 users; 1/2 for next 2 users; * 1/4 for next 4 users; 1/8 for next 8 users; 1/16 for next 16 users; * ... */ users = atomic_add_return(1, &page_pools.epp_users); shift = fls(users - 1); shift = shift > 1 ? shift - 1 : 0; page_plus = page_plus >> shift; page_plus = page_plus > 2 ? page_plus : 2; rc = enc_pools_add_pages(page_plus); return 0; } EXPORT_SYMBOL(sptlrpc_enc_pool_add_user); int sptlrpc_enc_pool_del_user(void) { atomic_inc(&page_pools.epp_users_gone); return 0; } EXPORT_SYMBOL(sptlrpc_enc_pool_del_user); /* * we allocate the requested pages atomically. */ int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc) { cfs_waitlink_t waitlink; cfs_time_t tick1 = 0, tick2; int p_idx, g_idx; int i; LASSERT(desc->bd_max_iov > 0); LASSERT(desc->bd_max_iov <= page_pools.epp_total_pages); /* resent bulk, enc pages might have been allocated previously */ if (desc->bd_enc_pages != NULL) return 0; OBD_ALLOC(desc->bd_enc_pages, desc->bd_max_iov * sizeof(*desc->bd_enc_pages)); if (desc->bd_enc_pages == NULL) return -ENOMEM; spin_lock(&page_pools.epp_lock); again: page_pools.epp_st_reqs++; if (unlikely(page_pools.epp_free_pages < desc->bd_max_iov)) { if (tick1 == 0) tick1 = cfs_time_current(); page_pools.epp_st_missings++; page_pools.epp_pages_short += desc->bd_max_iov; if (++page_pools.epp_waitqlen > page_pools.epp_st_max_wqlen) page_pools.epp_st_max_wqlen = page_pools.epp_waitqlen; /* we just wait if someone else is adding more pages, or * wait queue length is not deep enough. otherwise try to * add more pages in the pools. * * FIXME the policy of detecting resource tight & growing pool * need to be reconsidered. */ if (page_pools.epp_adding || page_pools.epp_waitqlen < 2 || page_pools.epp_full) { set_current_state(TASK_UNINTERRUPTIBLE); cfs_waitlink_init(&waitlink); cfs_waitq_add(&page_pools.epp_waitq, &waitlink); spin_unlock(&page_pools.epp_lock); cfs_schedule(); spin_lock(&page_pools.epp_lock); } else { page_pools.epp_adding = 1; spin_unlock(&page_pools.epp_lock); enc_pools_add_pages(page_pools.epp_pages_short / 2); spin_lock(&page_pools.epp_lock); page_pools.epp_adding = 0; } LASSERT(page_pools.epp_pages_short >= desc->bd_max_iov); LASSERT(page_pools.epp_waitqlen > 0); page_pools.epp_pages_short -= desc->bd_max_iov; page_pools.epp_waitqlen--; goto again; } /* record max wait time */ if (unlikely(tick1 != 0)) { tick2 = cfs_time_current(); if (tick2 - tick1 > page_pools.epp_st_max_wait) page_pools.epp_st_max_wait = tick2 - tick1; } /* proceed with rest of allocation */ page_pools.epp_free_pages -= desc->bd_max_iov; p_idx = page_pools.epp_free_pages / PAGES_PER_POOL; g_idx = page_pools.epp_free_pages % PAGES_PER_POOL; for (i = 0; i < desc->bd_max_iov; i++) { LASSERT(page_pools.epp_pools[p_idx][g_idx] != NULL); desc->bd_enc_pages[i] = page_pools.epp_pools[p_idx][g_idx]; page_pools.epp_pools[p_idx][g_idx] = NULL; if (++g_idx == PAGES_PER_POOL) { p_idx++; g_idx = 0; } } if (page_pools.epp_free_pages < page_pools.epp_st_lowfree) page_pools.epp_st_lowfree = page_pools.epp_free_pages; spin_unlock(&page_pools.epp_lock); return 0; } EXPORT_SYMBOL(sptlrpc_enc_pool_get_pages); void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc) { int p_idx, g_idx; int i; if (desc->bd_enc_pages == NULL) return; if (desc->bd_max_iov == 0) return; spin_lock(&page_pools.epp_lock); p_idx = page_pools.epp_free_pages / PAGES_PER_POOL; g_idx = page_pools.epp_free_pages % PAGES_PER_POOL; LASSERT(page_pools.epp_free_pages + desc->bd_max_iov <= page_pools.epp_total_pages); LASSERT(page_pools.epp_pools[p_idx]); for (i = 0; i < desc->bd_max_iov; i++) { LASSERT(desc->bd_enc_pages[i] != NULL); LASSERT(g_idx != 0 || page_pools.epp_pools[p_idx]); LASSERT(page_pools.epp_pools[p_idx][g_idx] == NULL); page_pools.epp_pools[p_idx][g_idx] = desc->bd_enc_pages[i]; if (++g_idx == PAGES_PER_POOL) { p_idx++; g_idx = 0; } } page_pools.epp_free_pages += desc->bd_max_iov; if (unlikely(page_pools.epp_waitqlen)) { LASSERT(page_pools.epp_waitqlen > 0); LASSERT(cfs_waitq_active(&page_pools.epp_waitq)); cfs_waitq_broadcast(&page_pools.epp_waitq); } spin_unlock(&page_pools.epp_lock); OBD_FREE(desc->bd_enc_pages, desc->bd_max_iov * sizeof(*desc->bd_enc_pages)); desc->bd_enc_pages = NULL; } EXPORT_SYMBOL(sptlrpc_enc_pool_put_pages); int sptlrpc_enc_pool_init(void) { /* constants */ page_pools.epp_max_pages = num_physpages / 4; page_pools.epp_max_pools = npages_to_npools(page_pools.epp_max_pages); atomic_set(&page_pools.epp_users, 0); atomic_set(&page_pools.epp_users_gone, 0); cfs_waitq_init(&page_pools.epp_waitq); page_pools.epp_waitqlen = 0; page_pools.epp_pages_short = 0; page_pools.epp_adding = 0; page_pools.epp_full = 0; spin_lock_init(&page_pools.epp_lock); page_pools.epp_total_pages = 0; page_pools.epp_free_pages = 0; page_pools.epp_st_adds = 0; page_pools.epp_st_failadds = 0; page_pools.epp_st_reqs = 0; page_pools.epp_st_missings = 0; page_pools.epp_st_lowfree = 0; page_pools.epp_st_max_wqlen = 0; page_pools.epp_st_max_wait = 0; OBD_ALLOC(page_pools.epp_pools, page_pools.epp_max_pools * sizeof(*page_pools.epp_pools)); if (page_pools.epp_pools == NULL) return -ENOMEM; return 0; } void sptlrpc_enc_pool_fini(void) { unsigned long cleaned, npools; LASSERT(page_pools.epp_pools); LASSERT(page_pools.epp_total_pages == page_pools.epp_free_pages); npools = npages_to_npools(page_pools.epp_total_pages); cleaned = enc_cleanup_pools(page_pools.epp_pools, npools); LASSERT(cleaned == page_pools.epp_total_pages); OBD_FREE(page_pools.epp_pools, page_pools.epp_max_pools * sizeof(*page_pools.epp_pools)); } #else /* !__KERNEL__ */ int sptlrpc_enc_pool_get_pages(struct ptlrpc_bulk_desc *desc) { return 0; } void sptlrpc_enc_pool_put_pages(struct ptlrpc_bulk_desc *desc) { } int sptlrpc_enc_pool_init(void) { return 0; } void sptlrpc_enc_pool_fini(void) { } #endif /**************************************** * Helpers to assist policy modules to * * implement checksum funcationality * ****************************************/ static struct { char *name; int size; } csum_types[] = { [BULK_CSUM_ALG_NULL] = { "null", 0 }, [BULK_CSUM_ALG_CRC32] = { "crc32", 4 }, [BULK_CSUM_ALG_MD5] = { "md5", 16 }, [BULK_CSUM_ALG_SHA1] = { "sha1", 20 }, [BULK_CSUM_ALG_SHA256] = { "sha256", 32 }, [BULK_CSUM_ALG_SHA384] = { "sha384", 48 }, [BULK_CSUM_ALG_SHA512] = { "sha512", 64 }, }; const char * sptlrpc_bulk_csum_alg2name(__u32 csum_alg) { if (csum_alg < BULK_CSUM_ALG_MAX) return csum_types[csum_alg].name; return "unknown_cksum"; } EXPORT_SYMBOL(sptlrpc_bulk_csum_alg2name); int bulk_sec_desc_size(__u32 csum_alg, int request, int read) { int size = sizeof(struct ptlrpc_bulk_sec_desc); LASSERT(csum_alg < BULK_CSUM_ALG_MAX); /* read request don't need extra data */ if (!(read && request)) size += csum_types[csum_alg].size; return size; } EXPORT_SYMBOL(bulk_sec_desc_size); int bulk_sec_desc_unpack(struct lustre_msg *msg, int offset) { struct ptlrpc_bulk_sec_desc *bsd; int size = msg->lm_buflens[offset]; bsd = lustre_msg_buf(msg, offset, sizeof(*bsd)); if (bsd == NULL) { CERROR("Invalid bulk sec desc: size %d\n", size); return -EINVAL; } if (lustre_msg_swabbed(msg)) { __swab32s(&bsd->bsd_version); __swab32s(&bsd->bsd_pad); __swab32s(&bsd->bsd_csum_alg); __swab32s(&bsd->bsd_priv_alg); } if (bsd->bsd_version != 0) { CERROR("Unexpected version %u\n", bsd->bsd_version); return -EPROTO; } if (bsd->bsd_csum_alg >= BULK_CSUM_ALG_MAX) { CERROR("Unsupported checksum algorithm %u\n", bsd->bsd_csum_alg); return -EINVAL; } if (bsd->bsd_priv_alg >= BULK_PRIV_ALG_MAX) { CERROR("Unsupported cipher algorithm %u\n", bsd->bsd_priv_alg); return -EINVAL; } if (size > sizeof(*bsd) && size < sizeof(*bsd) + csum_types[bsd->bsd_csum_alg].size) { CERROR("Mal-formed checksum data: csum alg %u, size %d\n", bsd->bsd_csum_alg, size); return -EINVAL; } return 0; } EXPORT_SYMBOL(bulk_sec_desc_unpack); #ifdef __KERNEL__ static int do_bulk_checksum_crc32(struct ptlrpc_bulk_desc *desc, void *buf) { struct page *page; int off; char *ptr; __u32 crc32 = ~0; int len, i; for (i = 0; i < desc->bd_iov_count; i++) { page = desc->bd_iov[i].kiov_page; off = desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK; ptr = cfs_kmap(page) + off; len = desc->bd_iov[i].kiov_len; crc32 = crc32_le(crc32, ptr, len); cfs_kunmap(page); } *((__u32 *) buf) = crc32; return 0; } static int do_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u32 alg, void *buf) { struct crypto_tfm *tfm; struct scatterlist *sl; int i, rc = 0; LASSERT(alg > BULK_CSUM_ALG_NULL && alg < BULK_CSUM_ALG_MAX); if (alg == BULK_CSUM_ALG_CRC32) return do_bulk_checksum_crc32(desc, buf); tfm = crypto_alloc_tfm(csum_types[alg].name, 0); if (tfm == NULL) { CERROR("Unable to allocate tfm %s\n", csum_types[alg].name); return -ENOMEM; } OBD_ALLOC(sl, sizeof(*sl) * desc->bd_iov_count); if (sl == NULL) { rc = -ENOMEM; goto out_tfm; } for (i = 0; i < desc->bd_iov_count; i++) { sl[i].page = desc->bd_iov[i].kiov_page; sl[i].offset = desc->bd_iov[i].kiov_offset & ~CFS_PAGE_MASK; sl[i].length = desc->bd_iov[i].kiov_len; } crypto_digest_init(tfm); crypto_digest_update(tfm, sl, desc->bd_iov_count); crypto_digest_final(tfm, buf); OBD_FREE(sl, sizeof(*sl) * desc->bd_iov_count); out_tfm: crypto_free_tfm(tfm); return rc; } #else /* !__KERNEL__ */ static int do_bulk_checksum(struct ptlrpc_bulk_desc *desc, __u32 alg, void *buf) { __u32 crc32 = ~0; int i; LASSERT(alg == BULK_CSUM_ALG_CRC32); for (i = 0; i < desc->bd_iov_count; i++) { char *ptr = desc->bd_iov[i].iov_base; int len = desc->bd_iov[i].iov_len; crc32 = crc32_le(crc32, ptr, len); } *((__u32 *) buf) = crc32; return 0; } #endif /* * perform algorithm @alg checksum on @desc, store result in @buf. * if anything goes wrong, leave 'alg' be BULK_CSUM_ALG_NULL. */ static int generate_bulk_csum(struct ptlrpc_bulk_desc *desc, __u32 alg, struct ptlrpc_bulk_sec_desc *bsd, int bsdsize) { int rc; LASSERT(bsd); LASSERT(alg < BULK_CSUM_ALG_MAX); bsd->bsd_csum_alg = BULK_CSUM_ALG_NULL; if (alg == BULK_CSUM_ALG_NULL) return 0; LASSERT(bsdsize >= sizeof(*bsd) + csum_types[alg].size); rc = do_bulk_checksum(desc, alg, bsd->bsd_csum); if (rc == 0) bsd->bsd_csum_alg = alg; return rc; } static int verify_bulk_csum(struct ptlrpc_bulk_desc *desc, int read, struct ptlrpc_bulk_sec_desc *bsdv, int bsdvsize, struct ptlrpc_bulk_sec_desc *bsdr, int bsdrsize) { char *csum_p; char *buf = NULL; int csum_size, rc = 0; LASSERT(bsdv); LASSERT(bsdv->bsd_csum_alg < BULK_CSUM_ALG_MAX); if (bsdr) bsdr->bsd_csum_alg = BULK_CSUM_ALG_NULL; if (bsdv->bsd_csum_alg == BULK_CSUM_ALG_NULL) return 0; /* for all supported algorithms */ csum_size = csum_types[bsdv->bsd_csum_alg].size; if (bsdvsize < sizeof(*bsdv) + csum_size) { CERROR("verifier size %d too small, require %d\n", bsdvsize, (int) sizeof(*bsdv) + csum_size); return -EINVAL; } if (bsdr) { LASSERT(bsdrsize >= sizeof(*bsdr) + csum_size); csum_p = (char *) bsdr->bsd_csum; } else { OBD_ALLOC(buf, csum_size); if (buf == NULL) return -EINVAL; csum_p = buf; } rc = do_bulk_checksum(desc, bsdv->bsd_csum_alg, csum_p); if (memcmp(bsdv->bsd_csum, csum_p, csum_size)) { CERROR("BAD %s CHECKSUM (%s), data mutated during " "transfer!\n", read ? "READ" : "WRITE", csum_types[bsdv->bsd_csum_alg].name); rc = -EINVAL; } else { CDEBUG(D_SEC, "bulk %s checksum (%s) verified\n", read ? "read" : "write", csum_types[bsdv->bsd_csum_alg].name); } if (bsdr) { bsdr->bsd_csum_alg = bsdv->bsd_csum_alg; memcpy(bsdr->bsd_csum, csum_p, csum_size); } else { LASSERT(buf); OBD_FREE(buf, csum_size); } return rc; } int bulk_csum_cli_request(struct ptlrpc_bulk_desc *desc, int read, __u32 alg, struct lustre_msg *rmsg, int roff) { struct ptlrpc_bulk_sec_desc *bsdr; int rsize, rc = 0; rsize = rmsg->lm_buflens[roff]; bsdr = lustre_msg_buf(rmsg, roff, sizeof(*bsdr)); LASSERT(bsdr); LASSERT(rsize >= sizeof(*bsdr)); LASSERT(alg < BULK_CSUM_ALG_MAX); if (read) bsdr->bsd_csum_alg = alg; else { rc = generate_bulk_csum(desc, alg, bsdr, rsize); if (rc) { CERROR("client bulk write: failed to perform " "checksum: %d\n", rc); } } return rc; } EXPORT_SYMBOL(bulk_csum_cli_request); int bulk_csum_cli_reply(struct ptlrpc_bulk_desc *desc, int read, struct lustre_msg *rmsg, int roff, struct lustre_msg *vmsg, int voff) { struct ptlrpc_bulk_sec_desc *bsdv, *bsdr; int rsize, vsize; rsize = rmsg->lm_buflens[roff]; vsize = vmsg->lm_buflens[voff]; bsdr = lustre_msg_buf(rmsg, roff, 0); bsdv = lustre_msg_buf(vmsg, voff, 0); if (bsdv == NULL || vsize < sizeof(*bsdv)) { CERROR("Invalid checksum verifier from server: size %d\n", vsize); return -EINVAL; } LASSERT(bsdr); LASSERT(rsize >= sizeof(*bsdr)); LASSERT(vsize >= sizeof(*bsdv)); if (bsdr->bsd_csum_alg != bsdv->bsd_csum_alg) { CERROR("bulk %s: checksum algorithm mismatch: client request " "%s but server reply with %s. try to use the new one " "for checksum verification\n", read ? "read" : "write", csum_types[bsdr->bsd_csum_alg].name, csum_types[bsdv->bsd_csum_alg].name); } if (read) return verify_bulk_csum(desc, 1, bsdv, vsize, NULL, 0); else { char *cli, *srv, *new = NULL; int csum_size = csum_types[bsdr->bsd_csum_alg].size; LASSERT(bsdr->bsd_csum_alg < BULK_CSUM_ALG_MAX); if (bsdr->bsd_csum_alg == BULK_CSUM_ALG_NULL) return 0; if (vsize < sizeof(*bsdv) + csum_size) { CERROR("verifier size %d too small, require %d\n", vsize, (int) sizeof(*bsdv) + csum_size); return -EINVAL; } cli = (char *) (bsdr + 1); srv = (char *) (bsdv + 1); if (!memcmp(cli, srv, csum_size)) { /* checksum confirmed */ CDEBUG(D_SEC, "bulk write checksum (%s) confirmed\n", csum_types[bsdr->bsd_csum_alg].name); return 0; } /* checksum mismatch, re-compute a new one and compare with * others, give out proper warnings. */ OBD_ALLOC(new, csum_size); if (new == NULL) return -ENOMEM; do_bulk_checksum(desc, bsdr->bsd_csum_alg, new); if (!memcmp(new, srv, csum_size)) { CERROR("BAD WRITE CHECKSUM (%s): pages were mutated " "on the client after we checksummed them\n", csum_types[bsdr->bsd_csum_alg].name); } else if (!memcmp(new, cli, csum_size)) { CERROR("BAD WRITE CHECKSUM (%s): pages were mutated " "in transit\n", csum_types[bsdr->bsd_csum_alg].name); } else { CERROR("BAD WRITE CHECKSUM (%s): pages were mutated " "in transit, and the current page contents " "don't match the originals and what the server " "received\n", csum_types[bsdr->bsd_csum_alg].name); } OBD_FREE(new, csum_size); return -EINVAL; } } EXPORT_SYMBOL(bulk_csum_cli_reply); int bulk_csum_svc(struct ptlrpc_bulk_desc *desc, int read, struct ptlrpc_bulk_sec_desc *bsdv, int vsize, struct ptlrpc_bulk_sec_desc *bsdr, int rsize) { int rc; LASSERT(vsize >= sizeof(*bsdv)); LASSERT(rsize >= sizeof(*bsdr)); LASSERT(bsdv && bsdr); if (read) { rc = generate_bulk_csum(desc, bsdv->bsd_csum_alg, bsdr, rsize); if (rc) CERROR("bulk read: server failed to generate %s " "checksum: %d\n", csum_types[bsdv->bsd_csum_alg].name, rc); } else rc = verify_bulk_csum(desc, 0, bsdv, vsize, bsdr, rsize); return rc; } EXPORT_SYMBOL(bulk_csum_svc); /**************************************** * Helpers to assist policy modules to * * implement encryption funcationality * ****************************************/ /* * NOTE: These algorithms must be stream cipher! */ static struct { char *name; __u32 flags; } priv_types[] = { [BULK_PRIV_ALG_NULL] = { "null", 0 }, [BULK_PRIV_ALG_ARC4] = { "arc4", 0 }, }; const char * sptlrpc_bulk_priv_alg2name(__u32 priv_alg) { if (priv_alg < BULK_PRIV_ALG_MAX) return priv_types[priv_alg].name; return "unknown_priv"; } EXPORT_SYMBOL(sptlrpc_bulk_priv_alg2name); __u32 sptlrpc_bulk_priv_alg2flags(__u32 priv_alg) { if (priv_alg < BULK_PRIV_ALG_MAX) return priv_types[priv_alg].flags; return 0; } EXPORT_SYMBOL(sptlrpc_bulk_priv_alg2flags);