/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2014, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. */ /** Implementation of client-side PortalRPC interfaces */ #define DEBUG_SUBSYSTEM S_RPC #include #include #include #include #include #include #include "ptlrpc_internal.h" static int ptlrpc_send_new_req(struct ptlrpc_request *req); static int ptlrpcd_check_work(struct ptlrpc_request *req); /** * Initialize passed in client structure \a cl. */ void ptlrpc_init_client(int req_portal, int rep_portal, char *name, struct ptlrpc_client *cl) { cl->cli_request_portal = req_portal; cl->cli_reply_portal = rep_portal; cl->cli_name = name; } EXPORT_SYMBOL(ptlrpc_init_client); /** * Return PortalRPC connection for remore uud \a uuid */ struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid) { struct ptlrpc_connection *c; lnet_nid_t self; lnet_process_id_t peer; int err; /* ptlrpc_uuid_to_peer() initializes its 2nd parameter * before accessing its values. */ /* coverity[uninit_use_in_call] */ err = ptlrpc_uuid_to_peer(uuid, &peer, &self); if (err != 0) { CNETERR("cannot find peer %s!\n", uuid->uuid); return NULL; } c = ptlrpc_connection_get(peer, self, uuid); if (c) { memcpy(c->c_remote_uuid.uuid, uuid->uuid, sizeof(c->c_remote_uuid.uuid)); } CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c); return c; } EXPORT_SYMBOL(ptlrpc_uuid_to_connection); /** * Allocate and initialize new bulk descriptor on the sender. * Returns pointer to the descriptor or NULL on error. */ struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned npages, unsigned max_brw, unsigned type, unsigned portal) { struct ptlrpc_bulk_desc *desc; int i; OBD_ALLOC(desc, offsetof(struct ptlrpc_bulk_desc, bd_iov[npages])); if (!desc) return NULL; spin_lock_init(&desc->bd_lock); init_waitqueue_head(&desc->bd_waitq); desc->bd_max_iov = npages; desc->bd_iov_count = 0; desc->bd_portal = portal; desc->bd_type = type; desc->bd_md_count = 0; LASSERT(max_brw > 0); desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT); /* PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this * node. Negotiated ocd_brw_size will always be <= this number. */ for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++) LNetInvalidateHandle(&desc->bd_mds[i]); return desc; } /** * Prepare bulk descriptor for specified outgoing request \a req that * can fit \a npages * pages. \a type is bulk type. \a portal is where * the bulk to be sent. Used on client-side. * Returns pointer to newly allocatrd initialized bulk descriptor or NULL on * error. */ struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req, unsigned npages, unsigned max_brw, unsigned type, unsigned portal) { struct obd_import *imp = req->rq_import; struct ptlrpc_bulk_desc *desc; ENTRY; LASSERT(type == BULK_PUT_SINK || type == BULK_GET_SOURCE); desc = ptlrpc_new_bulk(npages, max_brw, type, portal); if (desc == NULL) RETURN(NULL); desc->bd_import_generation = req->rq_import_generation; desc->bd_import = class_import_get(imp); desc->bd_req = req; desc->bd_cbid.cbid_fn = client_bulk_callback; desc->bd_cbid.cbid_arg = desc; /* This makes req own desc, and free it when she frees herself */ req->rq_bulk = desc; return desc; } EXPORT_SYMBOL(ptlrpc_prep_bulk_imp); /* * Add a page \a page to the bulk descriptor \a desc. * Data to transfer in the page starts at offset \a pageoffset and * amount of data to transfer from the page is \a len */ void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc, struct page *page, int pageoffset, int len, int pin) { LASSERT(desc->bd_iov_count < desc->bd_max_iov); LASSERT(page != NULL); LASSERT(pageoffset >= 0); LASSERT(len > 0); LASSERT(pageoffset + len <= PAGE_CACHE_SIZE); desc->bd_nob += len; if (pin) page_cache_get(page); ptlrpc_add_bulk_page(desc, page, pageoffset, len); } EXPORT_SYMBOL(__ptlrpc_prep_bulk_page); /** * Uninitialize and free bulk descriptor \a desc. * Works on bulk descriptors both from server and client side. */ void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc, int unpin) { int i; ENTRY; LASSERT(desc != NULL); LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */ LASSERT(desc->bd_md_count == 0); /* network hands off */ LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL)); sptlrpc_enc_pool_put_pages(desc); if (desc->bd_export) class_export_put(desc->bd_export); else class_import_put(desc->bd_import); if (unpin) { for (i = 0; i < desc->bd_iov_count ; i++) page_cache_release(desc->bd_iov[i].kiov_page); } OBD_FREE(desc, offsetof(struct ptlrpc_bulk_desc, bd_iov[desc->bd_max_iov])); EXIT; } EXPORT_SYMBOL(__ptlrpc_free_bulk); /** * Set server timelimit for this req, i.e. how long are we willing to wait * for reply before timing out this request. */ void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req) { __u32 serv_est; int idx; struct imp_at *at; LASSERT(req->rq_import); if (AT_OFF) { /* non-AT settings */ /** * \a imp_server_timeout means this is reverse import and * we send (currently only) ASTs to the client and cannot afford * to wait too long for the reply, otherwise the other client * (because of which we are sending this request) would * timeout waiting for us */ req->rq_timeout = req->rq_import->imp_server_timeout ? obd_timeout / 2 : obd_timeout; } else { at = &req->rq_import->imp_at; idx = import_at_get_index(req->rq_import, req->rq_request_portal); serv_est = at_get(&at->iat_service_estimate[idx]); req->rq_timeout = at_est2timeout(serv_est); } /* We could get even fancier here, using history to predict increased loading... */ /* Let the server know what this RPC timeout is by putting it in the reqmsg*/ lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout); } EXPORT_SYMBOL(ptlrpc_at_set_req_timeout); /* Adjust max service estimate based on server value */ static void ptlrpc_at_adj_service(struct ptlrpc_request *req, unsigned int serv_est) { int idx; unsigned int oldse; struct imp_at *at; LASSERT(req->rq_import); at = &req->rq_import->imp_at; idx = import_at_get_index(req->rq_import, req->rq_request_portal); /* max service estimates are tracked on the server side, so just keep minimal history here */ oldse = at_measured(&at->iat_service_estimate[idx], serv_est); if (oldse != 0) CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d " "has changed from %d to %d\n", req->rq_import->imp_obd->obd_name,req->rq_request_portal, oldse, at_get(&at->iat_service_estimate[idx])); } /* Expected network latency per remote node (secs) */ int ptlrpc_at_get_net_latency(struct ptlrpc_request *req) { return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency); } /* Adjust expected network latency */ void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req, unsigned int service_time) { unsigned int nl, oldnl; struct imp_at *at; time_t now = cfs_time_current_sec(); LASSERT(req->rq_import); if (service_time > now - req->rq_sent + 3) { /* bz16408, however, this can also happen if early reply * is lost and client RPC is expired and resent, early reply * or reply of original RPC can still be fit in reply buffer * of resent RPC, now client is measuring time from the * resent time, but server sent back service time of original * RPC. */ CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ? D_ADAPTTO : D_WARNING, "Reported service time %u > total measured time " CFS_DURATION_T"\n", service_time, cfs_time_sub(now, req->rq_sent)); return; } /* Network latency is total time less server processing time */ nl = max_t(int, now - req->rq_sent - service_time, 0) + 1; /* st rounding */ at = &req->rq_import->imp_at; oldnl = at_measured(&at->iat_net_latency, nl); if (oldnl != 0) CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) " "has changed from %d to %d\n", req->rq_import->imp_obd->obd_name, obd_uuid2str( &req->rq_import->imp_connection->c_remote_uuid), oldnl, at_get(&at->iat_net_latency)); } static int unpack_reply(struct ptlrpc_request *req) { int rc; if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) { rc = ptlrpc_unpack_rep_msg(req, req->rq_replen); if (rc) { DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc); return(-EPROTO); } } rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF); if (rc) { DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc); return(-EPROTO); } return 0; } /** * Handle an early reply message, called with the rq_lock held. * If anything goes wrong just ignore it - same as if it never happened */ static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req) __must_hold(&req->rq_lock) { struct ptlrpc_request *early_req; time_t olddl; int rc; ENTRY; req->rq_early = 0; spin_unlock(&req->rq_lock); rc = sptlrpc_cli_unwrap_early_reply(req, &early_req); if (rc) { spin_lock(&req->rq_lock); RETURN(rc); } rc = unpack_reply(early_req); if (rc == 0) { /* Expecting to increase the service time estimate here */ ptlrpc_at_adj_service(req, lustre_msg_get_timeout(early_req->rq_repmsg)); ptlrpc_at_adj_net_latency(req, lustre_msg_get_service_time(early_req->rq_repmsg)); } sptlrpc_cli_finish_early_reply(early_req); if (rc != 0) { spin_lock(&req->rq_lock); RETURN(rc); } /* Adjust the local timeout for this req */ ptlrpc_at_set_req_timeout(req); spin_lock(&req->rq_lock); olddl = req->rq_deadline; /* server assumes it now has rq_timeout from when the request * arrived, so the client should give it at least that long. * since we don't know the arrival time we'll use the original * sent time */ req->rq_deadline = req->rq_sent + req->rq_timeout + ptlrpc_at_get_net_latency(req); DEBUG_REQ(D_ADAPTTO, req, "Early reply #%d, new deadline in "CFS_DURATION_T"s " "("CFS_DURATION_T"s)", req->rq_early_count, cfs_time_sub(req->rq_deadline, cfs_time_current_sec()), cfs_time_sub(req->rq_deadline, olddl)); RETURN(rc); } static struct kmem_cache *request_cache; int ptlrpc_request_cache_init(void) { request_cache = kmem_cache_create("ptlrpc_cache", sizeof(struct ptlrpc_request), 0, SLAB_HWCACHE_ALIGN, NULL); return request_cache == NULL ? -ENOMEM : 0; } void ptlrpc_request_cache_fini(void) { kmem_cache_destroy(request_cache); } struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags) { struct ptlrpc_request *req; OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags); return req; } void ptlrpc_request_cache_free(struct ptlrpc_request *req) { OBD_SLAB_FREE_PTR(req, request_cache); } /** * Wind down request pool \a pool. * Frees all requests from the pool too */ void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool) { struct list_head *l, *tmp; struct ptlrpc_request *req; LASSERT(pool != NULL); spin_lock(&pool->prp_lock); list_for_each_safe(l, tmp, &pool->prp_req_list) { req = list_entry(l, struct ptlrpc_request, rq_list); list_del(&req->rq_list); LASSERT(req->rq_reqbuf); LASSERT(req->rq_reqbuf_len == pool->prp_rq_size); OBD_FREE_LARGE(req->rq_reqbuf, pool->prp_rq_size); ptlrpc_request_cache_free(req); } spin_unlock(&pool->prp_lock); OBD_FREE(pool, sizeof(*pool)); } EXPORT_SYMBOL(ptlrpc_free_rq_pool); /** * Allocates, initializes and adds \a num_rq requests to the pool \a pool */ void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq) { int i; int size = 1; while (size < pool->prp_rq_size) size <<= 1; LASSERTF(list_empty(&pool->prp_req_list) || size == pool->prp_rq_size, "Trying to change pool size with nonempty pool " "from %d to %d bytes\n", pool->prp_rq_size, size); spin_lock(&pool->prp_lock); pool->prp_rq_size = size; for (i = 0; i < num_rq; i++) { struct ptlrpc_request *req; struct lustre_msg *msg; spin_unlock(&pool->prp_lock); req = ptlrpc_request_cache_alloc(GFP_NOFS); if (!req) return; OBD_ALLOC_LARGE(msg, size); if (!msg) { ptlrpc_request_cache_free(req); return; } req->rq_reqbuf = msg; req->rq_reqbuf_len = size; req->rq_pool = pool; spin_lock(&pool->prp_lock); list_add_tail(&req->rq_list, &pool->prp_req_list); } spin_unlock(&pool->prp_lock); return; } EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool); /** * Create and initialize new request pool with given attributes: * \a num_rq - initial number of requests to create for the pool * \a msgsize - maximum message size possible for requests in thid pool * \a populate_pool - function to be called when more requests need to be added * to the pool * Returns pointer to newly created pool or NULL on error. */ struct ptlrpc_request_pool * ptlrpc_init_rq_pool(int num_rq, int msgsize, void (*populate_pool)(struct ptlrpc_request_pool *, int)) { struct ptlrpc_request_pool *pool; OBD_ALLOC(pool, sizeof(struct ptlrpc_request_pool)); if (!pool) return NULL; /* Request next power of two for the allocation, because internally kernel would do exactly this */ spin_lock_init(&pool->prp_lock); INIT_LIST_HEAD(&pool->prp_req_list); pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD; pool->prp_populate = populate_pool; populate_pool(pool, num_rq); if (list_empty(&pool->prp_req_list)) { /* have not allocated a single request for the pool */ OBD_FREE(pool, sizeof(struct ptlrpc_request_pool)); pool = NULL; } return pool; } EXPORT_SYMBOL(ptlrpc_init_rq_pool); /** * Fetches one request from pool \a pool */ static struct ptlrpc_request * ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool) { struct ptlrpc_request *request; struct lustre_msg *reqbuf; if (!pool) return NULL; spin_lock(&pool->prp_lock); /* See if we have anything in a pool, and bail out if nothing, * in writeout path, where this matters, this is safe to do, because * nothing is lost in this case, and when some in-flight requests * complete, this code will be called again. */ if (unlikely(list_empty(&pool->prp_req_list))) { spin_unlock(&pool->prp_lock); return NULL; } request = list_entry(pool->prp_req_list.next, struct ptlrpc_request, rq_list); list_del_init(&request->rq_list); spin_unlock(&pool->prp_lock); LASSERT(request->rq_reqbuf); LASSERT(request->rq_pool); reqbuf = request->rq_reqbuf; memset(request, 0, sizeof(*request)); request->rq_reqbuf = reqbuf; request->rq_reqbuf_len = pool->prp_rq_size; request->rq_pool = pool; return request; } /** * Returns freed \a request to pool. */ static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request) { struct ptlrpc_request_pool *pool = request->rq_pool; spin_lock(&pool->prp_lock); LASSERT(list_empty(&request->rq_list)); LASSERT(!request->rq_receiving_reply); list_add_tail(&request->rq_list, &pool->prp_req_list); spin_unlock(&pool->prp_lock); } static int __ptlrpc_request_bufs_pack(struct ptlrpc_request *request, __u32 version, int opcode, int count, __u32 *lengths, char **bufs, struct ptlrpc_cli_ctx *ctx) { struct obd_import *imp = request->rq_import; int rc; ENTRY; if (unlikely(ctx)) request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx); else { rc = sptlrpc_req_get_ctx(request); if (rc) GOTO(out_free, rc); } sptlrpc_req_set_flavor(request, opcode); rc = lustre_pack_request(request, imp->imp_msg_magic, count, lengths, bufs); if (rc) { LASSERT(!request->rq_pool); GOTO(out_ctx, rc); } lustre_msg_add_version(request->rq_reqmsg, version); request->rq_send_state = LUSTRE_IMP_FULL; request->rq_type = PTL_RPC_MSG_REQUEST; request->rq_req_cbid.cbid_fn = request_out_callback; request->rq_req_cbid.cbid_arg = request; request->rq_reply_cbid.cbid_fn = reply_in_callback; request->rq_reply_cbid.cbid_arg = request; request->rq_reply_deadline = 0; request->rq_phase = RQ_PHASE_NEW; request->rq_next_phase = RQ_PHASE_UNDEFINED; request->rq_request_portal = imp->imp_client->cli_request_portal; request->rq_reply_portal = imp->imp_client->cli_reply_portal; ptlrpc_at_set_req_timeout(request); request->rq_xid = ptlrpc_next_xid(); lustre_msg_set_opc(request->rq_reqmsg, opcode); RETURN(0); out_ctx: sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1); out_free: class_import_put(imp); return rc; } int ptlrpc_request_bufs_pack(struct ptlrpc_request *request, __u32 version, int opcode, char **bufs, struct ptlrpc_cli_ctx *ctx) { int count; count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT); return __ptlrpc_request_bufs_pack(request, version, opcode, count, request->rq_pill.rc_area[RCL_CLIENT], bufs, ctx); } EXPORT_SYMBOL(ptlrpc_request_bufs_pack); /** * Pack request buffers for network transfer, performing necessary encryption * steps if necessary. */ int ptlrpc_request_pack(struct ptlrpc_request *request, __u32 version, int opcode) { int rc; rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL); if (rc) return rc; /* For some old 1.8 clients (< 1.8.7), they will LASSERT the size of * ptlrpc_body sent from server equal to local ptlrpc_body size, so we * have to send old ptlrpc_body to keep interoprability with these * clients. * * Only three kinds of server->client RPCs so far: * - LDLM_BL_CALLBACK * - LDLM_CP_CALLBACK * - LDLM_GL_CALLBACK * * XXX This should be removed whenever we drop the interoprability with * the these old clients. */ if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK || opcode == LDLM_GL_CALLBACK) req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY, sizeof(struct ptlrpc_body_v2), RCL_CLIENT); return rc; } EXPORT_SYMBOL(ptlrpc_request_pack); /** * Helper function to allocate new request on import \a imp * and possibly using existing request from pool \a pool if provided. * Returns allocated request structure with import field filled or * NULL on error. */ static inline struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp, struct ptlrpc_request_pool *pool) { struct ptlrpc_request *request = NULL; if (pool) request = ptlrpc_prep_req_from_pool(pool); if (!request) request = ptlrpc_request_cache_alloc(GFP_NOFS); if (request) { ptlrpc_cli_req_init(request); LASSERTF((unsigned long)imp > 0x1000, "%p", imp); LASSERT(imp != LP_POISON); LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n", imp->imp_client); LASSERT(imp->imp_client != LP_POISON); request->rq_import = class_import_get(imp); } else { CERROR("request allocation out of memory\n"); } return request; } /** * Helper function for creating a request. * Calls __ptlrpc_request_alloc to allocate new request sturcture and inits * buffer structures according to capsule template \a format. * Returns allocated request structure pointer or NULL on error. */ static struct ptlrpc_request * ptlrpc_request_alloc_internal(struct obd_import *imp, struct ptlrpc_request_pool * pool, const struct req_format *format) { struct ptlrpc_request *request; request = __ptlrpc_request_alloc(imp, pool); if (request == NULL) return NULL; req_capsule_init(&request->rq_pill, request, RCL_CLIENT); req_capsule_set(&request->rq_pill, format); return request; } /** * Allocate new request structure for import \a imp and initialize its * buffer structure according to capsule template \a format. */ struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp, const struct req_format *format) { return ptlrpc_request_alloc_internal(imp, NULL, format); } EXPORT_SYMBOL(ptlrpc_request_alloc); /** * Allocate new request structure for import \a imp from pool \a pool and * initialize its buffer structure according to capsule template \a format. */ struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp, struct ptlrpc_request_pool * pool, const struct req_format *format) { return ptlrpc_request_alloc_internal(imp, pool, format); } EXPORT_SYMBOL(ptlrpc_request_alloc_pool); /** * For requests not from pool, free memory of the request structure. * For requests obtained from a pool earlier, return request back to pool. */ void ptlrpc_request_free(struct ptlrpc_request *request) { if (request->rq_pool) __ptlrpc_free_req_to_pool(request); else ptlrpc_request_cache_free(request); } EXPORT_SYMBOL(ptlrpc_request_free); /** * Allocate new request for operatione \a opcode and immediatelly pack it for * network transfer. * Only used for simple requests like OBD_PING where the only important * part of the request is operation itself. * Returns allocated request or NULL on error. */ struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp, const struct req_format *format, __u32 version, int opcode) { struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format); int rc; if (req) { rc = ptlrpc_request_pack(req, version, opcode); if (rc) { ptlrpc_request_free(req); req = NULL; } } return req; } EXPORT_SYMBOL(ptlrpc_request_alloc_pack); /** * Prepare request (fetched from pool \a poolif not NULL) on import \a imp * for operation \a opcode. Request would contain \a count buffers. * Sizes of buffers are described in array \a lengths and buffers themselves * are provided by a pointer \a bufs. * Returns prepared request structure pointer or NULL on error. */ struct ptlrpc_request * ptlrpc_prep_req_pool(struct obd_import *imp, __u32 version, int opcode, int count, __u32 *lengths, char **bufs, struct ptlrpc_request_pool *pool) { struct ptlrpc_request *request; int rc; request = __ptlrpc_request_alloc(imp, pool); if (!request) return NULL; rc = __ptlrpc_request_bufs_pack(request, version, opcode, count, lengths, bufs, NULL); if (rc) { ptlrpc_request_free(request); request = NULL; } return request; } EXPORT_SYMBOL(ptlrpc_prep_req_pool); /** * Same as ptlrpc_prep_req_pool, but without pool */ struct ptlrpc_request * ptlrpc_prep_req(struct obd_import *imp, __u32 version, int opcode, int count, __u32 *lengths, char **bufs) { return ptlrpc_prep_req_pool(imp, version, opcode, count, lengths, bufs, NULL); } EXPORT_SYMBOL(ptlrpc_prep_req); /** * Allocate and initialize new request set structure. * Returns a pointer to the newly allocated set structure or NULL on error. */ struct ptlrpc_request_set *ptlrpc_prep_set(void) { struct ptlrpc_request_set *set; ENTRY; OBD_ALLOC(set, sizeof *set); if (!set) RETURN(NULL); atomic_set(&set->set_refcount, 1); INIT_LIST_HEAD(&set->set_requests); init_waitqueue_head(&set->set_waitq); atomic_set(&set->set_new_count, 0); atomic_set(&set->set_remaining, 0); spin_lock_init(&set->set_new_req_lock); INIT_LIST_HEAD(&set->set_new_requests); INIT_LIST_HEAD(&set->set_cblist); set->set_max_inflight = UINT_MAX; set->set_producer = NULL; set->set_producer_arg = NULL; set->set_rc = 0; RETURN(set); } EXPORT_SYMBOL(ptlrpc_prep_set); /** * Allocate and initialize new request set structure with flow control * extension. This extension allows to control the number of requests in-flight * for the whole set. A callback function to generate requests must be provided * and the request set will keep the number of requests sent over the wire to * @max_inflight. * Returns a pointer to the newly allocated set structure or NULL on error. */ struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func, void *arg) { struct ptlrpc_request_set *set; set = ptlrpc_prep_set(); if (!set) RETURN(NULL); set->set_max_inflight = max; set->set_producer = func; set->set_producer_arg = arg; RETURN(set); } EXPORT_SYMBOL(ptlrpc_prep_fcset); /** * Wind down and free request set structure previously allocated with * ptlrpc_prep_set. * Ensures that all requests on the set have completed and removes * all requests from the request list in a set. * If any unsent request happen to be on the list, pretends that they got * an error in flight and calls their completion handler. */ void ptlrpc_set_destroy(struct ptlrpc_request_set *set) { struct list_head *tmp; struct list_head *next; int expected_phase; int n = 0; ENTRY; /* Requests on the set should either all be completed, or all be new */ expected_phase = (atomic_read(&set->set_remaining) == 0) ? RQ_PHASE_COMPLETE : RQ_PHASE_NEW; list_for_each(tmp, &set->set_requests) { struct ptlrpc_request *req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); LASSERT(req->rq_phase == expected_phase); n++; } LASSERTF(atomic_read(&set->set_remaining) == 0 || atomic_read(&set->set_remaining) == n, "%d / %d\n", atomic_read(&set->set_remaining), n); list_for_each_safe(tmp, next, &set->set_requests) { struct ptlrpc_request *req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); list_del_init(&req->rq_set_chain); LASSERT(req->rq_phase == expected_phase); if (req->rq_phase == RQ_PHASE_NEW) { ptlrpc_req_interpret(NULL, req, -EBADR); atomic_dec(&set->set_remaining); } spin_lock(&req->rq_lock); req->rq_set = NULL; req->rq_invalid_rqset = 0; spin_unlock(&req->rq_lock); ptlrpc_req_finished (req); } LASSERT(atomic_read(&set->set_remaining) == 0); ptlrpc_reqset_put(set); EXIT; } EXPORT_SYMBOL(ptlrpc_set_destroy); /** * Add a callback function \a fn to the set. * This function would be called when all requests on this set are completed. * The function will be passed \a data argument. */ int ptlrpc_set_add_cb(struct ptlrpc_request_set *set, set_interpreter_func fn, void *data) { struct ptlrpc_set_cbdata *cbdata; OBD_ALLOC_PTR(cbdata); if (cbdata == NULL) RETURN(-ENOMEM); cbdata->psc_interpret = fn; cbdata->psc_data = data; list_add_tail(&cbdata->psc_item, &set->set_cblist); RETURN(0); } EXPORT_SYMBOL(ptlrpc_set_add_cb); /** * Add a new request to the general purpose request set. * Assumes request reference from the caller. */ void ptlrpc_set_add_req(struct ptlrpc_request_set *set, struct ptlrpc_request *req) { LASSERT(list_empty(&req->rq_set_chain)); /* The set takes over the caller's request reference */ list_add_tail(&req->rq_set_chain, &set->set_requests); req->rq_set = set; atomic_inc(&set->set_remaining); req->rq_queued_time = cfs_time_current(); if (req->rq_reqmsg != NULL) lustre_msg_set_jobid(req->rq_reqmsg, NULL); if (set->set_producer != NULL) /* If the request set has a producer callback, the RPC must be * sent straight away */ ptlrpc_send_new_req(req); } EXPORT_SYMBOL(ptlrpc_set_add_req); /** * Add a request to a request with dedicated server thread * and wake the thread to make any necessary processing. * Currently only used for ptlrpcd. */ void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc, struct ptlrpc_request *req) { struct ptlrpc_request_set *set = pc->pc_set; int count, i; LASSERT(req->rq_set == NULL); LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0); spin_lock(&set->set_new_req_lock); /* * The set takes over the caller's request reference. */ req->rq_set = set; req->rq_queued_time = cfs_time_current(); list_add_tail(&req->rq_set_chain, &set->set_new_requests); count = atomic_inc_return(&set->set_new_count); spin_unlock(&set->set_new_req_lock); /* Only need to call wakeup once for the first entry. */ if (count == 1) { wake_up(&set->set_waitq); /* XXX: It maybe unnecessary to wakeup all the partners. But to * guarantee the async RPC can be processed ASAP, we have * no other better choice. It maybe fixed in future. */ for (i = 0; i < pc->pc_npartners; i++) wake_up(&pc->pc_partners[i]->pc_set->set_waitq); } } EXPORT_SYMBOL(ptlrpc_set_add_new_req); /** * Based on the current state of the import, determine if the request * can be sent, is an error, or should be delayed. * * Returns true if this request should be delayed. If false, and * *status is set, then the request can not be sent and *status is the * error code. If false and status is 0, then request can be sent. * * The imp->imp_lock must be held. */ static int ptlrpc_import_delay_req(struct obd_import *imp, struct ptlrpc_request *req, int *status) { int delay = 0; ENTRY; LASSERT (status != NULL); *status = 0; if (req->rq_ctx_init || req->rq_ctx_fini) { /* always allow ctx init/fini rpc go through */ } else if (imp->imp_state == LUSTRE_IMP_NEW) { DEBUG_REQ(D_ERROR, req, "Uninitialized import."); *status = -EIO; } else if (imp->imp_state == LUSTRE_IMP_CLOSED) { /* pings may safely race with umount */ DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ? D_HA : D_ERROR, req, "IMP_CLOSED "); *status = -EIO; } else if (ptlrpc_send_limit_expired(req)) { /* probably doesn't need to be a D_ERROR after initial testing*/ DEBUG_REQ(D_HA, req, "send limit expired "); *status = -ETIMEDOUT; } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING && imp->imp_state == LUSTRE_IMP_CONNECTING) { /* allow CONNECT even if import is invalid */ ; if (atomic_read(&imp->imp_inval_count) != 0) { DEBUG_REQ(D_ERROR, req, "invalidate in flight"); *status = -EIO; } } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) { if (!imp->imp_deactive) DEBUG_REQ(D_NET, req, "IMP_INVALID"); *status = -ESHUTDOWN; /* bz 12940 */ } else if (req->rq_import_generation != imp->imp_generation) { DEBUG_REQ(D_ERROR, req, "req wrong generation:"); *status = -EIO; } else if (req->rq_send_state != imp->imp_state) { /* invalidate in progress - any requests should be drop */ if (atomic_read(&imp->imp_inval_count) != 0) { DEBUG_REQ(D_ERROR, req, "invalidate in flight"); *status = -EIO; } else if (imp->imp_dlm_fake || req->rq_no_delay) { *status = -EWOULDBLOCK; } else if (req->rq_allow_replay && (imp->imp_state == LUSTRE_IMP_REPLAY || imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS || imp->imp_state == LUSTRE_IMP_REPLAY_WAIT || imp->imp_state == LUSTRE_IMP_RECOVER)) { DEBUG_REQ(D_HA, req, "allow during recovery.\n"); } else { delay = 1; } } RETURN(delay); } /** * Decide if the error message should be printed to the console or not. * Makes its decision based on request type, status, and failure frequency. * * \param[in] req request that failed and may need a console message * * \retval false if no message should be printed * \retval true if console message should be printed */ static bool ptlrpc_console_allow(struct ptlrpc_request *req) { __u32 opc; LASSERT(req->rq_reqmsg != NULL); opc = lustre_msg_get_opc(req->rq_reqmsg); /* Suppress particular reconnect errors which are to be expected. */ if (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT) { int err; /* Suppress timed out reconnect requests */ if (lustre_handle_is_used(&req->rq_import->imp_remote_handle) || req->rq_timedout) return false; /* Suppress most unavailable/again reconnect requests, but * print occasionally so it is clear client is trying to * connect to a server where no target is running. */ err = lustre_msg_get_status(req->rq_repmsg); if ((err == -ENODEV || err == -EAGAIN) && req->rq_import->imp_conn_cnt % 30 != 20) return false; } return true; } /** * Check request processing status. * Returns the status. */ static int ptlrpc_check_status(struct ptlrpc_request *req) { int err; ENTRY; err = lustre_msg_get_status(req->rq_repmsg); if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) { struct obd_import *imp = req->rq_import; lnet_nid_t nid = imp->imp_connection->c_peer.nid; __u32 opc = lustre_msg_get_opc(req->rq_reqmsg); if (ptlrpc_console_allow(req)) LCONSOLE_ERROR_MSG(0x11, "%s: operation %s to node %s " "failed: rc = %d\n", imp->imp_obd->obd_name, ll_opcode2str(opc), libcfs_nid2str(nid), err); RETURN(err < 0 ? err : -EINVAL); } if (err < 0) { DEBUG_REQ(D_INFO, req, "status is %d", err); } else if (err > 0) { /* XXX: translate this error from net to host */ DEBUG_REQ(D_INFO, req, "status is %d", err); } RETURN(err); } /** * save pre-versions of objects into request for replay. * Versions are obtained from server reply. * used for VBR. */ static void ptlrpc_save_versions(struct ptlrpc_request *req) { struct lustre_msg *repmsg = req->rq_repmsg; struct lustre_msg *reqmsg = req->rq_reqmsg; __u64 *versions = lustre_msg_get_versions(repmsg); ENTRY; if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY) return; LASSERT(versions); lustre_msg_set_versions(reqmsg, versions); CDEBUG(D_INFO, "Client save versions ["LPX64"/"LPX64"]\n", versions[0], versions[1]); EXIT; } /** * Callback function called when client receives RPC reply for \a req. * Returns 0 on success or error code. * The return alue would be assigned to req->rq_status by the caller * as request processing status. * This function also decides if the request needs to be saved for later replay. */ static int after_reply(struct ptlrpc_request *req) { struct obd_import *imp = req->rq_import; struct obd_device *obd = req->rq_import->imp_obd; int rc; struct timeval work_start; long timediff; ENTRY; LASSERT(obd != NULL); /* repbuf must be unlinked */ LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked); if (req->rq_reply_truncated) { if (ptlrpc_no_resend(req)) { DEBUG_REQ(D_ERROR, req, "reply buffer overflow," " expected: %d, actual size: %d", req->rq_nob_received, req->rq_repbuf_len); RETURN(-EOVERFLOW); } sptlrpc_cli_free_repbuf(req); /* Pass the required reply buffer size (include * space for early reply). * NB: no need to roundup because alloc_repbuf * will roundup it */ req->rq_replen = req->rq_nob_received; req->rq_nob_received = 0; spin_lock(&req->rq_lock); req->rq_resend = 1; spin_unlock(&req->rq_lock); RETURN(0); } /* * NB Until this point, the whole of the incoming message, * including buflens, status etc is in the sender's byte order. */ rc = sptlrpc_cli_unwrap_reply(req); if (rc) { DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc); RETURN(rc); } /* * Security layer unwrap might ask resend this request. */ if (req->rq_resend) RETURN(0); rc = unpack_reply(req); if (rc) RETURN(rc); /* retry indefinitely on EINPROGRESS */ if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS && ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) { time_t now = cfs_time_current_sec(); DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS"); spin_lock(&req->rq_lock); req->rq_resend = 1; spin_unlock(&req->rq_lock); req->rq_nr_resend++; /* allocate new xid to avoid reply reconstruction */ if (!req->rq_bulk) { /* new xid is already allocated for bulk in * ptlrpc_check_set() */ req->rq_xid = ptlrpc_next_xid(); DEBUG_REQ(D_RPCTRACE, req, "Allocating new xid for " "resend on EINPROGRESS"); } /* Readjust the timeout for current conditions */ ptlrpc_at_set_req_timeout(req); /* delay resend to give a chance to the server to get ready. * The delay is increased by 1s on every resend and is capped to * the current request timeout (i.e. obd_timeout if AT is off, * or AT service time x 125% + 5s, see at_est2timeout) */ if (req->rq_nr_resend > req->rq_timeout) req->rq_sent = now + req->rq_timeout; else req->rq_sent = now + req->rq_nr_resend; RETURN(0); } do_gettimeofday(&work_start); timediff = cfs_timeval_sub(&work_start, &req->rq_sent_tv, NULL); if (obd->obd_svc_stats != NULL) { lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR, timediff); ptlrpc_lprocfs_rpc_sent(req, timediff); } if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY && lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) { DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)", lustre_msg_get_type(req->rq_repmsg)); RETURN(-EPROTO); } if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING) CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val); ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg)); ptlrpc_at_adj_net_latency(req, lustre_msg_get_service_time(req->rq_repmsg)); rc = ptlrpc_check_status(req); imp->imp_connect_error = rc; if (rc) { /* * Either we've been evicted, or the server has failed for * some reason. Try to reconnect, and if that fails, punt to * the upcall. */ if (ptlrpc_recoverable_error(rc)) { if (req->rq_send_state != LUSTRE_IMP_FULL || imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) { RETURN(rc); } ptlrpc_request_handle_notconn(req); RETURN(rc); } } else { /* * Let's look if server sent slv. Do it only for RPC with * rc == 0. */ ldlm_cli_update_pool(req); } /* * Store transno in reqmsg for replay. */ if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) { req->rq_transno = lustre_msg_get_transno(req->rq_repmsg); lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno); } if (imp->imp_replayable) { spin_lock(&imp->imp_lock); /* * No point in adding already-committed requests to the replay * list, we will just remove them immediately. b=9829 */ if (req->rq_transno != 0 && (req->rq_transno > lustre_msg_get_last_committed(req->rq_repmsg) || req->rq_replay)) { /** version recovery */ ptlrpc_save_versions(req); ptlrpc_retain_replayable_request(req, imp); } else if (req->rq_commit_cb != NULL && list_empty(&req->rq_replay_list)) { /* NB: don't call rq_commit_cb if it's already on * rq_replay_list, ptlrpc_free_committed() will call * it later, see LU-3618 for details */ spin_unlock(&imp->imp_lock); req->rq_commit_cb(req); spin_lock(&imp->imp_lock); } /* * Replay-enabled imports return commit-status information. */ if (lustre_msg_get_last_committed(req->rq_repmsg)) { imp->imp_peer_committed_transno = lustre_msg_get_last_committed(req->rq_repmsg); } ptlrpc_free_committed(imp); if (!list_empty(&imp->imp_replay_list)) { struct ptlrpc_request *last; last = list_entry(imp->imp_replay_list.prev, struct ptlrpc_request, rq_replay_list); /* * Requests with rq_replay stay on the list even if no * commit is expected. */ if (last->rq_transno > imp->imp_peer_committed_transno) ptlrpc_pinger_commit_expected(imp); } spin_unlock(&imp->imp_lock); } RETURN(rc); } /** * Helper function to send request \a req over the network for the first time * Also adjusts request phase. * Returns 0 on success or error code. */ static int ptlrpc_send_new_req(struct ptlrpc_request *req) { struct obd_import *imp = req->rq_import; int rc; ENTRY; LASSERT(req->rq_phase == RQ_PHASE_NEW); if (req->rq_sent && (req->rq_sent > cfs_time_current_sec()) && (!req->rq_generation_set || req->rq_import_generation == imp->imp_generation)) RETURN (0); ptlrpc_rqphase_move(req, RQ_PHASE_RPC); spin_lock(&imp->imp_lock); if (!req->rq_generation_set) req->rq_import_generation = imp->imp_generation; if (ptlrpc_import_delay_req(imp, req, &rc)) { spin_lock(&req->rq_lock); req->rq_waiting = 1; spin_unlock(&req->rq_lock); DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: " "(%s != %s)", lustre_msg_get_status(req->rq_reqmsg), ptlrpc_import_state_name(req->rq_send_state), ptlrpc_import_state_name(imp->imp_state)); LASSERT(list_empty(&req->rq_list)); list_add_tail(&req->rq_list, &imp->imp_delayed_list); atomic_inc(&req->rq_import->imp_inflight); spin_unlock(&imp->imp_lock); RETURN(0); } if (rc != 0) { spin_unlock(&imp->imp_lock); req->rq_status = rc; ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); RETURN(rc); } LASSERT(list_empty(&req->rq_list)); list_add_tail(&req->rq_list, &imp->imp_sending_list); atomic_inc(&req->rq_import->imp_inflight); spin_unlock(&imp->imp_lock); lustre_msg_set_status(req->rq_reqmsg, current_pid()); rc = sptlrpc_req_refresh_ctx(req, -1); if (rc) { if (req->rq_err) { req->rq_status = rc; RETURN(1); } else { spin_lock(&req->rq_lock); req->rq_wait_ctx = 1; spin_unlock(&req->rq_lock); RETURN(0); } } CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc" " %s:%s:%d:"LPU64":%s:%d\n", current_comm(), imp->imp_obd->obd_uuid.uuid, lustre_msg_get_status(req->rq_reqmsg), req->rq_xid, libcfs_nid2str(imp->imp_connection->c_peer.nid), lustre_msg_get_opc(req->rq_reqmsg)); rc = ptl_send_rpc(req, 0); if (rc) { DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc); spin_lock(&req->rq_lock); req->rq_net_err = 1; spin_unlock(&req->rq_lock); RETURN(rc); } RETURN(0); } static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set) { int remaining, rc; ENTRY; LASSERT(set->set_producer != NULL); remaining = atomic_read(&set->set_remaining); /* populate the ->set_requests list with requests until we * reach the maximum number of RPCs in flight for this set */ while (atomic_read(&set->set_remaining) < set->set_max_inflight) { rc = set->set_producer(set, set->set_producer_arg); if (rc == -ENOENT) { /* no more RPC to produce */ set->set_producer = NULL; set->set_producer_arg = NULL; RETURN(0); } } RETURN((atomic_read(&set->set_remaining) - remaining)); } /** * this sends any unsent RPCs in \a set and returns 1 if all are sent * and no more replies are expected. * (it is possible to get less replies than requests sent e.g. due to timed out * requests or requests that we had trouble to send out) * * NOTE: This function contains a potential schedule point (cond_resched()). */ int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set) { struct list_head *tmp, *next; struct list_head comp_reqs; int force_timer_recalc = 0; ENTRY; if (atomic_read(&set->set_remaining) == 0) RETURN(1); INIT_LIST_HEAD(&comp_reqs); list_for_each_safe(tmp, next, &set->set_requests) { struct ptlrpc_request *req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); struct obd_import *imp = req->rq_import; int unregistered = 0; int rc = 0; /* This schedule point is mainly for the ptlrpcd caller of this * function. Most ptlrpc sets are not long-lived and unbounded * in length, but at the least the set used by the ptlrpcd is. * Since the processing time is unbounded, we need to insert an * explicit schedule point to make the thread well-behaved. */ cond_resched(); if (req->rq_phase == RQ_PHASE_NEW && ptlrpc_send_new_req(req)) { force_timer_recalc = 1; } /* delayed send - skip */ if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent) continue; /* delayed resend - skip */ if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend && req->rq_sent > cfs_time_current_sec()) continue; if (!(req->rq_phase == RQ_PHASE_RPC || req->rq_phase == RQ_PHASE_BULK || req->rq_phase == RQ_PHASE_INTERPRET || req->rq_phase == RQ_PHASE_UNREGISTERING || req->rq_phase == RQ_PHASE_COMPLETE)) { DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase); LBUG(); } if (req->rq_phase == RQ_PHASE_UNREGISTERING) { LASSERT(req->rq_next_phase != req->rq_phase); LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED); /* * Skip processing until reply is unlinked. We * can't return to pool before that and we can't * call interpret before that. We need to make * sure that all rdma transfers finished and will * not corrupt any data. */ if (ptlrpc_client_recv_or_unlink(req) || ptlrpc_client_bulk_active(req)) continue; /* * Turn fail_loc off to prevent it from looping * forever. */ if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) { OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK, OBD_FAIL_ONCE); } if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) { OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK, OBD_FAIL_ONCE); } /* * Move to next phase if reply was successfully * unlinked. */ ptlrpc_rqphase_move(req, req->rq_next_phase); } if (req->rq_phase == RQ_PHASE_COMPLETE) { list_move_tail(&req->rq_set_chain, &comp_reqs); continue; } if (req->rq_phase == RQ_PHASE_INTERPRET) GOTO(interpret, req->rq_status); /* * Note that this also will start async reply unlink. */ if (req->rq_net_err && !req->rq_timedout) { ptlrpc_expire_one_request(req, 1); /* * Check if we still need to wait for unlink. */ if (ptlrpc_client_recv_or_unlink(req) || ptlrpc_client_bulk_active(req)) continue; /* If there is no need to resend, fail it now. */ if (req->rq_no_resend) { if (req->rq_status == 0) req->rq_status = -EIO; ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); GOTO(interpret, req->rq_status); } else { continue; } } if (req->rq_err) { spin_lock(&req->rq_lock); req->rq_replied = 0; spin_unlock(&req->rq_lock); if (req->rq_status == 0) req->rq_status = -EIO; ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); GOTO(interpret, req->rq_status); } /* ptlrpc_set_wait->l_wait_event sets lwi_allow_intr * so it sets rq_intr regardless of individual rpc * timeouts. The synchronous IO waiting path sets * rq_intr irrespective of whether ptlrpcd * has seen a timeout. Our policy is to only interpret * interrupted rpcs after they have timed out, so we * need to enforce that here. */ if (req->rq_intr && (req->rq_timedout || req->rq_waiting || req->rq_wait_ctx)) { req->rq_status = -EINTR; ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); GOTO(interpret, req->rq_status); } if (req->rq_phase == RQ_PHASE_RPC) { if (req->rq_timedout || req->rq_resend || req->rq_waiting || req->rq_wait_ctx) { int status; if (!ptlrpc_unregister_reply(req, 1)) { ptlrpc_unregister_bulk(req, 1); continue; } spin_lock(&imp->imp_lock); if (ptlrpc_import_delay_req(imp, req, &status)){ /* put on delay list - only if we wait * recovery finished - before send */ list_del_init(&req->rq_list); list_add_tail(&req->rq_list, &imp-> imp_delayed_list); spin_unlock(&imp->imp_lock); continue; } if (status != 0) { req->rq_status = status; ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); spin_unlock(&imp->imp_lock); GOTO(interpret, req->rq_status); } if (ptlrpc_no_resend(req) && !req->rq_wait_ctx) { req->rq_status = -ENOTCONN; ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); spin_unlock(&imp->imp_lock); GOTO(interpret, req->rq_status); } list_del_init(&req->rq_list); list_add_tail(&req->rq_list, &imp->imp_sending_list); spin_unlock(&imp->imp_lock); spin_lock(&req->rq_lock); req->rq_waiting = 0; spin_unlock(&req->rq_lock); if (req->rq_timedout || req->rq_resend) { /* This is re-sending anyways, * let's mark req as resend. */ spin_lock(&req->rq_lock); req->rq_resend = 1; spin_unlock(&req->rq_lock); if (req->rq_bulk) { __u64 old_xid; if (!ptlrpc_unregister_bulk(req, 1)) continue; /* ensure previous bulk fails */ old_xid = req->rq_xid; req->rq_xid = ptlrpc_next_xid(); CDEBUG(D_HA, "resend bulk " "old x"LPU64 " new x"LPU64"\n", old_xid, req->rq_xid); } } /* * rq_wait_ctx is only touched by ptlrpcd, * so no lock is needed here. */ status = sptlrpc_req_refresh_ctx(req, -1); if (status) { if (req->rq_err) { req->rq_status = status; spin_lock(&req->rq_lock); req->rq_wait_ctx = 0; spin_unlock(&req->rq_lock); force_timer_recalc = 1; } else { spin_lock(&req->rq_lock); req->rq_wait_ctx = 1; spin_unlock(&req->rq_lock); } continue; } else { spin_lock(&req->rq_lock); req->rq_wait_ctx = 0; spin_unlock(&req->rq_lock); } rc = ptl_send_rpc(req, 0); if (rc) { DEBUG_REQ(D_HA, req, "send failed: rc = %d", rc); force_timer_recalc = 1; spin_lock(&req->rq_lock); req->rq_net_err = 1; spin_unlock(&req->rq_lock); continue; } /* need to reset the timeout */ force_timer_recalc = 1; } spin_lock(&req->rq_lock); if (ptlrpc_client_early(req)) { ptlrpc_at_recv_early_reply(req); spin_unlock(&req->rq_lock); continue; } /* Still waiting for a reply? */ if (ptlrpc_client_recv(req)) { spin_unlock(&req->rq_lock); continue; } /* Did we actually receive a reply? */ if (!ptlrpc_client_replied(req)) { spin_unlock(&req->rq_lock); continue; } spin_unlock(&req->rq_lock); /* unlink from net because we are going to * swab in-place of reply buffer */ unregistered = ptlrpc_unregister_reply(req, 1); if (!unregistered) continue; req->rq_status = after_reply(req); if (req->rq_resend) continue; /* If there is no bulk associated with this request, * then we're done and should let the interpreter * process the reply. Similarly if the RPC returned * an error, and therefore the bulk will never arrive. */ if (req->rq_bulk == NULL || req->rq_status < 0) { ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); GOTO(interpret, req->rq_status); } ptlrpc_rqphase_move(req, RQ_PHASE_BULK); } LASSERT(req->rq_phase == RQ_PHASE_BULK); if (ptlrpc_client_bulk_active(req)) continue; if (req->rq_bulk->bd_failure) { /* The RPC reply arrived OK, but the bulk screwed * up! Dead weird since the server told us the RPC * was good after getting the REPLY for her GET or * the ACK for her PUT. */ DEBUG_REQ(D_ERROR, req, "bulk transfer failed"); req->rq_status = -EIO; } ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); interpret: LASSERT(req->rq_phase == RQ_PHASE_INTERPRET); /* This moves to "unregistering" phase we need to wait for * reply unlink. */ if (!unregistered && !ptlrpc_unregister_reply(req, 1)) { /* start async bulk unlink too */ ptlrpc_unregister_bulk(req, 1); continue; } if (!ptlrpc_unregister_bulk(req, 1)) continue; /* When calling interpret receiving already should be * finished. */ LASSERT(!req->rq_receiving_reply); ptlrpc_req_interpret(env, req, req->rq_status); if (ptlrpcd_check_work(req)) { atomic_dec(&set->set_remaining); continue; } ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE); CDEBUG(req->rq_reqmsg != NULL ? D_RPCTRACE : 0, "Completed RPC pname:cluuid:pid:xid:nid:" "opc %s:%s:%d:"LPU64":%s:%d\n", current_comm(), imp->imp_obd->obd_uuid.uuid, lustre_msg_get_status(req->rq_reqmsg), req->rq_xid, libcfs_nid2str(imp->imp_connection->c_peer.nid), lustre_msg_get_opc(req->rq_reqmsg)); spin_lock(&imp->imp_lock); /* Request already may be not on sending or delaying list. This * may happen in the case of marking it erroneous for the case * ptlrpc_import_delay_req(req, status) find it impossible to * allow sending this rpc and returns *status != 0. */ if (!list_empty(&req->rq_list)) { list_del_init(&req->rq_list); atomic_dec(&imp->imp_inflight); } spin_unlock(&imp->imp_lock); atomic_dec(&set->set_remaining); wake_up_all(&imp->imp_recovery_waitq); if (set->set_producer) { /* produce a new request if possible */ if (ptlrpc_set_producer(set) > 0) force_timer_recalc = 1; /* free the request that has just been completed * in order not to pollute set->set_requests */ list_del_init(&req->rq_set_chain); spin_lock(&req->rq_lock); req->rq_set = NULL; req->rq_invalid_rqset = 0; spin_unlock(&req->rq_lock); /* record rq_status to compute the final status later */ if (req->rq_status != 0) set->set_rc = req->rq_status; ptlrpc_req_finished(req); } else { list_move_tail(&req->rq_set_chain, &comp_reqs); } } /* move completed request at the head of list so it's easier for * caller to find them */ list_splice(&comp_reqs, &set->set_requests); /* If we hit an error, we want to recover promptly. */ RETURN(atomic_read(&set->set_remaining) == 0 || force_timer_recalc); } EXPORT_SYMBOL(ptlrpc_check_set); /** * Time out request \a req. is \a async_unlink is set, that means do not wait * until LNet actually confirms network buffer unlinking. * Return 1 if we should give up further retrying attempts or 0 otherwise. */ int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink) { struct obd_import *imp = req->rq_import; int rc = 0; ENTRY; spin_lock(&req->rq_lock); req->rq_timedout = 1; spin_unlock(&req->rq_lock); DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent "CFS_DURATION_T "/real "CFS_DURATION_T"]", req->rq_net_err ? "failed due to network error" : ((req->rq_real_sent == 0 || cfs_time_before(req->rq_real_sent, req->rq_sent) || cfs_time_aftereq(req->rq_real_sent, req->rq_deadline)) ? "timed out for sent delay" : "timed out for slow reply"), req->rq_sent, req->rq_real_sent); if (imp != NULL && obd_debug_peer_on_timeout) LNetCtl(IOC_LIBCFS_DEBUG_PEER, &imp->imp_connection->c_peer); ptlrpc_unregister_reply(req, async_unlink); ptlrpc_unregister_bulk(req, async_unlink); if (obd_dump_on_timeout) libcfs_debug_dumplog(); if (imp == NULL) { DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?"); RETURN(1); } atomic_inc(&imp->imp_timeouts); /* The DLM server doesn't want recovery run on its imports. */ if (imp->imp_dlm_fake) RETURN(1); /* If this request is for recovery or other primordial tasks, * then error it out here. */ if (req->rq_ctx_init || req->rq_ctx_fini || req->rq_send_state != LUSTRE_IMP_FULL || imp->imp_obd->obd_no_recov) { DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)", ptlrpc_import_state_name(req->rq_send_state), ptlrpc_import_state_name(imp->imp_state)); spin_lock(&req->rq_lock); req->rq_status = -ETIMEDOUT; req->rq_err = 1; spin_unlock(&req->rq_lock); RETURN(1); } /* if a request can't be resent we can't wait for an answer after the timeout */ if (ptlrpc_no_resend(req)) { DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:"); rc = 1; } ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg)); RETURN(rc); } /** * Time out all uncompleted requests in request set pointed by \a data * Callback used when waiting on sets with l_wait_event. * Always returns 1. */ int ptlrpc_expired_set(void *data) { struct ptlrpc_request_set *set = data; struct list_head *tmp; time_t now = cfs_time_current_sec(); ENTRY; LASSERT(set != NULL); /* * A timeout expired. See which reqs it applies to... */ list_for_each(tmp, &set->set_requests) { struct ptlrpc_request *req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); /* don't expire request waiting for context */ if (req->rq_wait_ctx) continue; /* Request in-flight? */ if (!((req->rq_phase == RQ_PHASE_RPC && !req->rq_waiting && !req->rq_resend) || (req->rq_phase == RQ_PHASE_BULK))) continue; if (req->rq_timedout || /* already dealt with */ req->rq_deadline > now) /* not expired */ continue; /* Deal with this guy. Do it asynchronously to not block * ptlrpcd thread. */ ptlrpc_expire_one_request(req, 1); } /* * When waiting for a whole set, we always break out of the * sleep so we can recalculate the timeout, or enable interrupts * if everyone's timed out. */ RETURN(1); } EXPORT_SYMBOL(ptlrpc_expired_set); /** * Sets rq_intr flag in \a req under spinlock. */ void ptlrpc_mark_interrupted(struct ptlrpc_request *req) { spin_lock(&req->rq_lock); req->rq_intr = 1; spin_unlock(&req->rq_lock); } EXPORT_SYMBOL(ptlrpc_mark_interrupted); /** * Interrupts (sets interrupted flag) all uncompleted requests in * a set \a data. Callback for l_wait_event for interruptible waits. */ void ptlrpc_interrupted_set(void *data) { struct ptlrpc_request_set *set = data; struct list_head *tmp; LASSERT(set != NULL); CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set); list_for_each(tmp, &set->set_requests) { struct ptlrpc_request *req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); if (req->rq_phase != RQ_PHASE_RPC && req->rq_phase != RQ_PHASE_UNREGISTERING) continue; ptlrpc_mark_interrupted(req); } } EXPORT_SYMBOL(ptlrpc_interrupted_set); /** * Get the smallest timeout in the set; this does NOT set a timeout. */ int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set) { struct list_head *tmp; time_t now = cfs_time_current_sec(); int timeout = 0; struct ptlrpc_request *req; int deadline; ENTRY; list_for_each(tmp, &set->set_requests) { req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); /* * Request in-flight? */ if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) || (req->rq_phase == RQ_PHASE_BULK) || (req->rq_phase == RQ_PHASE_NEW))) continue; /* * Already timed out. */ if (req->rq_timedout) continue; /* * Waiting for ctx. */ if (req->rq_wait_ctx) continue; if (req->rq_phase == RQ_PHASE_NEW) deadline = req->rq_sent; else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend) deadline = req->rq_sent; else deadline = req->rq_sent + req->rq_timeout; if (deadline <= now) /* actually expired already */ timeout = 1; /* ASAP */ else if (timeout == 0 || timeout > deadline - now) timeout = deadline - now; } RETURN(timeout); } EXPORT_SYMBOL(ptlrpc_set_next_timeout); /** * Send all unset request from the set and then wait untill all * requests in the set complete (either get a reply, timeout, get an * error or otherwise be interrupted). * Returns 0 on success or error code otherwise. */ int ptlrpc_set_wait(struct ptlrpc_request_set *set) { struct list_head *tmp; struct ptlrpc_request *req; struct l_wait_info lwi; int rc, timeout; ENTRY; if (set->set_producer) (void)ptlrpc_set_producer(set); else list_for_each(tmp, &set->set_requests) { req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); if (req->rq_phase == RQ_PHASE_NEW) (void)ptlrpc_send_new_req(req); } if (list_empty(&set->set_requests)) RETURN(0); do { timeout = ptlrpc_set_next_timeout(set); /* wait until all complete, interrupted, or an in-flight * req times out */ CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n", set, timeout); if (timeout == 0 && !cfs_signal_pending()) /* * No requests are in-flight (ether timed out * or delayed), so we can allow interrupts. * We still want to block for a limited time, * so we allow interrupts during the timeout. */ lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1), ptlrpc_expired_set, ptlrpc_interrupted_set, set); else /* * At least one request is in flight, so no * interrupts are allowed. Wait until all * complete, or an in-flight req times out. */ lwi = LWI_TIMEOUT(cfs_time_seconds(timeout? timeout : 1), ptlrpc_expired_set, set); rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi); /* LU-769 - if we ignored the signal because it was already * pending when we started, we need to handle it now or we risk * it being ignored forever */ if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr && cfs_signal_pending()) { sigset_t blocked_sigs = cfs_block_sigsinv(LUSTRE_FATAL_SIGS); /* In fact we only interrupt for the "fatal" signals * like SIGINT or SIGKILL. We still ignore less * important signals since ptlrpc set is not easily * reentrant from userspace again */ if (cfs_signal_pending()) ptlrpc_interrupted_set(set); cfs_restore_sigs(blocked_sigs); } LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT); /* -EINTR => all requests have been flagged rq_intr so next * check completes. * -ETIMEDOUT => someone timed out. When all reqs have * timed out, signals are enabled allowing completion with * EINTR. * I don't really care if we go once more round the loop in * the error cases -eeb. */ if (rc == 0 && atomic_read(&set->set_remaining) == 0) { list_for_each(tmp, &set->set_requests) { req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); spin_lock(&req->rq_lock); req->rq_invalid_rqset = 1; spin_unlock(&req->rq_lock); } } } while (rc != 0 || atomic_read(&set->set_remaining) != 0); LASSERT(atomic_read(&set->set_remaining) == 0); rc = set->set_rc; /* rq_status of already freed requests if any */ list_for_each(tmp, &set->set_requests) { req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); LASSERT(req->rq_phase == RQ_PHASE_COMPLETE); if (req->rq_status != 0) rc = req->rq_status; } if (set->set_interpret != NULL) { int (*interpreter)(struct ptlrpc_request_set *set,void *,int) = set->set_interpret; rc = interpreter (set, set->set_arg, rc); } else { struct ptlrpc_set_cbdata *cbdata, *n; int err; list_for_each_entry_safe(cbdata, n, &set->set_cblist, psc_item) { list_del_init(&cbdata->psc_item); err = cbdata->psc_interpret(set, cbdata->psc_data, rc); if (err && !rc) rc = err; OBD_FREE_PTR(cbdata); } } RETURN(rc); } EXPORT_SYMBOL(ptlrpc_set_wait); /** * Helper fuction for request freeing. * Called when request count reached zero and request needs to be freed. * Removes request from all sorts of sending/replay lists it might be on, * frees network buffers if any are present. * If \a locked is set, that means caller is already holding import imp_lock * and so we no longer need to reobtain it (for certain lists manipulations) */ static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked) { ENTRY; if (request == NULL) RETURN_EXIT; LASSERT(!request->rq_srv_req); LASSERT(request->rq_export == NULL); LASSERTF(!request->rq_receiving_reply, "req %p\n", request); LASSERTF(list_empty(&request->rq_list), "req %p\n", request); LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request); LASSERTF(!request->rq_replay, "req %p\n", request); req_capsule_fini(&request->rq_pill); /* We must take it off the imp_replay_list first. Otherwise, we'll set * request->rq_reqmsg to NULL while osc_close is dereferencing it. */ if (request->rq_import != NULL) { if (!locked) spin_lock(&request->rq_import->imp_lock); list_del_init(&request->rq_replay_list); if (!locked) spin_unlock(&request->rq_import->imp_lock); } LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request); if (atomic_read(&request->rq_refcount) != 0) { DEBUG_REQ(D_ERROR, request, "freeing request with nonzero refcount"); LBUG(); } if (request->rq_repbuf != NULL) sptlrpc_cli_free_repbuf(request); if (request->rq_import != NULL) { class_import_put(request->rq_import); request->rq_import = NULL; } if (request->rq_bulk != NULL) ptlrpc_free_bulk_pin(request->rq_bulk); if (request->rq_reqbuf != NULL || request->rq_clrbuf != NULL) sptlrpc_cli_free_reqbuf(request); if (request->rq_cli_ctx) sptlrpc_req_put_ctx(request, !locked); if (request->rq_pool) __ptlrpc_free_req_to_pool(request); else ptlrpc_request_cache_free(request); EXIT; } static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked); /** * Drop one request reference. Must be called with import imp_lock held. * When reference count drops to zero, reuqest is freed. */ void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request) { assert_spin_locked(&request->rq_import->imp_lock); (void)__ptlrpc_req_finished(request, 1); } EXPORT_SYMBOL(ptlrpc_req_finished_with_imp_lock); /** * Helper function * Drops one reference count for request \a request. * \a locked set indicates that caller holds import imp_lock. * Frees the request whe reference count reaches zero. */ static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked) { ENTRY; if (request == NULL) RETURN(1); if (request == LP_POISON || request->rq_reqmsg == LP_POISON) { CERROR("dereferencing freed request (bug 575)\n"); LBUG(); RETURN(1); } DEBUG_REQ(D_INFO, request, "refcount now %u", atomic_read(&request->rq_refcount) - 1); if (atomic_dec_and_test(&request->rq_refcount)) { __ptlrpc_free_req(request, locked); RETURN(1); } RETURN(0); } /** * Drops one reference count for a request. */ void ptlrpc_req_finished(struct ptlrpc_request *request) { __ptlrpc_req_finished(request, 0); } EXPORT_SYMBOL(ptlrpc_req_finished); /** * Returns xid of a \a request */ __u64 ptlrpc_req_xid(struct ptlrpc_request *request) { return request->rq_xid; } EXPORT_SYMBOL(ptlrpc_req_xid); /** * Disengage the client's reply buffer from the network * NB does _NOT_ unregister any client-side bulk. * IDEMPOTENT, but _not_ safe against concurrent callers. * The request owner (i.e. the thread doing the I/O) must call... * Returns 0 on success or 1 if unregistering cannot be made. */ int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async) { int rc; struct l_wait_info lwi; /* * Might sleep. */ LASSERT(!in_interrupt()); /* * Let's setup deadline for reply unlink. */ if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) && async && request->rq_reply_deadline == 0) request->rq_reply_deadline = cfs_time_current_sec()+LONG_UNLINK; /* * Nothing left to do. */ if (!ptlrpc_client_recv_or_unlink(request)) RETURN(1); LNetMDUnlink(request->rq_reply_md_h); /* * Let's check it once again. */ if (!ptlrpc_client_recv_or_unlink(request)) RETURN(1); /* * Move to "Unregistering" phase as reply was not unlinked yet. */ ptlrpc_rqphase_move(request, RQ_PHASE_UNREGISTERING); /* * Do not wait for unlink to finish. */ if (async) RETURN(0); /* * We have to l_wait_event() whatever the result, to give liblustre * a chance to run reply_in_callback(), and to make sure we've * unlinked before returning a req to the pool. */ for (;;) { /* The wq argument is ignored by user-space wait_event macros */ wait_queue_head_t *wq = (request->rq_set != NULL) ? &request->rq_set->set_waitq : &request->rq_reply_waitq; /* Network access will complete in finite time but the HUGE * timeout lets us CWARN for visibility of sluggish NALs */ lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK), cfs_time_seconds(1), NULL, NULL); rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request), &lwi); if (rc == 0) { ptlrpc_rqphase_move(request, request->rq_next_phase); RETURN(1); } LASSERT(rc == -ETIMEDOUT); DEBUG_REQ(D_WARNING, request, "Unexpectedly long timeout " "receiving_reply=%d req_ulinked=%d reply_unlinked=%d", request->rq_receiving_reply, request->rq_req_unlinked, request->rq_reply_unlinked); } RETURN(0); } EXPORT_SYMBOL(ptlrpc_unregister_reply); static void ptlrpc_free_request(struct ptlrpc_request *req) { spin_lock(&req->rq_lock); req->rq_replay = 0; spin_unlock(&req->rq_lock); if (req->rq_commit_cb != NULL) req->rq_commit_cb(req); list_del_init(&req->rq_replay_list); __ptlrpc_req_finished(req, 1); } /** * the request is committed and dropped from the replay list of its import */ void ptlrpc_request_committed(struct ptlrpc_request *req, int force) { struct obd_import *imp = req->rq_import; spin_lock(&imp->imp_lock); if (list_empty(&req->rq_replay_list)) { spin_unlock(&imp->imp_lock); return; } if (force || req->rq_transno <= imp->imp_peer_committed_transno) ptlrpc_free_request(req); spin_unlock(&imp->imp_lock); } EXPORT_SYMBOL(ptlrpc_request_committed); /** * Iterates through replay_list on import and prunes * all requests have transno smaller than last_committed for the * import and don't have rq_replay set. * Since requests are sorted in transno order, stops when meetign first * transno bigger than last_committed. * caller must hold imp->imp_lock */ void ptlrpc_free_committed(struct obd_import *imp) { struct ptlrpc_request *req, *saved; struct ptlrpc_request *last_req = NULL; /* temporary fire escape */ bool skip_committed_list = true; ENTRY; LASSERT(imp != NULL); assert_spin_locked(&imp->imp_lock); if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked && imp->imp_generation == imp->imp_last_generation_checked) { CDEBUG(D_INFO, "%s: skip recheck: last_committed "LPU64"\n", imp->imp_obd->obd_name, imp->imp_peer_committed_transno); RETURN_EXIT; } CDEBUG(D_RPCTRACE, "%s: committing for last_committed "LPU64" gen %d\n", imp->imp_obd->obd_name, imp->imp_peer_committed_transno, imp->imp_generation); if (imp->imp_generation != imp->imp_last_generation_checked || imp->imp_last_transno_checked == 0) skip_committed_list = false; imp->imp_last_transno_checked = imp->imp_peer_committed_transno; imp->imp_last_generation_checked = imp->imp_generation; list_for_each_entry_safe(req, saved, &imp->imp_replay_list, rq_replay_list) { /* XXX ok to remove when 1357 resolved - rread 05/29/03 */ LASSERT(req != last_req); last_req = req; if (req->rq_transno == 0) { DEBUG_REQ(D_EMERG, req, "zero transno during replay"); LBUG(); } if (req->rq_import_generation < imp->imp_generation) { DEBUG_REQ(D_RPCTRACE, req, "free request with old gen"); GOTO(free_req, 0); } /* not yet committed */ if (req->rq_transno > imp->imp_peer_committed_transno) { DEBUG_REQ(D_RPCTRACE, req, "stopping search"); break; } if (req->rq_replay) { DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)"); list_move_tail(&req->rq_replay_list, &imp->imp_committed_list); continue; } DEBUG_REQ(D_INFO, req, "commit (last_committed "LPU64")", imp->imp_peer_committed_transno); free_req: ptlrpc_free_request(req); } if (skip_committed_list) GOTO(out, 0); list_for_each_entry_safe(req, saved, &imp->imp_committed_list, rq_replay_list) { LASSERT(req->rq_transno != 0); if (req->rq_import_generation < imp->imp_generation) { DEBUG_REQ(D_RPCTRACE, req, "free stale open request"); ptlrpc_free_request(req); } else if (!req->rq_replay) { DEBUG_REQ(D_RPCTRACE, req, "free closed open request"); ptlrpc_free_request(req); } } out: EXIT; } void ptlrpc_cleanup_client(struct obd_import *imp) { ENTRY; EXIT; } EXPORT_SYMBOL(ptlrpc_cleanup_client); /** * Schedule previously sent request for resend. * For bulk requests we assign new xid (to avoid problems with * lost replies and therefore several transfers landing into same buffer * from different sending attempts). */ void ptlrpc_resend_req(struct ptlrpc_request *req) { DEBUG_REQ(D_HA, req, "going to resend"); spin_lock(&req->rq_lock); /* Request got reply but linked to the import list still. Let ptlrpc_check_set() to process it. */ if (ptlrpc_client_replied(req)) { spin_unlock(&req->rq_lock); DEBUG_REQ(D_HA, req, "it has reply, so skip it"); return; } lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 }); req->rq_status = -EAGAIN; req->rq_resend = 1; req->rq_net_err = 0; req->rq_timedout = 0; if (req->rq_bulk) { __u64 old_xid = req->rq_xid; /* ensure previous bulk fails */ req->rq_xid = ptlrpc_next_xid(); CDEBUG(D_HA, "resend bulk old x"LPU64" new x"LPU64"\n", old_xid, req->rq_xid); } ptlrpc_client_wake_req(req); spin_unlock(&req->rq_lock); } EXPORT_SYMBOL(ptlrpc_resend_req); /* XXX: this function and rq_status are currently unused */ void ptlrpc_restart_req(struct ptlrpc_request *req) { DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request"); req->rq_status = -ERESTARTSYS; spin_lock(&req->rq_lock); req->rq_restart = 1; req->rq_timedout = 0; ptlrpc_client_wake_req(req); spin_unlock(&req->rq_lock); } EXPORT_SYMBOL(ptlrpc_restart_req); /** * Grab additional reference on a request \a req */ struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req) { ENTRY; atomic_inc(&req->rq_refcount); RETURN(req); } EXPORT_SYMBOL(ptlrpc_request_addref); /** * Add a request to import replay_list. * Must be called under imp_lock */ void ptlrpc_retain_replayable_request(struct ptlrpc_request *req, struct obd_import *imp) { struct list_head *tmp; assert_spin_locked(&imp->imp_lock); if (req->rq_transno == 0) { DEBUG_REQ(D_EMERG, req, "saving request with zero transno"); LBUG(); } /* clear this for new requests that were resent as well as resent replayed requests. */ lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT); /* don't re-add requests that have been replayed */ if (!list_empty(&req->rq_replay_list)) return; lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY); LASSERT(imp->imp_replayable); /* Balanced in ptlrpc_free_committed, usually. */ ptlrpc_request_addref(req); list_for_each_prev(tmp, &imp->imp_replay_list) { struct ptlrpc_request *iter = list_entry(tmp, struct ptlrpc_request, rq_replay_list); /* We may have duplicate transnos if we create and then * open a file, or for closes retained if to match creating * opens, so use req->rq_xid as a secondary key. * (See bugs 684, 685, and 428.) * XXX no longer needed, but all opens need transnos! */ if (iter->rq_transno > req->rq_transno) continue; if (iter->rq_transno == req->rq_transno) { LASSERT(iter->rq_xid != req->rq_xid); if (iter->rq_xid > req->rq_xid) continue; } list_add(&req->rq_replay_list, &iter->rq_replay_list); return; } list_add(&req->rq_replay_list, &imp->imp_replay_list); } EXPORT_SYMBOL(ptlrpc_retain_replayable_request); /** * Send request and wait until it completes. * Returns request processing status. */ int ptlrpc_queue_wait(struct ptlrpc_request *req) { struct ptlrpc_request_set *set; int rc; ENTRY; LASSERT(req->rq_set == NULL); LASSERT(!req->rq_receiving_reply); set = ptlrpc_prep_set(); if (set == NULL) { CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM); RETURN(-ENOMEM); } /* for distributed debugging */ lustre_msg_set_status(req->rq_reqmsg, current_pid()); /* add a ref for the set (see comment in ptlrpc_set_add_req) */ ptlrpc_request_addref(req); ptlrpc_set_add_req(set, req); rc = ptlrpc_set_wait(set); ptlrpc_set_destroy(set); RETURN(rc); } EXPORT_SYMBOL(ptlrpc_queue_wait); /** * Callback used for replayed requests reply processing. * In case of succesful reply calls registeresd request replay callback. * In case of error restart replay process. */ static int ptlrpc_replay_interpret(const struct lu_env *env, struct ptlrpc_request *req, void * data, int rc) { struct ptlrpc_replay_async_args *aa = data; struct obd_import *imp = req->rq_import; ENTRY; atomic_dec(&imp->imp_replay_inflight); if (!ptlrpc_client_replied(req)) { CERROR("request replay timed out, restarting recovery\n"); GOTO(out, rc = -ETIMEDOUT); } if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR && (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN || lustre_msg_get_status(req->rq_repmsg) == -ENODEV)) GOTO(out, rc = lustre_msg_get_status(req->rq_repmsg)); /** VBR: check version failure */ if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) { /** replay was failed due to version mismatch */ DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n"); spin_lock(&imp->imp_lock); imp->imp_vbr_failed = 1; imp->imp_no_lock_replay = 1; spin_unlock(&imp->imp_lock); lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status); } else { /** The transno had better not change over replay. */ LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) == lustre_msg_get_transno(req->rq_repmsg) || lustre_msg_get_transno(req->rq_repmsg) == 0, LPX64"/"LPX64"\n", lustre_msg_get_transno(req->rq_reqmsg), lustre_msg_get_transno(req->rq_repmsg)); } spin_lock(&imp->imp_lock); /** if replays by version then gap occur on server, no trust to locks */ if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY) imp->imp_no_lock_replay = 1; imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg); spin_unlock(&imp->imp_lock); LASSERT(imp->imp_last_replay_transno); /* transaction number shouldn't be bigger than the latest replayed */ if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) { DEBUG_REQ(D_ERROR, req, "Reported transno "LPU64" is bigger than the " "replayed one: "LPU64, req->rq_transno, lustre_msg_get_transno(req->rq_reqmsg)); GOTO(out, rc = -EINVAL); } DEBUG_REQ(D_HA, req, "got rep"); /* let the callback do fixups, possibly including in the request */ if (req->rq_replay_cb) req->rq_replay_cb(req); if (ptlrpc_client_replied(req) && lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) { DEBUG_REQ(D_ERROR, req, "status %d, old was %d", lustre_msg_get_status(req->rq_repmsg), aa->praa_old_status); } else { /* Put it back for re-replay. */ lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status); } /* * Errors while replay can set transno to 0, but * imp_last_replay_transno shouldn't be set to 0 anyway */ if (req->rq_transno == 0) CERROR("Transno is 0 during replay!\n"); /* continue with recovery */ rc = ptlrpc_import_recovery_state_machine(imp); out: req->rq_send_state = aa->praa_old_state; if (rc != 0) /* this replay failed, so restart recovery */ ptlrpc_connect_import(imp); RETURN(rc); } /** * Prepares and queues request for replay. * Adds it to ptlrpcd queue for actual sending. * Returns 0 on success. */ int ptlrpc_replay_req(struct ptlrpc_request *req) { struct ptlrpc_replay_async_args *aa; ENTRY; LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY); LASSERT (sizeof (*aa) <= sizeof (req->rq_async_args)); aa = ptlrpc_req_async_args(req); memset(aa, 0, sizeof *aa); /* Prepare request to be resent with ptlrpcd */ aa->praa_old_state = req->rq_send_state; req->rq_send_state = LUSTRE_IMP_REPLAY; req->rq_phase = RQ_PHASE_NEW; req->rq_next_phase = RQ_PHASE_UNDEFINED; if (req->rq_repmsg) aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg); req->rq_status = 0; req->rq_interpret_reply = ptlrpc_replay_interpret; /* Readjust the timeout for current conditions */ ptlrpc_at_set_req_timeout(req); /* Tell server the net_latency, so the server can calculate how long * it should wait for next replay */ lustre_msg_set_service_time(req->rq_reqmsg, ptlrpc_at_get_net_latency(req)); DEBUG_REQ(D_HA, req, "REPLAY"); atomic_inc(&req->rq_import->imp_replay_inflight); ptlrpc_request_addref(req); /* ptlrpcd needs a ref */ ptlrpcd_add_req(req, PDL_POLICY_LOCAL, -1); RETURN(0); } EXPORT_SYMBOL(ptlrpc_replay_req); /** * Aborts all in-flight request on import \a imp sending and delayed lists */ void ptlrpc_abort_inflight(struct obd_import *imp) { struct list_head *tmp, *n; ENTRY; /* Make sure that no new requests get processed for this import. * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing * this flag and then putting requests on sending_list or delayed_list. */ spin_lock(&imp->imp_lock); /* XXX locking? Maybe we should remove each request with the list * locked? Also, how do we know if the requests on the list are * being freed at this time? */ list_for_each_safe(tmp, n, &imp->imp_sending_list) { struct ptlrpc_request *req = list_entry(tmp, struct ptlrpc_request, rq_list); DEBUG_REQ(D_RPCTRACE, req, "inflight"); spin_lock(&req->rq_lock); if (req->rq_import_generation < imp->imp_generation) { req->rq_err = 1; req->rq_status = -EIO; ptlrpc_client_wake_req(req); } spin_unlock(&req->rq_lock); } list_for_each_safe(tmp, n, &imp->imp_delayed_list) { struct ptlrpc_request *req = list_entry(tmp, struct ptlrpc_request, rq_list); DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req"); spin_lock(&req->rq_lock); if (req->rq_import_generation < imp->imp_generation) { req->rq_err = 1; req->rq_status = -EIO; ptlrpc_client_wake_req(req); } spin_unlock(&req->rq_lock); } /* Last chance to free reqs left on the replay list, but we * will still leak reqs that haven't committed. */ if (imp->imp_replayable) ptlrpc_free_committed(imp); spin_unlock(&imp->imp_lock); EXIT; } EXPORT_SYMBOL(ptlrpc_abort_inflight); /** * Abort all uncompleted requests in request set \a set */ void ptlrpc_abort_set(struct ptlrpc_request_set *set) { struct list_head *tmp, *pos; LASSERT(set != NULL); list_for_each_safe(pos, tmp, &set->set_requests) { struct ptlrpc_request *req = list_entry(pos, struct ptlrpc_request, rq_set_chain); spin_lock(&req->rq_lock); if (req->rq_phase != RQ_PHASE_RPC) { spin_unlock(&req->rq_lock); continue; } req->rq_err = 1; req->rq_status = -EINTR; ptlrpc_client_wake_req(req); spin_unlock(&req->rq_lock); } } static __u64 ptlrpc_last_xid; static spinlock_t ptlrpc_last_xid_lock; /** * Initialize the XID for the node. This is common among all requests on * this node, and only requires the property that it is monotonically * increasing. It does not need to be sequential. Since this is also used * as the RDMA match bits, it is important that a single client NOT have * the same match bits for two different in-flight requests, hence we do * NOT want to have an XID per target or similar. * * To avoid an unlikely collision between match bits after a client reboot * (which would deliver old data into the wrong RDMA buffer) initialize * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s. * If the time is clearly incorrect, we instead use a 62-bit random number. * In the worst case the random number will overflow 1M RPCs per second in * 9133 years, or permutations thereof. */ #define YEAR_2004 (1ULL << 30) void ptlrpc_init_xid(void) { time_t now = cfs_time_current_sec(); spin_lock_init(&ptlrpc_last_xid_lock); if (now < YEAR_2004) { cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid)); ptlrpc_last_xid >>= 2; ptlrpc_last_xid |= (1ULL << 61); } else { ptlrpc_last_xid = (__u64)now << 20; } /* Need to always be aligned to a power-of-two for mutli-bulk BRW */ CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0); ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK; } /** * Increase xid and returns resulting new value to the caller. * * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC * itself uses the last bulk xid needed, so the server can determine the * the number of bulk transfers from the RPC XID and a bitmask. The starting * xid must align to a power-of-two value. * * This is assumed to be true due to the initial ptlrpc_last_xid * value also being initialized to a power-of-two value. LU-1431 */ __u64 ptlrpc_next_xid(void) { __u64 next; spin_lock(&ptlrpc_last_xid_lock); next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT; ptlrpc_last_xid = next; spin_unlock(&ptlrpc_last_xid_lock); return next; } EXPORT_SYMBOL(ptlrpc_next_xid); /** * Get a glimpse at what next xid value might have been. * Returns possible next xid. */ __u64 ptlrpc_sample_next_xid(void) { #if BITS_PER_LONG == 32 /* need to avoid possible word tearing on 32-bit systems */ __u64 next; spin_lock(&ptlrpc_last_xid_lock); next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT; spin_unlock(&ptlrpc_last_xid_lock); return next; #else /* No need to lock, since returned value is racy anyways */ return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT; #endif } EXPORT_SYMBOL(ptlrpc_sample_next_xid); /** * Functions for operating ptlrpc workers. * * A ptlrpc work is a function which will be running inside ptlrpc context. * The callback shouldn't sleep otherwise it will block that ptlrpcd thread. * * 1. after a work is created, it can be used many times, that is: * handler = ptlrpcd_alloc_work(); * ptlrpcd_queue_work(); * * queue it again when necessary: * ptlrpcd_queue_work(); * ptlrpcd_destroy_work(); * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but * it will only be queued once in any time. Also as its name implies, it may * have delay before it really runs by ptlrpcd thread. */ struct ptlrpc_work_async_args { int (*cb)(const struct lu_env *, void *); void *cbdata; }; static void ptlrpcd_add_work_req(struct ptlrpc_request *req) { /* re-initialize the req */ req->rq_timeout = obd_timeout; req->rq_sent = cfs_time_current_sec(); req->rq_deadline = req->rq_sent + req->rq_timeout; req->rq_reply_deadline = req->rq_deadline; req->rq_phase = RQ_PHASE_INTERPRET; req->rq_next_phase = RQ_PHASE_COMPLETE; req->rq_xid = ptlrpc_next_xid(); req->rq_import_generation = req->rq_import->imp_generation; ptlrpcd_add_req(req, PDL_POLICY_ROUND, -1); } static int work_interpreter(const struct lu_env *env, struct ptlrpc_request *req, void *data, int rc) { struct ptlrpc_work_async_args *arg = data; LASSERT(ptlrpcd_check_work(req)); LASSERT(arg->cb != NULL); rc = arg->cb(env, arg->cbdata); list_del_init(&req->rq_set_chain); req->rq_set = NULL; if (atomic_dec_return(&req->rq_refcount) > 1) { atomic_set(&req->rq_refcount, 2); ptlrpcd_add_work_req(req); } return rc; } static int worker_format; static int ptlrpcd_check_work(struct ptlrpc_request *req) { return req->rq_pill.rc_fmt == (void *)&worker_format; } /** * Create a work for ptlrpc. */ void *ptlrpcd_alloc_work(struct obd_import *imp, int (*cb)(const struct lu_env *, void *), void *cbdata) { struct ptlrpc_request *req = NULL; struct ptlrpc_work_async_args *args; ENTRY; might_sleep(); if (cb == NULL) RETURN(ERR_PTR(-EINVAL)); /* copy some code from deprecated fakereq. */ req = ptlrpc_request_cache_alloc(GFP_NOFS); if (req == NULL) { CERROR("ptlrpc: run out of memory!\n"); RETURN(ERR_PTR(-ENOMEM)); } ptlrpc_cli_req_init(req); req->rq_send_state = LUSTRE_IMP_FULL; req->rq_type = PTL_RPC_MSG_REQUEST; req->rq_import = class_import_get(imp); req->rq_interpret_reply = work_interpreter; /* don't want reply */ req->rq_no_delay = req->rq_no_resend = 1; req->rq_pill.rc_fmt = (void *)&worker_format; CLASSERT (sizeof(*args) <= sizeof(req->rq_async_args)); args = ptlrpc_req_async_args(req); args->cb = cb; args->cbdata = cbdata; RETURN(req); } EXPORT_SYMBOL(ptlrpcd_alloc_work); void ptlrpcd_destroy_work(void *handler) { struct ptlrpc_request *req = handler; if (req) ptlrpc_req_finished(req); } EXPORT_SYMBOL(ptlrpcd_destroy_work); int ptlrpcd_queue_work(void *handler) { struct ptlrpc_request *req = handler; /* * Check if the req is already being queued. * * Here comes a trick: it lacks a way of checking if a req is being * processed reliably in ptlrpc. Here I have to use refcount of req * for this purpose. This is okay because the caller should use this * req as opaque data. - Jinshan */ LASSERT(atomic_read(&req->rq_refcount) > 0); if (atomic_inc_return(&req->rq_refcount) == 2) ptlrpcd_add_work_req(req); return 0; } EXPORT_SYMBOL(ptlrpcd_queue_work);