/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012, 2013, Intel Corporation. * Use is subject to license terms. * */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/osd-zfs/osd_handler.c * Top-level entry points into osd module * * Author: Alex Zhuravlev * Author: Mike Pershin * Author: Johann Lombardi */ #ifndef EXPORT_SYMTAB # define EXPORT_SYMTAB #endif #define DEBUG_SUBSYSTEM S_OSD #include #include #include #include #include #include #include #include #include "osd_internal.h" #include #include #include #include #include #include #include #include #include #include #include #include struct lu_context_key osd_key; static char *root_tag = "osd_mount, rootdb"; /* Slab for OSD object allocation */ cfs_mem_cache_t *osd_object_kmem; static struct lu_kmem_descr osd_caches[] = { { .ckd_cache = &osd_object_kmem, .ckd_name = "zfs_osd_obj", .ckd_size = sizeof(struct osd_object) }, { .ckd_cache = NULL } }; static void arc_prune_func(int64_t bytes, void *private) { struct osd_device *od = private; struct lu_site *site = &od->od_site; struct lu_env env; int rc; rc = lu_env_init(&env, LCT_SHRINKER); if (rc) { CERROR("%s: can't initialize shrinker env: rc = %d\n", od->od_svname, rc); return; } lu_site_purge(&env, site, (bytes >> 10)); lu_env_fini(&env); } /* * Concurrency: doesn't access mutable data */ static int osd_root_get(const struct lu_env *env, struct dt_device *dev, struct lu_fid *f) { lu_local_obj_fid(f, OSD_FS_ROOT_OID); return 0; } /* * OSD object methods. */ /* * Concurrency: shouldn't matter. */ static void osd_trans_commit_cb(void *cb_data, int error) { struct osd_thandle *oh = cb_data; struct thandle *th = &oh->ot_super; struct osd_device *osd = osd_dt_dev(th->th_dev); struct lu_device *lud = &th->th_dev->dd_lu_dev; struct dt_txn_commit_cb *dcb, *tmp; ENTRY; if (error) { if (error == ECANCELED) CWARN("%s: transaction @0x%p was aborted\n", osd_dt_dev(th->th_dev)->od_svname, th); else CERROR("%s: transaction @0x%p commit error: rc = %d\n", osd_dt_dev(th->th_dev)->od_svname, th, error); } dt_txn_hook_commit(th); /* call per-transaction callbacks if any */ cfs_list_for_each_entry_safe(dcb, tmp, &oh->ot_dcb_list, dcb_linkage) dcb->dcb_func(NULL, th, dcb, error); /* Unlike ldiskfs, zfs updates space accounting at commit time. * As a consequence, op_end is called only now to inform the quota slave * component that reserved quota space is now accounted in usage and * should be released. Quota space won't be adjusted at this point since * we can't provide a suitable environment. It will be performed * asynchronously by a lquota thread. */ qsd_op_end(NULL, osd->od_quota_slave, &oh->ot_quota_trans); lu_device_put(lud); th->th_dev = NULL; lu_context_exit(&th->th_ctx); lu_context_fini(&th->th_ctx); OBD_FREE_PTR(oh); EXIT; } static int osd_trans_cb_add(struct thandle *th, struct dt_txn_commit_cb *dcb) { struct osd_thandle *oh; oh = container_of0(th, struct osd_thandle, ot_super); cfs_list_add(&dcb->dcb_linkage, &oh->ot_dcb_list); return 0; } /* * Concurrency: shouldn't matter. */ static int osd_trans_start(const struct lu_env *env, struct dt_device *d, struct thandle *th) { struct osd_thandle *oh; int rc; ENTRY; oh = container_of0(th, struct osd_thandle, ot_super); LASSERT(oh); LASSERT(oh->ot_tx); rc = dt_txn_hook_start(env, d, th); if (rc != 0) RETURN(rc); if (oh->ot_write_commit && OBD_FAIL_CHECK(OBD_FAIL_OST_MAPBLK_ENOSPC)) /* Unlike ldiskfs, ZFS checks for available space and returns * -ENOSPC when assigning txg */ RETURN(-ENOSPC); rc = -dmu_tx_assign(oh->ot_tx, TXG_WAIT); if (unlikely(rc != 0)) { struct osd_device *osd = osd_dt_dev(d); /* dmu will call commit callback with error code during abort */ if (!lu_device_is_md(&d->dd_lu_dev) && rc == -ENOSPC) CERROR("%s: failed to start transaction due to ENOSPC. " "Metadata overhead is underestimated or " "grant_ratio is too low.\n", osd->od_svname); else CERROR("%s: can't assign tx: rc = %d\n", osd->od_svname, rc); } else { /* add commit callback */ dmu_tx_callback_register(oh->ot_tx, osd_trans_commit_cb, oh); oh->ot_assigned = 1; lu_context_init(&th->th_ctx, th->th_tags); lu_context_enter(&th->th_ctx); lu_device_get(&d->dd_lu_dev); } RETURN(rc); } /* * Concurrency: shouldn't matter. */ static int osd_trans_stop(const struct lu_env *env, struct thandle *th) { struct osd_device *osd = osd_dt_dev(th->th_dev); struct osd_thandle *oh; uint64_t txg; int rc; ENTRY; oh = container_of0(th, struct osd_thandle, ot_super); if (oh->ot_assigned == 0) { LASSERT(oh->ot_tx); dmu_tx_abort(oh->ot_tx); osd_object_sa_dirty_rele(oh); /* there won't be any commit, release reserved quota space now, * if any */ qsd_op_end(env, osd->od_quota_slave, &oh->ot_quota_trans); OBD_FREE_PTR(oh); RETURN(0); } /* When doing our own inode accounting, the ZAPs storing per-uid/gid * usage are updated at operation execution time, so we should call * qsd_op_end() straight away. Otherwise (for blk accounting maintained * by ZFS and when #inode is estimated from #blks) accounting is updated * at commit time and the call to qsd_op_end() must be delayed */ if (oh->ot_quota_trans.lqt_id_cnt > 0 && !oh->ot_quota_trans.lqt_ids[0].lqi_is_blk && !osd->od_quota_iused_est) qsd_op_end(env, osd->od_quota_slave, &oh->ot_quota_trans); rc = dt_txn_hook_stop(env, th); if (rc != 0) CDEBUG(D_OTHER, "%s: transaction hook failed: rc = %d\n", osd->od_svname, rc); LASSERT(oh->ot_tx); txg = oh->ot_tx->tx_txg; osd_object_sa_dirty_rele(oh); dmu_tx_commit(oh->ot_tx); if (th->th_sync) txg_wait_synced(dmu_objset_pool(osd->od_objset.os), txg); RETURN(rc); } static struct thandle *osd_trans_create(const struct lu_env *env, struct dt_device *dt) { struct osd_device *osd = osd_dt_dev(dt); struct osd_thandle *oh; struct thandle *th; dmu_tx_t *tx; ENTRY; tx = dmu_tx_create(osd->od_objset.os); if (tx == NULL) RETURN(ERR_PTR(-ENOMEM)); /* alloc callback data */ OBD_ALLOC_PTR(oh); if (oh == NULL) { dmu_tx_abort(tx); RETURN(ERR_PTR(-ENOMEM)); } oh->ot_tx = tx; CFS_INIT_LIST_HEAD(&oh->ot_dcb_list); CFS_INIT_LIST_HEAD(&oh->ot_sa_list); sema_init(&oh->ot_sa_lock, 1); memset(&oh->ot_quota_trans, 0, sizeof(oh->ot_quota_trans)); th = &oh->ot_super; th->th_dev = dt; th->th_result = 0; th->th_tags = LCT_TX_HANDLE; RETURN(th); } /* * Concurrency: shouldn't matter. */ int osd_statfs(const struct lu_env *env, struct dt_device *d, struct obd_statfs *osfs) { struct osd_device *osd = osd_dt_dev(d); int rc; ENTRY; rc = udmu_objset_statfs(&osd->od_objset, osfs); if (unlikely(rc)) RETURN(rc); osfs->os_bavail -= min_t(obd_size, OSD_GRANT_FOR_LOCAL_OIDS / osfs->os_bsize, osfs->os_bavail); RETURN(0); } /* * Concurrency: doesn't access mutable data. */ static void osd_conf_get(const struct lu_env *env, const struct dt_device *dev, struct dt_device_param *param) { /* * XXX should be taken from not-yet-existing fs abstraction layer. */ param->ddp_max_name_len = MAXNAMELEN; param->ddp_max_nlink = 1 << 31; /* it's 8byte on a disk */ param->ddp_block_shift = 12; /* XXX */ param->ddp_mount_type = LDD_MT_ZFS; param->ddp_mntopts = MNTOPT_USERXATTR | MNTOPT_ACL; param->ddp_max_ea_size = DXATTR_MAX_ENTRY_SIZE; /* for maxbytes, report same value as ZPL */ param->ddp_maxbytes = MAX_LFS_FILESIZE; /* Default reserved fraction of the available space that should be kept * for error margin. Unfortunately, there are many factors that can * impact the overhead with zfs, so let's be very cautious for now and * reserve 20% of the available space which is not given out as grant. * This tunable can be changed on a live system via procfs if needed. */ param->ddp_grant_reserved = 20; /* inodes are dynamically allocated, so we report the per-inode space * consumption to upper layers. This static value is not really accurate * and we should use the same logic as in udmu_objset_statfs() to * estimate the real size consumed by an object */ param->ddp_inodespace = OSD_DNODE_EST_COUNT; /* per-fragment overhead to be used by the client code */ param->ddp_grant_frag = udmu_blk_insert_cost(); param->ddp_mnt = NULL; } /* * Concurrency: shouldn't matter. */ static int osd_sync(const struct lu_env *env, struct dt_device *d) { struct osd_device *osd = osd_dt_dev(d); CDEBUG(D_HA, "syncing OSD %s\n", LUSTRE_OSD_ZFS_NAME); txg_wait_synced(dmu_objset_pool(osd->od_objset.os), 0ULL); return 0; } static int osd_commit_async(const struct lu_env *env, struct dt_device *dev) { struct osd_device *osd = osd_dt_dev(dev); tx_state_t *tx = &dmu_objset_pool(osd->od_objset.os)->dp_tx; uint64_t txg; mutex_enter(&tx->tx_sync_lock); txg = tx->tx_open_txg + 1; if (tx->tx_quiesce_txg_waiting < txg) { tx->tx_quiesce_txg_waiting = txg; cv_broadcast(&tx->tx_quiesce_more_cv); } mutex_exit(&tx->tx_sync_lock); return 0; } /* * Concurrency: shouldn't matter. */ static int osd_ro(const struct lu_env *env, struct dt_device *d) { struct osd_device *osd = osd_dt_dev(d); ENTRY; CERROR("%s: *** setting device %s read-only ***\n", osd->od_svname, LUSTRE_OSD_ZFS_NAME); osd->od_rdonly = 1; spa_freeze(dmu_objset_spa(osd->od_objset.os)); RETURN(0); } /* * Concurrency: serialization provided by callers. */ static int osd_init_capa_ctxt(const struct lu_env *env, struct dt_device *d, int mode, unsigned long timeout, __u32 alg, struct lustre_capa_key *keys) { struct osd_device *dev = osd_dt_dev(d); ENTRY; dev->od_fl_capa = mode; dev->od_capa_timeout = timeout; dev->od_capa_alg = alg; dev->od_capa_keys = keys; RETURN(0); } static struct dt_device_operations osd_dt_ops = { .dt_root_get = osd_root_get, .dt_statfs = osd_statfs, .dt_trans_create = osd_trans_create, .dt_trans_start = osd_trans_start, .dt_trans_stop = osd_trans_stop, .dt_trans_cb_add = osd_trans_cb_add, .dt_conf_get = osd_conf_get, .dt_sync = osd_sync, .dt_commit_async = osd_commit_async, .dt_ro = osd_ro, .dt_init_capa_ctxt = osd_init_capa_ctxt, }; /* * DMU OSD device type methods */ static int osd_type_init(struct lu_device_type *t) { LU_CONTEXT_KEY_INIT(&osd_key); return lu_context_key_register(&osd_key); } static void osd_type_fini(struct lu_device_type *t) { lu_context_key_degister(&osd_key); } static void *osd_key_init(const struct lu_context *ctx, struct lu_context_key *key) { struct osd_thread_info *info; OBD_ALLOC_PTR(info); if (info != NULL) info->oti_env = container_of(ctx, struct lu_env, le_ctx); else info = ERR_PTR(-ENOMEM); return info; } static void osd_key_fini(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct osd_thread_info *info = data; OBD_FREE_PTR(info); } static void osd_key_exit(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct osd_thread_info *info = data; memset(info, 0, sizeof(*info)); } struct lu_context_key osd_key = { .lct_tags = LCT_DT_THREAD | LCT_MD_THREAD | LCT_MG_THREAD | LCT_LOCAL, .lct_init = osd_key_init, .lct_fini = osd_key_fini, .lct_exit = osd_key_exit }; static int osd_shutdown(const struct lu_env *env, struct osd_device *o) { ENTRY; /* shutdown quota slave instance associated with the device */ if (o->od_quota_slave != NULL) { qsd_fini(env, o->od_quota_slave); o->od_quota_slave = NULL; } RETURN(0); } static void osd_xattr_changed_cb(void *arg, uint64_t newval) { struct osd_device *osd = arg; osd->od_xattr_in_sa = (newval == ZFS_XATTR_SA); } static int osd_mount(const struct lu_env *env, struct osd_device *o, struct lustre_cfg *cfg) { struct dsl_dataset *ds; char *dev = lustre_cfg_string(cfg, 1); dmu_buf_t *rootdb; int rc; ENTRY; if (o->od_objset.os != NULL) RETURN(0); if (strlen(dev) >= sizeof(o->od_mntdev)) RETURN(-E2BIG); strcpy(o->od_mntdev, dev); strncpy(o->od_svname, lustre_cfg_string(cfg, 4), sizeof(o->od_svname) - 1); rc = -udmu_objset_open(o->od_mntdev, &o->od_objset); if (rc) { CERROR("can't open objset %s: %d\n", o->od_mntdev, rc); RETURN(rc); } ds = dmu_objset_ds(o->od_objset.os); LASSERT(ds); rc = dsl_prop_register(ds, "xattr", osd_xattr_changed_cb, o); if (rc) CERROR("%s: cat not register xattr callback, ignore: %d\n", o->od_svname, rc); rc = __osd_obj2dbuf(env, o->od_objset.os, o->od_objset.root, &rootdb, root_tag); if (rc) { CERROR("udmu_obj2dbuf() failed with error %d\n", rc); udmu_objset_close(&o->od_objset); RETURN(rc); } o->od_root = rootdb->db_object; sa_buf_rele(rootdb, root_tag); /* 1. initialize oi before any file create or file open */ rc = osd_oi_init(env, o); if (rc) GOTO(err, rc); rc = lu_site_init(&o->od_site, osd2lu_dev(o)); if (rc) GOTO(err, rc); o->od_site.ls_bottom_dev = osd2lu_dev(o); rc = lu_site_init_finish(&o->od_site); if (rc) GOTO(err, rc); rc = osd_convert_root_to_new_seq(env, o); if (rc) GOTO(err, rc); /* Use our own ZAP for inode accounting by default, this can be changed * via procfs to estimate the inode usage from the block usage */ o->od_quota_iused_est = 0; rc = osd_procfs_init(o, o->od_svname); if (rc) GOTO(err, rc); o->arc_prune_cb = arc_add_prune_callback(arc_prune_func, o); /* initialize quota slave instance */ o->od_quota_slave = qsd_init(env, o->od_svname, &o->od_dt_dev, o->od_proc_entry); if (IS_ERR(o->od_quota_slave)) { rc = PTR_ERR(o->od_quota_slave); o->od_quota_slave = NULL; GOTO(err, rc); } err: RETURN(rc); } static void osd_umount(const struct lu_env *env, struct osd_device *o) { ENTRY; if (cfs_atomic_read(&o->od_zerocopy_alloc)) CERROR("%s: lost %d allocated page(s)\n", o->od_svname, cfs_atomic_read(&o->od_zerocopy_alloc)); if (cfs_atomic_read(&o->od_zerocopy_loan)) CERROR("%s: lost %d loaned abuf(s)\n", o->od_svname, cfs_atomic_read(&o->od_zerocopy_loan)); if (cfs_atomic_read(&o->od_zerocopy_pin)) CERROR("%s: lost %d pinned dbuf(s)\n", o->od_svname, cfs_atomic_read(&o->od_zerocopy_pin)); if (o->od_objset.os != NULL) udmu_objset_close(&o->od_objset); EXIT; } static int osd_device_init0(const struct lu_env *env, struct osd_device *o, struct lustre_cfg *cfg) { struct lu_device *l = osd2lu_dev(o); int rc; /* if the module was re-loaded, env can loose its keys */ rc = lu_env_refill((struct lu_env *) env); if (rc) GOTO(out, rc); l->ld_ops = &osd_lu_ops; o->od_dt_dev.dd_ops = &osd_dt_ops; o->od_capa_hash = init_capa_hash(); if (o->od_capa_hash == NULL) GOTO(out, rc = -ENOMEM); out: RETURN(rc); } static struct lu_device *osd_device_fini(const struct lu_env *env, struct lu_device *dev); static struct lu_device *osd_device_alloc(const struct lu_env *env, struct lu_device_type *type, struct lustre_cfg *cfg) { struct osd_device *dev; int rc; OBD_ALLOC_PTR(dev); if (dev == NULL) return ERR_PTR(-ENOMEM); rc = dt_device_init(&dev->od_dt_dev, type); if (rc == 0) { rc = osd_device_init0(env, dev, cfg); if (rc == 0) { rc = osd_mount(env, dev, cfg); if (rc) osd_device_fini(env, osd2lu_dev(dev)); } if (rc) dt_device_fini(&dev->od_dt_dev); } if (unlikely(rc != 0)) OBD_FREE_PTR(dev); return rc == 0 ? osd2lu_dev(dev) : ERR_PTR(rc); } static struct lu_device *osd_device_free(const struct lu_env *env, struct lu_device *d) { struct osd_device *o = osd_dev(d); ENTRY; cleanup_capa_hash(o->od_capa_hash); /* XXX: make osd top device in order to release reference */ d->ld_site->ls_top_dev = d; lu_site_purge(env, d->ld_site, -1); if (!cfs_hash_is_empty(d->ld_site->ls_obj_hash)) { LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, D_ERROR, NULL); lu_site_print(env, d->ld_site, &msgdata, lu_cdebug_printer); } lu_site_fini(&o->od_site); dt_device_fini(&o->od_dt_dev); OBD_FREE_PTR(o); RETURN (NULL); } static struct lu_device *osd_device_fini(const struct lu_env *env, struct lu_device *d) { struct osd_device *o = osd_dev(d); struct dsl_dataset *ds; int rc; ENTRY; osd_shutdown(env, o); osd_oi_fini(env, o); if (o->od_objset.os) { ds = dmu_objset_ds(o->od_objset.os); rc = dsl_prop_unregister(ds, "xattr", osd_xattr_changed_cb, o); if (rc) CERROR("%s: dsl_prop_unregister xattr error %d\n", o->od_svname, rc); arc_remove_prune_callback(o->arc_prune_cb); o->arc_prune_cb = NULL; osd_sync(env, lu2dt_dev(d)); txg_wait_callbacks(spa_get_dsl(dmu_objset_spa(o->od_objset.os))); } rc = osd_procfs_fini(o); if (rc) { CERROR("proc fini error %d\n", rc); RETURN(ERR_PTR(rc)); } if (o->od_objset.os) osd_umount(env, o); RETURN(NULL); } static int osd_device_init(const struct lu_env *env, struct lu_device *d, const char *name, struct lu_device *next) { return 0; } /* * To be removed, setup is performed by osd_device_{init,alloc} and * cleanup is performed by osd_device_{fini,free). */ static int osd_process_config(const struct lu_env *env, struct lu_device *d, struct lustre_cfg *cfg) { struct osd_device *o = osd_dev(d); int err; ENTRY; switch(cfg->lcfg_command) { case LCFG_SETUP: err = osd_mount(env, o, cfg); break; case LCFG_CLEANUP: err = osd_shutdown(env, o); break; default: err = -ENOTTY; } RETURN(err); } static int osd_recovery_complete(const struct lu_env *env, struct lu_device *d) { struct osd_device *osd = osd_dev(d); int rc = 0; ENTRY; if (osd->od_quota_slave == NULL) RETURN(0); /* start qsd instance on recovery completion, this notifies the quota * slave code that we are about to process new requests now */ rc = qsd_start(env, osd->od_quota_slave); RETURN(rc); } /* * we use exports to track all osd users */ static int osd_obd_connect(const struct lu_env *env, struct obd_export **exp, struct obd_device *obd, struct obd_uuid *cluuid, struct obd_connect_data *data, void *localdata) { struct osd_device *osd = osd_dev(obd->obd_lu_dev); struct lustre_handle conn; int rc; ENTRY; CDEBUG(D_CONFIG, "connect #%d\n", osd->od_connects); rc = class_connect(&conn, obd, cluuid); if (rc) RETURN(rc); *exp = class_conn2export(&conn); spin_lock(&osd->od_objset.lock); osd->od_connects++; spin_unlock(&osd->od_objset.lock); RETURN(0); } /* * once last export (we don't count self-export) disappeared * osd can be released */ static int osd_obd_disconnect(struct obd_export *exp) { struct obd_device *obd = exp->exp_obd; struct osd_device *osd = osd_dev(obd->obd_lu_dev); int rc, release = 0; ENTRY; /* Only disconnect the underlying layers on the final disconnect. */ spin_lock(&osd->od_objset.lock); osd->od_connects--; if (osd->od_connects == 0) release = 1; spin_unlock(&osd->od_objset.lock); rc = class_disconnect(exp); /* bz 9811 */ if (rc == 0 && release) class_manual_cleanup(obd); RETURN(rc); } static int osd_prepare(const struct lu_env *env, struct lu_device *pdev, struct lu_device *dev) { struct osd_device *osd = osd_dev(dev); int rc = 0; ENTRY; if (osd->od_quota_slave != NULL) /* set up quota slave objects */ rc = qsd_prepare(env, osd->od_quota_slave); RETURN(rc); } struct lu_device_operations osd_lu_ops = { .ldo_object_alloc = osd_object_alloc, .ldo_process_config = osd_process_config, .ldo_recovery_complete = osd_recovery_complete, .ldo_prepare = osd_prepare, }; static void osd_type_start(struct lu_device_type *t) { } static void osd_type_stop(struct lu_device_type *t) { } static struct lu_device_type_operations osd_device_type_ops = { .ldto_init = osd_type_init, .ldto_fini = osd_type_fini, .ldto_start = osd_type_start, .ldto_stop = osd_type_stop, .ldto_device_alloc = osd_device_alloc, .ldto_device_free = osd_device_free, .ldto_device_init = osd_device_init, .ldto_device_fini = osd_device_fini }; static struct lu_device_type osd_device_type = { .ldt_tags = LU_DEVICE_DT, .ldt_name = LUSTRE_OSD_ZFS_NAME, .ldt_ops = &osd_device_type_ops, .ldt_ctx_tags = LCT_LOCAL }; static struct obd_ops osd_obd_device_ops = { .o_owner = THIS_MODULE, .o_connect = osd_obd_connect, .o_disconnect = osd_obd_disconnect }; int __init osd_init(void) { int rc; rc = osd_options_init(); if (rc) return rc; rc = lu_kmem_init(osd_caches); if (rc) return rc; rc = class_register_type(&osd_obd_device_ops, NULL, lprocfs_osd_module_vars, LUSTRE_OSD_ZFS_NAME, &osd_device_type); if (rc) lu_kmem_fini(osd_caches); return rc; } void __exit osd_exit(void) { class_unregister_type(LUSTRE_OSD_ZFS_NAME); lu_kmem_fini(osd_caches); } extern unsigned int osd_oi_count; CFS_MODULE_PARM(osd_oi_count, "i", int, 0444, "Number of Object Index containers to be created, " "it's only valid for new filesystem."); MODULE_AUTHOR("Sun Microsystems, Inc. "); MODULE_DESCRIPTION("Lustre Object Storage Device ("LUSTRE_OSD_ZFS_NAME")"); MODULE_LICENSE("GPL"); cfs_module(osd, LUSTRE_VERSION_STRING, osd_init, osd_exit);