/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2012, 2015, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/osd-zfs/osd_handler.c * Top-level entry points into osd module * * Author: Alex Zhuravlev * Author: Mike Pershin * Author: Johann Lombardi */ #define DEBUG_SUBSYSTEM S_OSD #include #include #include #include #include #include #include #include #include #include #include "osd_internal.h" #include #include #include #include #include #include #include #include #include #include #include #include struct lu_context_key osd_key; /* Slab for OSD object allocation */ struct kmem_cache *osd_object_kmem; /* Slab to allocate osd_zap_it */ struct kmem_cache *osd_zapit_cachep; static struct lu_kmem_descr osd_caches[] = { { .ckd_cache = &osd_object_kmem, .ckd_name = "zfs_osd_obj", .ckd_size = sizeof(struct osd_object) }, { .ckd_cache = &osd_zapit_cachep, .ckd_name = "osd_zapit_cache", .ckd_size = sizeof(struct osd_zap_it) }, { .ckd_cache = NULL } }; static void arc_prune_func(int64_t bytes, void *private) { struct osd_device *od = private; struct lu_site *site = &od->od_site; struct lu_env env; int rc; rc = lu_env_init(&env, LCT_SHRINKER); if (rc) { CERROR("%s: can't initialize shrinker env: rc = %d\n", od->od_svname, rc); return; } lu_site_purge(&env, site, (bytes >> 10)); lu_env_fini(&env); } /* * Concurrency: doesn't access mutable data */ static int osd_root_get(const struct lu_env *env, struct dt_device *dev, struct lu_fid *f) { lu_local_obj_fid(f, OSD_FS_ROOT_OID); return 0; } /* * OSD object methods. */ /* * Concurrency: shouldn't matter. */ static void osd_trans_commit_cb(void *cb_data, int error) { struct osd_thandle *oh = cb_data; struct thandle *th = &oh->ot_super; struct osd_device *osd = osd_dt_dev(th->th_dev); struct lu_device *lud = &th->th_dev->dd_lu_dev; struct dt_txn_commit_cb *dcb, *tmp; ENTRY; if (error) { if (error == ECANCELED) CWARN("%s: transaction @0x%p was aborted\n", osd_dt_dev(th->th_dev)->od_svname, th); else CERROR("%s: transaction @0x%p commit error: rc = %d\n", osd_dt_dev(th->th_dev)->od_svname, th, error); } dt_txn_hook_commit(th); /* call per-transaction callbacks if any */ list_for_each_entry_safe(dcb, tmp, &oh->ot_dcb_list, dcb_linkage) dcb->dcb_func(NULL, th, dcb, error); /* Unlike ldiskfs, zfs updates space accounting at commit time. * As a consequence, op_end is called only now to inform the quota slave * component that reserved quota space is now accounted in usage and * should be released. Quota space won't be adjusted at this point since * we can't provide a suitable environment. It will be performed * asynchronously by a lquota thread. */ qsd_op_end(NULL, osd->od_quota_slave, &oh->ot_quota_trans); lu_device_put(lud); th->th_dev = NULL; lu_context_exit(&th->th_ctx); lu_context_fini(&th->th_ctx); OBD_FREE_PTR(oh); EXIT; } static int osd_trans_cb_add(struct thandle *th, struct dt_txn_commit_cb *dcb) { struct osd_thandle *oh = container_of0(th, struct osd_thandle, ot_super); LASSERT(dcb->dcb_magic == TRANS_COMMIT_CB_MAGIC); LASSERT(&dcb->dcb_func != NULL); if (dcb->dcb_flags & DCB_TRANS_STOP) list_add(&dcb->dcb_linkage, &oh->ot_stop_dcb_list); else list_add(&dcb->dcb_linkage, &oh->ot_dcb_list); return 0; } /* * Concurrency: shouldn't matter. */ static int osd_trans_start(const struct lu_env *env, struct dt_device *d, struct thandle *th) { struct osd_thandle *oh; int rc; ENTRY; oh = container_of0(th, struct osd_thandle, ot_super); LASSERT(oh); LASSERT(oh->ot_tx); rc = dt_txn_hook_start(env, d, th); if (rc != 0) RETURN(rc); if (oh->ot_write_commit && OBD_FAIL_CHECK(OBD_FAIL_OST_MAPBLK_ENOSPC)) /* Unlike ldiskfs, ZFS checks for available space and returns * -ENOSPC when assigning txg */ RETURN(-ENOSPC); rc = -dmu_tx_assign(oh->ot_tx, TXG_WAIT); if (unlikely(rc != 0)) { struct osd_device *osd = osd_dt_dev(d); /* dmu will call commit callback with error code during abort */ if (!lu_device_is_md(&d->dd_lu_dev) && rc == -ENOSPC) CERROR("%s: failed to start transaction due to ENOSPC" "\n", osd->od_svname); else CERROR("%s: can't assign tx: rc = %d\n", osd->od_svname, rc); } else { /* add commit callback */ dmu_tx_callback_register(oh->ot_tx, osd_trans_commit_cb, oh); oh->ot_assigned = 1; lu_context_init(&th->th_ctx, th->th_tags); lu_context_enter(&th->th_ctx); lu_device_get(&d->dd_lu_dev); } RETURN(rc); } static int osd_unlinked_object_free(struct osd_device *osd, uint64_t oid); static void osd_unlinked_list_emptify(struct osd_device *osd, struct list_head *list, bool free) { struct osd_object *obj; uint64_t oid; while (!list_empty(list)) { obj = list_entry(list->next, struct osd_object, oo_unlinked_linkage); LASSERT(obj->oo_db != NULL); oid = obj->oo_db->db_object; list_del_init(&obj->oo_unlinked_linkage); if (free) (void)osd_unlinked_object_free(osd, oid); } } static void osd_trans_stop_cb(struct osd_thandle *oth, int result) { struct dt_txn_commit_cb *dcb; struct dt_txn_commit_cb *tmp; /* call per-transaction stop callbacks if any */ list_for_each_entry_safe(dcb, tmp, &oth->ot_stop_dcb_list, dcb_linkage) { LASSERTF(dcb->dcb_magic == TRANS_COMMIT_CB_MAGIC, "commit callback entry: magic=%x name='%s'\n", dcb->dcb_magic, dcb->dcb_name); list_del_init(&dcb->dcb_linkage); dcb->dcb_func(NULL, &oth->ot_super, dcb, result); } } /* * Concurrency: shouldn't matter. */ static int osd_trans_stop(const struct lu_env *env, struct dt_device *dt, struct thandle *th) { struct osd_device *osd = osd_dt_dev(th->th_dev); bool sync = (th->th_sync != 0); struct osd_thandle *oh; struct list_head unlinked; uint64_t txg; int rc; ENTRY; oh = container_of0(th, struct osd_thandle, ot_super); INIT_LIST_HEAD(&unlinked); list_splice_init(&oh->ot_unlinked_list, &unlinked); if (oh->ot_assigned == 0) { LASSERT(oh->ot_tx); dmu_tx_abort(oh->ot_tx); osd_object_sa_dirty_rele(oh); osd_unlinked_list_emptify(osd, &unlinked, false); /* there won't be any commit, release reserved quota space now, * if any */ qsd_op_end(env, osd->od_quota_slave, &oh->ot_quota_trans); OBD_FREE_PTR(oh); RETURN(0); } /* When doing our own inode accounting, the ZAPs storing per-uid/gid * usage are updated at operation execution time, so we should call * qsd_op_end() straight away. Otherwise (for blk accounting maintained * by ZFS and when #inode is estimated from #blks) accounting is updated * at commit time and the call to qsd_op_end() must be delayed */ if (oh->ot_quota_trans.lqt_id_cnt > 0 && !oh->ot_quota_trans.lqt_ids[0].lqi_is_blk && !osd->od_quota_iused_est) qsd_op_end(env, osd->od_quota_slave, &oh->ot_quota_trans); rc = dt_txn_hook_stop(env, th); if (rc != 0) CDEBUG(D_OTHER, "%s: transaction hook failed: rc = %d\n", osd->od_svname, rc); osd_trans_stop_cb(oh, rc); LASSERT(oh->ot_tx); txg = oh->ot_tx->tx_txg; osd_object_sa_dirty_rele(oh); /* XXX: Once dmu_tx_commit() called, oh/th could have been freed * by osd_trans_commit_cb already. */ dmu_tx_commit(oh->ot_tx); osd_unlinked_list_emptify(osd, &unlinked, true); if (sync) txg_wait_synced(dmu_objset_pool(osd->od_os), txg); RETURN(rc); } static struct thandle *osd_trans_create(const struct lu_env *env, struct dt_device *dt) { struct osd_device *osd = osd_dt_dev(dt); struct osd_thandle *oh; struct thandle *th; dmu_tx_t *tx; ENTRY; tx = dmu_tx_create(osd->od_os); if (tx == NULL) RETURN(ERR_PTR(-ENOMEM)); /* alloc callback data */ OBD_ALLOC_PTR(oh); if (oh == NULL) { dmu_tx_abort(tx); RETURN(ERR_PTR(-ENOMEM)); } oh->ot_tx = tx; INIT_LIST_HEAD(&oh->ot_dcb_list); INIT_LIST_HEAD(&oh->ot_stop_dcb_list); INIT_LIST_HEAD(&oh->ot_unlinked_list); INIT_LIST_HEAD(&oh->ot_sa_list); sema_init(&oh->ot_sa_lock, 1); memset(&oh->ot_quota_trans, 0, sizeof(oh->ot_quota_trans)); th = &oh->ot_super; th->th_dev = dt; th->th_result = 0; th->th_tags = LCT_TX_HANDLE; RETURN(th); } /* Estimate the number of objects from a number of blocks */ uint64_t osd_objs_count_estimate(uint64_t refdbytes, uint64_t usedobjs, uint64_t nrblocks, uint64_t est_maxblockshift) { uint64_t est_objs, est_refdblocks, est_usedobjs; /* Compute an nrblocks estimate based on the actual number of * dnodes that could fit in the space. Since we don't know the * overhead associated with each dnode (xattrs, SAs, VDEV overhead, * etc) just using DNODE_SHIFT isn't going to give a good estimate. * Instead, compute an estimate based on the average space usage per * dnode, with an upper and lower cap. * * In case there aren't many dnodes or blocks used yet, add a small * correction factor using OSD_DNODE_EST_SHIFT. This correction * factor gradually disappears as the number of real dnodes grows. * This also avoids the need to check for divide-by-zero later. */ CLASSERT(OSD_DNODE_MIN_BLKSHIFT > 0); CLASSERT(OSD_DNODE_EST_BLKSHIFT > 0); est_refdblocks = (refdbytes >> est_maxblockshift) + (OSD_DNODE_EST_COUNT >> OSD_DNODE_EST_BLKSHIFT); est_usedobjs = usedobjs + OSD_DNODE_EST_COUNT; /* Average space/dnode more than maximum dnode size, use max dnode * size to estimate free dnodes from adjusted free blocks count. * OSTs typically use more than one block dnode so this case applies. */ if (est_usedobjs <= est_refdblocks * 2) { est_objs = nrblocks; /* Average space/dnode smaller than min dnode size (probably due to * metadnode compression), use min dnode size to estimate the number of * objects. * An MDT typically uses below 512 bytes/dnode so this case applies. */ } else if (est_usedobjs >= (est_refdblocks << OSD_DNODE_MIN_BLKSHIFT)) { est_objs = nrblocks << OSD_DNODE_MIN_BLKSHIFT; /* Between the extremes, we try to use the average size of * existing dnodes to compute the number of dnodes that fit * into nrblocks: * * est_objs = nrblocks * (est_usedobjs / est_refblocks); * * but this may overflow 64 bits or become 0 if not handled well * * We know nrblocks is below (64 - 17 = 47) bits from * SPA_MAXBLKSHIFT, and est_usedobjs is under 48 bits due to * DN_MAX_OBJECT_SHIFT, which means that multiplying them may * get as large as 2 ^ 95. * * We also know (est_usedobjs / est_refdblocks) is between 2 and * 256, due to above checks, we can safely compute this first. * We care more about accuracy on the MDT (many dnodes/block) * which is good because this is where truncation errors are * smallest. This adds 8 bits to nrblocks so we can use 7 bits * to compute a fixed-point fraction and nrblocks can still fit * in 64 bits. */ } else { unsigned dnodes_per_block = (est_usedobjs << 7)/est_refdblocks; est_objs = (nrblocks * dnodes_per_block) >> 7; } return est_objs; } static int osd_objset_statfs(struct osd_device *osd, struct obd_statfs *osfs) { struct objset *os = osd->od_os; uint64_t refdbytes, availbytes, usedobjs, availobjs; uint64_t est_availobjs; uint64_t reserved; uint64_t bshift; dmu_objset_space(os, &refdbytes, &availbytes, &usedobjs, &availobjs); memset(osfs, 0, sizeof(*osfs)); /* We're a zfs filesystem. */ osfs->os_type = UBERBLOCK_MAGIC; /* * ZFS allows multiple block sizes. For statfs, Linux makes no * proper distinction between bsize and frsize. For calculations * of free and used blocks incorrectly uses bsize instead of frsize, * but bsize is also used as the optimal blocksize. We return the * largest possible block size as IO size for the optimum performance * and scale the free and used blocks count appropriately. */ osfs->os_bsize = osd->od_max_blksz; bshift = fls64(osfs->os_bsize) - 1; osfs->os_blocks = (refdbytes + availbytes) >> bshift; osfs->os_bfree = availbytes >> bshift; osfs->os_bavail = osfs->os_bfree; /* no extra root reservation */ /* Take replication (i.e. number of copies) into account */ osfs->os_bavail /= os->os_copies; /* * Reserve some space so we don't run into ENOSPC due to grants not * accounting for metadata overhead in ZFS, and to avoid fragmentation. * Rather than report this via os_bavail (which makes users unhappy if * they can't fill the filesystem 100%), reduce os_blocks as well. * * Reserve 0.78% of total space, at least 16MB for small filesystems, * for internal files to be created/unlinked when space is tight. */ CLASSERT(OSD_STATFS_RESERVED_SIZE > 0); reserved = OSD_STATFS_RESERVED_SIZE >> bshift; if (likely(osfs->os_blocks >= reserved << OSD_STATFS_RESERVED_SHIFT)) reserved = osfs->os_blocks >> OSD_STATFS_RESERVED_SHIFT; osfs->os_blocks -= reserved; osfs->os_bfree -= min(reserved, osfs->os_bfree); osfs->os_bavail -= min(reserved, osfs->os_bavail); /* * The availobjs value returned from dmu_objset_space() is largely * useless, since it reports the number of objects that might * theoretically still fit into the dataset, independent of minor * issues like how much space is actually available in the pool. * Compute a better estimate in udmu_objs_count_estimate(). */ est_availobjs = osd_objs_count_estimate(refdbytes, usedobjs, osfs->os_bfree, bshift); osfs->os_ffree = min(availobjs, est_availobjs); osfs->os_files = osfs->os_ffree + usedobjs; /* ZFS XXX: fill in backing dataset FSID/UUID memcpy(osfs->os_fsid, .... );*/ osfs->os_namelen = MAXNAMELEN; osfs->os_maxbytes = OBD_OBJECT_EOF; if (!spa_writeable(dmu_objset_spa(os)) || osd->od_dev_set_rdonly || osd->od_prop_rdonly) osfs->os_state |= OS_STATE_READONLY; return 0; } /* * Concurrency: shouldn't matter. */ int osd_statfs(const struct lu_env *env, struct dt_device *d, struct obd_statfs *osfs) { int rc; ENTRY; rc = osd_objset_statfs(osd_dt_dev(d), osfs); if (unlikely(rc != 0)) RETURN(rc); osfs->os_bavail -= min_t(u64, OSD_GRANT_FOR_LOCAL_OIDS / osfs->os_bsize, osfs->os_bavail); RETURN(0); } static int osd_blk_insert_cost(struct osd_device *osd) { int max_blockshift, nr_blkptrshift, bshift; /* max_blockshift is the log2 of the number of blocks needed to reach * the maximum filesize (that's to say 2^64) */ bshift = osd_spa_maxblockshift(dmu_objset_spa(osd->od_os)); max_blockshift = DN_MAX_OFFSET_SHIFT - bshift; /* nr_blkptrshift is the log2 of the number of block pointers that can * be stored in an indirect block */ CLASSERT(DN_MAX_INDBLKSHIFT > SPA_BLKPTRSHIFT); nr_blkptrshift = DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT; /* max_blockshift / nr_blkptrshift is thus the maximum depth of the * tree. We add +1 for rounding purpose. * The tree depth times the indirect block size gives us the maximum * cost of inserting a block in the tree */ return (max_blockshift / nr_blkptrshift + 1) * (1<ddp_max_name_len = MAXNAMELEN; param->ddp_max_nlink = 1 << 31; /* it's 8byte on a disk */ param->ddp_symlink_max = PATH_MAX; param->ddp_mount_type = LDD_MT_ZFS; param->ddp_mntopts = MNTOPT_USERXATTR; if (osd->od_posix_acl) param->ddp_mntopts |= MNTOPT_ACL; param->ddp_max_ea_size = DXATTR_MAX_ENTRY_SIZE; /* for maxbytes, report same value as ZPL */ param->ddp_maxbytes = MAX_LFS_FILESIZE; /* inodes are dynamically allocated, so we report the per-inode space * consumption to upper layers. This static value is not really accurate * and we should use the same logic as in udmu_objset_statfs() to * estimate the real size consumed by an object */ param->ddp_inodespace = OSD_DNODE_EST_COUNT; /* Although ZFS isn't an extent-based filesystem, the metadata overhead * (i.e. 7 levels of indirect blocks, see osd_blk_insert_cost()) should * not be accounted for every single new block insertion. * Instead, the maximum extent size is set to the number of blocks that * can fit into a single contiguous indirect block. There would be some * cases where this crosses indirect blocks, but it also won't have 7 * new levels of indirect blocks in that case either, so it will still * have enough reserved space for the extra indirect block */ param->ddp_max_extent_blks = (1 << (DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)); param->ddp_extent_tax = osd_blk_insert_cost(osd); } /* * Concurrency: shouldn't matter. */ static int osd_sync(const struct lu_env *env, struct dt_device *d) { struct osd_device *osd = osd_dt_dev(d); CDEBUG(D_CACHE, "syncing OSD %s\n", LUSTRE_OSD_ZFS_NAME); txg_wait_synced(dmu_objset_pool(osd->od_os), 0ULL); CDEBUG(D_CACHE, "synced OSD %s\n", LUSTRE_OSD_ZFS_NAME); return 0; } static int osd_commit_async(const struct lu_env *env, struct dt_device *dev) { struct osd_device *osd = osd_dt_dev(dev); tx_state_t *tx = &dmu_objset_pool(osd->od_os)->dp_tx; uint64_t txg; mutex_enter(&tx->tx_sync_lock); txg = tx->tx_open_txg + 1; if (tx->tx_quiesce_txg_waiting < txg) { tx->tx_quiesce_txg_waiting = txg; cv_broadcast(&tx->tx_quiesce_more_cv); } mutex_exit(&tx->tx_sync_lock); return 0; } /* * Concurrency: shouldn't matter. */ static int osd_ro(const struct lu_env *env, struct dt_device *d) { struct osd_device *osd = osd_dt_dev(d); ENTRY; CERROR("%s: *** setting device %s read-only ***\n", osd->od_svname, LUSTRE_OSD_ZFS_NAME); osd->od_dev_set_rdonly = 1; spa_freeze(dmu_objset_spa(osd->od_os)); RETURN(0); } static struct dt_device_operations osd_dt_ops = { .dt_root_get = osd_root_get, .dt_statfs = osd_statfs, .dt_trans_create = osd_trans_create, .dt_trans_start = osd_trans_start, .dt_trans_stop = osd_trans_stop, .dt_trans_cb_add = osd_trans_cb_add, .dt_conf_get = osd_conf_get, .dt_sync = osd_sync, .dt_commit_async = osd_commit_async, .dt_ro = osd_ro, }; /* * DMU OSD device type methods */ static int osd_type_init(struct lu_device_type *t) { LU_CONTEXT_KEY_INIT(&osd_key); return lu_context_key_register(&osd_key); } static void osd_type_fini(struct lu_device_type *t) { lu_context_key_degister(&osd_key); } static void *osd_key_init(const struct lu_context *ctx, struct lu_context_key *key) { struct osd_thread_info *info; OBD_ALLOC_PTR(info); if (info != NULL) info->oti_env = container_of(ctx, struct lu_env, le_ctx); else info = ERR_PTR(-ENOMEM); return info; } static void osd_key_fini(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct osd_thread_info *info = data; OBD_FREE_PTR(info); } static void osd_key_exit(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct osd_thread_info *info = data; memset(info, 0, sizeof(*info)); } struct lu_context_key osd_key = { .lct_tags = LCT_DT_THREAD | LCT_MD_THREAD | LCT_MG_THREAD | LCT_LOCAL, .lct_init = osd_key_init, .lct_fini = osd_key_fini, .lct_exit = osd_key_exit }; static void osd_fid_fini(const struct lu_env *env, struct osd_device *osd) { if (osd->od_cl_seq == NULL) return; seq_client_fini(osd->od_cl_seq); OBD_FREE_PTR(osd->od_cl_seq); osd->od_cl_seq = NULL; } static int osd_shutdown(const struct lu_env *env, struct osd_device *o) { ENTRY; /* shutdown quota slave instance associated with the device */ if (o->od_quota_slave != NULL) { qsd_fini(env, o->od_quota_slave); o->od_quota_slave = NULL; } osd_fid_fini(env, o); RETURN(0); } static void osd_xattr_changed_cb(void *arg, uint64_t newval) { struct osd_device *osd = arg; osd->od_xattr_in_sa = (newval == ZFS_XATTR_SA); } static void osd_recordsize_changed_cb(void *arg, uint64_t newval) { struct osd_device *osd = arg; LASSERT(newval <= osd_spa_maxblocksize(dmu_objset_spa(osd->od_os))); LASSERT(newval >= SPA_MINBLOCKSIZE); LASSERT(ISP2(newval)); osd->od_max_blksz = newval; } static void osd_readonly_changed_cb(void *arg, uint64_t newval) { struct osd_device *osd = arg; osd->od_prop_rdonly = !!newval; } /* * This function unregisters all registered callbacks. It's harmless to * unregister callbacks that were never registered so it is used to safely * unwind a partially completed call to osd_objset_register_callbacks(). */ static void osd_objset_unregister_callbacks(struct osd_device *o) { struct dsl_dataset *ds = dmu_objset_ds(o->od_os); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR), osd_xattr_changed_cb, o); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), osd_recordsize_changed_cb, o); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY), osd_readonly_changed_cb, o); if (o->arc_prune_cb != NULL) { arc_remove_prune_callback(o->arc_prune_cb); o->arc_prune_cb = NULL; } } /* * Register the required callbacks to be notified when zfs properties * are modified using the 'zfs(8)' command line utility. */ static int osd_objset_register_callbacks(struct osd_device *o) { struct dsl_dataset *ds = dmu_objset_ds(o->od_os); dsl_pool_t *dp = dmu_objset_pool(o->od_os); int rc; LASSERT(ds); LASSERT(dp); dsl_pool_config_enter(dp, FTAG); rc = -dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_XATTR), osd_xattr_changed_cb, o); if (rc) GOTO(err, rc); rc = -dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), osd_recordsize_changed_cb, o); if (rc) GOTO(err, rc); rc = -dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_READONLY), osd_readonly_changed_cb, o); if (rc) GOTO(err, rc); o->arc_prune_cb = arc_add_prune_callback(arc_prune_func, o); err: dsl_pool_config_exit(dp, FTAG); if (rc) osd_objset_unregister_callbacks(o); RETURN(rc); } static int osd_objset_open(struct osd_device *o) { uint64_t version = ZPL_VERSION; uint64_t sa_obj; int rc; ENTRY; rc = -dmu_objset_own(o->od_mntdev, DMU_OST_ZFS, B_FALSE, o, &o->od_os); if (rc) { o->od_os = NULL; goto out; } /* Check ZFS version */ rc = -zap_lookup(o->od_os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &version); if (rc) { CERROR("%s: Error looking up ZPL VERSION\n", o->od_mntdev); /* * We can't return ENOENT because that would mean the objset * didn't exist. */ GOTO(out, rc = -EIO); } rc = -zap_lookup(o->od_os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (rc) GOTO(out, rc); rc = -sa_setup(o->od_os, sa_obj, zfs_attr_table, ZPL_END, &o->z_attr_table); if (rc) GOTO(out, rc); rc = -zap_lookup(o->od_os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &o->od_rootid); if (rc) { CERROR("%s: lookup for root failed: rc = %d\n", o->od_svname, rc); GOTO(out, rc); } rc = -zap_lookup(o->od_os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, &o->od_unlinkedid); if (rc) { CERROR("%s: lookup for %s failed: rc = %d\n", o->od_svname, ZFS_UNLINKED_SET, rc); GOTO(out, rc); } /* Check that user/group usage tracking is supported */ if (!dmu_objset_userused_enabled(o->od_os) || DMU_USERUSED_DNODE(o->od_os)->dn_type != DMU_OT_USERGROUP_USED || DMU_GROUPUSED_DNODE(o->od_os)->dn_type != DMU_OT_USERGROUP_USED) { CERROR("%s: Space accounting not supported by this target, " "aborting\n", o->od_svname); GOTO(out, -ENOTSUPP); } out: if (rc != 0 && o->od_os != NULL) { dmu_objset_disown(o->od_os, o); o->od_os = NULL; } RETURN(rc); } static int osd_unlinked_object_free(struct osd_device *osd, uint64_t oid) { int rc; dmu_tx_t *tx; rc = -dmu_free_long_range(osd->od_os, oid, 0, DMU_OBJECT_END); if (rc != 0) { CWARN("%s: Cannot truncate "LPU64": rc = %d\n", osd->od_svname, oid, rc); return rc; } tx = dmu_tx_create(osd->od_os); dmu_tx_hold_free(tx, oid, 0, DMU_OBJECT_END); dmu_tx_hold_zap(tx, osd->od_unlinkedid, FALSE, NULL); rc = -dmu_tx_assign(tx, TXG_WAIT); if (rc != 0) { CWARN("%s: Cannot assign tx for "LPU64": rc = %d\n", osd->od_svname, oid, rc); goto failed; } rc = -zap_remove_int(osd->od_os, osd->od_unlinkedid, oid, tx); if (rc != 0) { CWARN("%s: Cannot remove "LPU64" from unlinked set: rc = %d\n", osd->od_svname, oid, rc); goto failed; } rc = -dmu_object_free(osd->od_os, oid, tx); if (rc != 0) { CWARN("%s: Cannot free "LPU64": rc = %d\n", osd->od_svname, oid, rc); goto failed; } dmu_tx_commit(tx); return 0; failed: LASSERT(rc != 0); dmu_tx_abort(tx); return rc; } static void osd_unlinked_drain(const struct lu_env *env, struct osd_device *osd) { zap_cursor_t zc; zap_attribute_t *za = &osd_oti_get(env)->oti_za; zap_cursor_init(&zc, osd->od_os, osd->od_unlinkedid); while (zap_cursor_retrieve(&zc, za) == 0) { /* If cannot free the object, leave it in the unlinked set, * until the OSD is mounted again when obd_unlinked_drain() * will be called. */ if (osd_unlinked_object_free(osd, za->za_first_integer) != 0) break; zap_cursor_advance(&zc); } zap_cursor_fini(&zc); } static int osd_mount(const struct lu_env *env, struct osd_device *o, struct lustre_cfg *cfg) { char *mntdev = lustre_cfg_string(cfg, 1); char *svname = lustre_cfg_string(cfg, 4); dmu_buf_t *rootdb; const char *opts; int rc; ENTRY; if (o->od_os != NULL) RETURN(0); if (mntdev == NULL || svname == NULL) RETURN(-EINVAL); rc = strlcpy(o->od_mntdev, mntdev, sizeof(o->od_mntdev)); if (rc >= sizeof(o->od_mntdev)) RETURN(-E2BIG); rc = strlcpy(o->od_svname, svname, sizeof(o->od_svname)); if (rc >= sizeof(o->od_svname)) RETURN(-E2BIG); if (server_name_is_ost(o->od_svname)) o->od_is_ost = 1; rc = osd_objset_open(o); if (rc) GOTO(err, rc); o->od_xattr_in_sa = B_TRUE; o->od_max_blksz = SPA_OLD_MAXBLOCKSIZE; rc = osd_objset_register_callbacks(o); if (rc) GOTO(err, rc); rc = __osd_obj2dbuf(env, o->od_os, o->od_rootid, &rootdb); if (rc) GOTO(err, rc); o->od_root = rootdb->db_object; sa_buf_rele(rootdb, osd_obj_tag); /* 1. initialize oi before any file create or file open */ rc = osd_oi_init(env, o); if (rc) GOTO(err, rc); rc = lu_site_init(&o->od_site, osd2lu_dev(o)); if (rc) GOTO(err, rc); o->od_site.ls_bottom_dev = osd2lu_dev(o); rc = lu_site_init_finish(&o->od_site); if (rc) GOTO(err, rc); /* Use our own ZAP for inode accounting by default, this can be changed * via procfs to estimate the inode usage from the block usage */ o->od_quota_iused_est = 0; rc = osd_procfs_init(o, o->od_svname); if (rc) GOTO(err, rc); /* initialize quota slave instance */ o->od_quota_slave = qsd_init(env, o->od_svname, &o->od_dt_dev, o->od_proc_entry); if (IS_ERR(o->od_quota_slave)) { rc = PTR_ERR(o->od_quota_slave); o->od_quota_slave = NULL; GOTO(err, rc); } /* parse mount option "noacl", and enable ACL by default */ opts = lustre_cfg_string(cfg, 3); if (opts == NULL || strstr(opts, "noacl") == NULL) o->od_posix_acl = 1; osd_unlinked_drain(env, o); err: if (rc) { if (o->od_os) dmu_objset_disown(o->od_os, o); o->od_os = NULL; } RETURN(rc); } static void osd_umount(const struct lu_env *env, struct osd_device *o) { ENTRY; if (atomic_read(&o->od_zerocopy_alloc)) CERROR("%s: lost %d allocated page(s)\n", o->od_svname, atomic_read(&o->od_zerocopy_alloc)); if (atomic_read(&o->od_zerocopy_loan)) CERROR("%s: lost %d loaned abuf(s)\n", o->od_svname, atomic_read(&o->od_zerocopy_loan)); if (atomic_read(&o->od_zerocopy_pin)) CERROR("%s: lost %d pinned dbuf(s)\n", o->od_svname, atomic_read(&o->od_zerocopy_pin)); if (o->od_os != NULL) { /* force a txg sync to get all commit callbacks */ txg_wait_synced(dmu_objset_pool(o->od_os), 0ULL); /* close the object set */ dmu_objset_disown(o->od_os, o); o->od_os = NULL; } EXIT; } static int osd_device_init0(const struct lu_env *env, struct osd_device *o, struct lustre_cfg *cfg) { struct lu_device *l = osd2lu_dev(o); int rc; /* if the module was re-loaded, env can loose its keys */ rc = lu_env_refill((struct lu_env *) env); if (rc) GOTO(out, rc); l->ld_ops = &osd_lu_ops; o->od_dt_dev.dd_ops = &osd_dt_ops; out: RETURN(rc); } static struct lu_device *osd_device_fini(const struct lu_env *env, struct lu_device *dev); static struct lu_device *osd_device_alloc(const struct lu_env *env, struct lu_device_type *type, struct lustre_cfg *cfg) { struct osd_device *dev; struct osd_seq_list *osl; int rc; OBD_ALLOC_PTR(dev); if (dev == NULL) return ERR_PTR(-ENOMEM); osl = &dev->od_seq_list; INIT_LIST_HEAD(&osl->osl_seq_list); rwlock_init(&osl->osl_seq_list_lock); sema_init(&osl->osl_seq_init_sem, 1); rc = dt_device_init(&dev->od_dt_dev, type); if (rc == 0) { rc = osd_device_init0(env, dev, cfg); if (rc == 0) { rc = osd_mount(env, dev, cfg); if (rc) osd_device_fini(env, osd2lu_dev(dev)); } if (rc) dt_device_fini(&dev->od_dt_dev); } if (unlikely(rc != 0)) OBD_FREE_PTR(dev); return rc == 0 ? osd2lu_dev(dev) : ERR_PTR(rc); } static struct lu_device *osd_device_free(const struct lu_env *env, struct lu_device *d) { struct osd_device *o = osd_dev(d); ENTRY; /* XXX: make osd top device in order to release reference */ d->ld_site->ls_top_dev = d; lu_site_purge(env, d->ld_site, -1); if (!cfs_hash_is_empty(d->ld_site->ls_obj_hash)) { LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, D_ERROR, NULL); lu_site_print(env, d->ld_site, &msgdata, lu_cdebug_printer); } lu_site_fini(&o->od_site); dt_device_fini(&o->od_dt_dev); OBD_FREE_PTR(o); RETURN (NULL); } static struct lu_device *osd_device_fini(const struct lu_env *env, struct lu_device *d) { struct osd_device *o = osd_dev(d); int rc; ENTRY; osd_shutdown(env, o); osd_oi_fini(env, o); if (o->od_os) { osd_objset_unregister_callbacks(o); osd_sync(env, lu2dt_dev(d)); txg_wait_callbacks(spa_get_dsl(dmu_objset_spa(o->od_os))); } rc = osd_procfs_fini(o); if (rc) { CERROR("proc fini error %d\n", rc); RETURN(ERR_PTR(rc)); } if (o->od_os) osd_umount(env, o); RETURN(NULL); } static int osd_device_init(const struct lu_env *env, struct lu_device *d, const char *name, struct lu_device *next) { return 0; } /* * To be removed, setup is performed by osd_device_{init,alloc} and * cleanup is performed by osd_device_{fini,free). */ static int osd_process_config(const struct lu_env *env, struct lu_device *d, struct lustre_cfg *cfg) { struct osd_device *o = osd_dev(d); int rc; ENTRY; switch(cfg->lcfg_command) { case LCFG_SETUP: rc = osd_mount(env, o, cfg); break; case LCFG_CLEANUP: rc = osd_shutdown(env, o); break; case LCFG_PARAM: { LASSERT(&o->od_dt_dev); rc = class_process_proc_param(PARAM_OSD, lprocfs_osd_obd_vars, cfg, &o->od_dt_dev); if (rc > 0 || rc == -ENOSYS) rc = class_process_proc_param(PARAM_OST, lprocfs_osd_obd_vars, cfg, &o->od_dt_dev); break; } default: rc = -ENOTTY; } RETURN(rc); } static int osd_recovery_complete(const struct lu_env *env, struct lu_device *d) { struct osd_device *osd = osd_dev(d); int rc = 0; ENTRY; if (osd->od_quota_slave == NULL) RETURN(0); /* start qsd instance on recovery completion, this notifies the quota * slave code that we are about to process new requests now */ rc = qsd_start(env, osd->od_quota_slave); RETURN(rc); } /* * we use exports to track all osd users */ static int osd_obd_connect(const struct lu_env *env, struct obd_export **exp, struct obd_device *obd, struct obd_uuid *cluuid, struct obd_connect_data *data, void *localdata) { struct osd_device *osd = osd_dev(obd->obd_lu_dev); struct lustre_handle conn; int rc; ENTRY; CDEBUG(D_CONFIG, "connect #%d\n", osd->od_connects); rc = class_connect(&conn, obd, cluuid); if (rc) RETURN(rc); *exp = class_conn2export(&conn); spin_lock(&obd->obd_dev_lock); osd->od_connects++; spin_unlock(&obd->obd_dev_lock); RETURN(0); } /* * once last export (we don't count self-export) disappeared * osd can be released */ static int osd_obd_disconnect(struct obd_export *exp) { struct obd_device *obd = exp->exp_obd; struct osd_device *osd = osd_dev(obd->obd_lu_dev); int rc, release = 0; ENTRY; /* Only disconnect the underlying layers on the final disconnect. */ spin_lock(&obd->obd_dev_lock); osd->od_connects--; if (osd->od_connects == 0) release = 1; spin_unlock(&obd->obd_dev_lock); rc = class_disconnect(exp); /* bz 9811 */ if (rc == 0 && release) class_manual_cleanup(obd); RETURN(rc); } static int osd_fid_init(const struct lu_env *env, struct osd_device *osd) { struct seq_server_site *ss = osd_seq_site(osd); int rc; ENTRY; if (osd->od_is_ost || osd->od_cl_seq != NULL) RETURN(0); if (unlikely(ss == NULL)) RETURN(-ENODEV); OBD_ALLOC_PTR(osd->od_cl_seq); if (osd->od_cl_seq == NULL) RETURN(-ENOMEM); rc = seq_client_init(osd->od_cl_seq, NULL, LUSTRE_SEQ_METADATA, osd->od_svname, ss->ss_server_seq); if (rc != 0) { OBD_FREE_PTR(osd->od_cl_seq); osd->od_cl_seq = NULL; } RETURN(rc); } static int osd_prepare(const struct lu_env *env, struct lu_device *pdev, struct lu_device *dev) { struct osd_device *osd = osd_dev(dev); int rc = 0; ENTRY; if (osd->od_quota_slave != NULL) { /* set up quota slave objects */ rc = qsd_prepare(env, osd->od_quota_slave); if (rc != 0) RETURN(rc); } rc = osd_fid_init(env, osd); RETURN(rc); } struct lu_device_operations osd_lu_ops = { .ldo_object_alloc = osd_object_alloc, .ldo_process_config = osd_process_config, .ldo_recovery_complete = osd_recovery_complete, .ldo_prepare = osd_prepare, }; static void osd_type_start(struct lu_device_type *t) { } static void osd_type_stop(struct lu_device_type *t) { } int osd_fid_alloc(const struct lu_env *env, struct obd_export *exp, struct lu_fid *fid, struct md_op_data *op_data) { struct osd_device *osd = osd_dev(exp->exp_obd->obd_lu_dev); return seq_client_alloc_fid(env, osd->od_cl_seq, fid); } static struct lu_device_type_operations osd_device_type_ops = { .ldto_init = osd_type_init, .ldto_fini = osd_type_fini, .ldto_start = osd_type_start, .ldto_stop = osd_type_stop, .ldto_device_alloc = osd_device_alloc, .ldto_device_free = osd_device_free, .ldto_device_init = osd_device_init, .ldto_device_fini = osd_device_fini }; static struct lu_device_type osd_device_type = { .ldt_tags = LU_DEVICE_DT, .ldt_name = LUSTRE_OSD_ZFS_NAME, .ldt_ops = &osd_device_type_ops, .ldt_ctx_tags = LCT_LOCAL }; static struct obd_ops osd_obd_device_ops = { .o_owner = THIS_MODULE, .o_connect = osd_obd_connect, .o_disconnect = osd_obd_disconnect, .o_fid_alloc = osd_fid_alloc }; static int __init osd_init(void) { int rc; rc = osd_options_init(); if (rc) return rc; rc = lu_kmem_init(osd_caches); if (rc) return rc; rc = class_register_type(&osd_obd_device_ops, NULL, true, NULL, LUSTRE_OSD_ZFS_NAME, &osd_device_type); if (rc) lu_kmem_fini(osd_caches); return rc; } static void __exit osd_exit(void) { class_unregister_type(LUSTRE_OSD_ZFS_NAME); lu_kmem_fini(osd_caches); } extern unsigned int osd_oi_count; module_param(osd_oi_count, int, 0444); MODULE_PARM_DESC(osd_oi_count, "Number of Object Index containers to be created, it's only valid for new filesystem."); MODULE_AUTHOR("OpenSFS, Inc. "); MODULE_DESCRIPTION("Lustre Object Storage Device ("LUSTRE_OSD_ZFS_NAME")"); MODULE_VERSION(LUSTRE_VERSION_STRING); MODULE_LICENSE("GPL"); module_init(osd_init); module_exit(osd_exit);