/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2012, 2013, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/osd/osd_io.c * * body operations * * Author: Nikita Danilov * Author: Alex Zhuravlev * */ /* LUSTRE_VERSION_CODE */ #include /* prerequisite for linux/xattr.h */ #include /* prerequisite for linux/xattr.h */ #include /* * struct OBD_{ALLOC,FREE}*() * OBD_FAIL_CHECK */ #include #include "osd_internal.h" /* ext_depth() */ #include #ifndef HAVE_PAGE_CONSTANT #define mapping_cap_page_constant_write(mapping) 0 #define SetPageConstant(page) do {} while (0) #define ClearPageConstant(page) do {} while (0) #endif static int __osd_init_iobuf(struct osd_device *d, struct osd_iobuf *iobuf, int rw, int line, int pages) { int blocks, i; LASSERTF(iobuf->dr_elapsed_valid == 0, "iobuf %p, reqs %d, rw %d, line %d\n", iobuf, cfs_atomic_read(&iobuf->dr_numreqs), iobuf->dr_rw, iobuf->dr_init_at); LASSERT(pages <= PTLRPC_MAX_BRW_PAGES); cfs_waitq_init(&iobuf->dr_wait); cfs_atomic_set(&iobuf->dr_numreqs, 0); iobuf->dr_npages = 0; iobuf->dr_error = 0; iobuf->dr_dev = d; iobuf->dr_frags = 0; iobuf->dr_elapsed = 0; /* must be counted before, so assert */ iobuf->dr_rw = rw; iobuf->dr_init_at = line; blocks = pages * (PAGE_CACHE_SIZE >> osd_sb(d)->s_blocksize_bits); if (iobuf->dr_bl_buf.lb_len >= blocks * sizeof(iobuf->dr_blocks[0])) { LASSERT(iobuf->dr_pg_buf.lb_len >= pages * sizeof(iobuf->dr_pages[0])); return 0; } /* start with 1MB for 4K blocks */ i = 256; while (i <= PTLRPC_MAX_BRW_PAGES && i < pages) i <<= 1; CDEBUG(D_OTHER, "realloc %u for %u (%u) pages\n", (unsigned)(pages * sizeof(iobuf->dr_pages[0])), i, pages); pages = i; blocks = pages * (PAGE_CACHE_SIZE >> osd_sb(d)->s_blocksize_bits); iobuf->dr_max_pages = 0; CDEBUG(D_OTHER, "realloc %u for %u blocks\n", (unsigned)(blocks * sizeof(iobuf->dr_blocks[0])), blocks); lu_buf_realloc(&iobuf->dr_bl_buf, blocks * sizeof(iobuf->dr_blocks[0])); iobuf->dr_blocks = iobuf->dr_bl_buf.lb_buf; if (unlikely(iobuf->dr_blocks == NULL)) return -ENOMEM; lu_buf_realloc(&iobuf->dr_pg_buf, pages * sizeof(iobuf->dr_pages[0])); iobuf->dr_pages = iobuf->dr_pg_buf.lb_buf; if (unlikely(iobuf->dr_pages == NULL)) return -ENOMEM; iobuf->dr_max_pages = pages; return 0; } #define osd_init_iobuf(dev, iobuf, rw, pages) \ __osd_init_iobuf(dev, iobuf, rw, __LINE__, pages) static void osd_iobuf_add_page(struct osd_iobuf *iobuf, struct page *page) { LASSERT(iobuf->dr_npages < iobuf->dr_max_pages); iobuf->dr_pages[iobuf->dr_npages++] = page; } void osd_fini_iobuf(struct osd_device *d, struct osd_iobuf *iobuf) { int rw = iobuf->dr_rw; if (iobuf->dr_elapsed_valid) { iobuf->dr_elapsed_valid = 0; LASSERT(iobuf->dr_dev == d); LASSERT(iobuf->dr_frags > 0); lprocfs_oh_tally(&d->od_brw_stats. hist[BRW_R_DIO_FRAGS+rw], iobuf->dr_frags); lprocfs_oh_tally_log2(&d->od_brw_stats.hist[BRW_R_IO_TIME+rw], iobuf->dr_elapsed); } } #ifndef REQ_WRITE /* pre-2.6.35 */ #define __REQ_WRITE BIO_RW #endif #ifdef HAVE_BIO_ENDIO_2ARG #define DIO_RETURN(a) static void dio_complete_routine(struct bio *bio, int error) #else #define DIO_RETURN(a) return(a) static int dio_complete_routine(struct bio *bio, unsigned int done, int error) #endif { struct osd_iobuf *iobuf = bio->bi_private; struct bio_vec *bvl; int i; /* CAVEAT EMPTOR: possibly in IRQ context * DO NOT record procfs stats here!!! */ if (unlikely(iobuf == NULL)) { CERROR("***** bio->bi_private is NULL! This should never " "happen. Normally, I would crash here, but instead I " "will dump the bio contents to the console. Please " "report this to , along " "with any interesting messages leading up to this point " "(like SCSI errors, perhaps). Because bi_private is " "NULL, I can't wake up the thread that initiated this " "IO - you will probably have to reboot this node.\n"); CERROR("bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d, " "bi_idx: %d, bi->size: %d, bi_end_io: %p, bi_cnt: %d, " "bi_private: %p\n", bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt, bio->bi_idx, bio->bi_size, bio->bi_end_io, cfs_atomic_read(&bio->bi_cnt), bio->bi_private); DIO_RETURN(0); } /* the check is outside of the cycle for performance reason -bzzz */ if (!test_bit(__REQ_WRITE, &bio->bi_rw)) { bio_for_each_segment(bvl, bio, i) { if (likely(error == 0)) SetPageUptodate(bvl->bv_page); LASSERT(PageLocked(bvl->bv_page)); ClearPageConstant(bvl->bv_page); } cfs_atomic_dec(&iobuf->dr_dev->od_r_in_flight); } else { struct page *p = iobuf->dr_pages[0]; if (p->mapping) { if (mapping_cap_page_constant_write(p->mapping)) { bio_for_each_segment(bvl, bio, i) { ClearPageConstant(bvl->bv_page); } } } cfs_atomic_dec(&iobuf->dr_dev->od_w_in_flight); } /* any real error is good enough -bzzz */ if (error != 0 && iobuf->dr_error == 0) iobuf->dr_error = error; /* * set dr_elapsed before dr_numreqs turns to 0, otherwise * it's possible that service thread will see dr_numreqs * is zero, but dr_elapsed is not set yet, leading to lost * data in this processing and an assertion in a subsequent * call to OSD. */ if (cfs_atomic_read(&iobuf->dr_numreqs) == 1) { iobuf->dr_elapsed = jiffies - iobuf->dr_start_time; iobuf->dr_elapsed_valid = 1; } if (cfs_atomic_dec_and_test(&iobuf->dr_numreqs)) cfs_waitq_signal(&iobuf->dr_wait); /* Completed bios used to be chained off iobuf->dr_bios and freed in * filter_clear_dreq(). It was then possible to exhaust the biovec-256 * mempool when serious on-disk fragmentation was encountered, * deadlocking the OST. The bios are now released as soon as complete * so the pool cannot be exhausted while IOs are competing. bug 10076 */ bio_put(bio); DIO_RETURN(0); } static void record_start_io(struct osd_iobuf *iobuf, int size) { struct osd_device *osd = iobuf->dr_dev; struct obd_histogram *h = osd->od_brw_stats.hist; iobuf->dr_frags++; cfs_atomic_inc(&iobuf->dr_numreqs); if (iobuf->dr_rw == 0) { cfs_atomic_inc(&osd->od_r_in_flight); lprocfs_oh_tally(&h[BRW_R_RPC_HIST], cfs_atomic_read(&osd->od_r_in_flight)); lprocfs_oh_tally_log2(&h[BRW_R_DISK_IOSIZE], size); } else if (iobuf->dr_rw == 1) { cfs_atomic_inc(&osd->od_w_in_flight); lprocfs_oh_tally(&h[BRW_W_RPC_HIST], cfs_atomic_read(&osd->od_w_in_flight)); lprocfs_oh_tally_log2(&h[BRW_W_DISK_IOSIZE], size); } else { LBUG(); } } static void osd_submit_bio(int rw, struct bio *bio) { LASSERTF(rw == 0 || rw == 1, "%x\n", rw); if (rw == 0) submit_bio(READ, bio); else submit_bio(WRITE, bio); } static int can_be_merged(struct bio *bio, sector_t sector) { unsigned int size; if (!bio) return 0; size = bio->bi_size >> 9; return bio->bi_sector + size == sector ? 1 : 0; } static int osd_do_bio(struct osd_device *osd, struct inode *inode, struct osd_iobuf *iobuf) { int blocks_per_page = PAGE_CACHE_SIZE >> inode->i_blkbits; struct page **pages = iobuf->dr_pages; int npages = iobuf->dr_npages; unsigned long *blocks = iobuf->dr_blocks; int total_blocks = npages * blocks_per_page; int sector_bits = inode->i_sb->s_blocksize_bits - 9; unsigned int blocksize = inode->i_sb->s_blocksize; struct bio *bio = NULL; struct page *page; unsigned int page_offset; sector_t sector; int nblocks; int block_idx; int page_idx; int i; int rc = 0; ENTRY; LASSERT(iobuf->dr_npages == npages); osd_brw_stats_update(osd, iobuf); iobuf->dr_start_time = cfs_time_current(); for (page_idx = 0, block_idx = 0; page_idx < npages; page_idx++, block_idx += blocks_per_page) { page = pages[page_idx]; LASSERT(block_idx + blocks_per_page <= total_blocks); for (i = 0, page_offset = 0; i < blocks_per_page; i += nblocks, page_offset += blocksize * nblocks) { nblocks = 1; if (blocks[block_idx + i] == 0) { /* hole */ LASSERTF(iobuf->dr_rw == 0, "page_idx %u, block_idx %u, i %u\n", page_idx, block_idx, i); memset(kmap(page) + page_offset, 0, blocksize); kunmap(page); continue; } sector = (sector_t)blocks[block_idx + i] << sector_bits; /* Additional contiguous file blocks? */ while (i + nblocks < blocks_per_page && (sector + (nblocks << sector_bits)) == ((sector_t)blocks[block_idx + i + nblocks] << sector_bits)) nblocks++; /* I only set the page to be constant only if it * is mapped to a contiguous underlying disk block(s). * It will then make sure the corresponding device * cache of raid5 will be overwritten by this page. * - jay */ if (iobuf->dr_rw && (nblocks == blocks_per_page) && mapping_cap_page_constant_write(inode->i_mapping)) SetPageConstant(page); if (bio != NULL && can_be_merged(bio, sector) && bio_add_page(bio, page, blocksize * nblocks, page_offset) != 0) continue; /* added this frag OK */ if (bio != NULL) { struct request_queue *q = bdev_get_queue(bio->bi_bdev); /* Dang! I have to fragment this I/O */ CDEBUG(D_INODE, "bio++ sz %d vcnt %d(%d) " "sectors %d(%d) psg %d(%d) hsg %d(%d)\n", bio->bi_size, bio->bi_vcnt, bio->bi_max_vecs, bio->bi_size >> 9, queue_max_sectors(q), bio_phys_segments(q, bio), queue_max_phys_segments(q), bio_hw_segments(q, bio), queue_max_hw_segments(q)); record_start_io(iobuf, bio->bi_size); osd_submit_bio(iobuf->dr_rw, bio); } /* allocate new bio */ bio = bio_alloc(GFP_NOIO, min(BIO_MAX_PAGES, (npages - page_idx) * blocks_per_page)); if (bio == NULL) { CERROR("Can't allocate bio %u*%u = %u pages\n", (npages - page_idx), blocks_per_page, (npages - page_idx) * blocks_per_page); rc = -ENOMEM; goto out; } bio->bi_bdev = inode->i_sb->s_bdev; bio->bi_sector = sector; bio->bi_rw = (iobuf->dr_rw == 0) ? READ : WRITE; bio->bi_end_io = dio_complete_routine; bio->bi_private = iobuf; rc = bio_add_page(bio, page, blocksize * nblocks, page_offset); LASSERT(rc != 0); } } if (bio != NULL) { record_start_io(iobuf, bio->bi_size); osd_submit_bio(iobuf->dr_rw, bio); rc = 0; } out: /* in order to achieve better IO throughput, we don't wait for writes * completion here. instead we proceed with transaction commit in * parallel and wait for IO completion once transaction is stopped * see osd_trans_stop() for more details -bzzz */ if (iobuf->dr_rw == 0) { cfs_wait_event(iobuf->dr_wait, cfs_atomic_read(&iobuf->dr_numreqs) == 0); } if (rc == 0) rc = iobuf->dr_error; RETURN(rc); } static int osd_map_remote_to_local(loff_t offset, ssize_t len, int *nrpages, struct niobuf_local *lnb) { ENTRY; *nrpages = 0; while (len > 0) { int poff = offset & (PAGE_CACHE_SIZE - 1); int plen = PAGE_CACHE_SIZE - poff; if (plen > len) plen = len; lnb->lnb_file_offset = offset; lnb->lnb_page_offset = poff; lnb->len = plen; /* lb->flags = rnb->flags; */ lnb->flags = 0; lnb->page = NULL; lnb->rc = 0; LASSERTF(plen <= len, "plen %u, len %lld\n", plen, (long long) len); offset += plen; len -= plen; lnb++; (*nrpages)++; } RETURN(0); } struct page *osd_get_page(struct dt_object *dt, loff_t offset, int rw) { struct inode *inode = osd_dt_obj(dt)->oo_inode; struct osd_device *d = osd_obj2dev(osd_dt_obj(dt)); struct page *page; LASSERT(inode); page = find_or_create_page(inode->i_mapping, offset >> PAGE_CACHE_SHIFT, GFP_NOFS | __GFP_HIGHMEM); if (unlikely(page == NULL)) lprocfs_counter_add(d->od_stats, LPROC_OSD_NO_PAGE, 1); return page; } /* * there are following "locks": * journal_start * i_mutex * page lock * osd write path * lock page(s) * journal_start * truncate_sem * ext4 vmtruncate: * lock pages, unlock * journal_start * lock partial page * i_data_sem */ int osd_bufs_get(const struct lu_env *env, struct dt_object *d, loff_t pos, ssize_t len, struct niobuf_local *lnb, int rw, struct lustre_capa *capa) { struct osd_object *obj = osd_dt_obj(d); int npages, i, rc = 0; LASSERT(obj->oo_inode); osd_map_remote_to_local(pos, len, &npages, lnb); for (i = 0; i < npages; i++, lnb++) { /* We still set up for ungranted pages so that granted pages * can be written to disk as they were promised, and portals * needs to keep the pages all aligned properly. */ lnb->dentry = (void *) obj; lnb->page = osd_get_page(d, lnb->lnb_file_offset, rw); if (lnb->page == NULL) GOTO(cleanup, rc = -ENOMEM); /* DLM locking protects us from write and truncate competing * for same region, but truncate can leave dirty page in the * cache. it's possible the writeout on a such a page is in * progress when we access it. it's also possible that during * this writeout we put new (partial) data, but then won't * be able to proceed in filter_commitrw_write(). thus let's * just wait for writeout completion, should be rare enough. * -bzzz */ wait_on_page_writeback(lnb->page); BUG_ON(PageWriteback(lnb->page)); lu_object_get(&d->do_lu); } rc = i; cleanup: RETURN(rc); } static int osd_bufs_put(const struct lu_env *env, struct dt_object *dt, struct niobuf_local *lnb, int npages) { struct osd_thread_info *oti = osd_oti_get(env); struct osd_iobuf *iobuf = &oti->oti_iobuf; struct osd_device *d = osd_obj2dev(osd_dt_obj(dt)); int i; /* to do IO stats, notice we do this here because * osd_do_bio() doesn't wait for write to complete */ osd_fini_iobuf(d, iobuf); for (i = 0; i < npages; i++) { if (lnb[i].page == NULL) continue; LASSERT(PageLocked(lnb[i].page)); unlock_page(lnb[i].page); page_cache_release(lnb[i].page); lu_object_put(env, &dt->do_lu); lnb[i].page = NULL; } RETURN(0); } static int osd_write_prep(const struct lu_env *env, struct dt_object *dt, struct niobuf_local *lnb, int npages) { struct osd_thread_info *oti = osd_oti_get(env); struct osd_iobuf *iobuf = &oti->oti_iobuf; struct inode *inode = osd_dt_obj(dt)->oo_inode; struct osd_device *osd = osd_obj2dev(osd_dt_obj(dt)); struct timeval start; struct timeval end; unsigned long timediff; ssize_t isize; __s64 maxidx; int rc = 0; int i; int cache = 0; LASSERT(inode); rc = osd_init_iobuf(osd, iobuf, 0, npages); if (unlikely(rc != 0)) RETURN(rc); isize = i_size_read(inode); maxidx = ((isize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 1; if (osd->od_writethrough_cache) cache = 1; if (isize > osd->od_readcache_max_filesize) cache = 0; cfs_gettimeofday(&start); for (i = 0; i < npages; i++) { if (cache == 0) generic_error_remove_page(inode->i_mapping, lnb[i].page); /* * till commit the content of the page is undefined * we'll set it uptodate once bulk is done. otherwise * subsequent reads can access non-stable data */ ClearPageUptodate(lnb[i].page); if (lnb[i].len == PAGE_CACHE_SIZE) continue; if (maxidx >= lnb[i].page->index) { osd_iobuf_add_page(iobuf, lnb[i].page); } else { long off; char *p = kmap(lnb[i].page); off = lnb[i].lnb_page_offset; if (off) memset(p, 0, off); off = (lnb[i].lnb_page_offset + lnb[i].len) & ~CFS_PAGE_MASK; if (off) memset(p + off, 0, PAGE_CACHE_SIZE - off); kunmap(lnb[i].page); } } cfs_gettimeofday(&end); timediff = cfs_timeval_sub(&end, &start, NULL); lprocfs_counter_add(osd->od_stats, LPROC_OSD_GET_PAGE, timediff); if (iobuf->dr_npages) { rc = osd->od_fsops->fs_map_inode_pages(inode, iobuf->dr_pages, iobuf->dr_npages, iobuf->dr_blocks, 0, NULL); if (likely(rc == 0)) { rc = osd_do_bio(osd, inode, iobuf); /* do IO stats for preparation reads */ osd_fini_iobuf(osd, iobuf); } } RETURN(rc); } /* Check if a block is allocated or not */ static int osd_is_mapped(struct inode *inode, obd_size offset) { sector_t (*fs_bmap)(struct address_space *, sector_t); fs_bmap = inode->i_mapping->a_ops->bmap; /* We can't know if we are overwriting or not */ if (unlikely(fs_bmap == NULL)) return 0; if (i_size_read(inode) == 0) return 0; /* Beyond EOF, must not be mapped */ if (((i_size_read(inode) - 1) >> inode->i_blkbits) < (offset >> inode->i_blkbits)) return 0; if (fs_bmap(inode->i_mapping, offset >> inode->i_blkbits) == 0) return 0; return 1; } static int osd_declare_write_commit(const struct lu_env *env, struct dt_object *dt, struct niobuf_local *lnb, int npages, struct thandle *handle) { const struct osd_device *osd = osd_obj2dev(osd_dt_obj(dt)); struct inode *inode = osd_dt_obj(dt)->oo_inode; struct osd_thandle *oh; int extents = 1; int depth; int i; int newblocks; int rc = 0; int flags = 0; bool ignore_quota = false; long long quota_space = 0; ENTRY; LASSERT(handle != NULL); oh = container_of0(handle, struct osd_thandle, ot_super); LASSERT(oh->ot_handle == NULL); newblocks = npages; /* calculate number of extents (probably better to pass nb) */ for (i = 0; i < npages; i++) { if (i && lnb[i].lnb_file_offset != lnb[i - 1].lnb_file_offset + lnb[i - 1].len) extents++; if (!osd_is_mapped(inode, lnb[i].lnb_file_offset)) quota_space += PAGE_CACHE_SIZE; /* ignore quota for the whole request if any page is from * client cache or written by root. * * XXX once we drop the 1.8 client support, the checking * for whether page is from cache can be simplified as: * !(lnb[i].flags & OBD_BRW_SYNC) * * XXX we could handle this on per-lnb basis as done by * grant. */ if ((lnb[i].flags & OBD_BRW_NOQUOTA) || (lnb[i].flags & (OBD_BRW_FROM_GRANT | OBD_BRW_SYNC)) == OBD_BRW_FROM_GRANT) ignore_quota = true; } /* * each extent can go into new leaf causing a split * 5 is max tree depth: inode + 4 index blocks * with blockmaps, depth is 3 at most */ if (LDISKFS_I(inode)->i_flags & LDISKFS_EXTENTS_FL) { /* * many concurrent threads may grow tree by the time * our transaction starts. so, consider 2 is a min depth */ depth = ext_depth(inode); depth = max(depth, 1) + 1; newblocks += depth; oh->ot_credits++; /* inode */ oh->ot_credits += depth * 2 * extents; } else { depth = 3; newblocks += depth; oh->ot_credits++; /* inode */ oh->ot_credits += depth * extents; } /* quota space for metadata blocks */ quota_space += depth * extents * LDISKFS_BLOCK_SIZE(osd_sb(osd)); /* quota space should be reported in 1K blocks */ quota_space = toqb(quota_space); /* each new block can go in different group (bitmap + gd) */ /* we can't dirty more bitmap blocks than exist */ if (newblocks > LDISKFS_SB(osd_sb(osd))->s_groups_count) oh->ot_credits += LDISKFS_SB(osd_sb(osd))->s_groups_count; else oh->ot_credits += newblocks; /* we can't dirty more gd blocks than exist */ if (newblocks > LDISKFS_SB(osd_sb(osd))->s_gdb_count) oh->ot_credits += LDISKFS_SB(osd_sb(osd))->s_gdb_count; else oh->ot_credits += newblocks; /* make sure the over quota flags were not set */ lnb[0].flags &= ~(OBD_BRW_OVER_USRQUOTA | OBD_BRW_OVER_GRPQUOTA); rc = osd_declare_inode_qid(env, inode->i_uid, inode->i_gid, quota_space, oh, true, true, &flags, ignore_quota); /* we need only to store the overquota flags in the first lnb for * now, once we support multiple objects BRW, this code needs be * revised. */ if (flags & QUOTA_FL_OVER_USRQUOTA) lnb[0].flags |= OBD_BRW_OVER_USRQUOTA; if (flags & QUOTA_FL_OVER_GRPQUOTA) lnb[0].flags |= OBD_BRW_OVER_GRPQUOTA; RETURN(rc); } /* Check if a block is allocated or not */ static int osd_write_commit(const struct lu_env *env, struct dt_object *dt, struct niobuf_local *lnb, int npages, struct thandle *thandle) { struct osd_thread_info *oti = osd_oti_get(env); struct osd_iobuf *iobuf = &oti->oti_iobuf; struct inode *inode = osd_dt_obj(dt)->oo_inode; struct osd_device *osd = osd_obj2dev(osd_dt_obj(dt)); loff_t isize; int rc = 0, i; LASSERT(inode); rc = osd_init_iobuf(osd, iobuf, 1, npages); if (unlikely(rc != 0)) RETURN(rc); isize = i_size_read(inode); ll_vfs_dq_init(inode); for (i = 0; i < npages; i++) { if (lnb[i].rc == -ENOSPC && osd_is_mapped(inode, lnb[i].lnb_file_offset)) { /* Allow the write to proceed if overwriting an * existing block */ lnb[i].rc = 0; } if (lnb[i].rc) { /* ENOSPC, network RPC error, etc. */ CDEBUG(D_INODE, "Skipping [%d] == %d\n", i, lnb[i].rc); LASSERT(lnb[i].page); generic_error_remove_page(inode->i_mapping,lnb[i].page); continue; } LASSERT(PageLocked(lnb[i].page)); LASSERT(!PageWriteback(lnb[i].page)); if (lnb[i].lnb_file_offset + lnb[i].len > isize) isize = lnb[i].lnb_file_offset + lnb[i].len; /* * Since write and truncate are serialized by oo_sem, even * partial-page truncate should not leave dirty pages in the * page cache. */ LASSERT(!PageDirty(lnb[i].page)); SetPageUptodate(lnb[i].page); osd_iobuf_add_page(iobuf, lnb[i].page); } if (OBD_FAIL_CHECK(OBD_FAIL_OST_MAPBLK_ENOSPC)) { rc = -ENOSPC; } else if (iobuf->dr_npages > 0) { rc = osd->od_fsops->fs_map_inode_pages(inode, iobuf->dr_pages, iobuf->dr_npages, iobuf->dr_blocks, 1, NULL); } else { /* no pages to write, no transno is needed */ thandle->th_local = 1; } if (likely(rc == 0)) { if (isize > i_size_read(inode)) { i_size_write(inode, isize); LDISKFS_I(inode)->i_disksize = isize; ll_dirty_inode(inode, I_DIRTY_DATASYNC); } rc = osd_do_bio(osd, inode, iobuf); /* we don't do stats here as in read path because * write is async: we'll do this in osd_put_bufs() */ } if (unlikely(rc != 0)) { /* if write fails, we should drop pages from the cache */ for (i = 0; i < npages; i++) { if (lnb[i].page == NULL) continue; LASSERT(PageLocked(lnb[i].page)); generic_error_remove_page(inode->i_mapping,lnb[i].page); } } RETURN(rc); } static int osd_read_prep(const struct lu_env *env, struct dt_object *dt, struct niobuf_local *lnb, int npages) { struct osd_thread_info *oti = osd_oti_get(env); struct osd_iobuf *iobuf = &oti->oti_iobuf; struct inode *inode = osd_dt_obj(dt)->oo_inode; struct osd_device *osd = osd_obj2dev(osd_dt_obj(dt)); struct timeval start, end; unsigned long timediff; int rc = 0, i, m = 0, cache = 0; LASSERT(inode); rc = osd_init_iobuf(osd, iobuf, 0, npages); if (unlikely(rc != 0)) RETURN(rc); if (osd->od_read_cache) cache = 1; if (i_size_read(inode) > osd->od_readcache_max_filesize) cache = 0; cfs_gettimeofday(&start); for (i = 0; i < npages; i++) { if (i_size_read(inode) <= lnb[i].lnb_file_offset) /* If there's no more data, abort early. * lnb->rc == 0, so it's easy to detect later. */ break; if (i_size_read(inode) < lnb[i].lnb_file_offset + lnb[i].len - 1) lnb[i].rc = i_size_read(inode) - lnb[i].lnb_file_offset; else lnb[i].rc = lnb[i].len; m += lnb[i].len; lprocfs_counter_add(osd->od_stats, LPROC_OSD_CACHE_ACCESS, 1); if (PageUptodate(lnb[i].page)) { lprocfs_counter_add(osd->od_stats, LPROC_OSD_CACHE_HIT, 1); } else { lprocfs_counter_add(osd->od_stats, LPROC_OSD_CACHE_MISS, 1); osd_iobuf_add_page(iobuf, lnb[i].page); } if (cache == 0) generic_error_remove_page(inode->i_mapping,lnb[i].page); } cfs_gettimeofday(&end); timediff = cfs_timeval_sub(&end, &start, NULL); lprocfs_counter_add(osd->od_stats, LPROC_OSD_GET_PAGE, timediff); if (iobuf->dr_npages) { rc = osd->od_fsops->fs_map_inode_pages(inode, iobuf->dr_pages, iobuf->dr_npages, iobuf->dr_blocks, 0, NULL); rc = osd_do_bio(osd, inode, iobuf); /* IO stats will be done in osd_bufs_put() */ } RETURN(rc); } /* * XXX: Another layering violation for now. * * We don't want to use ->f_op->read methods, because generic file write * * - serializes on ->i_sem, and * * - does a lot of extra work like balance_dirty_pages(), * * which doesn't work for globally shared files like /last_rcvd. */ static int osd_ldiskfs_readlink(struct inode *inode, char *buffer, int buflen) { struct ldiskfs_inode_info *ei = LDISKFS_I(inode); memcpy(buffer, (char *)ei->i_data, buflen); return buflen; } int osd_ldiskfs_read(struct inode *inode, void *buf, int size, loff_t *offs) { struct buffer_head *bh; unsigned long block; int osize; int blocksize; int csize; int boffs; int err; /* prevent reading after eof */ spin_lock(&inode->i_lock); if (i_size_read(inode) < *offs + size) { loff_t diff = i_size_read(inode) - *offs; spin_unlock(&inode->i_lock); if (diff < 0) { CDEBUG(D_EXT2, "size %llu is too short to read @%llu\n", i_size_read(inode), *offs); return -EBADR; } else if (diff == 0) { return 0; } else { size = diff; } } else { spin_unlock(&inode->i_lock); } blocksize = 1 << inode->i_blkbits; osize = size; while (size > 0) { block = *offs >> inode->i_blkbits; boffs = *offs & (blocksize - 1); csize = min(blocksize - boffs, size); bh = ldiskfs_bread(NULL, inode, block, 0, &err); if (!bh) { CERROR("%s: can't read %u@%llu on ino %lu: rc = %d\n", LDISKFS_SB(inode->i_sb)->s_es->s_volume_name, csize, *offs, inode->i_ino, err); return err; } memcpy(buf, bh->b_data + boffs, csize); brelse(bh); *offs += csize; buf += csize; size -= csize; } return osize; } static ssize_t osd_read(const struct lu_env *env, struct dt_object *dt, struct lu_buf *buf, loff_t *pos, struct lustre_capa *capa) { struct inode *inode = osd_dt_obj(dt)->oo_inode; int rc; if (osd_object_auth(env, dt, capa, CAPA_OPC_BODY_READ)) RETURN(-EACCES); /* Read small symlink from inode body as we need to maintain correct * on-disk symlinks for ldiskfs. */ if (S_ISLNK(dt->do_lu.lo_header->loh_attr) && (buf->lb_len < sizeof(LDISKFS_I(inode)->i_data))) rc = osd_ldiskfs_readlink(inode, buf->lb_buf, buf->lb_len); else rc = osd_ldiskfs_read(inode, buf->lb_buf, buf->lb_len, pos); return rc; } static ssize_t osd_declare_write(const struct lu_env *env, struct dt_object *dt, const loff_t size, loff_t pos, struct thandle *handle) { struct osd_thandle *oh; int credits; struct inode *inode; int rc; ENTRY; LASSERT(handle != NULL); oh = container_of0(handle, struct osd_thandle, ot_super); LASSERT(oh->ot_handle == NULL); credits = osd_dto_credits_noquota[DTO_WRITE_BLOCK]; osd_trans_declare_op(env, oh, OSD_OT_WRITE, credits); inode = osd_dt_obj(dt)->oo_inode; /* we may declare write to non-exist llog */ if (inode == NULL) RETURN(0); /* dt_declare_write() is usually called for system objects, such * as llog or last_rcvd files. We needn't enforce quota on those * objects, so always set the lqi_space as 0. */ rc = osd_declare_inode_qid(env, inode->i_uid, inode->i_gid, 0, oh, true, true, NULL, false); RETURN(rc); } static int osd_ldiskfs_writelink(struct inode *inode, char *buffer, int buflen) { /* LU-2634: clear the extent format for fast symlink */ ldiskfs_clear_inode_flag(inode, LDISKFS_INODE_EXTENTS); memcpy((char *)&LDISKFS_I(inode)->i_data, (char *)buffer, buflen); LDISKFS_I(inode)->i_disksize = buflen; i_size_write(inode, buflen); ll_dirty_inode(inode, I_DIRTY_DATASYNC); return 0; } int osd_ldiskfs_write_record(struct inode *inode, void *buf, int bufsize, int write_NUL, loff_t *offs, handle_t *handle) { struct buffer_head *bh = NULL; loff_t offset = *offs; loff_t new_size = i_size_read(inode); unsigned long block; int blocksize = 1 << inode->i_blkbits; int err = 0; int size; int boffs; int dirty_inode = 0; if (write_NUL) { /* * long symlink write does not count the NUL terminator in * bufsize, we write it, and the inode's file size does not * count the NUL terminator as well. */ ((char *)buf)[bufsize] = '\0'; ++bufsize; } while (bufsize > 0) { if (bh != NULL) brelse(bh); block = offset >> inode->i_blkbits; boffs = offset & (blocksize - 1); size = min(blocksize - boffs, bufsize); bh = ldiskfs_bread(handle, inode, block, 1, &err); if (!bh) { CERROR("%s: error reading offset %llu (block %lu): " "rc = %d\n", inode->i_sb->s_id, offset, block, err); break; } err = ldiskfs_journal_get_write_access(handle, bh); if (err) { CERROR("journal_get_write_access() returned error %d\n", err); break; } LASSERTF(boffs + size <= bh->b_size, "boffs %d size %d bh->b_size %lu", boffs, size, (unsigned long)bh->b_size); memcpy(bh->b_data + boffs, buf, size); err = ldiskfs_journal_dirty_metadata(handle, bh); if (err) break; if (offset + size > new_size) new_size = offset + size; offset += size; bufsize -= size; buf += size; } if (bh) brelse(bh); if (write_NUL) --new_size; /* correct in-core and on-disk sizes */ if (new_size > i_size_read(inode)) { spin_lock(&inode->i_lock); if (new_size > i_size_read(inode)) i_size_write(inode, new_size); if (i_size_read(inode) > LDISKFS_I(inode)->i_disksize) { LDISKFS_I(inode)->i_disksize = i_size_read(inode); dirty_inode = 1; } spin_unlock(&inode->i_lock); if (dirty_inode) ll_dirty_inode(inode, I_DIRTY_DATASYNC); } if (err == 0) *offs = offset; return err; } static ssize_t osd_write(const struct lu_env *env, struct dt_object *dt, const struct lu_buf *buf, loff_t *pos, struct thandle *handle, struct lustre_capa *capa, int ignore_quota) { struct inode *inode = osd_dt_obj(dt)->oo_inode; struct osd_thandle *oh; ssize_t result; int is_link; LASSERT(dt_object_exists(dt)); if (osd_object_auth(env, dt, capa, CAPA_OPC_BODY_WRITE)) return -EACCES; LASSERT(handle != NULL); LASSERT(inode != NULL); ll_vfs_dq_init(inode); /* XXX: don't check: one declared chunk can be used many times */ /* osd_trans_exec_op(env, handle, OSD_OT_WRITE); */ oh = container_of(handle, struct osd_thandle, ot_super); LASSERT(oh->ot_handle->h_transaction != NULL); /* Write small symlink to inode body as we need to maintain correct * on-disk symlinks for ldiskfs. * Note: the buf->lb_buf contains a NUL terminator while buf->lb_len * does not count it in. */ is_link = S_ISLNK(dt->do_lu.lo_header->loh_attr); if (is_link && (buf->lb_len < sizeof(LDISKFS_I(inode)->i_data))) result = osd_ldiskfs_writelink(inode, buf->lb_buf, buf->lb_len); else result = osd_ldiskfs_write_record(inode, buf->lb_buf, buf->lb_len, is_link, pos, oh->ot_handle); if (result == 0) result = buf->lb_len; return result; } static int osd_declare_punch(const struct lu_env *env, struct dt_object *dt, __u64 start, __u64 end, struct thandle *th) { struct osd_thandle *oh; struct inode *inode; int rc; ENTRY; LASSERT(th); oh = container_of(th, struct osd_thandle, ot_super); /* * we don't need to reserve credits for whole truncate * it's not possible as truncate may need to free too many * blocks and that won't fit a single transaction. instead * we reserve credits to change i_size and put inode onto * orphan list. if needed truncate will extend or restart * transaction */ osd_trans_declare_op(env, oh, OSD_OT_PUNCH, osd_dto_credits_noquota[DTO_ATTR_SET_BASE] + 3); inode = osd_dt_obj(dt)->oo_inode; LASSERT(inode); rc = osd_declare_inode_qid(env, inode->i_uid, inode->i_gid, 0, oh, true, true, NULL, false); RETURN(rc); } static int osd_punch(const struct lu_env *env, struct dt_object *dt, __u64 start, __u64 end, struct thandle *th, struct lustre_capa *capa) { struct osd_thandle *oh; struct osd_object *obj = osd_dt_obj(dt); struct inode *inode = obj->oo_inode; handle_t *h; tid_t tid; loff_t oldsize; int rc = 0, rc2 = 0; ENTRY; LASSERT(end == OBD_OBJECT_EOF); LASSERT(dt_object_exists(dt)); LASSERT(osd_invariant(obj)); LASSERT(inode != NULL); ll_vfs_dq_init(inode); LASSERT(th); oh = container_of(th, struct osd_thandle, ot_super); LASSERT(oh->ot_handle->h_transaction != NULL); osd_trans_exec_op(env, th, OSD_OT_PUNCH); tid = oh->ot_handle->h_transaction->t_tid; oldsize=inode->i_size; i_size_write(inode, start); truncate_pagecache(inode, oldsize, start); if (inode->i_op->truncate) inode->i_op->truncate(inode); /* * For a partial-page truncate, flush the page to disk immediately to * avoid data corruption during direct disk write. b=17397 */ if ((start & ~CFS_PAGE_MASK) != 0) rc = filemap_fdatawrite_range(inode->i_mapping, start, start+1); h = journal_current_handle(); LASSERT(h != NULL); LASSERT(h == oh->ot_handle); if (tid != h->h_transaction->t_tid) { int credits = oh->ot_credits; /* * transaction has changed during truncate * we need to restart the handle with our credits */ if (h->h_buffer_credits < credits) { if (ldiskfs_journal_extend(h, credits)) rc2 = ldiskfs_journal_restart(h, credits); } } RETURN(rc == 0 ? rc2 : rc); } static int osd_fiemap_get(const struct lu_env *env, struct dt_object *dt, struct ll_user_fiemap *fm) { struct inode *inode = osd_dt_obj(dt)->oo_inode; struct osd_thread_info *info = osd_oti_get(env); struct dentry *dentry = &info->oti_obj_dentry; struct file *file = &info->oti_file; mm_segment_t saved_fs; int rc; LASSERT(inode); dentry->d_inode = inode; dentry->d_sb = inode->i_sb; file->f_dentry = dentry; file->f_mapping = inode->i_mapping; file->f_op = inode->i_fop; saved_fs = get_fs(); set_fs(get_ds()); /* ldiskfs_ioctl does not have a inode argument */ if (inode->i_fop->unlocked_ioctl) rc = inode->i_fop->unlocked_ioctl(file, FSFILT_IOC_FIEMAP, (long)fm); else rc = -ENOTTY; set_fs(saved_fs); return rc; } /* * in some cases we may need declare methods for objects being created * e.g., when we create symlink */ const struct dt_body_operations osd_body_ops_new = { .dbo_declare_write = osd_declare_write, }; const struct dt_body_operations osd_body_ops = { .dbo_read = osd_read, .dbo_declare_write = osd_declare_write, .dbo_write = osd_write, .dbo_bufs_get = osd_bufs_get, .dbo_bufs_put = osd_bufs_put, .dbo_write_prep = osd_write_prep, .dbo_declare_write_commit = osd_declare_write_commit, .dbo_write_commit = osd_write_commit, .dbo_read_prep = osd_read_prep, .dbo_declare_punch = osd_declare_punch, .dbo_punch = osd_punch, .dbo_fiemap_get = osd_fiemap_get, };