/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2012, 2016, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/ofd/ofd_dev.c * * This file contains OSD API methods for OBD Filter Device (OFD), * request handlers and supplemental functions to set OFD up and clean it up. * * Author: Alex Zhuravlev * Author: Mike Pershin * Author: Johann Lombardi */ /* * The OBD Filter Device (OFD) module belongs to the Object Storage * Server stack and connects the RPC oriented Unified Target (TGT) * layer (see lustre/include/lu_target.h) to the storage oriented OSD * layer (see Documentation/osd-api.txt). * * TGT * | DT and OBD APIs * OFD * | DT API * OSD * * OFD implements the LU and OBD device APIs and is responsible for: * * - Handling client requests (create, destroy, bulk IO, setattr, * get_info, set_info, statfs) for the objects belonging to the OST * (together with TGT). * * - Providing grant space management which allows clients to reserve * disk space for data writeback. OFD tracks grants on global and * per client levels. * * - Handling object precreation requests from MDTs. * * - Operating the LDLM service that allows clients to maintain object * data cache coherence. */ #define DEBUG_SUBSYSTEM S_FILTER #include #include #include #include #include #include #include #include #include #include #include "ofd_internal.h" /* Slab for OFD object allocation */ static struct kmem_cache *ofd_object_kmem; static struct lu_kmem_descr ofd_caches[] = { { .ckd_cache = &ofd_object_kmem, .ckd_name = "ofd_obj", .ckd_size = sizeof(struct ofd_object) }, { .ckd_cache = NULL } }; /** * Connect OFD to the next device in the stack. * * This function is used for device stack configuration and links OFD * device with bottom OSD device. * * \param[in] env execution environment * \param[in] m OFD device * \param[in] next name of next device in the stack * \param[out] exp export to return * * \retval 0 and export in \a exp if successful * \retval negative value on error */ static int ofd_connect_to_next(const struct lu_env *env, struct ofd_device *m, const char *next, struct obd_export **exp) { struct obd_connect_data *data = NULL; struct obd_device *obd; int rc; ENTRY; OBD_ALLOC_PTR(data); if (data == NULL) GOTO(out, rc = -ENOMEM); obd = class_name2obd(next); if (obd == NULL) { CERROR("%s: can't locate next device: %s\n", ofd_name(m), next); GOTO(out, rc = -ENOTCONN); } data->ocd_connect_flags = OBD_CONNECT_VERSION; data->ocd_version = LUSTRE_VERSION_CODE; rc = obd_connect(NULL, exp, obd, &obd->obd_uuid, data, NULL); if (rc) { CERROR("%s: cannot connect to next dev %s: rc = %d\n", ofd_name(m), next, rc); GOTO(out, rc); } m->ofd_dt_dev.dd_lu_dev.ld_site = m->ofd_osd_exp->exp_obd->obd_lu_dev->ld_site; LASSERT(m->ofd_dt_dev.dd_lu_dev.ld_site); m->ofd_osd = lu2dt_dev(m->ofd_osd_exp->exp_obd->obd_lu_dev); m->ofd_dt_dev.dd_lu_dev.ld_site->ls_top_dev = &m->ofd_dt_dev.dd_lu_dev; out: if (data) OBD_FREE_PTR(data); RETURN(rc); } /** * Initialize stack of devices. * * This function initializes OFD-OSD device stack to serve OST requests * * \param[in] env execution environment * \param[in] m OFD device * \param[in] cfg Lustre config for this server * * \retval 0 if successful * \retval negative value on error */ static int ofd_stack_init(const struct lu_env *env, struct ofd_device *m, struct lustre_cfg *cfg) { const char *dev = lustre_cfg_string(cfg, 0); struct lu_device *d; struct ofd_thread_info *info = ofd_info(env); struct lustre_mount_info *lmi; struct lustre_mount_data *lmd; int rc; char *osdname; ENTRY; lmi = server_get_mount(dev); if (lmi == NULL) { CERROR("Cannot get mount info for %s!\n", dev); RETURN(-ENODEV); } lmd = s2lsi(lmi->lmi_sb)->lsi_lmd; if (lmd != NULL && lmd->lmd_flags & LMD_FLG_SKIP_LFSCK) m->ofd_skip_lfsck = 1; /* find bottom osd */ OBD_ALLOC(osdname, MTI_NAME_MAXLEN); if (osdname == NULL) RETURN(-ENOMEM); snprintf(osdname, MTI_NAME_MAXLEN, "%s-osd", dev); rc = ofd_connect_to_next(env, m, osdname, &m->ofd_osd_exp); OBD_FREE(osdname, MTI_NAME_MAXLEN); if (rc) RETURN(rc); d = m->ofd_osd_exp->exp_obd->obd_lu_dev; LASSERT(d); m->ofd_osd = lu2dt_dev(d); snprintf(info->fti_u.name, sizeof(info->fti_u.name), "%s-osd", lustre_cfg_string(cfg, 0)); RETURN(rc); } /** * Finalize the device stack OFD-OSD. * * This function cleans OFD-OSD device stack and * disconnects OFD from the OSD. * * \param[in] env execution environment * \param[in] m OFD device * \param[in] top top device of stack * * \retval 0 if successful * \retval negative value on error */ static void ofd_stack_fini(const struct lu_env *env, struct ofd_device *m, struct lu_device *top) { struct obd_device *obd = ofd_obd(m); struct lustre_cfg_bufs bufs; struct lustre_cfg *lcfg; char flags[3] = ""; ENTRY; lu_site_purge(env, top->ld_site, ~0); /* process cleanup, pass mdt obd name to get obd umount flags */ lustre_cfg_bufs_reset(&bufs, obd->obd_name); if (obd->obd_force) strcat(flags, "F"); if (obd->obd_fail) strcat(flags, "A"); lustre_cfg_bufs_set_string(&bufs, 1, flags); lcfg = lustre_cfg_new(LCFG_CLEANUP, &bufs); if (lcfg == NULL) RETURN_EXIT; LASSERT(top); top->ld_ops->ldo_process_config(env, top, lcfg); lustre_cfg_free(lcfg); lu_site_purge(env, top->ld_site, ~0); if (!cfs_hash_is_empty(top->ld_site->ls_obj_hash)) { LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, D_ERROR, NULL); lu_site_print(env, top->ld_site, &msgdata, lu_cdebug_printer); } LASSERT(m->ofd_osd_exp); obd_disconnect(m->ofd_osd_exp); EXIT; } /* For interoperability, see mdt_interop_param[]. */ static struct cfg_interop_param ofd_interop_param[] = { { "ost.quota_type", NULL }, { NULL } }; /** * Check if parameters are symlinks to the OSD. * * Some parameters were moved from ofd to osd and only their * symlinks were kept in ofd by LU-3106. They are: * -writehthrough_cache_enable * -readcache_max_filesize * -read_cache_enable * -brw_stats * * Since they are not included by the static lprocfs var list, a pre-check * is added for them to avoid "unknown param" errors. If they are matched * in this check, they will be passed to the OSD directly. * * \param[in] param parameters to check * * \retval true if param is symlink to OSD param * false otherwise */ static bool match_symlink_param(char *param) { char *sval; int paramlen; if (class_match_param(param, PARAM_OST, ¶m) == 0) { sval = strchr(param, '='); if (sval != NULL) { paramlen = sval - param; if (strncmp(param, "writethrough_cache_enable", paramlen) == 0 || strncmp(param, "readcache_max_filesize", paramlen) == 0 || strncmp(param, "read_cache_enable", paramlen) == 0 || strncmp(param, "brw_stats", paramlen) == 0) return true; } } return false; } /** * Process various configuration parameters. * * This function is used by MGS to process specific configurations and * pass them through to the next device in server stack, i.e. the OSD. * * \param[in] env execution environment * \param[in] d LU device of OFD * \param[in] cfg parameters to process * * \retval 0 if successful * \retval negative value on error */ static int ofd_process_config(const struct lu_env *env, struct lu_device *d, struct lustre_cfg *cfg) { struct ofd_device *m = ofd_dev(d); struct dt_device *dt_next = m->ofd_osd; struct lu_device *next = &dt_next->dd_lu_dev; int rc; ENTRY; switch (cfg->lcfg_command) { case LCFG_PARAM: { struct obd_device *obd = ofd_obd(m); /* For interoperability */ struct cfg_interop_param *ptr = NULL; struct lustre_cfg *old_cfg = NULL; char *param = NULL; param = lustre_cfg_string(cfg, 1); if (param == NULL) { CERROR("param is empty\n"); rc = -EINVAL; break; } ptr = class_find_old_param(param, ofd_interop_param); if (ptr != NULL) { if (ptr->new_param == NULL) { rc = 0; CWARN("For interoperability, skip this %s." " It is obsolete.\n", ptr->old_param); break; } CWARN("Found old param %s, changed it to %s.\n", ptr->old_param, ptr->new_param); old_cfg = cfg; cfg = lustre_cfg_rename(old_cfg, ptr->new_param); if (IS_ERR(cfg)) { rc = PTR_ERR(cfg); break; } } if (match_symlink_param(param)) { rc = next->ld_ops->ldo_process_config(env, next, cfg); break; } rc = class_process_proc_param(PARAM_OST, obd->obd_vars, cfg, d->ld_obd); if (rc > 0 || rc == -ENOSYS) { CDEBUG(D_CONFIG, "pass param %s down the stack.\n", param); /* we don't understand; pass it on */ rc = next->ld_ops->ldo_process_config(env, next, cfg); } break; } case LCFG_SPTLRPC_CONF: { rc = -ENOTSUPP; break; } default: /* others are passed further */ rc = next->ld_ops->ldo_process_config(env, next, cfg); break; } RETURN(rc); } /** * Implementation of lu_object_operations::loo_object_init for OFD * * Allocate just the next object (OSD) in stack. * * \param[in] env execution environment * \param[in] o lu_object of OFD object * \param[in] conf additional configuration parameters, not used here * * \retval 0 if successful * \retval negative value on error */ static int ofd_object_init(const struct lu_env *env, struct lu_object *o, const struct lu_object_conf *conf) { struct ofd_device *d = ofd_dev(o->lo_dev); struct lu_device *under; struct lu_object *below; int rc = 0; ENTRY; CDEBUG(D_INFO, "object init, fid = "DFID"\n", PFID(lu_object_fid(o))); under = &d->ofd_osd->dd_lu_dev; below = under->ld_ops->ldo_object_alloc(env, o->lo_header, under); if (below != NULL) lu_object_add(o, below); else rc = -ENOMEM; RETURN(rc); } /** * Implementation of lu_object_operations::loo_object_free. * * Finish OFD object lifecycle and free its memory. * * \param[in] env execution environment * \param[in] o LU object of OFD object */ static void ofd_object_free(const struct lu_env *env, struct lu_object *o) { struct ofd_object *of = ofd_obj(o); struct lu_object_header *h; ENTRY; h = o->lo_header; CDEBUG(D_INFO, "object free, fid = "DFID"\n", PFID(lu_object_fid(o))); lu_object_fini(o); lu_object_header_fini(h); OBD_SLAB_FREE_PTR(of, ofd_object_kmem); EXIT; } /** * Implementation of lu_object_operations::loo_object_print. * * Print OFD part of compound OFD-OSD object. See lu_object_print() and * LU_OBJECT_DEBUG() for more details about the compound object printing. * * \param[in] env execution environment * \param[in] cookie opaque data passed to the printer function * \param[in] p printer function to use * \param[in] o LU object of OFD object * * \retval 0 if successful * \retval negative value on error */ static int ofd_object_print(const struct lu_env *env, void *cookie, lu_printer_t p, const struct lu_object *o) { return (*p)(env, cookie, LUSTRE_OST_NAME"-object@%p", o); } static struct lu_object_operations ofd_obj_ops = { .loo_object_init = ofd_object_init, .loo_object_free = ofd_object_free, .loo_object_print = ofd_object_print }; /** * Implementation of lu_device_operations::lod_object_alloc. * * This function allocates OFD part of compound OFD-OSD object and * initializes its header, because OFD is the top device in stack * * \param[in] env execution environment * \param[in] hdr object header, NULL for OFD * \param[in] d lu_device * * \retval allocated object if successful * \retval NULL value on failed allocation */ static struct lu_object *ofd_object_alloc(const struct lu_env *env, const struct lu_object_header *hdr, struct lu_device *d) { struct ofd_object *of; ENTRY; OBD_SLAB_ALLOC_PTR_GFP(of, ofd_object_kmem, GFP_NOFS); if (of != NULL) { struct lu_object *o; struct lu_object_header *h; o = &of->ofo_obj.do_lu; h = &of->ofo_header; lu_object_header_init(h); lu_object_init(o, h, d); lu_object_add_top(h, o); o->lo_ops = &ofd_obj_ops; RETURN(o); } else { RETURN(NULL); } } /** * Return the result of LFSCK run to the OFD. * * Notify OFD about result of LFSCK run. That may block the new object * creation until problem is fixed by LFSCK. * * \param[in] env execution environment * \param[in] data pointer to the OFD device * \param[in] event LFSCK event type * * \retval 0 if successful * \retval negative value on unknown event */ static int ofd_lfsck_out_notify(const struct lu_env *env, void *data, enum lfsck_events event) { struct ofd_device *ofd = data; struct obd_device *obd = ofd_obd(ofd); switch (event) { case LE_LASTID_REBUILDING: CWARN("%s: Found crashed LAST_ID, deny creating new OST-object " "on the device until the LAST_ID rebuilt successfully.\n", obd->obd_name); down_write(&ofd->ofd_lastid_rwsem); ofd->ofd_lastid_rebuilding = 1; up_write(&ofd->ofd_lastid_rwsem); break; case LE_LASTID_REBUILT: { down_write(&ofd->ofd_lastid_rwsem); ofd_seqs_free(env, ofd); ofd->ofd_lastid_rebuilding = 0; ofd->ofd_lastid_gen++; up_write(&ofd->ofd_lastid_rwsem); CWARN("%s: Rebuilt crashed LAST_ID files successfully.\n", obd->obd_name); break; } default: CERROR("%s: unknown lfsck event: rc = %d\n", ofd_name(ofd), event); return -EINVAL; } return 0; } /** * Implementation of lu_device_operations::ldo_prepare. * * This method is called after layer has been initialized and before it starts * serving user requests. In OFD it starts lfsk check routines and initializes * recovery. * * \param[in] env execution environment * \param[in] pdev higher device in stack, NULL for OFD * \param[in] dev lu_device of OFD device * * \retval 0 if successful * \retval negative value on error */ static int ofd_prepare(const struct lu_env *env, struct lu_device *pdev, struct lu_device *dev) { struct ofd_thread_info *info; struct ofd_device *ofd = ofd_dev(dev); struct obd_device *obd = ofd_obd(ofd); struct lu_device *next = &ofd->ofd_osd->dd_lu_dev; int rc; ENTRY; info = ofd_info_init(env, NULL); if (info == NULL) RETURN(-EFAULT); /* initialize lower device */ rc = next->ld_ops->ldo_prepare(env, dev, next); if (rc != 0) RETURN(rc); rc = lfsck_register(env, ofd->ofd_osd, ofd->ofd_osd, obd, ofd_lfsck_out_notify, ofd, false); if (rc != 0) { CERROR("%s: failed to initialize lfsck: rc = %d\n", obd->obd_name, rc); RETURN(rc); } rc = lfsck_register_namespace(env, ofd->ofd_osd, ofd->ofd_namespace); /* The LFSCK instance is registered just now, so it must be there when * register the namespace to such instance. */ LASSERTF(rc == 0, "register namespace failed: rc = %d\n", rc); target_recovery_init(&ofd->ofd_lut, tgt_request_handle); LASSERT(obd->obd_no_conn); spin_lock(&obd->obd_dev_lock); obd->obd_no_conn = 0; spin_unlock(&obd->obd_dev_lock); if (obd->obd_recovering == 0) ofd_postrecov(env, ofd); RETURN(rc); } /** * Implementation of lu_device_operations::ldo_recovery_complete. * * This method notifies all layers about 'recovery complete' event. That means * device is in full state and consistent. An OFD calculates available grant * space upon this event. * * \param[in] env execution environment * \param[in] dev lu_device of OFD device * * \retval 0 if successful * \retval negative value on error */ static int ofd_recovery_complete(const struct lu_env *env, struct lu_device *dev) { struct ofd_thread_info *oti = ofd_info(env); struct ofd_device *ofd = ofd_dev(dev); struct lu_device *next = &ofd->ofd_osd->dd_lu_dev; int rc = 0; ENTRY; /* * Grant space for object precreation on the self export. * The initial reserved space (i.e. 10MB for zfs and 280KB for ldiskfs) * is enough to create 10k objects. More space is then acquired for * precreation in tgt_grant_create(). */ memset(&oti->fti_ocd, 0, sizeof(oti->fti_ocd)); oti->fti_ocd.ocd_grant = OST_MAX_PRECREATE / 2; oti->fti_ocd.ocd_grant *= ofd->ofd_lut.lut_dt_conf.ddp_inodespace; oti->fti_ocd.ocd_connect_flags = OBD_CONNECT_GRANT | OBD_CONNECT_GRANT_PARAM; tgt_grant_connect(env, dev->ld_obd->obd_self_export, &oti->fti_ocd, true); rc = next->ld_ops->ldo_recovery_complete(env, next); RETURN(rc); } /** * lu_device_operations matrix for OFD device. */ static struct lu_device_operations ofd_lu_ops = { .ldo_object_alloc = ofd_object_alloc, .ldo_process_config = ofd_process_config, .ldo_recovery_complete = ofd_recovery_complete, .ldo_prepare = ofd_prepare, }; LPROC_SEQ_FOPS(lprocfs_nid_stats_clear); /** * Initialize all needed procfs entries for OFD device. * * \param[in] ofd OFD device * * \retval 0 if successful * \retval negative value on error */ static int ofd_procfs_init(struct ofd_device *ofd) { struct obd_device *obd = ofd_obd(ofd); struct proc_dir_entry *entry; int rc = 0; ENTRY; /* lprocfs must be setup before the ofd so state can be safely added * to /proc incrementally as the ofd is setup */ obd->obd_vars = lprocfs_ofd_obd_vars; rc = lprocfs_obd_setup(obd); if (rc) { CERROR("%s: lprocfs_obd_setup failed: %d.\n", obd->obd_name, rc); RETURN(rc); } rc = lprocfs_alloc_obd_stats(obd, LPROC_OFD_STATS_LAST); if (rc) { CERROR("%s: lprocfs_alloc_obd_stats failed: %d.\n", obd->obd_name, rc); GOTO(obd_cleanup, rc); } obd->obd_uses_nid_stats = 1; entry = lprocfs_register("exports", obd->obd_proc_entry, NULL, NULL); if (IS_ERR(entry)) { rc = PTR_ERR(entry); CERROR("%s: error %d setting up lprocfs for %s\n", obd->obd_name, rc, "exports"); GOTO(obd_cleanup, rc); } obd->obd_proc_exports_entry = entry; entry = lprocfs_add_simple(obd->obd_proc_exports_entry, "clear", obd, &lprocfs_nid_stats_clear_fops); if (IS_ERR(entry)) { rc = PTR_ERR(entry); CERROR("%s: add proc entry 'clear' failed: %d.\n", obd->obd_name, rc); GOTO(obd_cleanup, rc); } ofd_stats_counter_init(obd->obd_stats); rc = lprocfs_job_stats_init(obd, LPROC_OFD_STATS_LAST, ofd_stats_counter_init); if (rc) GOTO(obd_cleanup, rc); RETURN(0); obd_cleanup: lprocfs_obd_cleanup(obd); lprocfs_free_obd_stats(obd); return rc; } /** * Expose OSD statistics to OFD layer. * * The osd interfaces to the backend file system exposes useful data * such as brw_stats and read or write cache states. This same data * needs to be exposed into the obdfilter (ofd) layer to maintain * backwards compatibility. This function creates the symlinks in the * proc layer to enable this. * * \param[in] ofd OFD device */ static void ofd_procfs_add_brw_stats_symlink(struct ofd_device *ofd) { struct obd_device *obd = ofd_obd(ofd); struct obd_device *osd_obd = ofd->ofd_osd_exp->exp_obd; if (obd->obd_proc_entry == NULL) return; lprocfs_add_symlink("brw_stats", obd->obd_proc_entry, "../../%s/%s/brw_stats", osd_obd->obd_type->typ_name, obd->obd_name); lprocfs_add_symlink("read_cache_enable", obd->obd_proc_entry, "../../%s/%s/read_cache_enable", osd_obd->obd_type->typ_name, obd->obd_name); lprocfs_add_symlink("readcache_max_filesize", obd->obd_proc_entry, "../../%s/%s/readcache_max_filesize", osd_obd->obd_type->typ_name, obd->obd_name); lprocfs_add_symlink("writethrough_cache_enable", obd->obd_proc_entry, "../../%s/%s/writethrough_cache_enable", osd_obd->obd_type->typ_name, obd->obd_name); } /** * Cleanup all procfs entries in OFD. * * \param[in] ofd OFD device */ static void ofd_procfs_fini(struct ofd_device *ofd) { struct obd_device *obd = ofd_obd(ofd); lprocfs_free_per_client_stats(obd); lprocfs_obd_cleanup(obd); lprocfs_free_obd_stats(obd); lprocfs_job_stats_fini(obd); } /** * Stop SEQ/FID server on OFD. * * \param[in] env execution environment * \param[in] ofd OFD device * * \retval 0 if successful * \retval negative value on error */ int ofd_fid_fini(const struct lu_env *env, struct ofd_device *ofd) { return seq_site_fini(env, &ofd->ofd_seq_site); } /** * Start SEQ/FID server on OFD. * * The SEQ/FID server on OFD is needed to allocate FIDs for new objects. * It also connects to the master server to get own FID sequence (SEQ) range * to this particular OFD. Typically that happens when the OST is first * formatted or in the rare case that it exhausts the local sequence range. * * The sequence range is allocated out to the MDTs for OST object allocations, * and not directly to the clients. * * \param[in] env execution environment * \param[in] ofd OFD device * * \retval 0 if successful * \retval negative value on error */ int ofd_fid_init(const struct lu_env *env, struct ofd_device *ofd) { struct seq_server_site *ss = &ofd->ofd_seq_site; struct lu_device *lu = &ofd->ofd_dt_dev.dd_lu_dev; char *obd_name = ofd_name(ofd); char *name = NULL; int rc = 0; ss = &ofd->ofd_seq_site; lu->ld_site->ld_seq_site = ss; ss->ss_lu = lu->ld_site; ss->ss_node_id = ofd->ofd_lut.lut_lsd.lsd_osd_index; OBD_ALLOC(name, sizeof(obd_name) * 2 + 10); if (name == NULL) return -ENOMEM; OBD_ALLOC_PTR(ss->ss_server_seq); if (ss->ss_server_seq == NULL) GOTO(out_name, rc = -ENOMEM); rc = seq_server_init(env, ss->ss_server_seq, ofd->ofd_osd, obd_name, LUSTRE_SEQ_SERVER, ss); if (rc) { CERROR("%s : seq server init error %d\n", obd_name, rc); GOTO(out_server, rc); } ss->ss_server_seq->lss_space.lsr_index = ss->ss_node_id; OBD_ALLOC_PTR(ss->ss_client_seq); if (ss->ss_client_seq == NULL) GOTO(out_server, rc = -ENOMEM); /* * It always printed as "%p", so that the name is unique in the kernel, * even if the filesystem is mounted twice. So sizeof(.) * 2 is enough. */ snprintf(name, sizeof(obd_name) * 2 + 7, "%p-super", obd_name); rc = seq_client_init(ss->ss_client_seq, NULL, LUSTRE_SEQ_DATA, name, NULL); if (rc) { CERROR("%s : seq client init error %d\n", obd_name, rc); GOTO(out_client, rc); } rc = seq_server_set_cli(env, ss->ss_server_seq, ss->ss_client_seq); if (rc) { out_client: seq_client_fini(ss->ss_client_seq); OBD_FREE_PTR(ss->ss_client_seq); ss->ss_client_seq = NULL; out_server: seq_server_fini(ss->ss_server_seq, env); OBD_FREE_PTR(ss->ss_server_seq); ss->ss_server_seq = NULL; } out_name: OBD_FREE(name, sizeof(obd_name) * 2 + 10); return rc; } /** * OFD request handler for OST_SET_INFO RPC. * * This is OFD-specific part of request handling * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_set_info_hdl(struct tgt_session_info *tsi) { struct ptlrpc_request *req = tgt_ses_req(tsi); struct ost_body *body = NULL, *repbody; void *key, *val = NULL; int keylen, vallen, rc = 0; bool is_grant_shrink; ENTRY; key = req_capsule_client_get(tsi->tsi_pill, &RMF_SETINFO_KEY); if (key == NULL) { DEBUG_REQ(D_HA, req, "no set_info key"); RETURN(err_serious(-EFAULT)); } keylen = req_capsule_get_size(tsi->tsi_pill, &RMF_SETINFO_KEY, RCL_CLIENT); val = req_capsule_client_get(tsi->tsi_pill, &RMF_SETINFO_VAL); if (val == NULL) { DEBUG_REQ(D_HA, req, "no set_info val"); RETURN(err_serious(-EFAULT)); } vallen = req_capsule_get_size(tsi->tsi_pill, &RMF_SETINFO_VAL, RCL_CLIENT); is_grant_shrink = KEY_IS(KEY_GRANT_SHRINK); if (is_grant_shrink) /* In this case the value is actually an RMF_OST_BODY, so we * transmutate the type of this PTLRPC */ req_capsule_extend(tsi->tsi_pill, &RQF_OST_SET_GRANT_INFO); rc = req_capsule_server_pack(tsi->tsi_pill); if (rc < 0) RETURN(rc); if (is_grant_shrink) { body = req_capsule_client_get(tsi->tsi_pill, &RMF_OST_BODY); repbody = req_capsule_server_get(tsi->tsi_pill, &RMF_OST_BODY); *repbody = *body; /** handle grant shrink, similar to a read request */ tgt_grant_prepare_read(tsi->tsi_env, tsi->tsi_exp, &repbody->oa); } else if (KEY_IS(KEY_EVICT_BY_NID)) { if (vallen > 0) obd_export_evict_by_nid(tsi->tsi_exp->exp_obd, val); rc = 0; } else { CERROR("%s: Unsupported key %s\n", tgt_name(tsi->tsi_tgt), (char *)key); rc = -EOPNOTSUPP; } ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_SET_INFO, tsi->tsi_jobid, 1); RETURN(rc); } /** * Get FIEMAP (FIle Extent MAPping) for object with the given FID. * * This function returns a list of extents which describes how a file's * blocks are laid out on the disk. * * \param[in] env execution environment * \param[in] ofd OFD device * \param[in] fid FID of object * \param[in] fiemap fiemap structure to fill with data * * \retval 0 if \a fiemap is filled with data successfully * \retval negative value on error */ int ofd_fiemap_get(const struct lu_env *env, struct ofd_device *ofd, struct lu_fid *fid, struct fiemap *fiemap) { struct ofd_object *fo; int rc; fo = ofd_object_find(env, ofd, fid); if (IS_ERR(fo)) { CERROR("%s: error finding object "DFID"\n", ofd_name(ofd), PFID(fid)); return PTR_ERR(fo); } ofd_read_lock(env, fo); if (ofd_object_exists(fo)) rc = dt_fiemap_get(env, ofd_object_child(fo), fiemap); else rc = -ENOENT; ofd_read_unlock(env, fo); ofd_object_put(env, fo); return rc; } struct locked_region { struct list_head list; struct lustre_handle lh; }; /** * Lock single extent and save lock handle in the list. * * This is supplemental function for lock_zero_regions(). It allocates * new locked_region structure and locks it with extent lock, then adds * it to the list of all such regions. * * \param[in] ns LDLM namespace * \param[in] res_id resource ID * \param[in] begin start of region * \param[in] end end of region * \param[in] locked list head of regions list * * \retval 0 if successful locking * \retval negative value on error */ static int lock_region(struct ldlm_namespace *ns, struct ldlm_res_id *res_id, unsigned long long begin, unsigned long long end, struct list_head *locked) { struct locked_region *region = NULL; __u64 flags = 0; int rc; LASSERT(begin <= end); OBD_ALLOC_PTR(region); if (region == NULL) return -ENOMEM; rc = tgt_extent_lock(ns, res_id, begin, end, ®ion->lh, LCK_PR, &flags); if (rc != 0) return rc; CDEBUG(D_OTHER, "ost lock [%llu,%llu], lh=%p\n", begin, end, ®ion->lh); list_add(®ion->list, locked); return 0; } /** * Lock the sparse areas of given resource. * * The locking of sparse areas will cause dirty data to be flushed back from * clients. This is used when getting the FIEMAP of an object to make sure * there is no unaccounted cached data on clients. * * This function goes through \a fiemap list of extents and locks only sparse * areas between extents. * * \param[in] ns LDLM namespace * \param[in] res_id resource ID * \param[in] fiemap file extents mapping on disk * \param[in] locked list head of regions list * * \retval 0 if successful * \retval negative value on error */ static int lock_zero_regions(struct ldlm_namespace *ns, struct ldlm_res_id *res_id, struct fiemap *fiemap, struct list_head *locked) { __u64 begin = fiemap->fm_start; unsigned int i; int rc = 0; struct fiemap_extent *fiemap_start = fiemap->fm_extents; ENTRY; CDEBUG(D_OTHER, "extents count %u\n", fiemap->fm_mapped_extents); for (i = 0; i < fiemap->fm_mapped_extents; i++) { if (fiemap_start[i].fe_logical > begin) { CDEBUG(D_OTHER, "ost lock [%llu,%llu]\n", begin, fiemap_start[i].fe_logical); rc = lock_region(ns, res_id, begin, fiemap_start[i].fe_logical, locked); if (rc) RETURN(rc); } begin = fiemap_start[i].fe_logical + fiemap_start[i].fe_length; } if (begin < (fiemap->fm_start + fiemap->fm_length)) { CDEBUG(D_OTHER, "ost lock [%llu,%llu]\n", begin, fiemap->fm_start + fiemap->fm_length); rc = lock_region(ns, res_id, begin, fiemap->fm_start + fiemap->fm_length, locked); } RETURN(rc); } /** * Unlock all previously locked sparse areas for given resource. * * This function goes through list of locked regions, unlocking and freeing * them one-by-one. * * \param[in] ns LDLM namespace * \param[in] locked list head of regions list */ static void unlock_zero_regions(struct ldlm_namespace *ns, struct list_head *locked) { struct locked_region *entry, *temp; list_for_each_entry_safe(entry, temp, locked, list) { CDEBUG(D_OTHER, "ost unlock lh=%p\n", &entry->lh); tgt_extent_unlock(&entry->lh, LCK_PR); list_del(&entry->list); OBD_FREE_PTR(entry); } } /** * OFD request handler for OST_GET_INFO RPC. * * This is OFD-specific part of request handling. The OFD-specific keys are: * - KEY_LAST_ID (obsolete) * - KEY_FIEMAP * - KEY_LAST_FID * * This function reads needed data from storage and fills reply with it. * * Note: the KEY_LAST_ID is obsolete, replaced by KEY_LAST_FID on newer MDTs, * and is kept for compatibility. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_get_info_hdl(struct tgt_session_info *tsi) { struct obd_export *exp = tsi->tsi_exp; struct ofd_device *ofd = ofd_exp(exp); struct ofd_thread_info *fti = tsi2ofd_info(tsi); void *key; int keylen; int replylen, rc = 0; ENTRY; /* this common part for get_info rpc */ key = req_capsule_client_get(tsi->tsi_pill, &RMF_GETINFO_KEY); if (key == NULL) { DEBUG_REQ(D_HA, tgt_ses_req(tsi), "no get_info key"); RETURN(err_serious(-EPROTO)); } keylen = req_capsule_get_size(tsi->tsi_pill, &RMF_GETINFO_KEY, RCL_CLIENT); if (KEY_IS(KEY_LAST_ID)) { u64 *last_id; struct ofd_seq *oseq; req_capsule_extend(tsi->tsi_pill, &RQF_OST_GET_INFO_LAST_ID); rc = req_capsule_server_pack(tsi->tsi_pill); if (rc) RETURN(err_serious(rc)); last_id = req_capsule_server_get(tsi->tsi_pill, &RMF_OBD_ID); oseq = ofd_seq_load(tsi->tsi_env, ofd, (u64)exp->exp_filter_data.fed_group); if (IS_ERR(oseq)) rc = -EFAULT; else *last_id = ofd_seq_last_oid(oseq); ofd_seq_put(tsi->tsi_env, oseq); } else if (KEY_IS(KEY_FIEMAP)) { struct ll_fiemap_info_key *fm_key; struct fiemap *fiemap; struct lu_fid *fid; req_capsule_extend(tsi->tsi_pill, &RQF_OST_GET_INFO_FIEMAP); fm_key = req_capsule_client_get(tsi->tsi_pill, &RMF_FIEMAP_KEY); rc = tgt_validate_obdo(tsi, &fm_key->lfik_oa); if (rc) RETURN(err_serious(rc)); fid = &fm_key->lfik_oa.o_oi.oi_fid; CDEBUG(D_INODE, "get FIEMAP of object "DFID"\n", PFID(fid)); replylen = fiemap_count_to_size( fm_key->lfik_fiemap.fm_extent_count); req_capsule_set_size(tsi->tsi_pill, &RMF_FIEMAP_VAL, RCL_SERVER, replylen); rc = req_capsule_server_pack(tsi->tsi_pill); if (rc) RETURN(err_serious(rc)); fiemap = req_capsule_server_get(tsi->tsi_pill, &RMF_FIEMAP_VAL); if (fiemap == NULL) RETURN(-ENOMEM); *fiemap = fm_key->lfik_fiemap; rc = ofd_fiemap_get(tsi->tsi_env, ofd, fid, fiemap); /* LU-3219: Lock the sparse areas to make sure dirty * flushed back from client, then call fiemap again. */ if (fm_key->lfik_oa.o_valid & OBD_MD_FLFLAGS && fm_key->lfik_oa.o_flags & OBD_FL_SRVLOCK) { struct list_head locked; INIT_LIST_HEAD(&locked); ost_fid_build_resid(fid, &fti->fti_resid); rc = lock_zero_regions(ofd->ofd_namespace, &fti->fti_resid, fiemap, &locked); if (rc == 0 && !list_empty(&locked)) { rc = ofd_fiemap_get(tsi->tsi_env, ofd, fid, fiemap); unlock_zero_regions(ofd->ofd_namespace, &locked); } } } else if (KEY_IS(KEY_LAST_FID)) { struct ofd_device *ofd = ofd_exp(exp); struct ofd_seq *oseq; struct lu_fid *fid; int rc; req_capsule_extend(tsi->tsi_pill, &RQF_OST_GET_INFO_LAST_FID); rc = req_capsule_server_pack(tsi->tsi_pill); if (rc) RETURN(err_serious(rc)); fid = req_capsule_client_get(tsi->tsi_pill, &RMF_FID); if (fid == NULL) RETURN(err_serious(-EPROTO)); fid_le_to_cpu(&fti->fti_ostid.oi_fid, fid); fid = req_capsule_server_get(tsi->tsi_pill, &RMF_FID); if (fid == NULL) RETURN(-ENOMEM); oseq = ofd_seq_load(tsi->tsi_env, ofd, ostid_seq(&fti->fti_ostid)); if (IS_ERR(oseq)) RETURN(PTR_ERR(oseq)); rc = ostid_to_fid(fid, &oseq->os_oi, ofd->ofd_lut.lut_lsd.lsd_osd_index); if (rc != 0) GOTO(out_put, rc); CDEBUG(D_HA, "%s: LAST FID is "DFID"\n", ofd_name(ofd), PFID(fid)); out_put: ofd_seq_put(tsi->tsi_env, oseq); } else { CERROR("%s: not supported key %s\n", tgt_name(tsi->tsi_tgt), (char *)key); rc = -EOPNOTSUPP; } ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_GET_INFO, tsi->tsi_jobid, 1); RETURN(rc); } /** * OFD request handler for OST_GETATTR RPC. * * This is OFD-specific part of request handling. It finds the OFD object * by its FID, gets attributes from storage and packs result to the reply. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_getattr_hdl(struct tgt_session_info *tsi) { struct ofd_thread_info *fti = tsi2ofd_info(tsi); struct ofd_device *ofd = ofd_exp(tsi->tsi_exp); struct ost_body *repbody; struct lustre_handle lh = { 0 }; struct ofd_object *fo; __u64 flags = 0; enum ldlm_mode lock_mode = LCK_PR; bool srvlock; int rc; ENTRY; LASSERT(tsi->tsi_ost_body != NULL); repbody = req_capsule_server_get(tsi->tsi_pill, &RMF_OST_BODY); if (repbody == NULL) RETURN(-ENOMEM); repbody->oa.o_oi = tsi->tsi_ost_body->oa.o_oi; repbody->oa.o_valid = OBD_MD_FLID | OBD_MD_FLGROUP; srvlock = tsi->tsi_ost_body->oa.o_valid & OBD_MD_FLFLAGS && tsi->tsi_ost_body->oa.o_flags & OBD_FL_SRVLOCK; if (srvlock) { if (unlikely(tsi->tsi_ost_body->oa.o_flags & OBD_FL_FLUSH)) lock_mode = LCK_PW; rc = tgt_extent_lock(tsi->tsi_tgt->lut_obd->obd_namespace, &tsi->tsi_resid, 0, OBD_OBJECT_EOF, &lh, lock_mode, &flags); if (rc != 0) RETURN(rc); } fo = ofd_object_find_exists(tsi->tsi_env, ofd, &tsi->tsi_fid); if (IS_ERR(fo)) GOTO(out, rc = PTR_ERR(fo)); rc = ofd_attr_get(tsi->tsi_env, fo, &fti->fti_attr); if (rc == 0) { __u64 curr_version; obdo_from_la(&repbody->oa, &fti->fti_attr, OFD_VALID_FLAGS | LA_UID | LA_GID | LA_PROJID); /* Store object version in reply */ curr_version = dt_version_get(tsi->tsi_env, ofd_object_child(fo)); if ((__s64)curr_version != -EOPNOTSUPP) { repbody->oa.o_valid |= OBD_MD_FLDATAVERSION; repbody->oa.o_data_version = curr_version; } } ofd_object_put(tsi->tsi_env, fo); out: if (srvlock) tgt_extent_unlock(&lh, lock_mode); ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_GETATTR, tsi->tsi_jobid, 1); repbody->oa.o_valid |= OBD_MD_FLFLAGS; repbody->oa.o_flags = OBD_FL_FLUSH; RETURN(rc); } /** * OFD request handler for OST_SETATTR RPC. * * This is OFD-specific part of request handling. It finds the OFD object * by its FID, sets attributes from request and packs result to the reply. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_setattr_hdl(struct tgt_session_info *tsi) { struct ofd_thread_info *fti = tsi2ofd_info(tsi); struct ofd_device *ofd = ofd_exp(tsi->tsi_exp); struct ost_body *body = tsi->tsi_ost_body; struct ost_body *repbody; struct ldlm_resource *res; struct ofd_object *fo; struct filter_fid *ff = NULL; int rc = 0; ENTRY; LASSERT(body != NULL); repbody = req_capsule_server_get(tsi->tsi_pill, &RMF_OST_BODY); if (repbody == NULL) RETURN(-ENOMEM); repbody->oa.o_oi = body->oa.o_oi; repbody->oa.o_valid = OBD_MD_FLID | OBD_MD_FLGROUP; /* This would be very bad - accidentally truncating a file when * changing the time or similar - bug 12203. */ if (body->oa.o_valid & OBD_MD_FLSIZE && body->oa.o_size != OBD_OBJECT_EOF) { static char mdsinum[48]; if (body->oa.o_valid & OBD_MD_FLFID) snprintf(mdsinum, sizeof(mdsinum) - 1, "of parent "DFID, body->oa.o_parent_seq, body->oa.o_parent_oid, 0); else mdsinum[0] = '\0'; CERROR("%s: setattr from %s is trying to truncate object "DFID " %s\n", ofd_name(ofd), obd_export_nid2str(tsi->tsi_exp), PFID(&tsi->tsi_fid), mdsinum); RETURN(-EPERM); } fo = ofd_object_find_exists(tsi->tsi_env, ofd, &tsi->tsi_fid); if (IS_ERR(fo)) GOTO(out, rc = PTR_ERR(fo)); la_from_obdo(&fti->fti_attr, &body->oa, body->oa.o_valid); fti->fti_attr.la_valid &= ~LA_TYPE; if (body->oa.o_valid & OBD_MD_FLFID) { ff = &fti->fti_mds_fid; ofd_prepare_fidea(ff, &body->oa); } /* setting objects attributes (including owner/group) */ rc = ofd_attr_set(tsi->tsi_env, fo, &fti->fti_attr, ff); if (rc != 0) GOTO(out_put, rc); obdo_from_la(&repbody->oa, &fti->fti_attr, OFD_VALID_FLAGS | LA_UID | LA_GID | LA_PROJID); ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_SETATTR, tsi->tsi_jobid, 1); EXIT; out_put: ofd_object_put(tsi->tsi_env, fo); out: if (rc == 0) { /* we do not call this before to avoid lu_object_find() in * ->lvbo_update() holding another reference on the object. * otherwise concurrent destroy can make the object unavailable * for 2nd lu_object_find() waiting for the first reference * to go... deadlock! */ res = ldlm_resource_get(ofd->ofd_namespace, NULL, &tsi->tsi_resid, LDLM_EXTENT, 0); if (!IS_ERR(res)) { ldlm_res_lvbo_update(res, NULL, 0); ldlm_resource_putref(res); } } return rc; } /** * Destroy OST orphans. * * This is part of OST_CREATE RPC handling. If there is flag OBD_FL_DELORPHAN * set then we must destroy possible orphaned objects. * * \param[in] env execution environment * \param[in] exp OBD export * \param[in] ofd OFD device * \param[in] oa obdo structure for reply * * \retval 0 if successful * \retval negative value on error */ static int ofd_orphans_destroy(const struct lu_env *env, struct obd_export *exp, struct ofd_device *ofd, struct obdo *oa) { struct ofd_thread_info *info = ofd_info(env); struct lu_fid *fid = &info->fti_fid; struct ost_id *oi = &oa->o_oi; struct ofd_seq *oseq; u64 seq = ostid_seq(oi); u64 end_id = ostid_id(oi); u64 last; u64 oid; int skip_orphan; int rc = 0; ENTRY; oseq = ofd_seq_get(ofd, seq); if (oseq == NULL) { CERROR("%s: Can not find seq for "DOSTID"\n", ofd_name(ofd), POSTID(oi)); RETURN(-EINVAL); } *fid = oi->oi_fid; last = ofd_seq_last_oid(oseq); oid = last; LASSERT(exp != NULL); skip_orphan = !!(exp_connect_flags(exp) & OBD_CONNECT_SKIP_ORPHAN); if (OBD_FAIL_CHECK(OBD_FAIL_OST_NODESTROY)) goto done; LCONSOLE(D_INFO, "%s: deleting orphan objects from "DOSTID " to "DOSTID"\n", ofd_name(ofd), seq, end_id + 1, seq, last); while (oid > end_id) { rc = fid_set_id(fid, oid); if (unlikely(rc != 0)) GOTO(out_put, rc); rc = ofd_destroy_by_fid(env, ofd, fid, 1); if (rc != 0 && rc != -ENOENT && rc != -ESTALE && likely(rc != -EREMCHG && rc != -EINPROGRESS)) /* this is pretty fatal... */ CEMERG("%s: error destroying precreated id " DFID": rc = %d\n", ofd_name(ofd), PFID(fid), rc); oid--; if (!skip_orphan) { ofd_seq_last_oid_set(oseq, oid); /* update last_id on disk periodically so that if we * restart * we don't need to re-scan all of the just * deleted objects. */ if ((oid & 511) == 0) ofd_seq_last_oid_write(env, ofd, oseq); } } CDEBUG(D_HA, "%s: after destroy: set last_id to "DOSTID"\n", ofd_name(ofd), seq, oid); done: if (!skip_orphan) { ofd_seq_last_oid_set(oseq, oid); rc = ofd_seq_last_oid_write(env, ofd, oseq); } else { /* don't reuse orphan object, return last used objid */ ostid_set_id(oi, last); rc = 0; } GOTO(out_put, rc); out_put: ofd_seq_put(env, oseq); return rc; } /** * OFD request handler for OST_CREATE RPC. * * This is OFD-specific part of request handling. Its main purpose is to * create new data objects on OST, but it also used to destroy orphans. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_create_hdl(struct tgt_session_info *tsi) { struct ptlrpc_request *req = tgt_ses_req(tsi); struct ost_body *repbody; const struct obdo *oa = &tsi->tsi_ost_body->oa; struct obdo *rep_oa; struct obd_export *exp = tsi->tsi_exp; struct ofd_device *ofd = ofd_exp(exp); u64 seq = ostid_seq(&oa->o_oi); u64 oid = ostid_id(&oa->o_oi); struct ofd_seq *oseq; int rc = 0, diff; int sync_trans = 0; long granted = 0; ENTRY; if (OBD_FAIL_CHECK(OBD_FAIL_OST_EROFS)) RETURN(-EROFS); repbody = req_capsule_server_get(tsi->tsi_pill, &RMF_OST_BODY); if (repbody == NULL) RETURN(-ENOMEM); down_read(&ofd->ofd_lastid_rwsem); /* Currently, for safe, we do not distinguish which LAST_ID is broken, * we may do that in the future. * Return -ENOSPC until the LAST_ID rebuilt. */ if (unlikely(ofd->ofd_lastid_rebuilding)) GOTO(out_sem, rc = -ENOSPC); rep_oa = &repbody->oa; rep_oa->o_oi = oa->o_oi; LASSERT(oa->o_valid & OBD_MD_FLGROUP); CDEBUG(D_INFO, "ofd_create("DOSTID")\n", POSTID(&oa->o_oi)); oseq = ofd_seq_load(tsi->tsi_env, ofd, seq); if (IS_ERR(oseq)) { CERROR("%s: Can't find FID Sequence %#llx: rc = %ld\n", ofd_name(ofd), seq, PTR_ERR(oseq)); GOTO(out_sem, rc = -EINVAL); } if ((oa->o_valid & OBD_MD_FLFLAGS) && (oa->o_flags & OBD_FL_RECREATE_OBJS)) { if (!ofd_obd(ofd)->obd_recovering || oid > ofd_seq_last_oid(oseq)) { CERROR("%s: recreate objid "DOSTID" > last id %llu" "\n", ofd_name(ofd), POSTID(&oa->o_oi), ofd_seq_last_oid(oseq)); GOTO(out_nolock, rc = -EINVAL); } /* Do nothing here, we re-create objects during recovery * upon write replay, see ofd_preprw_write() */ GOTO(out_nolock, rc = 0); } /* former ofd_handle_precreate */ if ((oa->o_valid & OBD_MD_FLFLAGS) && (oa->o_flags & OBD_FL_DELORPHAN)) { exp->exp_filter_data.fed_lastid_gen = ofd->ofd_lastid_gen; /* destroy orphans */ if (lustre_msg_get_conn_cnt(tgt_ses_req(tsi)->rq_reqmsg) < exp->exp_conn_cnt) { CERROR("%s: dropping old orphan cleanup request\n", ofd_name(ofd)); GOTO(out_nolock, rc = 0); } /* This causes inflight precreates to abort and drop lock */ oseq->os_destroys_in_progress = 1; mutex_lock(&oseq->os_create_lock); if (!oseq->os_destroys_in_progress) { CERROR("%s:[%llu] destroys_in_progress already" " cleared\n", ofd_name(ofd), seq); ostid_set_id(&rep_oa->o_oi, ofd_seq_last_oid(oseq)); GOTO(out, rc = 0); } diff = oid - ofd_seq_last_oid(oseq); CDEBUG(D_HA, "ofd_last_id() = %llu -> diff = %d\n", ofd_seq_last_oid(oseq), diff); if (-diff > OST_MAX_PRECREATE) { /* Let MDS know that we are so far ahead. */ ostid_set_id(&rep_oa->o_oi, ofd_seq_last_oid(oseq) + 1); rc = 0; } else if (diff < 0) { rc = ofd_orphans_destroy(tsi->tsi_env, exp, ofd, rep_oa); oseq->os_destroys_in_progress = 0; } else { /* XXX: Used by MDS for the first time! */ oseq->os_destroys_in_progress = 0; } } else { if (unlikely(exp->exp_filter_data.fed_lastid_gen != ofd->ofd_lastid_gen)) { /* Keep the export ref so we can send the reply. */ ofd_obd_disconnect(class_export_get(exp)); GOTO(out_nolock, rc = -ENOTCONN); } mutex_lock(&oseq->os_create_lock); if (lustre_msg_get_conn_cnt(tgt_ses_req(tsi)->rq_reqmsg) < exp->exp_conn_cnt) { CERROR("%s: dropping old precreate request\n", ofd_name(ofd)); GOTO(out, rc = 0); } /* only precreate if seq is 0, IDIF or normal and also o_id * must be specfied */ if ((!fid_seq_is_mdt(seq) && !fid_seq_is_norm(seq) && !fid_seq_is_idif(seq)) || oid == 0) { diff = 1; /* shouldn't we create this right now? */ } else { diff = oid - ofd_seq_last_oid(oseq); /* Do sync create if the seq is about to used up */ if (fid_seq_is_idif(seq) || fid_seq_is_mdt0(seq)) { if (unlikely(oid >= IDIF_MAX_OID - 1)) sync_trans = 1; } else if (fid_seq_is_norm(seq)) { if (unlikely(oid >= LUSTRE_DATA_SEQ_MAX_WIDTH - 1)) sync_trans = 1; } else { CERROR("%s : invalid o_seq "DOSTID"\n", ofd_name(ofd), POSTID(&oa->o_oi)); GOTO(out, rc = -EINVAL); } if (diff < 0) { /* LU-5648 */ CERROR("%s: invalid precreate request for " DOSTID", last_id %llu. " "Likely MDS last_id corruption\n", ofd_name(ofd), POSTID(&oa->o_oi), ofd_seq_last_oid(oseq)); GOTO(out, rc = -EINVAL); } } } if (diff > 0) { cfs_time_t enough_time = cfs_time_shift(DISK_TIMEOUT); u64 next_id; int created = 0; int count; if (!(oa->o_valid & OBD_MD_FLFLAGS) || !(oa->o_flags & OBD_FL_DELORPHAN)) { /* don't enforce grant during orphan recovery */ granted = tgt_grant_create(tsi->tsi_env, ofd_obd(ofd)->obd_self_export, &diff); if (granted < 0) { rc = granted; granted = 0; CDEBUG(D_HA, "%s: failed to acquire grant " "space for precreate (%d): rc = %d\n", ofd_name(ofd), diff, rc); diff = 0; } } /* This can happen if a new OST is formatted and installed * in place of an old one at the same index. Instead of * precreating potentially millions of deleted old objects * (possibly filling the OST), only precreate the last batch. * LFSCK will eventually clean up any orphans. LU-14 */ if (diff > 5 * OST_MAX_PRECREATE) { diff = OST_MAX_PRECREATE / 2; LCONSOLE_WARN("%s: Too many FIDs to precreate " "OST replaced or reformatted: " "LFSCK will clean up", ofd_name(ofd)); CDEBUG(D_HA, "%s: precreate FID "DOSTID" is over " "%u larger than the LAST_ID "DOSTID", only " "precreating the last %u objects.\n", ofd_name(ofd), POSTID(&oa->o_oi), 5 * OST_MAX_PRECREATE, POSTID(&oseq->os_oi), diff); ofd_seq_last_oid_set(oseq, ostid_id(&oa->o_oi) - diff); } while (diff > 0) { next_id = ofd_seq_last_oid(oseq) + 1; count = ofd_precreate_batch(ofd, diff); CDEBUG(D_HA, "%s: reserve %d objects in group %#llx" " at %llu\n", ofd_name(ofd), count, seq, next_id); if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY) && cfs_time_after(jiffies, enough_time)) { CDEBUG(D_HA, "%s: Slow creates, %d/%d objects" " created at a rate of %d/s\n", ofd_name(ofd), created, diff + created, created / DISK_TIMEOUT); break; } rc = ofd_precreate_objects(tsi->tsi_env, ofd, next_id, oseq, count, sync_trans); if (rc > 0) { created += rc; diff -= rc; } else if (rc < 0) { break; } } if (diff > 0 && lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY) LCONSOLE_WARN("%s: can't create the same count of" " objects when replaying the request" " (diff is %d). see LU-4621\n", ofd_name(ofd), diff); if (created > 0) /* some objects got created, we can return * them, even if last creation failed */ rc = 0; else CERROR("%s: unable to precreate: rc = %d\n", ofd_name(ofd), rc); if (!(oa->o_valid & OBD_MD_FLFLAGS) || !(oa->o_flags & OBD_FL_DELORPHAN)) { tgt_grant_commit(ofd_obd(ofd)->obd_self_export, granted, rc); granted = 0; } ostid_set_id(&rep_oa->o_oi, ofd_seq_last_oid(oseq)); } EXIT; ofd_counter_incr(exp, LPROC_OFD_STATS_CREATE, tsi->tsi_jobid, 1); out: mutex_unlock(&oseq->os_create_lock); out_nolock: if (rc == 0) { #if LUSTRE_VERSION_CODE < OBD_OCD_VERSION(2, 8, 53, 0) struct ofd_thread_info *info = ofd_info(tsi->tsi_env); struct lu_fid *fid = &info->fti_fid; /* For compatible purpose, it needs to convert back to * OST ID before put it on wire. */ *fid = rep_oa->o_oi.oi_fid; fid_to_ostid(fid, &rep_oa->o_oi); #endif rep_oa->o_valid |= OBD_MD_FLID | OBD_MD_FLGROUP; } ofd_seq_put(tsi->tsi_env, oseq); out_sem: up_read(&ofd->ofd_lastid_rwsem); return rc; } /** * OFD request handler for OST_DESTROY RPC. * * This is OFD-specific part of request handling. It destroys data objects * related to destroyed object on MDT. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_destroy_hdl(struct tgt_session_info *tsi) { const struct ost_body *body = tsi->tsi_ost_body; struct ost_body *repbody; struct ofd_device *ofd = ofd_exp(tsi->tsi_exp); struct ofd_thread_info *fti = tsi2ofd_info(tsi); struct lu_fid *fid = &fti->fti_fid; u64 oid; u32 count; int rc = 0; ENTRY; if (OBD_FAIL_CHECK(OBD_FAIL_OST_EROFS)) RETURN(-EROFS); /* This is old case for clients before Lustre 2.4 */ /* If there's a DLM request, cancel the locks mentioned in it */ if (req_capsule_field_present(tsi->tsi_pill, &RMF_DLM_REQ, RCL_CLIENT)) { struct ldlm_request *dlm; dlm = req_capsule_client_get(tsi->tsi_pill, &RMF_DLM_REQ); if (dlm == NULL) RETURN(-EFAULT); ldlm_request_cancel(tgt_ses_req(tsi), dlm, 0, LATF_SKIP); } *fid = body->oa.o_oi.oi_fid; oid = ostid_id(&body->oa.o_oi); LASSERT(oid != 0); repbody = req_capsule_server_get(tsi->tsi_pill, &RMF_OST_BODY); /* check that o_misc makes sense */ if (body->oa.o_valid & OBD_MD_FLOBJCOUNT) count = body->oa.o_misc; else count = 1; /* default case - single destroy */ CDEBUG(D_HA, "%s: Destroy object "DOSTID" count %d\n", ofd_name(ofd), POSTID(&body->oa.o_oi), count); while (count > 0) { int lrc; lrc = ofd_destroy_by_fid(tsi->tsi_env, ofd, fid, 0); if (lrc == -ENOENT) { CDEBUG(D_INODE, "%s: destroying non-existent object "DFID"\n", ofd_name(ofd), PFID(fid)); /* rewrite rc with -ENOENT only if it is 0 */ if (rc == 0) rc = lrc; } else if (lrc != 0) { CERROR("%s: error destroying object "DFID": %d\n", ofd_name(ofd), PFID(fid), lrc); rc = lrc; } count--; oid++; lrc = fid_set_id(fid, oid); if (unlikely(lrc != 0 && count > 0)) GOTO(out, rc = lrc); } ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_DESTROY, tsi->tsi_jobid, 1); GOTO(out, rc); out: fid_to_ostid(fid, &repbody->oa.o_oi); return rc; } /** * OFD request handler for OST_STATFS RPC. * * This function gets statfs data from storage as part of request * processing. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_statfs_hdl(struct tgt_session_info *tsi) { struct obd_statfs *osfs; int rc; ENTRY; osfs = req_capsule_server_get(tsi->tsi_pill, &RMF_OBD_STATFS); rc = ofd_statfs(tsi->tsi_env, tsi->tsi_exp, osfs, cfs_time_shift_64(-OBD_STATFS_CACHE_SECONDS), 0); if (rc != 0) CERROR("%s: statfs failed: rc = %d\n", tgt_name(tsi->tsi_tgt), rc); if (OBD_FAIL_CHECK(OBD_FAIL_OST_STATFS_EINPROGRESS)) rc = -EINPROGRESS; ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_STATFS, tsi->tsi_jobid, 1); RETURN(rc); } /** * OFD request handler for OST_SYNC RPC. * * Sync object data or all filesystem data to the disk and pack the * result in reply. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_sync_hdl(struct tgt_session_info *tsi) { struct ost_body *body = tsi->tsi_ost_body; struct ost_body *repbody; struct ofd_thread_info *fti = tsi2ofd_info(tsi); struct ofd_device *ofd = ofd_exp(tsi->tsi_exp); struct ofd_object *fo = NULL; int rc = 0; ENTRY; repbody = req_capsule_server_get(tsi->tsi_pill, &RMF_OST_BODY); /* if no objid is specified, it means "sync whole filesystem" */ if (!fid_is_zero(&tsi->tsi_fid)) { fo = ofd_object_find_exists(tsi->tsi_env, ofd, &tsi->tsi_fid); if (IS_ERR(fo)) RETURN(PTR_ERR(fo)); } rc = tgt_sync(tsi->tsi_env, tsi->tsi_tgt, fo != NULL ? ofd_object_child(fo) : NULL, repbody->oa.o_size, repbody->oa.o_blocks); if (rc) GOTO(put, rc); ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_SYNC, tsi->tsi_jobid, 1); if (fo == NULL) RETURN(0); repbody->oa.o_oi = body->oa.o_oi; repbody->oa.o_valid = OBD_MD_FLID | OBD_MD_FLGROUP; rc = ofd_attr_get(tsi->tsi_env, fo, &fti->fti_attr); if (rc == 0) obdo_from_la(&repbody->oa, &fti->fti_attr, OFD_VALID_FLAGS); else /* don't return rc from getattr */ rc = 0; EXIT; put: if (fo != NULL) ofd_object_put(tsi->tsi_env, fo); return rc; } /** * OFD request handler for OST_PUNCH RPC. * * This is part of request processing. Validate request fields, * punch (truncate) the given OFD object and pack reply. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_punch_hdl(struct tgt_session_info *tsi) { const struct obdo *oa = &tsi->tsi_ost_body->oa; struct ost_body *repbody; struct ofd_thread_info *info = tsi2ofd_info(tsi); struct ldlm_namespace *ns = tsi->tsi_tgt->lut_obd->obd_namespace; struct ldlm_resource *res; struct ofd_object *fo; struct filter_fid *ff = NULL; __u64 flags = 0; struct lustre_handle lh = { 0, }; int rc; __u64 start, end; bool srvlock; ENTRY; OBD_FAIL_TIMEOUT(OBD_FAIL_OST_PAUSE_PUNCH, cfs_fail_val); /* check that we do support OBD_CONNECT_TRUNCLOCK. */ CLASSERT(OST_CONNECT_SUPPORTED & OBD_CONNECT_TRUNCLOCK); if ((oa->o_valid & (OBD_MD_FLSIZE | OBD_MD_FLBLOCKS)) != (OBD_MD_FLSIZE | OBD_MD_FLBLOCKS)) RETURN(err_serious(-EPROTO)); repbody = req_capsule_server_get(tsi->tsi_pill, &RMF_OST_BODY); if (repbody == NULL) RETURN(err_serious(-ENOMEM)); /* punch start,end are passed in o_size,o_blocks throught wire */ start = oa->o_size; end = oa->o_blocks; if (end != OBD_OBJECT_EOF) /* Only truncate is supported */ RETURN(-EPROTO); /* standard truncate optimization: if file body is completely * destroyed, don't send data back to the server. */ if (start == 0) flags |= LDLM_FL_AST_DISCARD_DATA; repbody->oa.o_oi = oa->o_oi; repbody->oa.o_valid = OBD_MD_FLID; srvlock = oa->o_valid & OBD_MD_FLFLAGS && oa->o_flags & OBD_FL_SRVLOCK; if (srvlock) { rc = tgt_extent_lock(ns, &tsi->tsi_resid, start, end, &lh, LCK_PW, &flags); if (rc != 0) RETURN(rc); } CDEBUG(D_INODE, "calling punch for object "DFID", valid = %#llx" ", start = %lld, end = %lld\n", PFID(&tsi->tsi_fid), oa->o_valid, start, end); fo = ofd_object_find_exists(tsi->tsi_env, ofd_exp(tsi->tsi_exp), &tsi->tsi_fid); if (IS_ERR(fo)) GOTO(out, rc = PTR_ERR(fo)); la_from_obdo(&info->fti_attr, oa, OBD_MD_FLMTIME | OBD_MD_FLATIME | OBD_MD_FLCTIME); info->fti_attr.la_size = start; info->fti_attr.la_valid |= LA_SIZE; if (oa->o_valid & OBD_MD_FLFID) { ff = &info->fti_mds_fid; ofd_prepare_fidea(ff, oa); } rc = ofd_object_punch(tsi->tsi_env, fo, start, end, &info->fti_attr, ff, (struct obdo *)oa); if (rc) GOTO(out_put, rc); ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_PUNCH, tsi->tsi_jobid, 1); EXIT; out_put: ofd_object_put(tsi->tsi_env, fo); out: if (srvlock) tgt_extent_unlock(&lh, LCK_PW); if (rc == 0) { /* we do not call this before to avoid lu_object_find() in * ->lvbo_update() holding another reference on the object. * otherwise concurrent destroy can make the object unavailable * for 2nd lu_object_find() waiting for the first reference * to go... deadlock! */ res = ldlm_resource_get(ns, NULL, &tsi->tsi_resid, LDLM_EXTENT, 0); if (!IS_ERR(res)) { ldlm_res_lvbo_update(res, NULL, 0); ldlm_resource_putref(res); } } return rc; } static int ofd_ladvise_prefetch(const struct lu_env *env, struct ofd_object *fo, struct niobuf_local *lnb, __u64 start, __u64 end) { struct ofd_thread_info *info = ofd_info(env); pgoff_t start_index, end_index, pages; struct niobuf_remote rnb; unsigned long nr_local; int rc = 0; if (end <= start) RETURN(-EINVAL); ofd_read_lock(env, fo); if (!ofd_object_exists(fo)) GOTO(out_unlock, rc = -ENOENT); rc = ofd_attr_get(env, fo, &info->fti_attr); if (rc) GOTO(out_unlock, rc); if (end > info->fti_attr.la_size) end = info->fti_attr.la_size; if (end == 0) GOTO(out_unlock, rc); /* We need page aligned offset and length */ start_index = start >> PAGE_SHIFT; end_index = (end - 1) >> PAGE_SHIFT; pages = end_index - start_index + 1; while (pages > 0) { nr_local = pages <= PTLRPC_MAX_BRW_PAGES ? pages : PTLRPC_MAX_BRW_PAGES; rnb.rnb_offset = start_index << PAGE_SHIFT; rnb.rnb_len = nr_local << PAGE_SHIFT; rc = dt_bufs_get(env, ofd_object_child(fo), &rnb, lnb, 0); if (unlikely(rc < 0)) break; nr_local = rc; rc = dt_read_prep(env, ofd_object_child(fo), lnb, nr_local); dt_bufs_put(env, ofd_object_child(fo), lnb, nr_local); if (unlikely(rc)) break; start_index += nr_local; pages -= nr_local; } out_unlock: ofd_read_unlock(env, fo); RETURN(rc); } /** * OFD request handler for OST_LADVISE RPC. * * Tune cache or perfetch policies according to advices. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative errno on error */ static int ofd_ladvise_hdl(struct tgt_session_info *tsi) { struct ptlrpc_request *req = tgt_ses_req(tsi); struct obd_export *exp = tsi->tsi_exp; struct ofd_device *ofd = ofd_exp(exp); struct ost_body *body, *repbody; struct ofd_thread_info *info; struct ofd_object *fo; struct ptlrpc_thread *svc_thread = req->rq_svc_thread; const struct lu_env *env = svc_thread->t_env; struct tgt_thread_big_cache *tbc = svc_thread->t_data; int rc = 0; struct lu_ladvise *ladvise; int num_advise; struct ladvise_hdr *ladvise_hdr; struct obd_ioobj ioo; struct lustre_handle lockh = { 0 }; __u64 flags = 0; int i; struct dt_object *dob; __u64 start; __u64 end; ENTRY; CFS_FAIL_TIMEOUT(OBD_FAIL_OST_LADVISE_PAUSE, cfs_fail_val); body = tsi->tsi_ost_body; if ((body->oa.o_valid & OBD_MD_FLID) != OBD_MD_FLID) RETURN(err_serious(-EPROTO)); ladvise_hdr = req_capsule_client_get(tsi->tsi_pill, &RMF_OST_LADVISE_HDR); if (ladvise_hdr == NULL) RETURN(err_serious(-EPROTO)); if (ladvise_hdr->lah_magic != LADVISE_MAGIC || ladvise_hdr->lah_count < 1) RETURN(err_serious(-EPROTO)); if ((ladvise_hdr->lah_flags & (~LF_MASK)) != 0) RETURN(err_serious(-EPROTO)); ladvise = req_capsule_client_get(tsi->tsi_pill, &RMF_OST_LADVISE); if (ladvise == NULL) RETURN(err_serious(-EPROTO)); num_advise = req_capsule_get_size(&req->rq_pill, &RMF_OST_LADVISE, RCL_CLIENT) / sizeof(*ladvise); if (num_advise < ladvise_hdr->lah_count) RETURN(err_serious(-EPROTO)); repbody = req_capsule_server_get(&req->rq_pill, &RMF_OST_BODY); repbody->oa = body->oa; info = ofd_info_init(env, exp); rc = ostid_to_fid(&info->fti_fid, &body->oa.o_oi, ofd->ofd_lut.lut_lsd.lsd_osd_index); if (rc != 0) RETURN(rc); fo = ofd_object_find(env, ofd, &info->fti_fid); if (IS_ERR(fo)) { rc = PTR_ERR(fo); RETURN(rc); } LASSERT(fo != NULL); dob = ofd_object_child(fo); for (i = 0; i < num_advise; i++, ladvise++) { start = ladvise->lla_start; end = ladvise->lla_end; if (end <= start) { rc = err_serious(-EPROTO); break; } /* Handle different advice types */ switch (ladvise->lla_advice) { default: rc = -ENOTSUPP; break; case LU_LADVISE_WILLREAD: if (tbc == NULL) RETURN(-ENOMEM); ioo.ioo_oid = body->oa.o_oi; ioo.ioo_bufcnt = 1; rc = tgt_extent_lock(exp->exp_obd->obd_namespace, &tsi->tsi_resid, start, end - 1, &lockh, LCK_PR, &flags); if (rc != 0) break; req->rq_status = ofd_ladvise_prefetch(env, fo, tbc->local, start, end); tgt_extent_unlock(&lockh, LCK_PR); break; case LU_LADVISE_DONTNEED: rc = dt_ladvise(env, dob, ladvise->lla_start, ladvise->lla_end, LU_LADVISE_DONTNEED); break; } if (rc != 0) break; } ofd_object_put(env, fo); req->rq_status = rc; RETURN(rc); } /** * OFD request handler for OST_QUOTACTL RPC. * * This is part of request processing to validate incoming request fields, * get the requested data from OSD and pack reply. * * \param[in] tsi target session environment for this request * * \retval 0 if successful * \retval negative value on error */ static int ofd_quotactl(struct tgt_session_info *tsi) { struct obd_quotactl *oqctl, *repoqc; struct lu_nodemap *nodemap; int id; int rc; ENTRY; oqctl = req_capsule_client_get(tsi->tsi_pill, &RMF_OBD_QUOTACTL); if (oqctl == NULL) RETURN(err_serious(-EPROTO)); repoqc = req_capsule_server_get(tsi->tsi_pill, &RMF_OBD_QUOTACTL); if (repoqc == NULL) RETURN(err_serious(-ENOMEM)); *repoqc = *oqctl; nodemap = nodemap_get_from_exp(tsi->tsi_exp); if (IS_ERR(nodemap)) RETURN(PTR_ERR(nodemap)); id = repoqc->qc_id; if (oqctl->qc_type == USRQUOTA) id = nodemap_map_id(nodemap, NODEMAP_UID, NODEMAP_CLIENT_TO_FS, repoqc->qc_id); else if (oqctl->qc_type == GRPQUOTA) id = nodemap_map_id(nodemap, NODEMAP_GID, NODEMAP_CLIENT_TO_FS, repoqc->qc_id); nodemap_putref(nodemap); if (repoqc->qc_id != id) swap(repoqc->qc_id, id); rc = lquotactl_slv(tsi->tsi_env, tsi->tsi_tgt->lut_bottom, repoqc); ofd_counter_incr(tsi->tsi_exp, LPROC_OFD_STATS_QUOTACTL, tsi->tsi_jobid, 1); if (repoqc->qc_id != id) swap(repoqc->qc_id, id); RETURN(rc); } /** * Calculate the amount of time for lock prolongation. * * This is helper for ofd_prolong_extent_locks() function to get * the timeout extra time. * * \param[in] req current request * * \retval amount of time to extend the timeout with */ static inline int prolong_timeout(struct ptlrpc_request *req) { struct ptlrpc_service_part *svcpt = req->rq_rqbd->rqbd_svcpt; time_t req_timeout; if (AT_OFF) return obd_timeout / 2; req_timeout = req->rq_deadline - req->rq_arrival_time.tv_sec; return max_t(time_t, at_est2timeout(at_get(&svcpt->scp_at_estimate)), req_timeout); } /** * Prolong lock timeout for the given extent. * * This function finds all locks related with incoming request and * prolongs their timeout. * * If a client is holding a lock for a long time while it sends * read or write RPCs to the OST for the object under this lock, * then we don't want the OST to evict the client. Otherwise, * if the network or disk is very busy then the client may not * be able to make any progress to clear out dirty pages under * the lock and the application will fail. * * Every time a Bulk Read/Write (BRW) request arrives for the object * covered by the lock, extend the timeout on that lock. The RPC should * contain a lock handle for the lock it is using, but this * isn't handled correctly by all client versions, and the * request may cover multiple locks. * * \param[in] tsi target session environment for this request * \param[in] data struct of data to prolong locks * */ static void ofd_prolong_extent_locks(struct tgt_session_info *tsi, struct ldlm_prolong_args *data) { struct obdo *oa = &tsi->tsi_ost_body->oa; struct ldlm_lock *lock; ENTRY; data->lpa_timeout = prolong_timeout(tgt_ses_req(tsi)); data->lpa_export = tsi->tsi_exp; data->lpa_resid = tsi->tsi_resid; CDEBUG(D_RPCTRACE, "Prolong locks for req %p with x%llu" " ext(%llu->%llu)\n", tgt_ses_req(tsi), tgt_ses_req(tsi)->rq_xid, data->lpa_extent.start, data->lpa_extent.end); if (oa->o_valid & OBD_MD_FLHANDLE) { /* mostly a request should be covered by only one lock, try * fast path. */ lock = ldlm_handle2lock(&oa->o_handle); if (lock != NULL) { /* Fast path to check if the lock covers the whole IO * region exclusively. */ if (ldlm_extent_contain(&lock->l_policy_data.l_extent, &data->lpa_extent)) { /* bingo */ LASSERT(lock->l_export == data->lpa_export); ldlm_lock_prolong_one(lock, data); LDLM_LOCK_PUT(lock); RETURN_EXIT; } lock->l_last_used = cfs_time_current(); LDLM_LOCK_PUT(lock); } } ldlm_resource_prolong(data); EXIT; } /** * Implementation of ptlrpc_hpreq_ops::hpreq_lock_match for OFD RW requests. * * Determine if \a lock and the lock from request \a req are equivalent * by comparing their resource names, modes, and extents. * * It is used to give priority to read and write RPCs being done * under this lock so that the client can drop the contended * lock more quickly and let other clients use it. This improves * overall performance in the case where the first client gets a * very large lock extent that prevents other clients from * submitting their writes. * * \param[in] req ptlrpc_request being processed * \param[in] lock contended lock to match * * \retval 1 if lock is matched * \retval 0 otherwise */ static int ofd_rw_hpreq_lock_match(struct ptlrpc_request *req, struct ldlm_lock *lock) { struct niobuf_remote *rnb; struct obd_ioobj *ioo; enum ldlm_mode mode; struct ldlm_extent ext; __u32 opc = lustre_msg_get_opc(req->rq_reqmsg); ENTRY; ioo = req_capsule_client_get(&req->rq_pill, &RMF_OBD_IOOBJ); LASSERT(ioo != NULL); rnb = req_capsule_client_get(&req->rq_pill, &RMF_NIOBUF_REMOTE); LASSERT(rnb != NULL); ext.start = rnb->rnb_offset; rnb += ioo->ioo_bufcnt - 1; ext.end = rnb->rnb_offset + rnb->rnb_len - 1; LASSERT(lock->l_resource != NULL); if (!ostid_res_name_eq(&ioo->ioo_oid, &lock->l_resource->lr_name)) RETURN(0); /* a bulk write can only hold a reference on a PW extent lock * or GROUP lock. */ mode = LCK_PW | LCK_GROUP; if (opc == OST_READ) /* whereas a bulk read can be protected by either a PR or PW * extent lock */ mode |= LCK_PR; if (!(lock->l_granted_mode & mode)) RETURN(0); RETURN(ldlm_extent_overlap(&lock->l_policy_data.l_extent, &ext)); } /** * Implementation of ptlrpc_hpreq_ops::hpreq_lock_check for OFD RW requests. * * Check for whether the given PTLRPC request (\a req) is blocking * an LDLM lock cancel. Also checks whether the request is covered by an LDLM * lock. * * \param[in] req the incoming request * * \retval 1 if \a req is blocking an LDLM lock cancel * \retval 0 if it is not * \retval -ESTALE if lock is not found */ static int ofd_rw_hpreq_check(struct ptlrpc_request *req) { struct tgt_session_info *tsi; struct obd_ioobj *ioo; struct niobuf_remote *rnb; int opc; struct ldlm_prolong_args pa = { 0 }; ENTRY; /* Don't use tgt_ses_info() to get session info, because lock_match() * can be called while request has no processing thread yet. */ tsi = lu_context_key_get(&req->rq_session, &tgt_session_key); /* * Use LASSERT below because malformed RPCs should have * been filtered out in tgt_hpreq_handler(). */ opc = lustre_msg_get_opc(req->rq_reqmsg); LASSERT(opc == OST_READ || opc == OST_WRITE); ioo = req_capsule_client_get(&req->rq_pill, &RMF_OBD_IOOBJ); LASSERT(ioo != NULL); rnb = req_capsule_client_get(&req->rq_pill, &RMF_NIOBUF_REMOTE); LASSERT(rnb != NULL); LASSERT(!(rnb->rnb_flags & OBD_BRW_SRVLOCK)); pa.lpa_mode = LCK_PW | LCK_GROUP; if (opc == OST_READ) pa.lpa_mode |= LCK_PR; pa.lpa_extent.start = rnb->rnb_offset; rnb += ioo->ioo_bufcnt - 1; pa.lpa_extent.end = rnb->rnb_offset + rnb->rnb_len - 1; DEBUG_REQ(D_RPCTRACE, req, "%s %s: refresh rw locks: "DFID " (%llu->%llu)\n", tgt_name(tsi->tsi_tgt), current->comm, PFID(&tsi->tsi_fid), pa.lpa_extent.start, pa.lpa_extent.end); ofd_prolong_extent_locks(tsi, &pa); CDEBUG(D_DLMTRACE, "%s: refreshed %u locks timeout for req %p.\n", tgt_name(tsi->tsi_tgt), pa.lpa_blocks_cnt, req); if (pa.lpa_blocks_cnt > 0) RETURN(1); RETURN(pa.lpa_locks_cnt > 0 ? 0 : -ESTALE); } /** * Implementation of ptlrpc_hpreq_ops::hpreq_lock_fini for OFD RW requests. * * Called after the request has been handled. It refreshes lock timeout again * so that client has more time to send lock cancel RPC. * * \param[in] req request which is being processed. */ static void ofd_rw_hpreq_fini(struct ptlrpc_request *req) { ofd_rw_hpreq_check(req); } /** * Implementation of ptlrpc_hpreq_ops::hpreq_lock_match for OST_PUNCH request. * * This function checks if the given lock is the same by its resname, mode * and extent as one taken from the request. * It is used to give priority to punch/truncate RPCs that might lead to * the fastest release of that lock when a lock is contended. * * \param[in] req ptlrpc_request being processed * \param[in] lock contended lock to match * * \retval 1 if lock is matched * \retval 0 otherwise */ static int ofd_punch_hpreq_lock_match(struct ptlrpc_request *req, struct ldlm_lock *lock) { struct tgt_session_info *tsi; struct obdo *oa; struct ldlm_extent ext; ENTRY; /* Don't use tgt_ses_info() to get session info, because lock_match() * can be called while request has no processing thread yet. */ tsi = lu_context_key_get(&req->rq_session, &tgt_session_key); /* * Use LASSERT below because malformed RPCs should have * been filtered out in tgt_hpreq_handler(). */ LASSERT(tsi->tsi_ost_body != NULL); if (tsi->tsi_ost_body->oa.o_valid & OBD_MD_FLHANDLE && tsi->tsi_ost_body->oa.o_handle.cookie == lock->l_handle.h_cookie) RETURN(1); oa = &tsi->tsi_ost_body->oa; ext.start = oa->o_size; ext.end = oa->o_blocks; LASSERT(lock->l_resource != NULL); if (!ostid_res_name_eq(&oa->o_oi, &lock->l_resource->lr_name)) RETURN(0); if (!(lock->l_granted_mode & (LCK_PW | LCK_GROUP))) RETURN(0); RETURN(ldlm_extent_overlap(&lock->l_policy_data.l_extent, &ext)); } /** * Implementation of ptlrpc_hpreq_ops::hpreq_lock_check for OST_PUNCH request. * * High-priority queue request check for whether the given punch request * (\a req) is blocking an LDLM lock cancel. Also checks whether the request is * covered by an LDLM lock. * * * \param[in] req the incoming request * * \retval 1 if \a req is blocking an LDLM lock cancel * \retval 0 if it is not * \retval -ESTALE if lock is not found */ static int ofd_punch_hpreq_check(struct ptlrpc_request *req) { struct tgt_session_info *tsi; struct obdo *oa; struct ldlm_prolong_args pa = { 0 }; ENTRY; /* Don't use tgt_ses_info() to get session info, because lock_match() * can be called while request has no processing thread yet. */ tsi = lu_context_key_get(&req->rq_session, &tgt_session_key); LASSERT(tsi != NULL); oa = &tsi->tsi_ost_body->oa; LASSERT(!(oa->o_valid & OBD_MD_FLFLAGS && oa->o_flags & OBD_FL_SRVLOCK)); pa.lpa_mode = LCK_PW | LCK_GROUP; pa.lpa_extent.start = oa->o_size; pa.lpa_extent.end = oa->o_blocks; CDEBUG(D_DLMTRACE, "%s: refresh locks: %llu/%llu (%llu->%llu)\n", tgt_name(tsi->tsi_tgt), tsi->tsi_resid.name[0], tsi->tsi_resid.name[1], pa.lpa_extent.start, pa.lpa_extent.end); ofd_prolong_extent_locks(tsi, &pa); CDEBUG(D_DLMTRACE, "%s: refreshed %u locks timeout for req %p.\n", tgt_name(tsi->tsi_tgt), pa.lpa_blocks_cnt, req); if (pa.lpa_blocks_cnt > 0) RETURN(1); RETURN(pa.lpa_locks_cnt > 0 ? 0 : -ESTALE); } /** * Implementation of ptlrpc_hpreq_ops::hpreq_lock_fini for OST_PUNCH request. * * Called after the request has been handled. It refreshes lock timeout again * so that client has more time to send lock cancel RPC. * * \param[in] req request which is being processed. */ static void ofd_punch_hpreq_fini(struct ptlrpc_request *req) { ofd_punch_hpreq_check(req); } static struct ptlrpc_hpreq_ops ofd_hpreq_rw = { .hpreq_lock_match = ofd_rw_hpreq_lock_match, .hpreq_check = ofd_rw_hpreq_check, .hpreq_fini = ofd_rw_hpreq_fini }; static struct ptlrpc_hpreq_ops ofd_hpreq_punch = { .hpreq_lock_match = ofd_punch_hpreq_lock_match, .hpreq_check = ofd_punch_hpreq_check, .hpreq_fini = ofd_punch_hpreq_fini }; /** * Assign high priority operations to an IO request. * * Check if the incoming request is a candidate for * high-priority processing. If it is, assign it a high * priority operations table. * * \param[in] tsi target session environment for this request */ static void ofd_hp_brw(struct tgt_session_info *tsi) { struct niobuf_remote *rnb; struct obd_ioobj *ioo; ENTRY; ioo = req_capsule_client_get(tsi->tsi_pill, &RMF_OBD_IOOBJ); LASSERT(ioo != NULL); /* must exist after request preprocessing */ if (ioo->ioo_bufcnt > 0) { rnb = req_capsule_client_get(tsi->tsi_pill, &RMF_NIOBUF_REMOTE); LASSERT(rnb != NULL); /* must exist after request preprocessing */ /* no high priority if server lock is needed */ if (rnb->rnb_flags & OBD_BRW_SRVLOCK || (lustre_msg_get_flags(tgt_ses_req(tsi)->rq_reqmsg) & MSG_REPLAY)) return; } tgt_ses_req(tsi)->rq_ops = &ofd_hpreq_rw; } /** * Assign high priority operations to an punch request. * * Check if the incoming request is a candidate for * high-priority processing. If it is, assign it a high * priority operations table. * * \param[in] tsi target session environment for this request */ static void ofd_hp_punch(struct tgt_session_info *tsi) { LASSERT(tsi->tsi_ost_body != NULL); /* must exists if we are here */ /* no high-priority if server lock is needed */ if ((tsi->tsi_ost_body->oa.o_valid & OBD_MD_FLFLAGS && tsi->tsi_ost_body->oa.o_flags & OBD_FL_SRVLOCK) || tgt_conn_flags(tsi) & OBD_CONNECT_MDS || lustre_msg_get_flags(tgt_ses_req(tsi)->rq_reqmsg) & MSG_REPLAY) return; tgt_ses_req(tsi)->rq_ops = &ofd_hpreq_punch; } #define OBD_FAIL_OST_READ_NET OBD_FAIL_OST_BRW_NET #define OBD_FAIL_OST_WRITE_NET OBD_FAIL_OST_BRW_NET #define OST_BRW_READ OST_READ #define OST_BRW_WRITE OST_WRITE /** * Table of OFD-specific request handlers * * This table contains all opcodes accepted by OFD and * specifies handlers for them. The tgt_request_handler() * uses such table from each target to process incoming * requests. */ static struct tgt_handler ofd_tgt_handlers[] = { TGT_RPC_HANDLER(OST_FIRST_OPC, 0, OST_CONNECT, tgt_connect, &RQF_CONNECT, LUSTRE_OBD_VERSION), TGT_RPC_HANDLER(OST_FIRST_OPC, 0, OST_DISCONNECT, tgt_disconnect, &RQF_OST_DISCONNECT, LUSTRE_OBD_VERSION), TGT_RPC_HANDLER(OST_FIRST_OPC, 0, OST_SET_INFO, ofd_set_info_hdl, &RQF_OBD_SET_INFO, LUSTRE_OST_VERSION), TGT_OST_HDL(0, OST_GET_INFO, ofd_get_info_hdl), TGT_OST_HDL(HABEO_CORPUS| HABEO_REFERO, OST_GETATTR, ofd_getattr_hdl), TGT_OST_HDL(HABEO_CORPUS| HABEO_REFERO | MUTABOR, OST_SETATTR, ofd_setattr_hdl), TGT_OST_HDL(0 | HABEO_REFERO | MUTABOR, OST_CREATE, ofd_create_hdl), TGT_OST_HDL(0 | HABEO_REFERO | MUTABOR, OST_DESTROY, ofd_destroy_hdl), TGT_OST_HDL(0 | HABEO_REFERO, OST_STATFS, ofd_statfs_hdl), TGT_OST_HDL_HP(HABEO_CORPUS| HABEO_REFERO, OST_BRW_READ, tgt_brw_read, ofd_hp_brw), /* don't set CORPUS flag for brw_write because -ENOENT may be valid case */ TGT_OST_HDL_HP(HABEO_CORPUS| MUTABOR, OST_BRW_WRITE, tgt_brw_write, ofd_hp_brw), TGT_OST_HDL_HP(HABEO_CORPUS| HABEO_REFERO | MUTABOR, OST_PUNCH, ofd_punch_hdl, ofd_hp_punch), TGT_OST_HDL(HABEO_CORPUS| HABEO_REFERO, OST_SYNC, ofd_sync_hdl), TGT_OST_HDL(0 | HABEO_REFERO, OST_QUOTACTL, ofd_quotactl), TGT_OST_HDL(HABEO_CORPUS | HABEO_REFERO, OST_LADVISE, ofd_ladvise_hdl), }; static struct tgt_opc_slice ofd_common_slice[] = { { .tos_opc_start = OST_FIRST_OPC, .tos_opc_end = OST_LAST_OPC, .tos_hs = ofd_tgt_handlers }, { .tos_opc_start = OBD_FIRST_OPC, .tos_opc_end = OBD_LAST_OPC, .tos_hs = tgt_obd_handlers }, { .tos_opc_start = LDLM_FIRST_OPC, .tos_opc_end = LDLM_LAST_OPC, .tos_hs = tgt_dlm_handlers }, { .tos_opc_start = OUT_UPDATE_FIRST_OPC, .tos_opc_end = OUT_UPDATE_LAST_OPC, .tos_hs = tgt_out_handlers }, { .tos_opc_start = SEQ_FIRST_OPC, .tos_opc_end = SEQ_LAST_OPC, .tos_hs = seq_handlers }, { .tos_opc_start = LFSCK_FIRST_OPC, .tos_opc_end = LFSCK_LAST_OPC, .tos_hs = tgt_lfsck_handlers }, { .tos_opc_start = SEC_FIRST_OPC, .tos_opc_end = SEC_LAST_OPC, .tos_hs = tgt_sec_ctx_handlers }, { .tos_hs = NULL } }; /* context key constructor/destructor: ofd_key_init(), ofd_key_fini() */ LU_KEY_INIT_FINI(ofd, struct ofd_thread_info); /** * Implementation of lu_context_key::lct_key_exit. * * Optional method called on lu_context_exit() for all allocated * keys. * It is used in OFD to sanitize context values which may be re-used * during another request processing by the same thread. * * \param[in] ctx execution context * \param[in] key context key * \param[in] data ofd_thread_info */ static void ofd_key_exit(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct ofd_thread_info *info = data; info->fti_env = NULL; info->fti_exp = NULL; info->fti_xid = 0; info->fti_pre_version = 0; memset(&info->fti_attr, 0, sizeof info->fti_attr); } struct lu_context_key ofd_thread_key = { .lct_tags = LCT_DT_THREAD, .lct_init = ofd_key_init, .lct_fini = ofd_key_fini, .lct_exit = ofd_key_exit }; /** * Initialize OFD device according to parameters in the config log \a cfg. * * This is the main starting point of OFD initialization. It fills all OFD * parameters with their initial values and calls other initializing functions * to set up all OFD subsystems. * * \param[in] env execution environment * \param[in] m OFD device * \param[in] ldt LU device type of OFD * \param[in] cfg configuration log * * \retval 0 if successful * \retval negative value on error */ static int ofd_init0(const struct lu_env *env, struct ofd_device *m, struct lu_device_type *ldt, struct lustre_cfg *cfg) { const char *dev = lustre_cfg_string(cfg, 0); struct ofd_thread_info *info = NULL; struct obd_device *obd; struct tg_grants_data *tgd = &m->ofd_lut.lut_tgd; struct obd_statfs *osfs; struct lu_fid fid; struct nm_config_file *nodemap_config; struct obd_device_target *obt; int rc; ENTRY; obd = class_name2obd(dev); if (obd == NULL) { CERROR("Cannot find obd with name %s\n", dev); RETURN(-ENODEV); } rc = lu_env_refill((struct lu_env *)env); if (rc != 0) RETURN(rc); obt = &obd->u.obt; obt->obt_magic = OBT_MAGIC; m->ofd_fmd_max_num = OFD_FMD_MAX_NUM_DEFAULT; m->ofd_fmd_max_age = OFD_FMD_MAX_AGE_DEFAULT; spin_lock_init(&m->ofd_flags_lock); m->ofd_raid_degraded = 0; m->ofd_syncjournal = 0; ofd_slc_set(m); tgd->tgd_grant_compat_disable = 0; m->ofd_soft_sync_limit = OFD_SOFT_SYNC_LIMIT_DEFAULT; /* statfs data */ spin_lock_init(&tgd->tgd_osfs_lock); tgd->tgd_osfs_age = cfs_time_shift_64(-1000); tgd->tgd_osfs_unstable = 0; tgd->tgd_statfs_inflight = 0; tgd->tgd_osfs_inflight = 0; /* grant data */ spin_lock_init(&tgd->tgd_grant_lock); tgd->tgd_tot_dirty = 0; tgd->tgd_tot_granted = 0; tgd->tgd_tot_pending = 0; m->ofd_seq_count = 0; init_waitqueue_head(&m->ofd_inconsistency_thread.t_ctl_waitq); INIT_LIST_HEAD(&m->ofd_inconsistency_list); spin_lock_init(&m->ofd_inconsistency_lock); spin_lock_init(&m->ofd_batch_lock); init_rwsem(&m->ofd_lastid_rwsem); m->ofd_dt_dev.dd_lu_dev.ld_ops = &ofd_lu_ops; m->ofd_dt_dev.dd_lu_dev.ld_obd = obd; /* set this lu_device to obd, because error handling need it */ obd->obd_lu_dev = &m->ofd_dt_dev.dd_lu_dev; rc = ofd_procfs_init(m); if (rc) { CERROR("Can't init ofd lprocfs, rc %d\n", rc); RETURN(rc); } /* No connection accepted until configurations will finish */ spin_lock(&obd->obd_dev_lock); obd->obd_no_conn = 1; spin_unlock(&obd->obd_dev_lock); obd->obd_replayable = 1; if (cfg->lcfg_bufcount > 4 && LUSTRE_CFG_BUFLEN(cfg, 4) > 0) { char *str = lustre_cfg_string(cfg, 4); if (strchr(str, 'n')) { CWARN("%s: recovery disabled\n", obd->obd_name); obd->obd_replayable = 0; } } info = ofd_info_init(env, NULL); if (info == NULL) GOTO(err_fini_proc, rc = -EFAULT); rc = ofd_stack_init(env, m, cfg); if (rc) { CERROR("Can't init device stack, rc %d\n", rc); GOTO(err_fini_proc, rc); } ofd_procfs_add_brw_stats_symlink(m); snprintf(info->fti_u.name, sizeof(info->fti_u.name), "%s-%s", "filter"/*LUSTRE_OST_NAME*/, obd->obd_uuid.uuid); m->ofd_namespace = ldlm_namespace_new(obd, info->fti_u.name, LDLM_NAMESPACE_SERVER, LDLM_NAMESPACE_GREEDY, LDLM_NS_TYPE_OST); if (m->ofd_namespace == NULL) GOTO(err_fini_stack, rc = -ENOMEM); /* set obd_namespace for compatibility with old code */ obd->obd_namespace = m->ofd_namespace; ldlm_register_intent(m->ofd_namespace, ofd_intent_policy); m->ofd_namespace->ns_lvbo = &ofd_lvbo; m->ofd_namespace->ns_lvbp = m; ptlrpc_init_client(LDLM_CB_REQUEST_PORTAL, LDLM_CB_REPLY_PORTAL, "filter_ldlm_cb_client", &obd->obd_ldlm_client); dt_conf_get(env, m->ofd_osd, &m->ofd_lut.lut_dt_conf); rc = tgt_init(env, &m->ofd_lut, obd, m->ofd_osd, ofd_common_slice, OBD_FAIL_OST_ALL_REQUEST_NET, OBD_FAIL_OST_ALL_REPLY_NET); if (rc) GOTO(err_free_ns, rc); /* populate cached statfs data */ osfs = &ofd_info(env)->fti_u.osfs; rc = tgt_statfs_internal(env, &m->ofd_lut, osfs, 0, NULL); if (rc != 0) { CERROR("%s: can't get statfs data, rc %d\n", obd->obd_name, rc); GOTO(err_fini_lut, rc); } if (!is_power_of_2(osfs->os_bsize)) { CERROR("%s: blocksize (%d) is not a power of 2\n", obd->obd_name, osfs->os_bsize); GOTO(err_fini_lut, rc = -EPROTO); } tgd->tgd_blockbits = fls(osfs->os_bsize) - 1; if (ONE_MB_BRW_SIZE < (1U << tgd->tgd_blockbits)) m->ofd_brw_size = 1U << tgd->tgd_blockbits; else m->ofd_brw_size = ONE_MB_BRW_SIZE; m->ofd_cksum_types_supported = cksum_types_supported_server(); m->ofd_precreate_batch = OFD_PRECREATE_BATCH_DEFAULT; if (osfs->os_bsize * osfs->os_blocks < OFD_PRECREATE_SMALL_FS) m->ofd_precreate_batch = OFD_PRECREATE_BATCH_SMALL; rc = ofd_fs_setup(env, m, obd); if (rc) GOTO(err_fini_lut, rc); fid.f_seq = FID_SEQ_LOCAL_NAME; fid.f_oid = 1; fid.f_ver = 0; rc = local_oid_storage_init(env, m->ofd_osd, &fid, &m->ofd_los); if (rc != 0) GOTO(err_fini_fs, rc); nodemap_config = nm_config_file_register_tgt(env, m->ofd_osd, m->ofd_los); if (IS_ERR(nodemap_config)) { rc = PTR_ERR(nodemap_config); if (rc != -EROFS) GOTO(err_fini_los, rc); } else { obt->obt_nodemap_config_file = nodemap_config; } rc = ofd_start_inconsistency_verification_thread(m); if (rc != 0) GOTO(err_fini_nm, rc); tgt_adapt_sptlrpc_conf(&m->ofd_lut); RETURN(0); err_fini_nm: nm_config_file_deregister_tgt(env, obt->obt_nodemap_config_file); obt->obt_nodemap_config_file = NULL; err_fini_los: local_oid_storage_fini(env, m->ofd_los); m->ofd_los = NULL; err_fini_fs: ofd_fs_cleanup(env, m); err_fini_lut: tgt_fini(env, &m->ofd_lut); err_free_ns: ldlm_namespace_free(m->ofd_namespace, NULL, obd->obd_force); obd->obd_namespace = m->ofd_namespace = NULL; err_fini_stack: ofd_stack_fini(env, m, &m->ofd_osd->dd_lu_dev); err_fini_proc: ofd_procfs_fini(m); return rc; } /** * Stop the OFD device * * This function stops the OFD device and all its subsystems. * This is the end of OFD lifecycle. * * \param[in] env execution environment * \param[in] m OFD device */ static void ofd_fini(const struct lu_env *env, struct ofd_device *m) { struct obd_device *obd = ofd_obd(m); struct lu_device *d = &m->ofd_dt_dev.dd_lu_dev; struct lfsck_stop stop; stop.ls_status = LS_PAUSED; stop.ls_flags = 0; lfsck_stop(env, m->ofd_osd, &stop); target_recovery_fini(obd); if (m->ofd_namespace != NULL) ldlm_namespace_free_prior(m->ofd_namespace, NULL, d->ld_obd->obd_force); obd_exports_barrier(obd); obd_zombie_barrier(); tgt_fini(env, &m->ofd_lut); ofd_stop_inconsistency_verification_thread(m); lfsck_degister(env, m->ofd_osd); ofd_fs_cleanup(env, m); nm_config_file_deregister_tgt(env, obd->u.obt.obt_nodemap_config_file); obd->u.obt.obt_nodemap_config_file = NULL; if (m->ofd_los != NULL) { local_oid_storage_fini(env, m->ofd_los); m->ofd_los = NULL; } if (m->ofd_namespace != NULL) { ldlm_namespace_free_post(m->ofd_namespace); d->ld_obd->obd_namespace = m->ofd_namespace = NULL; } ofd_stack_fini(env, m, &m->ofd_dt_dev.dd_lu_dev); ofd_procfs_fini(m); LASSERT(atomic_read(&d->ld_ref) == 0); server_put_mount(obd->obd_name, true); EXIT; } /** * Implementation of lu_device_type_operations::ldto_device_fini. * * Finalize device. Dual to ofd_device_init(). It is called from * obd_precleanup() and stops the current device. * * \param[in] env execution environment * \param[in] d LU device of OFD * * \retval NULL */ static struct lu_device *ofd_device_fini(const struct lu_env *env, struct lu_device *d) { ENTRY; ofd_fini(env, ofd_dev(d)); RETURN(NULL); } /** * Implementation of lu_device_type_operations::ldto_device_free. * * Free OFD device. Dual to ofd_device_alloc(). * * \param[in] env execution environment * \param[in] d LU device of OFD * * \retval NULL */ static struct lu_device *ofd_device_free(const struct lu_env *env, struct lu_device *d) { struct ofd_device *m = ofd_dev(d); dt_device_fini(&m->ofd_dt_dev); OBD_FREE_PTR(m); RETURN(NULL); } /** * Implementation of lu_device_type_operations::ldto_device_alloc. * * This function allocates the new OFD device. It is called from * obd_setup() if OBD device had lu_device_type defined. * * \param[in] env execution environment * \param[in] t lu_device_type of OFD device * \param[in] cfg configuration log * * \retval pointer to the lu_device of just allocated OFD * \retval ERR_PTR of return value on error */ static struct lu_device *ofd_device_alloc(const struct lu_env *env, struct lu_device_type *t, struct lustre_cfg *cfg) { struct ofd_device *m; struct lu_device *l; int rc; OBD_ALLOC_PTR(m); if (m == NULL) return ERR_PTR(-ENOMEM); l = &m->ofd_dt_dev.dd_lu_dev; dt_device_init(&m->ofd_dt_dev, t); rc = ofd_init0(env, m, t, cfg); if (rc != 0) { ofd_device_free(env, l); l = ERR_PTR(rc); } return l; } /* type constructor/destructor: ofd_type_init(), ofd_type_fini() */ LU_TYPE_INIT_FINI(ofd, &ofd_thread_key); static struct lu_device_type_operations ofd_device_type_ops = { .ldto_init = ofd_type_init, .ldto_fini = ofd_type_fini, .ldto_start = ofd_type_start, .ldto_stop = ofd_type_stop, .ldto_device_alloc = ofd_device_alloc, .ldto_device_free = ofd_device_free, .ldto_device_fini = ofd_device_fini }; static struct lu_device_type ofd_device_type = { .ldt_tags = LU_DEVICE_DT, .ldt_name = LUSTRE_OST_NAME, .ldt_ops = &ofd_device_type_ops, .ldt_ctx_tags = LCT_DT_THREAD }; /** * Initialize OFD module. * * This function is called upon module loading. It registers OFD device type * and prepares all in-memory structures used by all OFD devices. * * \retval 0 if successful * \retval negative value on error */ static int __init ofd_init(void) { int rc; rc = lu_kmem_init(ofd_caches); if (rc) return rc; rc = ofd_fmd_init(); if (rc) { lu_kmem_fini(ofd_caches); return(rc); } rc = class_register_type(&ofd_obd_ops, NULL, true, NULL, LUSTRE_OST_NAME, &ofd_device_type); return rc; } /** * Stop OFD module. * * This function is called upon OFD module unloading. * It frees all related structures and unregisters OFD device type. */ static void __exit ofd_exit(void) { ofd_fmd_exit(); lu_kmem_fini(ofd_caches); class_unregister_type(LUSTRE_OST_NAME); } MODULE_AUTHOR("OpenSFS, Inc. "); MODULE_DESCRIPTION("Lustre Object Filtering Device"); MODULE_VERSION(LUSTRE_VERSION_STRING); MODULE_LICENSE("GPL"); module_init(ofd_init); module_exit(ofd_exit);