/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2017, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/obdclass/lprocfs_status.c * * Author: Hariharan Thantry */ #define DEBUG_SUBSYSTEM S_CLASS #include #include #ifdef CONFIG_PROC_FS static int lprocfs_no_percpu_stats = 0; module_param(lprocfs_no_percpu_stats, int, 0644); MODULE_PARM_DESC(lprocfs_no_percpu_stats, "Do not alloc percpu data for lprocfs stats"); #define MAX_STRING_SIZE 128 int lprocfs_single_release(struct inode *inode, struct file *file) { return single_release(inode, file); } EXPORT_SYMBOL(lprocfs_single_release); int lprocfs_seq_release(struct inode *inode, struct file *file) { return seq_release(inode, file); } EXPORT_SYMBOL(lprocfs_seq_release); struct dentry *ldebugfs_add_simple(struct dentry *root, char *name, void *data, const struct file_operations *fops) { struct dentry *entry; umode_t mode = 0; if (!root || !name || !fops) return ERR_PTR(-EINVAL); if (fops->read) mode = 0444; if (fops->write) mode |= 0200; entry = debugfs_create_file(name, mode, root, data, fops); if (IS_ERR_OR_NULL(entry)) { CERROR("LprocFS: No memory to create entry %s", name); return entry ?: ERR_PTR(-ENOMEM); } return entry; } EXPORT_SYMBOL(ldebugfs_add_simple); struct proc_dir_entry * lprocfs_add_simple(struct proc_dir_entry *root, char *name, void *data, const struct file_operations *fops) { struct proc_dir_entry *proc; mode_t mode = 0; if (!root || !name || !fops) return ERR_PTR(-EINVAL); if (fops->read) mode = 0444; if (fops->write) mode |= 0200; proc = proc_create_data(name, mode, root, fops, data); if (!proc) { CERROR("LprocFS: No memory to create /proc entry %s\n", name); return ERR_PTR(-ENOMEM); } return proc; } EXPORT_SYMBOL(lprocfs_add_simple); struct proc_dir_entry *lprocfs_add_symlink(const char *name, struct proc_dir_entry *parent, const char *format, ...) { struct proc_dir_entry *entry; char *dest; va_list ap; if (!parent || !format) return NULL; OBD_ALLOC_WAIT(dest, MAX_STRING_SIZE + 1); if (!dest) return NULL; va_start(ap, format); vsnprintf(dest, MAX_STRING_SIZE, format, ap); va_end(ap); entry = proc_symlink(name, parent, dest); if (!entry) CERROR("LprocFS: Could not create symbolic link from " "%s to %s\n", name, dest); OBD_FREE(dest, MAX_STRING_SIZE + 1); return entry; } EXPORT_SYMBOL(lprocfs_add_symlink); static const struct file_operations lprocfs_generic_fops = { }; int ldebugfs_add_vars(struct dentry *parent, struct lprocfs_vars *list, void *data) { if (IS_ERR_OR_NULL(parent) || IS_ERR_OR_NULL(list)) return -EINVAL; while (list->name) { struct dentry *entry; umode_t mode = 0; if (list->proc_mode != 0000) { mode = list->proc_mode; } else if (list->fops) { if (list->fops->read) mode = 0444; if (list->fops->write) mode |= 0200; } entry = debugfs_create_file(list->name, mode, parent, list->data ? : data, list->fops ? : &lprocfs_generic_fops); if (IS_ERR_OR_NULL(entry)) return entry ? PTR_ERR(entry) : -ENOMEM; list++; } return 0; } EXPORT_SYMBOL_GPL(ldebugfs_add_vars); /** * Add /proc entries. * * \param root [in] The parent proc entry on which new entry will be added. * \param list [in] Array of proc entries to be added. * \param data [in] The argument to be passed when entries read/write routines * are called through /proc file. * * \retval 0 on success * < 0 on error */ int lprocfs_add_vars(struct proc_dir_entry *root, struct lprocfs_vars *list, void *data) { if (!root || !list) return -EINVAL; while (list->name) { struct proc_dir_entry *proc; mode_t mode = 0; if (list->proc_mode != 0000) { mode = list->proc_mode; } else if (list->fops) { if (list->fops->read) mode = 0444; if (list->fops->write) mode |= 0200; } proc = proc_create_data(list->name, mode, root, list->fops ?: &lprocfs_generic_fops, list->data ?: data); if (!proc) return -ENOMEM; list++; } return 0; } EXPORT_SYMBOL(lprocfs_add_vars); void ldebugfs_remove(struct dentry **entryp) { debugfs_remove_recursive(*entryp); *entryp = NULL; } EXPORT_SYMBOL_GPL(ldebugfs_remove); #ifndef HAVE_REMOVE_PROC_SUBTREE /* for b=10866, global variable */ DECLARE_RWSEM(_lprocfs_lock); EXPORT_SYMBOL(_lprocfs_lock); static void lprocfs_remove_nolock(struct proc_dir_entry **proot) { struct proc_dir_entry *root = *proot; struct proc_dir_entry *temp = root; struct proc_dir_entry *rm_entry; struct proc_dir_entry *parent; *proot = NULL; if (!root || IS_ERR(root)) return; parent = root->parent; LASSERT(parent != NULL); while (1) { while (temp->subdir) temp = temp->subdir; rm_entry = temp; temp = temp->parent; /* * Memory corruption once caused this to fail, and * without this LASSERT we would loop here forever. */ LASSERTF(strlen(rm_entry->name) == rm_entry->namelen, "0x%p %s/%s len %d\n", rm_entry, temp->name, rm_entry->name, (int)strlen(rm_entry->name)); remove_proc_entry(rm_entry->name, temp); if (temp == parent) break; } } int remove_proc_subtree(const char *name, struct proc_dir_entry *parent) { struct proc_dir_entry *t = NULL; struct proc_dir_entry **p; int len, busy = 0; LASSERT(parent != NULL); len = strlen(name); down_write(&_lprocfs_lock); /* lookup target name */ for (p = &parent->subdir; *p; p = &(*p)->next) { if ((*p)->namelen != len) continue; if (memcmp(name, (*p)->name, len)) continue; t = *p; break; } if (t) { /* verify it's empty: do not count "num_refs" */ for (p = &t->subdir; *p; p = &(*p)->next) { if ((*p)->namelen != strlen("num_refs")) { busy = 1; break; } if (memcmp("num_refs", (*p)->name, strlen("num_refs"))) { busy = 1; break; } } } if (busy == 0) lprocfs_remove_nolock(&t); up_write(&_lprocfs_lock); return 0; } #endif /* !HAVE_REMOVE_PROC_SUBTREE */ #ifndef HAVE_PROC_REMOVE void proc_remove(struct proc_dir_entry *de) { #ifndef HAVE_REMOVE_PROC_SUBTREE down_write(&_lprocfs_lock); /* search vs remove race */ lprocfs_remove_nolock(&de); up_write(&_lprocfs_lock); #else if (de) remove_proc_subtree(de->name, de->parent); #endif } #endif void lprocfs_remove(struct proc_dir_entry **rooth) { proc_remove(*rooth); *rooth = NULL; } EXPORT_SYMBOL(lprocfs_remove); void lprocfs_remove_proc_entry(const char *name, struct proc_dir_entry *parent) { LASSERT(parent != NULL); remove_proc_entry(name, parent); } EXPORT_SYMBOL(lprocfs_remove_proc_entry); struct dentry *ldebugfs_register(const char *name, struct dentry *parent, struct lprocfs_vars *list, void *data) { struct dentry *entry; entry = debugfs_create_dir(name, parent); if (IS_ERR_OR_NULL(entry)) { entry = entry ?: ERR_PTR(-ENOMEM); goto out; } if (!IS_ERR_OR_NULL(list)) { int rc; rc = ldebugfs_add_vars(entry, list, data); if (rc) { debugfs_remove(entry); entry = ERR_PTR(rc); } } out: return entry; } EXPORT_SYMBOL_GPL(ldebugfs_register); struct proc_dir_entry * lprocfs_register(const char *name, struct proc_dir_entry *parent, struct lprocfs_vars *list, void *data) { struct proc_dir_entry *newchild; newchild = proc_mkdir(name, parent); if (!newchild) return ERR_PTR(-ENOMEM); if (list) { int rc = lprocfs_add_vars(newchild, list, data); if (rc) { lprocfs_remove(&newchild); return ERR_PTR(rc); } } return newchild; } EXPORT_SYMBOL(lprocfs_register); /* Generic callbacks */ int lprocfs_uuid_seq_show(struct seq_file *m, void *data) { struct obd_device *obd = data; LASSERT(obd != NULL); seq_printf(m, "%s\n", obd->obd_uuid.uuid); return 0; } EXPORT_SYMBOL(lprocfs_uuid_seq_show); static ssize_t uuid_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); return sprintf(buf, "%s\n", obd->obd_uuid.uuid); } LUSTRE_RO_ATTR(uuid); static ssize_t blocksize_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); struct obd_statfs osfs; int rc; rc = obd_statfs(NULL, obd->obd_self_export, &osfs, ktime_get_seconds() - OBD_STATFS_CACHE_SECONDS, OBD_STATFS_NODELAY); if (!rc) return sprintf(buf, "%u\n", osfs.os_bsize); return rc; } LUSTRE_RO_ATTR(blocksize); static ssize_t kbytestotal_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); struct obd_statfs osfs; int rc; rc = obd_statfs(NULL, obd->obd_self_export, &osfs, ktime_get_seconds() - OBD_STATFS_CACHE_SECONDS, OBD_STATFS_NODELAY); if (!rc) { u32 blk_size = osfs.os_bsize >> 10; u64 result = osfs.os_blocks; result *= rounddown_pow_of_two(blk_size ?: 1); return sprintf(buf, "%llu\n", result); } return rc; } LUSTRE_RO_ATTR(kbytestotal); static ssize_t kbytesfree_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); struct obd_statfs osfs; int rc; rc = obd_statfs(NULL, obd->obd_self_export, &osfs, ktime_get_seconds() - OBD_STATFS_CACHE_SECONDS, OBD_STATFS_NODELAY); if (!rc) { u32 blk_size = osfs.os_bsize >> 10; u64 result = osfs.os_bfree; while (blk_size >>= 1) result <<= 1; return sprintf(buf, "%llu\n", result); } return rc; } LUSTRE_RO_ATTR(kbytesfree); static ssize_t kbytesavail_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); struct obd_statfs osfs; int rc; rc = obd_statfs(NULL, obd->obd_self_export, &osfs, ktime_get_seconds() - OBD_STATFS_CACHE_SECONDS, OBD_STATFS_NODELAY); if (!rc) { u32 blk_size = osfs.os_bsize >> 10; u64 result = osfs.os_bavail; while (blk_size >>= 1) result <<= 1; return sprintf(buf, "%llu\n", result); } return rc; } LUSTRE_RO_ATTR(kbytesavail); static ssize_t filestotal_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); struct obd_statfs osfs; int rc; rc = obd_statfs(NULL, obd->obd_self_export, &osfs, ktime_get_seconds() - OBD_STATFS_CACHE_SECONDS, OBD_STATFS_NODELAY); if (!rc) return sprintf(buf, "%llu\n", osfs.os_files); return rc; } LUSTRE_RO_ATTR(filestotal); static ssize_t filesfree_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); struct obd_statfs osfs; int rc; rc = obd_statfs(NULL, obd->obd_self_export, &osfs, ktime_get_seconds() - OBD_STATFS_CACHE_SECONDS, OBD_STATFS_NODELAY); if (!rc) return sprintf(buf, "%llu\n", osfs.os_ffree); return rc; } LUSTRE_RO_ATTR(filesfree); ssize_t conn_uuid_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); struct ptlrpc_connection *conn; ssize_t count; LPROCFS_CLIMP_CHECK(obd); conn = obd->u.cli.cl_import->imp_connection; if (conn && obd->u.cli.cl_import) count = sprintf(buf, "%s\n", conn->c_remote_uuid.uuid); else count = sprintf(buf, "%s\n", ""); LPROCFS_CLIMP_EXIT(obd); return count; } EXPORT_SYMBOL(conn_uuid_show); int lprocfs_server_uuid_seq_show(struct seq_file *m, void *data) { struct obd_device *obd = data; struct obd_import *imp; char *imp_state_name = NULL; int rc = 0; LASSERT(obd != NULL); LPROCFS_CLIMP_CHECK(obd); imp = obd->u.cli.cl_import; imp_state_name = ptlrpc_import_state_name(imp->imp_state); seq_printf(m, "%s\t%s%s\n", obd2cli_tgt(obd), imp_state_name, imp->imp_deactive ? "\tDEACTIVATED" : ""); LPROCFS_CLIMP_EXIT(obd); return rc; } EXPORT_SYMBOL(lprocfs_server_uuid_seq_show); /** add up per-cpu counters */ /** * Lock statistics structure for access, possibly only on this CPU. * * The statistics struct may be allocated with per-CPU structures for * efficient concurrent update (usually only on server-wide stats), or * as a single global struct (e.g. for per-client or per-job statistics), * so the required locking depends on the type of structure allocated. * * For per-CPU statistics, pin the thread to the current cpuid so that * will only access the statistics for that CPU. If the stats structure * for the current CPU has not been allocated (or previously freed), * allocate it now. The per-CPU statistics do not need locking since * the thread is pinned to the CPU during update. * * For global statistics, lock the stats structure to prevent concurrent update. * * \param[in] stats statistics structure to lock * \param[in] opc type of operation: * LPROCFS_GET_SMP_ID: "lock" and return current CPU index * for incrementing statistics for that CPU * LPROCFS_GET_NUM_CPU: "lock" and return number of used * CPU indices to iterate over all indices * \param[out] flags CPU interrupt saved state for IRQ-safe locking * * \retval cpuid of current thread or number of allocated structs * \retval negative on error (only for opc LPROCFS_GET_SMP_ID + per-CPU stats) */ int lprocfs_stats_lock(struct lprocfs_stats *stats, enum lprocfs_stats_lock_ops opc, unsigned long *flags) { if (stats->ls_flags & LPROCFS_STATS_FLAG_NOPERCPU) { if (stats->ls_flags & LPROCFS_STATS_FLAG_IRQ_SAFE) spin_lock_irqsave(&stats->ls_lock, *flags); else spin_lock(&stats->ls_lock); return opc == LPROCFS_GET_NUM_CPU ? 1 : 0; } switch (opc) { case LPROCFS_GET_SMP_ID: { unsigned int cpuid = get_cpu(); if (unlikely(!stats->ls_percpu[cpuid])) { int rc = lprocfs_stats_alloc_one(stats, cpuid); if (rc < 0) { put_cpu(); return rc; } } return cpuid; } case LPROCFS_GET_NUM_CPU: return stats->ls_biggest_alloc_num; default: LBUG(); } } /** * Unlock statistics structure after access. * * Unlock the lock acquired via lprocfs_stats_lock() for global statistics, * or unpin this thread from the current cpuid for per-CPU statistics. * * This function must be called using the same arguments as used when calling * lprocfs_stats_lock() so that the correct operation can be performed. * * \param[in] stats statistics structure to unlock * \param[in] opc type of operation (current cpuid or number of structs) * \param[in] flags CPU interrupt saved state for IRQ-safe locking */ void lprocfs_stats_unlock(struct lprocfs_stats *stats, enum lprocfs_stats_lock_ops opc, unsigned long *flags) { if (stats->ls_flags & LPROCFS_STATS_FLAG_NOPERCPU) { if (stats->ls_flags & LPROCFS_STATS_FLAG_IRQ_SAFE) spin_unlock_irqrestore(&stats->ls_lock, *flags); else spin_unlock(&stats->ls_lock); } else if (opc == LPROCFS_GET_SMP_ID) { put_cpu(); } } /** add up per-cpu counters */ void lprocfs_stats_collect(struct lprocfs_stats *stats, int idx, struct lprocfs_counter *cnt) { unsigned int num_entry; struct lprocfs_counter *percpu_cntr; int i; unsigned long flags = 0; memset(cnt, 0, sizeof(*cnt)); if (!stats) { /* set count to 1 to avoid divide-by-zero errs in callers */ cnt->lc_count = 1; return; } cnt->lc_min = LC_MIN_INIT; num_entry = lprocfs_stats_lock(stats, LPROCFS_GET_NUM_CPU, &flags); for (i = 0; i < num_entry; i++) { if (!stats->ls_percpu[i]) continue; percpu_cntr = lprocfs_stats_counter_get(stats, i, idx); cnt->lc_count += percpu_cntr->lc_count; cnt->lc_sum += percpu_cntr->lc_sum; if (percpu_cntr->lc_min < cnt->lc_min) cnt->lc_min = percpu_cntr->lc_min; if (percpu_cntr->lc_max > cnt->lc_max) cnt->lc_max = percpu_cntr->lc_max; cnt->lc_sumsquare += percpu_cntr->lc_sumsquare; } lprocfs_stats_unlock(stats, LPROCFS_GET_NUM_CPU, &flags); } static void obd_import_flags2str(struct obd_import *imp, struct seq_file *m) { bool first = true; if (imp->imp_obd->obd_no_recov) { seq_printf(m, "no_recov"); first = false; } flag2str(imp, invalid); flag2str(imp, deactive); flag2str(imp, replayable); flag2str(imp, delayed_recovery); flag2str(imp, vbr_failed); flag2str(imp, pingable); flag2str(imp, resend_replay); flag2str(imp, no_pinger_recover); flag2str(imp, connect_tried); } static const char *obd_connect_names[] = { /* flags names */ "read_only", "lov_index", "connect_from_mds", "write_grant", "server_lock", "version", "request_portal", "acl", "xattr", "create_on_write", "truncate_lock", "initial_transno", "inode_bit_locks", "barrier", "getattr_by_fid", "no_oh_for_devices", "remote_client", "remote_client_by_force", "max_byte_per_rpc", "64bit_qdata", "mds_capability", "oss_capability", "early_lock_cancel", "som", "adaptive_timeouts", "lru_resize", "mds_mds_connection", "real_conn", "change_qunit_size", "alt_checksum_algorithm", "fid_is_enabled", "version_recovery", "pools", "grant_shrink", "skip_orphan", "large_ea", "full20", "layout_lock", "64bithash", "object_max_bytes", "imp_recov", "jobstats", "umask", "einprogress", "grant_param", "flock_owner", "lvb_type", "nanoseconds_times", "lightweight_conn", "short_io", "pingless", "flock_deadlock", "disp_stripe", "open_by_fid", "lfsck", "unknown", "unlink_close", "multi_mod_rpcs", "dir_stripe", "subtree", "lockahead", "bulk_mbits", "compact_obdo", "second_flags", /* flags2 names */ "file_secctx", /* 0x01 */ "lockaheadv2", /* 0x02 */ "dir_migrate", /* 0x04 */ "sum_statfs", /* 0x08 */ "overstriping", /* 0x10 */ "flr", /* 0x20 */ "wbc", /* 0x40 */ "lock_convert", /* 0x80 */ "archive_id_array", /* 0x100 */ "increasing_xid", /* 0x200 */ "selinux_policy", /* 0x400 */ "lsom", /* 0x800 */ "pcc", /* 0x1000 */ "plain_layout", /* 0x2000 */ "async_discard", /* 0x4000 */ "client_encryption", /* 0x8000 */ NULL }; void obd_connect_seq_flags2str(struct seq_file *m, __u64 flags, __u64 flags2, const char *sep) { bool first = true; __u64 mask; int i; for (i = 0, mask = 1; i < 64; i++, mask <<= 1) { if (flags & mask) { seq_printf(m, "%s%s", first ? "" : sep, obd_connect_names[i]); first = false; } } if (flags & ~(mask - 1)) { seq_printf(m, "%sunknown_%#llx", first ? "" : sep, flags & ~(mask - 1)); first = false; } if (!(flags & OBD_CONNECT_FLAGS2) || flags2 == 0) return; for (i = 64, mask = 1; obd_connect_names[i] != NULL; i++, mask <<= 1) { if (flags2 & mask) { seq_printf(m, "%s%s", first ? "" : sep, obd_connect_names[i]); first = false; } } if (flags2 & ~(mask - 1)) { seq_printf(m, "%sunknown2_%#llx", first ? "" : sep, flags2 & ~(mask - 1)); first = false; } } EXPORT_SYMBOL(obd_connect_seq_flags2str); int obd_connect_flags2str(char *page, int count, __u64 flags, __u64 flags2, const char *sep) { __u64 mask; int i, ret = 0; for (i = 0, mask = 1; i < 64; i++, mask <<= 1) { if (flags & mask) ret += snprintf(page + ret, count - ret, "%s%s", ret ? sep : "", obd_connect_names[i]); } if (flags & ~(mask - 1)) ret += snprintf(page + ret, count - ret, "%sunknown_%#llx", ret ? sep : "", flags & ~(mask - 1)); if (!(flags & OBD_CONNECT_FLAGS2) || flags2 == 0) return ret; for (i = 64, mask = 1; obd_connect_names[i] != NULL; i++, mask <<= 1) { if (flags2 & mask) ret += snprintf(page + ret, count - ret, "%s%s", ret ? sep : "", obd_connect_names[i]); } if (flags2 & ~(mask - 1)) ret += snprintf(page + ret, count - ret, "%sunknown2_%#llx", ret ? sep : "", flags2 & ~(mask - 1)); return ret; } EXPORT_SYMBOL(obd_connect_flags2str); void obd_connect_data_seqprint(struct seq_file *m, struct obd_connect_data *ocd) { __u64 flags; LASSERT(ocd != NULL); flags = ocd->ocd_connect_flags; seq_printf(m, " connect_data:\n" " flags: %#llx\n" " instance: %u\n", ocd->ocd_connect_flags, ocd->ocd_instance); if (flags & OBD_CONNECT_VERSION) seq_printf(m, " target_version: %u.%u.%u.%u\n", OBD_OCD_VERSION_MAJOR(ocd->ocd_version), OBD_OCD_VERSION_MINOR(ocd->ocd_version), OBD_OCD_VERSION_PATCH(ocd->ocd_version), OBD_OCD_VERSION_FIX(ocd->ocd_version)); if (flags & OBD_CONNECT_MDS) seq_printf(m, " mdt_index: %d\n", ocd->ocd_group); if (flags & OBD_CONNECT_GRANT) seq_printf(m, " initial_grant: %d\n", ocd->ocd_grant); if (flags & OBD_CONNECT_INDEX) seq_printf(m, " target_index: %u\n", ocd->ocd_index); if (flags & OBD_CONNECT_BRW_SIZE) seq_printf(m, " max_brw_size: %d\n", ocd->ocd_brw_size); if (flags & OBD_CONNECT_IBITS) seq_printf(m, " ibits_known: %#llx\n", ocd->ocd_ibits_known); if (flags & OBD_CONNECT_GRANT_PARAM) seq_printf(m, " grant_block_size: %d\n" " grant_inode_size: %d\n" " grant_max_extent_size: %d\n" " grant_extent_tax: %d\n", 1 << ocd->ocd_grant_blkbits, 1 << ocd->ocd_grant_inobits, ocd->ocd_grant_max_blks << ocd->ocd_grant_blkbits, ocd->ocd_grant_tax_kb << 10); if (flags & OBD_CONNECT_TRANSNO) seq_printf(m, " first_transno: %#llx\n", ocd->ocd_transno); if (flags & OBD_CONNECT_CKSUM) seq_printf(m, " cksum_types: %#x\n", ocd->ocd_cksum_types); if (flags & OBD_CONNECT_MAX_EASIZE) seq_printf(m, " max_easize: %d\n", ocd->ocd_max_easize); if (flags & OBD_CONNECT_MAXBYTES) seq_printf(m, " max_object_bytes: %llu\n", ocd->ocd_maxbytes); if (flags & OBD_CONNECT_MULTIMODRPCS) seq_printf(m, " max_mod_rpcs: %hu\n", ocd->ocd_maxmodrpcs); } int lprocfs_import_seq_show(struct seq_file *m, void *data) { char nidstr[LNET_NIDSTR_SIZE]; struct lprocfs_counter ret; struct lprocfs_counter_header *header; struct obd_device *obd = (struct obd_device *)data; struct obd_import *imp; struct obd_import_conn *conn; struct obd_connect_data *ocd; int j; int k; int rw = 0; LASSERT(obd != NULL); LPROCFS_CLIMP_CHECK(obd); imp = obd->u.cli.cl_import; ocd = &imp->imp_connect_data; seq_printf(m, "import:\n" " name: %s\n" " target: %s\n" " state: %s\n" " connect_flags: [ ", obd->obd_name, obd2cli_tgt(obd), ptlrpc_import_state_name(imp->imp_state)); obd_connect_seq_flags2str(m, imp->imp_connect_data.ocd_connect_flags, imp->imp_connect_data.ocd_connect_flags2, ", "); seq_printf(m, " ]\n"); obd_connect_data_seqprint(m, ocd); seq_printf(m, " import_flags: [ "); obd_import_flags2str(imp, m); seq_printf(m, " ]\n" " connection:\n" " failover_nids: [ "); spin_lock(&imp->imp_lock); j = 0; list_for_each_entry(conn, &imp->imp_conn_list, oic_item) { libcfs_nid2str_r(conn->oic_conn->c_peer.nid, nidstr, sizeof(nidstr)); seq_printf(m, "%s%s", j ? ", " : "", nidstr); j++; } if (imp->imp_connection) libcfs_nid2str_r(imp->imp_connection->c_peer.nid, nidstr, sizeof(nidstr)); else strncpy(nidstr, "", sizeof(nidstr)); seq_printf(m, " ]\n" " current_connection: %s\n" " connection_attempts: %u\n" " generation: %u\n" " in-progress_invalidations: %u\n" " idle: %lld sec\n", nidstr, imp->imp_conn_cnt, imp->imp_generation, atomic_read(&imp->imp_inval_count), ktime_get_real_seconds() - imp->imp_last_reply_time); spin_unlock(&imp->imp_lock); if (!obd->obd_svc_stats) goto out_climp; header = &obd->obd_svc_stats->ls_cnt_header[PTLRPC_REQWAIT_CNTR]; lprocfs_stats_collect(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR, &ret); if (ret.lc_count != 0) { /* first argument to do_div MUST be __u64 */ __u64 sum = ret.lc_sum; do_div(sum, ret.lc_count); ret.lc_sum = sum; } else ret.lc_sum = 0; seq_printf(m, " rpcs:\n" " inflight: %u\n" " unregistering: %u\n" " timeouts: %u\n" " avg_waittime: %llu %s\n", atomic_read(&imp->imp_inflight), atomic_read(&imp->imp_unregistering), atomic_read(&imp->imp_timeouts), ret.lc_sum, header->lc_units); k = 0; for(j = 0; j < IMP_AT_MAX_PORTALS; j++) { if (imp->imp_at.iat_portal[j] == 0) break; k = max_t(unsigned int, k, at_get(&imp->imp_at.iat_service_estimate[j])); } seq_printf(m, " service_estimates:\n" " services: %u sec\n" " network: %u sec\n", k, at_get(&imp->imp_at.iat_net_latency)); seq_printf(m, " transactions:\n" " last_replay: %llu\n" " peer_committed: %llu\n" " last_checked: %llu\n", imp->imp_last_replay_transno, imp->imp_peer_committed_transno, imp->imp_last_transno_checked); /* avg data rates */ for (rw = 0; rw <= 1; rw++) { lprocfs_stats_collect(obd->obd_svc_stats, PTLRPC_LAST_CNTR + BRW_READ_BYTES + rw, &ret); if (ret.lc_sum > 0 && ret.lc_count > 0) { /* first argument to do_div MUST be __u64 */ __u64 sum = ret.lc_sum; do_div(sum, ret.lc_count); ret.lc_sum = sum; seq_printf(m, " %s_data_averages:\n" " bytes_per_rpc: %llu\n", rw ? "write" : "read", ret.lc_sum); } k = (int)ret.lc_sum; j = opcode_offset(OST_READ + rw) + EXTRA_MAX_OPCODES; header = &obd->obd_svc_stats->ls_cnt_header[j]; lprocfs_stats_collect(obd->obd_svc_stats, j, &ret); if (ret.lc_sum > 0 && ret.lc_count != 0) { /* first argument to do_div MUST be __u64 */ __u64 sum = ret.lc_sum; do_div(sum, ret.lc_count); ret.lc_sum = sum; seq_printf(m, " %s_per_rpc: %llu\n", header->lc_units, ret.lc_sum); j = (int)ret.lc_sum; if (j > 0) seq_printf(m, " MB_per_sec: %u.%.02u\n", k / j, (100 * k / j) % 100); } } out_climp: LPROCFS_CLIMP_EXIT(obd); return 0; } EXPORT_SYMBOL(lprocfs_import_seq_show); int lprocfs_state_seq_show(struct seq_file *m, void *data) { struct obd_device *obd = (struct obd_device *)data; struct obd_import *imp; int j, k; LASSERT(obd != NULL); LPROCFS_CLIMP_CHECK(obd); imp = obd->u.cli.cl_import; seq_printf(m, "current_state: %s\n", ptlrpc_import_state_name(imp->imp_state)); seq_printf(m, "state_history:\n"); k = imp->imp_state_hist_idx; for (j = 0; j < IMP_STATE_HIST_LEN; j++) { struct import_state_hist *ish = &imp->imp_state_hist[(k + j) % IMP_STATE_HIST_LEN]; if (ish->ish_state == 0) continue; seq_printf(m, " - [ %lld, %s ]\n", (s64)ish->ish_time, ptlrpc_import_state_name(ish->ish_state)); } LPROCFS_CLIMP_EXIT(obd); return 0; } EXPORT_SYMBOL(lprocfs_state_seq_show); int lprocfs_at_hist_helper(struct seq_file *m, struct adaptive_timeout *at) { int i; for (i = 0; i < AT_BINS; i++) seq_printf(m, "%3u ", at->at_hist[i]); seq_printf(m, "\n"); return 0; } EXPORT_SYMBOL(lprocfs_at_hist_helper); /* See also ptlrpc_lprocfs_timeouts_show_seq */ int lprocfs_timeouts_seq_show(struct seq_file *m, void *data) { struct obd_device *obd = (struct obd_device *)data; struct obd_import *imp; unsigned int cur, worst; time64_t now, worstt; int i; LASSERT(obd != NULL); LPROCFS_CLIMP_CHECK(obd); imp = obd->u.cli.cl_import; now = ktime_get_real_seconds(); /* Some network health info for kicks */ seq_printf(m, "%-10s : %lld, %llds ago\n", "last reply", (s64)imp->imp_last_reply_time, (s64)(now - imp->imp_last_reply_time)); cur = at_get(&imp->imp_at.iat_net_latency); worst = imp->imp_at.iat_net_latency.at_worst_ever; worstt = imp->imp_at.iat_net_latency.at_worst_time; seq_printf(m, "%-10s : cur %3u worst %3u (at %lld, %llds ago) ", "network", cur, worst, (s64)worstt, (s64)(now - worstt)); lprocfs_at_hist_helper(m, &imp->imp_at.iat_net_latency); for(i = 0; i < IMP_AT_MAX_PORTALS; i++) { if (imp->imp_at.iat_portal[i] == 0) break; cur = at_get(&imp->imp_at.iat_service_estimate[i]); worst = imp->imp_at.iat_service_estimate[i].at_worst_ever; worstt = imp->imp_at.iat_service_estimate[i].at_worst_time; seq_printf(m, "portal %-2d : cur %3u worst %3u (at %lld, %llds ago) ", imp->imp_at.iat_portal[i], cur, worst, (s64)worstt, (s64)(now - worstt)); lprocfs_at_hist_helper(m, &imp->imp_at.iat_service_estimate[i]); } LPROCFS_CLIMP_EXIT(obd); return 0; } EXPORT_SYMBOL(lprocfs_timeouts_seq_show); int lprocfs_connect_flags_seq_show(struct seq_file *m, void *data) { struct obd_device *obd = data; __u64 flags; __u64 flags2; LPROCFS_CLIMP_CHECK(obd); flags = obd->u.cli.cl_import->imp_connect_data.ocd_connect_flags; flags2 = obd->u.cli.cl_import->imp_connect_data.ocd_connect_flags2; seq_printf(m, "flags=%#llx\n", flags); seq_printf(m, "flags2=%#llx\n", flags2); obd_connect_seq_flags2str(m, flags, flags2, "\n"); seq_printf(m, "\n"); LPROCFS_CLIMP_EXIT(obd); return 0; } EXPORT_SYMBOL(lprocfs_connect_flags_seq_show); static const struct attribute *obd_def_uuid_attrs[] = { &lustre_attr_uuid.attr, NULL, }; static const struct attribute *obd_def_attrs[] = { &lustre_attr_blocksize.attr, &lustre_attr_kbytestotal.attr, &lustre_attr_kbytesfree.attr, &lustre_attr_kbytesavail.attr, &lustre_attr_filestotal.attr, &lustre_attr_filesfree.attr, &lustre_attr_uuid.attr, NULL, }; static void obd_sysfs_release(struct kobject *kobj) { struct obd_device *obd = container_of(kobj, struct obd_device, obd_kset.kobj); complete(&obd->obd_kobj_unregister); } int lprocfs_obd_setup(struct obd_device *obd, bool uuid_only) { struct lprocfs_vars *debugfs_vars = NULL; int rc; if (!obd || obd->obd_magic != OBD_DEVICE_MAGIC) return -ENODEV; rc = kobject_set_name(&obd->obd_kset.kobj, "%s", obd->obd_name); if (rc) return rc; obd->obd_ktype.sysfs_ops = &lustre_sysfs_ops; obd->obd_ktype.release = obd_sysfs_release; obd->obd_kset.kobj.parent = &obd->obd_type->typ_kobj; obd->obd_kset.kobj.ktype = &obd->obd_ktype; init_completion(&obd->obd_kobj_unregister); rc = kset_register(&obd->obd_kset); if (rc) return rc; if (uuid_only) obd->obd_attrs = obd_def_uuid_attrs; else obd->obd_attrs = obd_def_attrs; rc = sysfs_create_files(&obd->obd_kset.kobj, obd->obd_attrs); if (rc) { kset_unregister(&obd->obd_kset); return rc; } if (!obd->obd_type->typ_procroot) debugfs_vars = obd->obd_vars; obd->obd_debugfs_entry = ldebugfs_register(obd->obd_name, obd->obd_type->typ_debugfs_entry, debugfs_vars, obd); if (IS_ERR_OR_NULL(obd->obd_debugfs_entry)) { rc = obd->obd_debugfs_entry ? PTR_ERR(obd->obd_debugfs_entry) : -ENOMEM; CERROR("error %d setting up debugfs for %s\n", rc, obd->obd_name); obd->obd_debugfs_entry = NULL; sysfs_remove_files(&obd->obd_kset.kobj, obd->obd_attrs); obd->obd_attrs = NULL; kset_unregister(&obd->obd_kset); return rc; } if (obd->obd_proc_entry || !obd->obd_type->typ_procroot) GOTO(already_registered, rc); obd->obd_proc_entry = lprocfs_register(obd->obd_name, obd->obd_type->typ_procroot, obd->obd_vars, obd); if (IS_ERR(obd->obd_proc_entry)) { rc = PTR_ERR(obd->obd_proc_entry); CERROR("error %d setting up lprocfs for %s\n",rc,obd->obd_name); obd->obd_proc_entry = NULL; ldebugfs_remove(&obd->obd_debugfs_entry); sysfs_remove_files(&obd->obd_kset.kobj, obd->obd_attrs); obd->obd_attrs = NULL; kset_unregister(&obd->obd_kset); return rc; } already_registered: return rc; } EXPORT_SYMBOL(lprocfs_obd_setup); int lprocfs_obd_cleanup(struct obd_device *obd) { if (!obd) return -EINVAL; if (obd->obd_proc_exports_entry) { /* Should be no exports left */ lprocfs_remove(&obd->obd_proc_exports_entry); obd->obd_proc_exports_entry = NULL; } if (obd->obd_proc_entry) { lprocfs_remove(&obd->obd_proc_entry); obd->obd_proc_entry = NULL; } if (!IS_ERR_OR_NULL(obd->obd_debugfs_entry)) ldebugfs_remove(&obd->obd_debugfs_entry); /* obd device never allocated a kset */ if (!obd->obd_kset.kobj.state_initialized) return 0; if (obd->obd_attrs) { sysfs_remove_files(&obd->obd_kset.kobj, obd->obd_attrs); obd->obd_attrs = NULL; } kset_unregister(&obd->obd_kset); wait_for_completion(&obd->obd_kobj_unregister); return 0; } EXPORT_SYMBOL(lprocfs_obd_cleanup); int lprocfs_stats_alloc_one(struct lprocfs_stats *stats, unsigned int cpuid) { struct lprocfs_counter *cntr; unsigned int percpusize; int rc = -ENOMEM; unsigned long flags = 0; int i; LASSERT(stats->ls_percpu[cpuid] == NULL); LASSERT((stats->ls_flags & LPROCFS_STATS_FLAG_NOPERCPU) == 0); percpusize = lprocfs_stats_counter_size(stats); LIBCFS_ALLOC_ATOMIC(stats->ls_percpu[cpuid], percpusize); if (stats->ls_percpu[cpuid]) { rc = 0; if (unlikely(stats->ls_biggest_alloc_num <= cpuid)) { if (stats->ls_flags & LPROCFS_STATS_FLAG_IRQ_SAFE) spin_lock_irqsave(&stats->ls_lock, flags); else spin_lock(&stats->ls_lock); if (stats->ls_biggest_alloc_num <= cpuid) stats->ls_biggest_alloc_num = cpuid + 1; if (stats->ls_flags & LPROCFS_STATS_FLAG_IRQ_SAFE) { spin_unlock_irqrestore(&stats->ls_lock, flags); } else { spin_unlock(&stats->ls_lock); } } /* initialize the ls_percpu[cpuid] non-zero counter */ for (i = 0; i < stats->ls_num; ++i) { cntr = lprocfs_stats_counter_get(stats, cpuid, i); cntr->lc_min = LC_MIN_INIT; } } return rc; } struct lprocfs_stats *lprocfs_alloc_stats(unsigned int num, enum lprocfs_stats_flags flags) { struct lprocfs_stats *stats; unsigned int num_entry; unsigned int percpusize = 0; int i; if (num == 0) return NULL; if (lprocfs_no_percpu_stats != 0) flags |= LPROCFS_STATS_FLAG_NOPERCPU; if (flags & LPROCFS_STATS_FLAG_NOPERCPU) num_entry = 1; else num_entry = num_possible_cpus(); /* alloc percpu pointers for all possible cpu slots */ LIBCFS_ALLOC(stats, offsetof(typeof(*stats), ls_percpu[num_entry])); if (!stats) return NULL; stats->ls_num = num; stats->ls_flags = flags; spin_lock_init(&stats->ls_lock); /* alloc num of counter headers */ LIBCFS_ALLOC(stats->ls_cnt_header, stats->ls_num * sizeof(struct lprocfs_counter_header)); if (!stats->ls_cnt_header) goto fail; if ((flags & LPROCFS_STATS_FLAG_NOPERCPU) != 0) { /* contains only one set counters */ percpusize = lprocfs_stats_counter_size(stats); LIBCFS_ALLOC_ATOMIC(stats->ls_percpu[0], percpusize); if (!stats->ls_percpu[0]) goto fail; stats->ls_biggest_alloc_num = 1; } else if ((flags & LPROCFS_STATS_FLAG_IRQ_SAFE) != 0) { /* alloc all percpu data, currently only obd_memory use this */ for (i = 0; i < num_entry; ++i) if (lprocfs_stats_alloc_one(stats, i) < 0) goto fail; } return stats; fail: lprocfs_free_stats(&stats); return NULL; } EXPORT_SYMBOL(lprocfs_alloc_stats); void lprocfs_free_stats(struct lprocfs_stats **statsh) { struct lprocfs_stats *stats = *statsh; unsigned int num_entry; unsigned int percpusize; unsigned int i; if (!stats || stats->ls_num == 0) return; *statsh = NULL; if (stats->ls_flags & LPROCFS_STATS_FLAG_NOPERCPU) num_entry = 1; else num_entry = num_possible_cpus(); percpusize = lprocfs_stats_counter_size(stats); for (i = 0; i < num_entry; i++) if (stats->ls_percpu[i]) LIBCFS_FREE(stats->ls_percpu[i], percpusize); if (stats->ls_cnt_header) LIBCFS_FREE(stats->ls_cnt_header, stats->ls_num * sizeof(struct lprocfs_counter_header)); LIBCFS_FREE(stats, offsetof(typeof(*stats), ls_percpu[num_entry])); } EXPORT_SYMBOL(lprocfs_free_stats); u64 lprocfs_stats_collector(struct lprocfs_stats *stats, int idx, enum lprocfs_fields_flags field) { unsigned long flags = 0; unsigned int num_cpu; unsigned int i; u64 ret = 0; LASSERT(stats); num_cpu = lprocfs_stats_lock(stats, LPROCFS_GET_NUM_CPU, &flags); for (i = 0; i < num_cpu; i++) { struct lprocfs_counter *cntr; if (!stats->ls_percpu[i]) continue; cntr = lprocfs_stats_counter_get(stats, i, idx); ret += lprocfs_read_helper(cntr, &stats->ls_cnt_header[idx], stats->ls_flags, field); } lprocfs_stats_unlock(stats, LPROCFS_GET_NUM_CPU, &flags); return ret; } EXPORT_SYMBOL(lprocfs_stats_collector); void lprocfs_clear_stats(struct lprocfs_stats *stats) { struct lprocfs_counter *percpu_cntr; int i; int j; unsigned int num_entry; unsigned long flags = 0; num_entry = lprocfs_stats_lock(stats, LPROCFS_GET_NUM_CPU, &flags); for (i = 0; i < num_entry; i++) { if (!stats->ls_percpu[i]) continue; for (j = 0; j < stats->ls_num; j++) { percpu_cntr = lprocfs_stats_counter_get(stats, i, j); percpu_cntr->lc_count = 0; percpu_cntr->lc_min = LC_MIN_INIT; percpu_cntr->lc_max = 0; percpu_cntr->lc_sumsquare = 0; percpu_cntr->lc_sum = 0; if (stats->ls_flags & LPROCFS_STATS_FLAG_IRQ_SAFE) percpu_cntr->lc_sum_irq = 0; } } lprocfs_stats_unlock(stats, LPROCFS_GET_NUM_CPU, &flags); } EXPORT_SYMBOL(lprocfs_clear_stats); static ssize_t lprocfs_stats_seq_write(struct file *file, const char __user *buf, size_t len, loff_t *off) { struct seq_file *seq = file->private_data; struct lprocfs_stats *stats = seq->private; lprocfs_clear_stats(stats); return len; } static void *lprocfs_stats_seq_start(struct seq_file *p, loff_t *pos) { struct lprocfs_stats *stats = p->private; return (*pos < stats->ls_num) ? pos : NULL; } static void lprocfs_stats_seq_stop(struct seq_file *p, void *v) { } static void *lprocfs_stats_seq_next(struct seq_file *p, void *v, loff_t *pos) { (*pos)++; return lprocfs_stats_seq_start(p, pos); } /* seq file export of one lprocfs counter */ static int lprocfs_stats_seq_show(struct seq_file *p, void *v) { struct lprocfs_stats *stats = p->private; struct lprocfs_counter_header *hdr; struct lprocfs_counter ctr; int idx = *(loff_t *)v; if (idx == 0) { struct timespec64 now; ktime_get_real_ts64(&now); seq_printf(p, "%-25s %llu.%09lu secs.nsecs\n", "snapshot_time", (s64)now.tv_sec, now.tv_nsec); } hdr = &stats->ls_cnt_header[idx]; lprocfs_stats_collect(stats, idx, &ctr); if (ctr.lc_count == 0) return 0; seq_printf(p, "%-25s %lld samples [%s]", hdr->lc_name, ctr.lc_count, hdr->lc_units); if ((hdr->lc_config & LPROCFS_CNTR_AVGMINMAX) && ctr.lc_count > 0) { seq_printf(p, " %lld %lld %lld", ctr.lc_min, ctr.lc_max, ctr.lc_sum); if (hdr->lc_config & LPROCFS_CNTR_STDDEV) seq_printf(p, " %llu", ctr.lc_sumsquare); } seq_putc(p, '\n'); return 0; } static const struct seq_operations lprocfs_stats_seq_sops = { .start = lprocfs_stats_seq_start, .stop = lprocfs_stats_seq_stop, .next = lprocfs_stats_seq_next, .show = lprocfs_stats_seq_show, }; static int lprocfs_stats_seq_open(struct inode *inode, struct file *file) { struct seq_file *seq; int rc; rc = LPROCFS_ENTRY_CHECK(inode); if (rc < 0) return rc; rc = seq_open(file, &lprocfs_stats_seq_sops); if (rc) return rc; seq = file->private_data; seq->private = inode->i_private ? inode->i_private : PDE_DATA(inode); return 0; } static const struct file_operations lprocfs_stats_seq_fops = { .owner = THIS_MODULE, .open = lprocfs_stats_seq_open, .read = seq_read, .write = lprocfs_stats_seq_write, .llseek = seq_lseek, .release = lprocfs_seq_release, }; int ldebugfs_register_stats(struct dentry *parent, const char *name, struct lprocfs_stats *stats) { struct dentry *entry; LASSERT(!IS_ERR_OR_NULL(parent)); entry = debugfs_create_file(name, 0644, parent, stats, &lprocfs_stats_seq_fops); if (IS_ERR_OR_NULL(entry)) return entry ? PTR_ERR(entry) : -ENOMEM; return 0; } EXPORT_SYMBOL_GPL(ldebugfs_register_stats); int lprocfs_register_stats(struct proc_dir_entry *root, const char *name, struct lprocfs_stats *stats) { struct proc_dir_entry *entry; LASSERT(root != NULL); entry = proc_create_data(name, 0644, root, &lprocfs_stats_seq_fops, stats); if (!entry) return -ENOMEM; return 0; } EXPORT_SYMBOL(lprocfs_register_stats); void lprocfs_counter_init(struct lprocfs_stats *stats, int index, unsigned conf, const char *name, const char *units) { struct lprocfs_counter_header *header; struct lprocfs_counter *percpu_cntr; unsigned long flags = 0; unsigned int i; unsigned int num_cpu; LASSERT(stats != NULL); header = &stats->ls_cnt_header[index]; LASSERTF(header != NULL, "Failed to allocate stats header:[%d]%s/%s\n", index, name, units); header->lc_config = conf; header->lc_name = name; header->lc_units = units; num_cpu = lprocfs_stats_lock(stats, LPROCFS_GET_NUM_CPU, &flags); for (i = 0; i < num_cpu; ++i) { if (!stats->ls_percpu[i]) continue; percpu_cntr = lprocfs_stats_counter_get(stats, i, index); percpu_cntr->lc_count = 0; percpu_cntr->lc_min = LC_MIN_INIT; percpu_cntr->lc_max = 0; percpu_cntr->lc_sumsquare = 0; percpu_cntr->lc_sum = 0; if ((stats->ls_flags & LPROCFS_STATS_FLAG_IRQ_SAFE) != 0) percpu_cntr->lc_sum_irq = 0; } lprocfs_stats_unlock(stats, LPROCFS_GET_NUM_CPU, &flags); } EXPORT_SYMBOL(lprocfs_counter_init); static const char * const mps_stats[] = { [LPROC_MD_CLOSE] = "close", [LPROC_MD_CREATE] = "create", [LPROC_MD_ENQUEUE] = "enqueue", [LPROC_MD_GETATTR] = "getattr", [LPROC_MD_INTENT_LOCK] = "intent_lock", [LPROC_MD_LINK] = "link", [LPROC_MD_RENAME] = "rename", [LPROC_MD_SETATTR] = "setattr", [LPROC_MD_FSYNC] = "fsync", [LPROC_MD_READ_PAGE] = "read_page", [LPROC_MD_UNLINK] = "unlink", [LPROC_MD_SETXATTR] = "setxattr", [LPROC_MD_GETXATTR] = "getxattr", [LPROC_MD_INTENT_GETATTR_ASYNC] = "intent_getattr_async", [LPROC_MD_REVALIDATE_LOCK] = "revalidate_lock", }; int lprocfs_alloc_md_stats(struct obd_device *obd, unsigned int num_private_stats) { struct lprocfs_stats *stats; unsigned int num_stats; int rc, i; /* * TODO Ensure that this function is only used where * appropriate by adding an assertion to the effect that * obd->obd_type->typ_md_ops is not NULL. We can't do this now * because mdt_procfs_init() uses this function to allocate * the stats backing /proc/fs/lustre/mdt/.../md_stats but the * mdt layer does not use the md_ops interface. This is * confusing and a waste of memory. See LU-2484. */ LASSERT(obd->obd_proc_entry != NULL); LASSERT(obd->obd_md_stats == NULL); num_stats = ARRAY_SIZE(mps_stats) + num_private_stats; stats = lprocfs_alloc_stats(num_stats, 0); if (!stats) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(mps_stats); i++) { lprocfs_counter_init(stats, i, 0, mps_stats[i], "reqs"); if (!stats->ls_cnt_header[i].lc_name) { CERROR("Missing md_stat initializer md_op operation at offset %d. Aborting.\n", i); LBUG(); } } rc = lprocfs_register_stats(obd->obd_proc_entry, "md_stats", stats); if (rc < 0) { lprocfs_free_stats(&stats); } else { obd->obd_md_stats = stats; } return rc; } EXPORT_SYMBOL(lprocfs_alloc_md_stats); void lprocfs_free_md_stats(struct obd_device *obd) { struct lprocfs_stats *stats = obd->obd_md_stats; if (stats) { obd->obd_md_stats = NULL; lprocfs_free_stats(&stats); } } EXPORT_SYMBOL(lprocfs_free_md_stats); void lprocfs_init_ldlm_stats(struct lprocfs_stats *ldlm_stats) { lprocfs_counter_init(ldlm_stats, LDLM_ENQUEUE - LDLM_FIRST_OPC, 0, "ldlm_enqueue", "reqs"); lprocfs_counter_init(ldlm_stats, LDLM_CONVERT - LDLM_FIRST_OPC, 0, "ldlm_convert", "reqs"); lprocfs_counter_init(ldlm_stats, LDLM_CANCEL - LDLM_FIRST_OPC, 0, "ldlm_cancel", "reqs"); lprocfs_counter_init(ldlm_stats, LDLM_BL_CALLBACK - LDLM_FIRST_OPC, 0, "ldlm_bl_callback", "reqs"); lprocfs_counter_init(ldlm_stats, LDLM_CP_CALLBACK - LDLM_FIRST_OPC, 0, "ldlm_cp_callback", "reqs"); lprocfs_counter_init(ldlm_stats, LDLM_GL_CALLBACK - LDLM_FIRST_OPC, 0, "ldlm_gl_callback", "reqs"); } EXPORT_SYMBOL(lprocfs_init_ldlm_stats); __s64 lprocfs_read_helper(struct lprocfs_counter *lc, struct lprocfs_counter_header *header, enum lprocfs_stats_flags flags, enum lprocfs_fields_flags field) { __s64 ret = 0; if (!lc || !header) RETURN(0); switch (field) { case LPROCFS_FIELDS_FLAGS_CONFIG: ret = header->lc_config; break; case LPROCFS_FIELDS_FLAGS_SUM: ret = lc->lc_sum; if ((flags & LPROCFS_STATS_FLAG_IRQ_SAFE) != 0) ret += lc->lc_sum_irq; break; case LPROCFS_FIELDS_FLAGS_MIN: ret = lc->lc_min; break; case LPROCFS_FIELDS_FLAGS_MAX: ret = lc->lc_max; break; case LPROCFS_FIELDS_FLAGS_AVG: ret = (lc->lc_max - lc->lc_min) / 2; break; case LPROCFS_FIELDS_FLAGS_SUMSQUARE: ret = lc->lc_sumsquare; break; case LPROCFS_FIELDS_FLAGS_COUNT: ret = lc->lc_count; break; default: break; }; RETURN(ret); } EXPORT_SYMBOL(lprocfs_read_helper); /* Obtains the conversion factor for the unit specified */ static int get_mult(char unit, __u64 *mult) { __u64 units = 1; switch (unit) { /* peta, tera, giga, mega, and kilo */ case 'p': case 'P': units <<= 10; /* fallthrough */ case 't': case 'T': units <<= 10; /* fallthrough */ case 'g': case 'G': units <<= 10; /* fallthrough */ case 'm': case 'M': units <<= 10; /* fallthrough */ case 'k': case 'K': units <<= 10; break; /* some tests expect % to be accepted */ case '%': units = 1; break; default: return -EINVAL; } *mult = units; return 0; } /* * Ensures the numeric string is valid. The function provides the final * multiplier in the case a unit exists at the end of the string. It also * locates the start of the whole and fractional parts (if any). This * function modifies the string so kstrtoull can be used to parse both * the whole and fraction portions. This function also figures out * the base of the number. */ static int preprocess_numeric_str(char *buffer, __u64 *mult, __u64 def_mult, bool allow_units, char **whole, char **frac, unsigned int *base) { bool hit_decimal = false; bool hit_unit = false; int rc = 0; char *start; *mult = def_mult; *whole = NULL; *frac = NULL; *base = 10; /* a hex string if it starts with "0x" */ if (buffer[0] == '0' && tolower(buffer[1]) == 'x') { *base = 16; buffer += 2; } start = buffer; while (*buffer) { /* allow for a single new line before the null terminator */ if (*buffer == '\n') { *buffer = '\0'; buffer++; if (*buffer) return -EINVAL; break; } /* any chars after our unit indicates a malformed string */ if (hit_unit) return -EINVAL; /* ensure we only hit one decimal */ if (*buffer == '.') { if (hit_decimal) return -EINVAL; /* if past start, there's a whole part */ if (start != buffer) *whole = start; *buffer = '\0'; start = buffer + 1; hit_decimal = true; } else if (!isdigit(*buffer) && !(*base == 16 && isxdigit(*buffer))) { if (allow_units) { /* if we allow units, attempt to get mult */ hit_unit = true; rc = get_mult(*buffer, mult); if (rc) return rc; /* string stops here, but keep processing */ *buffer = '\0'; } else { /* bad string */ return -EINVAL; } } buffer++; } if (hit_decimal) { /* hit a decimal, make sure there's a fractional part */ if (!*start) return -EINVAL; *frac = start; } else { /* didn't hit a decimal, but may have a whole part */ if (start != buffer && *start) *whole = start; } /* malformed string if we didn't get anything */ if (!*frac && !*whole) return -EINVAL; return 0; } /* * Parses a numeric string which can contain a whole and fraction portion * into a __u64. Accepts a multiplier to apply to the value parsed. Also * allows the string to have a unit at the end. The function handles * wrapping of the final unsigned value. */ static int str_to_u64_parse(char *buffer, unsigned long count, __u64 *val, __u64 def_mult, bool allow_units) { __u64 whole = 0; __u64 frac = 0; unsigned int frac_d = 1; __u64 wrap_indicator = ULLONG_MAX; int rc = 0; __u64 mult; char *strwhole; char *strfrac; unsigned int base = 10; rc = preprocess_numeric_str(buffer, &mult, def_mult, allow_units, &strwhole, &strfrac, &base); if (rc) return rc; if (mult == 0) { *val = 0; return 0; } /* the multiplier limits how large the value can be */ wrap_indicator = div64_u64(wrap_indicator, mult); if (strwhole) { rc = kstrtoull(strwhole, base, &whole); if (rc) return rc; if (whole > wrap_indicator) return -ERANGE; whole *= mult; } if (strfrac) { if (strlen(strfrac) > 10) strfrac[10] = '\0'; rc = kstrtoull(strfrac, base, &frac); if (rc) return rc; /* determine power of fractional portion */ while (*strfrac) { frac_d *= base; strfrac++; } /* fractional portion is too large to perform calculation */ if (frac > wrap_indicator) return -ERANGE; frac *= mult; do_div(frac, frac_d); } /* check that the sum of whole and fraction fits in u64 */ if (whole > (ULLONG_MAX - frac)) return -ERANGE; *val = whole + frac; return 0; } /* * This function parses numeric/hex strings into __s64. It accepts a multiplier * which will apply to the value parsed. It also can allow the string to * have a unit as the last character. The function handles overflow/underflow * of the signed integer. */ int lu_str_to_s64(char *buffer, unsigned long count, __s64 *val, char defunit) { __u64 mult = 1; __u64 tmp; unsigned int offset = 0; int signed sign = 1; __u64 max = LLONG_MAX; int rc = 0; if (defunit != '1') { rc = get_mult(defunit, &mult); if (rc) return rc; } /* keep track of our sign */ if (*buffer == '-') { sign = -1; offset++; /* equivalent to max = -LLONG_MIN, avoids overflow */ max++; } rc = str_to_u64_parse(buffer + offset, count - offset, &tmp, mult, true); if (rc) return rc; /* check for overflow/underflow */ if (max < tmp) return -ERANGE; *val = (__s64)tmp * sign; return 0; } EXPORT_SYMBOL(lu_str_to_s64); /* identical to s64 version, but does not handle overflow */ static int str_to_u64_internal(const char __user *buffer, unsigned long count, __u64 *val, __u64 def_mult, bool allow_units) { char kernbuf[22]; unsigned int offset = 0; int rc = 0; if (count > (sizeof(kernbuf) - 1)) return -EINVAL; if (copy_from_user(kernbuf, buffer, count)) return -EFAULT; kernbuf[count] = '\0'; rc = str_to_u64_parse(kernbuf + offset, count - offset, val, def_mult, allow_units); if (rc) return rc; return 0; } /** * Convert a user string into a signed 64 bit number. This function produces * an error when the value parsed from the string times multiplier underflows or * overflows. This function only accepts strings that contains digits, an * optional decimal, and a char representing a unit at the end. If a unit is * specified in the string, the multiplier provided by the caller is ignored. * This function can also accept hexadecimal strings which are prefixed with * "0x". * * \param[in] buffer string consisting of numbers, a decimal, and a unit * \param[in] count buffer length * \param[in] val if successful, the value represented by the string * \param[in] defunit default unit if string doesn't contain one * * \retval 0 on success * \retval negative number on error */ int lprocfs_str_with_units_to_s64(const char __user *buffer, unsigned long count, __s64 *val, char defunit) { char kernbuf[22]; if (count > (sizeof(kernbuf) - 1)) return -EINVAL; if (copy_from_user(kernbuf, buffer, count)) return -EFAULT; kernbuf[count] = '\0'; return lu_str_to_s64(kernbuf, count, val, defunit); } EXPORT_SYMBOL(lprocfs_str_with_units_to_s64); /* identical to s64 version above, but does not handle overflow */ int lprocfs_str_with_units_to_u64(const char __user *buffer, unsigned long count, __u64 *val, char defunit) { __u64 mult = 1; int rc; if (defunit != '1') { rc = get_mult(defunit, &mult); if (rc) return rc; } return str_to_u64_internal(buffer, count, val, mult, true); } EXPORT_SYMBOL(lprocfs_str_with_units_to_u64); char *lprocfs_strnstr(const char *s1, const char *s2, size_t len) { size_t l2; l2 = strlen(s2); if (!l2) return (char *)s1; while (len >= l2) { len--; if (!memcmp(s1, s2, l2)) return (char *)s1; s1++; } return NULL; } EXPORT_SYMBOL(lprocfs_strnstr); /** * Find the string \a name in the input \a buffer, and return a pointer to the * value immediately following \a name, reducing \a count appropriately. * If \a name is not found the original \a buffer is returned. */ char *lprocfs_find_named_value(const char *buffer, const char *name, size_t *count) { char *val; size_t buflen = *count; /* there is no strnstr() in rhel5 and ubuntu kernels */ val = lprocfs_strnstr(buffer, name, buflen); if (!val) return (char *)buffer; val += strlen(name); /* skip prefix */ while (val < buffer + buflen && isspace(*val)) /* skip separator */ val++; *count = 0; while (val < buffer + buflen && isalnum(*val)) { ++*count; ++val; } return val - *count; } EXPORT_SYMBOL(lprocfs_find_named_value); int ldebugfs_seq_create(struct dentry *parent, const char *name, umode_t mode, const struct file_operations *seq_fops, void *data) { struct dentry *entry; /* Disallow secretly (un)writable entries. */ LASSERT((!seq_fops->write) == (!(mode & 0222))); entry = debugfs_create_file(name, mode, parent, data, seq_fops); if (IS_ERR_OR_NULL(entry)) return entry ? PTR_ERR(entry) : -ENOMEM; return 0; } EXPORT_SYMBOL_GPL(ldebugfs_seq_create); int lprocfs_seq_create(struct proc_dir_entry *parent, const char *name, mode_t mode, const struct file_operations *seq_fops, void *data) { struct proc_dir_entry *entry; ENTRY; /* Disallow secretly (un)writable entries. */ LASSERT((seq_fops->write == NULL) == ((mode & 0222) == 0)); entry = proc_create_data(name, mode, parent, seq_fops, data); if (!entry) RETURN(-ENOMEM); RETURN(0); } EXPORT_SYMBOL(lprocfs_seq_create); int lprocfs_obd_seq_create(struct obd_device *dev, const char *name, mode_t mode, const struct file_operations *seq_fops, void *data) { return (lprocfs_seq_create(dev->obd_proc_entry, name, mode, seq_fops, data)); } EXPORT_SYMBOL(lprocfs_obd_seq_create); void lprocfs_oh_tally(struct obd_histogram *oh, unsigned int value) { if (value >= OBD_HIST_MAX) value = OBD_HIST_MAX - 1; spin_lock(&oh->oh_lock); oh->oh_buckets[value]++; spin_unlock(&oh->oh_lock); } EXPORT_SYMBOL(lprocfs_oh_tally); void lprocfs_oh_tally_log2(struct obd_histogram *oh, unsigned int value) { unsigned int val = 0; if (likely(value != 0)) val = min(fls(value - 1), OBD_HIST_MAX); lprocfs_oh_tally(oh, val); } EXPORT_SYMBOL(lprocfs_oh_tally_log2); unsigned long lprocfs_oh_sum(struct obd_histogram *oh) { unsigned long ret = 0; int i; for (i = 0; i < OBD_HIST_MAX; i++) ret += oh->oh_buckets[i]; return ret; } EXPORT_SYMBOL(lprocfs_oh_sum); void lprocfs_oh_clear(struct obd_histogram *oh) { spin_lock(&oh->oh_lock); memset(oh->oh_buckets, 0, sizeof(oh->oh_buckets)); spin_unlock(&oh->oh_lock); } EXPORT_SYMBOL(lprocfs_oh_clear); ssize_t lustre_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct lustre_attr *a = container_of(attr, struct lustre_attr, attr); return a->show ? a->show(kobj, attr, buf) : 0; } EXPORT_SYMBOL_GPL(lustre_attr_show); ssize_t lustre_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t len) { struct lustre_attr *a = container_of(attr, struct lustre_attr, attr); return a->store ? a->store(kobj, attr, buf, len) : len; } EXPORT_SYMBOL_GPL(lustre_attr_store); const struct sysfs_ops lustre_sysfs_ops = { .show = lustre_attr_show, .store = lustre_attr_store, }; EXPORT_SYMBOL_GPL(lustre_sysfs_ops); int lprocfs_obd_max_pages_per_rpc_seq_show(struct seq_file *m, void *data) { struct obd_device *dev = data; struct client_obd *cli = &dev->u.cli; spin_lock(&cli->cl_loi_list_lock); seq_printf(m, "%d\n", cli->cl_max_pages_per_rpc); spin_unlock(&cli->cl_loi_list_lock); return 0; } EXPORT_SYMBOL(lprocfs_obd_max_pages_per_rpc_seq_show); ssize_t lprocfs_obd_max_pages_per_rpc_seq_write(struct file *file, const char __user *buffer, size_t count, loff_t *off) { struct obd_device *dev = ((struct seq_file *)file->private_data)->private; struct client_obd *cli = &dev->u.cli; struct obd_connect_data *ocd = &cli->cl_import->imp_connect_data; int chunk_mask, rc; s64 val; rc = lprocfs_str_with_units_to_s64(buffer, count, &val, '1'); if (rc) return rc; if (val < 0) return -ERANGE; /* if the max_pages is specified in bytes, convert to pages */ if (val >= ONE_MB_BRW_SIZE) val >>= PAGE_SHIFT; LPROCFS_CLIMP_CHECK(dev); chunk_mask = ~((1 << (cli->cl_chunkbits - PAGE_SHIFT)) - 1); /* max_pages_per_rpc must be chunk aligned */ val = (val + ~chunk_mask) & chunk_mask; if (val == 0 || (ocd->ocd_brw_size != 0 && val > ocd->ocd_brw_size >> PAGE_SHIFT)) { LPROCFS_CLIMP_EXIT(dev); return -ERANGE; } spin_lock(&cli->cl_loi_list_lock); cli->cl_max_pages_per_rpc = val; client_adjust_max_dirty(cli); spin_unlock(&cli->cl_loi_list_lock); LPROCFS_CLIMP_EXIT(dev); return count; } EXPORT_SYMBOL(lprocfs_obd_max_pages_per_rpc_seq_write); ssize_t short_io_bytes_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct obd_device *dev = container_of(kobj, struct obd_device, obd_kset.kobj); struct client_obd *cli = &dev->u.cli; int rc; spin_lock(&cli->cl_loi_list_lock); rc = sprintf(buf, "%d\n", cli->cl_max_short_io_bytes); spin_unlock(&cli->cl_loi_list_lock); return rc; } EXPORT_SYMBOL(short_io_bytes_show); /* Used to catch people who think they're specifying pages. */ #define MIN_SHORT_IO_BYTES 64U ssize_t short_io_bytes_store(struct kobject *kobj, struct attribute *attr, const char *buffer, size_t count) { struct obd_device *dev = container_of(kobj, struct obd_device, obd_kset.kobj); struct client_obd *cli = &dev->u.cli; u32 val; int rc; LPROCFS_CLIMP_CHECK(dev); rc = kstrtouint(buffer, 0, &val); if (rc) GOTO(out, rc); if (val && (val < MIN_SHORT_IO_BYTES || val > OBD_MAX_SHORT_IO_BYTES)) GOTO(out, rc = -ERANGE); rc = count; spin_lock(&cli->cl_loi_list_lock); if (val > (cli->cl_max_pages_per_rpc << PAGE_SHIFT)) rc = -ERANGE; else cli->cl_max_short_io_bytes = val; spin_unlock(&cli->cl_loi_list_lock); out: LPROCFS_CLIMP_EXIT(dev); return rc; } EXPORT_SYMBOL(short_io_bytes_store); int lprocfs_wr_root_squash(const char __user *buffer, unsigned long count, struct root_squash_info *squash, char *name) { int rc; char kernbuf[64], *tmp, *errmsg; unsigned long uid, gid; ENTRY; if (count >= sizeof(kernbuf)) { errmsg = "string too long"; GOTO(failed_noprint, rc = -EINVAL); } if (copy_from_user(kernbuf, buffer, count)) { errmsg = "bad address"; GOTO(failed_noprint, rc = -EFAULT); } kernbuf[count] = '\0'; /* look for uid gid separator */ tmp = strchr(kernbuf, ':'); if (!tmp) { errmsg = "needs uid:gid format"; GOTO(failed, rc = -EINVAL); } *tmp = '\0'; tmp++; /* parse uid */ if (kstrtoul(kernbuf, 0, &uid) != 0) { errmsg = "bad uid"; GOTO(failed, rc = -EINVAL); } /* parse gid */ if (kstrtoul(tmp, 0, &gid) != 0) { errmsg = "bad gid"; GOTO(failed, rc = -EINVAL); } squash->rsi_uid = uid; squash->rsi_gid = gid; LCONSOLE_INFO("%s: root_squash is set to %u:%u\n", name, squash->rsi_uid, squash->rsi_gid); RETURN(count); failed: if (tmp) { tmp--; *tmp = ':'; } CWARN("%s: failed to set root_squash to \"%s\", %s, rc = %d\n", name, kernbuf, errmsg, rc); RETURN(rc); failed_noprint: CWARN("%s: failed to set root_squash due to %s, rc = %d\n", name, errmsg, rc); RETURN(rc); } EXPORT_SYMBOL(lprocfs_wr_root_squash); int lprocfs_wr_nosquash_nids(const char __user *buffer, unsigned long count, struct root_squash_info *squash, char *name) { int rc; char *kernbuf = NULL; char *errmsg; struct list_head tmp; int len = count; ENTRY; if (count > 4096) { errmsg = "string too long"; GOTO(failed, rc = -EINVAL); } OBD_ALLOC(kernbuf, count + 1); if (!kernbuf) { errmsg = "no memory"; GOTO(failed, rc = -ENOMEM); } if (copy_from_user(kernbuf, buffer, count)) { errmsg = "bad address"; GOTO(failed, rc = -EFAULT); } kernbuf[count] = '\0'; if (count > 0 && kernbuf[count - 1] == '\n') len = count - 1; if ((len == 4 && strncmp(kernbuf, "NONE", len) == 0) || (len == 5 && strncmp(kernbuf, "clear", len) == 0)) { /* empty string is special case */ spin_lock(&squash->rsi_lock); if (!list_empty(&squash->rsi_nosquash_nids)) cfs_free_nidlist(&squash->rsi_nosquash_nids); spin_unlock(&squash->rsi_lock); LCONSOLE_INFO("%s: nosquash_nids is cleared\n", name); OBD_FREE(kernbuf, count + 1); RETURN(count); } INIT_LIST_HEAD(&tmp); if (cfs_parse_nidlist(kernbuf, count, &tmp) <= 0) { errmsg = "can't parse"; GOTO(failed, rc = -EINVAL); } LCONSOLE_INFO("%s: nosquash_nids set to %s\n", name, kernbuf); OBD_FREE(kernbuf, count + 1); kernbuf = NULL; spin_lock(&squash->rsi_lock); if (!list_empty(&squash->rsi_nosquash_nids)) cfs_free_nidlist(&squash->rsi_nosquash_nids); list_splice(&tmp, &squash->rsi_nosquash_nids); spin_unlock(&squash->rsi_lock); RETURN(count); failed: if (kernbuf) { CWARN("%s: failed to set nosquash_nids to \"%s\", %s rc = %d\n", name, kernbuf, errmsg, rc); OBD_FREE(kernbuf, count + 1); } else { CWARN("%s: failed to set nosquash_nids due to %s rc = %d\n", name, errmsg, rc); } RETURN(rc); } EXPORT_SYMBOL(lprocfs_wr_nosquash_nids); #endif /* CONFIG_PROC_FS*/