/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2017, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * * Client Lustre Page. * * Author: Nikita Danilov * Author: Jinshan Xiong */ #define DEBUG_SUBSYSTEM S_CLASS #include #include #include #include #include #include "cl_internal.h" static void __cl_page_delete(const struct lu_env *env, struct cl_page *pg); static DEFINE_MUTEX(cl_page_kmem_mutex); #ifdef LIBCFS_DEBUG # define PASSERT(env, page, expr) \ do { \ if (unlikely(!(expr))) { \ CL_PAGE_DEBUG(D_ERROR, (env), (page), #expr "\n"); \ LASSERT(0); \ } \ } while (0) #else /* !LIBCFS_DEBUG */ #define PASSERT(env, page, exp) \ ((void)sizeof(env), (void)sizeof(page), (void)sizeof !!(exp)) #endif /* !LIBCFS_DEBUG */ #ifdef CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK # define PINVRNT(env, page, expr) \ do { \ if (unlikely(!(expr))) { \ CL_PAGE_DEBUG(D_ERROR, (env), (page), #expr "\n"); \ LINVRNT(0); \ } \ } while (0) #else /* !CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK */ # define PINVRNT(env, page, exp) \ ((void)sizeof(env), (void)sizeof(page), (void)sizeof !!(exp)) #endif /* !CONFIG_LUSTRE_DEBUG_EXPENSIVE_CHECK */ /* Disable page statistic by default due to huge performance penalty. */ static void cs_page_inc(const struct cl_object *obj, enum cache_stats_item item) { #ifdef CONFIG_DEBUG_PAGESTATE_TRACKING atomic_inc(&cl_object_site(obj)->cs_pages.cs_stats[item]); #endif } static void cs_page_dec(const struct cl_object *obj, enum cache_stats_item item) { #ifdef CONFIG_DEBUG_PAGESTATE_TRACKING atomic_dec(&cl_object_site(obj)->cs_pages.cs_stats[item]); #endif } static void cs_pagestate_inc(const struct cl_object *obj, enum cl_page_state state) { #ifdef CONFIG_DEBUG_PAGESTATE_TRACKING atomic_inc(&cl_object_site(obj)->cs_pages_state[state]); #endif } static void cs_pagestate_dec(const struct cl_object *obj, enum cl_page_state state) { #ifdef CONFIG_DEBUG_PAGESTATE_TRACKING atomic_dec(&cl_object_site(obj)->cs_pages_state[state]); #endif } /** * Internal version of cl_page_get(). * * This function can be used to obtain initial reference to previously * unreferenced cached object. It can be called only if concurrent page * reclamation is somehow prevented, e.g., by keeping a lock on a VM page, * associated with \a page. * * Use with care! Not exported. */ static void cl_page_get_trust(struct cl_page *page) { LASSERT(refcount_read(&page->cp_ref) > 0); refcount_inc(&page->cp_ref); } static struct cl_page_slice * cl_page_slice_get(const struct cl_page *cl_page, int index) { if (index < 0 || index >= cl_page->cp_layer_count) return NULL; /* To get the cp_layer_offset values fit under 256 bytes, we * use the offset beyond the end of struct cl_page. */ return (struct cl_page_slice *)((char *)cl_page + sizeof(*cl_page) + cl_page->cp_layer_offset[index]); } #define cl_page_slice_for_each(cl_page, slice, i) \ for (i = 0, slice = cl_page_slice_get(cl_page, 0); \ i < (cl_page)->cp_layer_count; \ slice = cl_page_slice_get(cl_page, ++i)) #define cl_page_slice_for_each_reverse(cl_page, slice, i) \ for (i = (cl_page)->cp_layer_count - 1, \ slice = cl_page_slice_get(cl_page, i); i >= 0; \ slice = cl_page_slice_get(cl_page, --i)) static void __cl_page_free(struct cl_page *cl_page, unsigned short bufsize) { int index = cl_page->cp_kmem_index; if (index >= 0) { LASSERT(index < ARRAY_SIZE(cl_page_kmem_array)); LASSERT(cl_page_kmem_size_array[index] == bufsize); OBD_SLAB_FREE(cl_page, cl_page_kmem_array[index], bufsize); } else { OBD_FREE(cl_page, bufsize); } } static void cl_page_free(const struct lu_env *env, struct cl_page *cp, struct folio_batch *fbatch) { struct cl_object *obj = cp->cp_obj; unsigned short bufsize = cl_object_header(obj)->coh_page_bufsize; struct page *vmpage; ENTRY; PASSERT(env, cp, list_empty(&cp->cp_batch)); PASSERT(env, cp, cp->cp_owner == NULL); if (cp->cp_type != CPT_TRANSIENT) PASSERT(env, cp, cp->cp_state == CPS_FREEING); if (cp->cp_type == CPT_CACHEABLE) { /* vmpage->private was already cleared when page was * moved into CPS_FREEING state. */ vmpage = cp->cp_vmpage; LASSERT(vmpage != NULL); LASSERT((struct cl_page *)vmpage->private != cp); if (fbatch != NULL) { if (!folio_batch_add_page(fbatch, vmpage)) folio_batch_release(fbatch); } else { put_page(vmpage); } } cp->cp_layer_count = 0; cs_page_dec(obj, CS_total); if (cp->cp_type != CPT_TRANSIENT) cs_pagestate_dec(obj, cp->cp_state); lu_object_ref_del_at(&obj->co_lu, &cp->cp_obj_ref, "cl_page", cp); if (cp->cp_type != CPT_TRANSIENT) cl_object_put(env, obj); lu_ref_fini(&cp->cp_reference); __cl_page_free(cp, bufsize); EXIT; } static struct cl_page *__cl_page_alloc(struct cl_object *o) { int i = 0; struct cl_page *cl_page = NULL; unsigned short bufsize = cl_object_header(o)->coh_page_bufsize; if (CFS_FAIL_CHECK(OBD_FAIL_LLITE_PAGE_ALLOC)) return NULL; check: /* the number of entries in cl_page_kmem_array is expected to * only be 2-3 entries, so the lookup overhead should be low. */ for ( ; i < ARRAY_SIZE(cl_page_kmem_array); i++) { if (smp_load_acquire(&cl_page_kmem_size_array[i]) == bufsize) { OBD_SLAB_ALLOC_GFP(cl_page, cl_page_kmem_array[i], bufsize, GFP_NOFS); if (cl_page) cl_page->cp_kmem_index = i; return cl_page; } if (cl_page_kmem_size_array[i] == 0) break; } if (i < ARRAY_SIZE(cl_page_kmem_array)) { char cache_name[32]; mutex_lock(&cl_page_kmem_mutex); if (cl_page_kmem_size_array[i]) { mutex_unlock(&cl_page_kmem_mutex); goto check; } snprintf(cache_name, sizeof(cache_name), "cl_page_kmem-%u", bufsize); cl_page_kmem_array[i] = kmem_cache_create(cache_name, bufsize, 0, 0, NULL); if (cl_page_kmem_array[i] == NULL) { mutex_unlock(&cl_page_kmem_mutex); return NULL; } smp_store_release(&cl_page_kmem_size_array[i], bufsize); mutex_unlock(&cl_page_kmem_mutex); goto check; } else { OBD_ALLOC_GFP(cl_page, bufsize, GFP_NOFS); if (cl_page) cl_page->cp_kmem_index = -1; } return cl_page; } struct cl_page *cl_page_alloc(const struct lu_env *env, struct cl_object *o, pgoff_t ind, struct page *vmpage, enum cl_page_type type) { struct cl_page *cl_page; struct cl_object *head; ENTRY; cl_page = __cl_page_alloc(o); if (cl_page != NULL) { int result = 0; /* Please fix cl_page:cp_state/type declaration if * these assertions fail in the future. */ BUILD_BUG_ON((1 << CP_STATE_BITS) < CPS_NR); /* cp_state */ BUILD_BUG_ON((1 << CP_TYPE_BITS) < CPT_NR); /* cp_type */ refcount_set(&cl_page->cp_ref, 1); cl_page->cp_obj = o; if (type != CPT_TRANSIENT) cl_object_get(o); lu_object_ref_add_at(&o->co_lu, &cl_page->cp_obj_ref, "cl_page", cl_page); cl_page->cp_vmpage = vmpage; if (cl_page->cp_type != CPT_TRANSIENT) cl_page->cp_state = CPS_CACHED; cl_page->cp_type = type; if (type == CPT_TRANSIENT) /* correct inode to be added in ll_direct_rw_pages */ cl_page->cp_inode = NULL; else cl_page->cp_inode = page2inode(vmpage); INIT_LIST_HEAD(&cl_page->cp_batch); lu_ref_init(&cl_page->cp_reference); head = o; cl_page->cp_page_index = ind; cl_object_for_each(o, head) { if (o->co_ops->coo_page_init != NULL) { result = o->co_ops->coo_page_init(env, o, cl_page, ind); if (result != 0) { __cl_page_delete(env, cl_page); cl_page_free(env, cl_page, NULL); cl_page = ERR_PTR(result); break; } } } if (result == 0) { cs_page_inc(o, CS_total); cs_page_inc(o, CS_create); cs_pagestate_dec(o, CPS_CACHED); } } else { cl_page = ERR_PTR(-ENOMEM); } RETURN(cl_page); } /** * Returns a cl_page with index \a idx at the object \a o, and associated with * the VM page \a vmpage. * * This is the main entry point into the cl_page caching interface. First, a * cache (implemented as a per-object radix tree) is consulted. If page is * found there, it is returned immediately. Otherwise new page is allocated * and returned. In any case, additional reference to page is acquired. * * \see cl_object_find(), cl_lock_find() */ struct cl_page *cl_page_find(const struct lu_env *env, struct cl_object *o, pgoff_t idx, struct page *vmpage, enum cl_page_type type) { struct cl_page *page = NULL; struct cl_object_header *hdr; LASSERT(type == CPT_CACHEABLE || type == CPT_TRANSIENT); might_sleep(); ENTRY; hdr = cl_object_header(o); cs_page_inc(o, CS_lookup); CDEBUG(D_PAGE, "%lu@"DFID" %p %lx %d\n", idx, PFID(&hdr->coh_lu.loh_fid), vmpage, vmpage->private, type); /* fast path. */ if (type == CPT_CACHEABLE) { /* vmpage lock used to protect the child/parent relationship */ LASSERT(PageLocked(vmpage)); /* * cl_vmpage_page() can be called here without any locks as * * - "vmpage" is locked (which prevents ->private from * concurrent updates), and * * - "o" cannot be destroyed while current thread holds a * reference on it. */ page = cl_vmpage_page(vmpage, o); if (page != NULL) { cs_page_inc(o, CS_hit); RETURN(page); } } /* allocate and initialize cl_page */ page = cl_page_alloc(env, o, idx, vmpage, type); RETURN(page); } EXPORT_SYMBOL(cl_page_find); static inline int cl_page_invariant(const struct cl_page *pg) { return cl_page_in_use_noref(pg); } static void __cl_page_state_set(const struct lu_env *env, struct cl_page *cl_page, enum cl_page_state state) { enum cl_page_state old; /* Matrix of allowed state transitions [old][new] for sanity checking */ static const int allowed_transitions[CPS_NR][CPS_NR] = { [CPS_CACHED] = { [CPS_CACHED] = 0, [CPS_OWNED] = 1, /* io finds existing cached page */ [CPS_PAGEIN] = 0, [CPS_PAGEOUT] = 1, /* write-out from the cache */ [CPS_FREEING] = 1, /* eviction on the memory pressure */ }, [CPS_OWNED] = { [CPS_CACHED] = 1, /* release to the cache */ [CPS_OWNED] = 0, [CPS_PAGEIN] = 1, /* start read immediately */ [CPS_PAGEOUT] = 1, /* start write immediately */ [CPS_FREEING] = 1, /* lock invalidation or truncate */ }, [CPS_PAGEIN] = { [CPS_CACHED] = 1, /* io completion */ [CPS_OWNED] = 0, [CPS_PAGEIN] = 0, [CPS_PAGEOUT] = 0, [CPS_FREEING] = 0, }, [CPS_PAGEOUT] = { [CPS_CACHED] = 1, /* io completion */ [CPS_OWNED] = 0, [CPS_PAGEIN] = 0, [CPS_PAGEOUT] = 0, [CPS_FREEING] = 0, }, [CPS_FREEING] = { [CPS_CACHED] = 0, [CPS_OWNED] = 0, [CPS_PAGEIN] = 0, [CPS_PAGEOUT] = 0, [CPS_FREEING] = 0, } }; ENTRY; old = cl_page->cp_state; PASSERT(env, cl_page, allowed_transitions[old][state]); CL_PAGE_HEADER(D_TRACE, env, cl_page, "%d -> %d\n", old, state); PASSERT(env, cl_page, cl_page->cp_state == old); PASSERT(env, cl_page, equi(state == CPS_OWNED, cl_page->cp_owner != NULL)); cs_pagestate_dec(cl_page->cp_obj, cl_page->cp_state); cs_pagestate_inc(cl_page->cp_obj, state); cl_page->cp_state = state; EXIT; } static void cl_page_state_set(const struct lu_env *env, struct cl_page *page, enum cl_page_state state) { LASSERT(page->cp_type != CPT_TRANSIENT); __cl_page_state_set(env, page, state); } /** * Acquires an additional reference to a page. * * This can be called only by caller already possessing a reference to \a * page. * * \see cl_object_get(), cl_lock_get(). */ void cl_page_get(struct cl_page *page) { ENTRY; cl_page_get_trust(page); EXIT; } EXPORT_SYMBOL(cl_page_get); /** * Releases a reference to a page, use the folio_batch to release the pages * in batch if provided. * * Users need to do a final folio_batch_release() to release any trailing pages. */ void cl_batch_put(const struct lu_env *env, struct cl_page *page, struct folio_batch *fbatch) { ENTRY; CL_PAGE_HEADER(D_TRACE, env, page, "%d\n", refcount_read(&page->cp_ref)); if (refcount_dec_and_test(&page->cp_ref)) { if (page->cp_type != CPT_TRANSIENT) LASSERT(page->cp_state == CPS_FREEING); LASSERT(refcount_read(&page->cp_ref) == 0); PASSERT(env, page, page->cp_owner == NULL); PASSERT(env, page, list_empty(&page->cp_batch)); /* Page is no longer reachable by other threads. Tear it down */ cl_page_free(env, page, fbatch); } EXIT; } EXPORT_SYMBOL(cl_batch_put); /** * Releases a reference to a page, wrapper to cl_batch_put * * When last reference is released, page is returned to the cache, unless it * is in cl_page_state::CPS_FREEING state, in which case it is immediately * destroyed. * * \see cl_object_put(), cl_lock_put(). */ void cl_page_put(const struct lu_env *env, struct cl_page *page) { cl_batch_put(env, page, NULL); } EXPORT_SYMBOL(cl_page_put); /* Returns a cl_page associated with a VM page, and given cl_object. */ struct cl_page *cl_vmpage_page(struct page *vmpage, struct cl_object *obj) { struct cl_page *page; ENTRY; LASSERT(PageLocked(vmpage)); /* * NOTE: absence of races and liveness of data are guaranteed by page * lock on a "vmpage". That works because object destruction has * bottom-to-top pass. */ page = (struct cl_page *)vmpage->private; if (page != NULL) { cl_page_get_trust(page); LASSERT(page->cp_type == CPT_CACHEABLE); } RETURN(page); } EXPORT_SYMBOL(cl_vmpage_page); static void cl_page_owner_clear(struct cl_page *page) { ENTRY; if (page->cp_owner != NULL) { LASSERT(page->cp_owner->ci_owned_nr > 0); page->cp_owner->ci_owned_nr--; page->cp_owner = NULL; } EXIT; } static void cl_page_owner_set(struct cl_page *page) { ENTRY; LASSERT(page->cp_owner != NULL); page->cp_owner->ci_owned_nr++; EXIT; } void __cl_page_disown(const struct lu_env *env, struct cl_page *cp) { struct page *vmpage; enum cl_page_state state; ENTRY; cl_page_owner_clear(cp); if (cp->cp_type == CPT_CACHEABLE) { state = cp->cp_state; PINVRNT(env, cp, state == CPS_OWNED || state == CPS_FREEING); PINVRNT(env, cp, cl_page_invariant(cp) || state == CPS_FREEING); if (state == CPS_OWNED) cl_page_state_set(env, cp, CPS_CACHED); vmpage = cp->cp_vmpage; LASSERT(vmpage != NULL); LASSERT(PageLocked(vmpage)); unlock_page(vmpage); } EXIT; } /* returns true, iff page is owned by the given io. */ int cl_page_is_owned(const struct cl_page *pg, const struct cl_io *io) { struct cl_io *top = cl_io_top((struct cl_io *)io); LINVRNT(cl_object_same(pg->cp_obj, top->ci_obj)); ENTRY; if (pg->cp_type != CPT_TRANSIENT) RETURN(pg->cp_state == CPS_OWNED && pg->cp_owner == top); else RETURN(pg->cp_owner == top); } EXPORT_SYMBOL(cl_page_is_owned); /** * Try to own a page by IO. * * Waits until page is in cl_page_state::CPS_CACHED state, and then switch it * into cl_page_state::CPS_OWNED state. * * \pre !cl_page_is_owned(cl_page, io) * \post result == 0 iff cl_page_is_owned(cl_page, io) * * \retval 0 success * * \retval -ve failure, e.g., cl_page was destroyed (and landed in * cl_page_state::CPS_FREEING instead of cl_page_state::CPS_CACHED). * or, page was owned by another thread, or in IO. * * \see cl_page_disown() * \see cl_page_own_try() * \see cl_page_own */ static int __cl_page_own(const struct lu_env *env, struct cl_io *io, struct cl_page *cl_page, int nonblock) { struct page *vmpage = cl_page->cp_vmpage; int result; ENTRY; PINVRNT(env, cl_page, !cl_page_is_owned(cl_page, io)); if (cl_page->cp_type != CPT_TRANSIENT && cl_page->cp_state == CPS_FREEING) { result = -ENOENT; goto out; } LASSERT(vmpage != NULL); if (cl_page->cp_type == CPT_TRANSIENT) { /* OK */ } else if (nonblock) { if (!trylock_page(vmpage)) { result = -EAGAIN; goto out; } if (unlikely(PageWriteback(vmpage))) { unlock_page(vmpage); result = -EAGAIN; goto out; } } else { lock_page(vmpage); wait_on_page_writeback(vmpage); } PASSERT(env, cl_page, cl_page->cp_owner == NULL); cl_page->cp_owner = cl_io_top(io); cl_page_owner_set(cl_page); if (cl_page->cp_type != CPT_TRANSIENT) { if (cl_page->cp_state == CPS_FREEING) { __cl_page_disown(env, cl_page); result = -ENOENT; goto out; } cl_page_state_set(env, cl_page, CPS_OWNED); } result = 0; out: CDEBUG(D_INFO, "res %d\n", result); PINVRNT(env, cl_page, ergo(result == 0, cl_page_invariant(cl_page))); RETURN(result); } /* Own a page, might be blocked. (see __cl_page_own()) */ int cl_page_own(const struct lu_env *env, struct cl_io *io, struct cl_page *pg) { return __cl_page_own(env, io, pg, 0); } EXPORT_SYMBOL(cl_page_own); /* Nonblock version of cl_page_own(). (see __cl_page_own()) */ int cl_page_own_try(const struct lu_env *env, struct cl_io *io, struct cl_page *pg) { return __cl_page_own(env, io, pg, 1); } EXPORT_SYMBOL(cl_page_own_try); /** * Assume page ownership. * * Called when page is already locked by the hosting VM. * * \pre !cl_page_is_owned(cp, io) * \post cl_page_is_owned(cp, io) */ void cl_page_assume(const struct lu_env *env, struct cl_io *io, struct cl_page *cp) { struct page *vmpage; ENTRY; PINVRNT(env, cp, cl_object_same(cp->cp_obj, cl_io_top(io)->ci_obj)); if (cp->cp_type == CPT_CACHEABLE) { vmpage = cp->cp_vmpage; LASSERT(vmpage != NULL); LASSERT(PageLocked(vmpage)); wait_on_page_writeback(vmpage); } PASSERT(env, cp, cp->cp_owner == NULL); cp->cp_owner = cl_io_top(io); cl_page_owner_set(cp); if (cp->cp_type != CPT_TRANSIENT) cl_page_state_set(env, cp, CPS_OWNED); EXIT; } EXPORT_SYMBOL(cl_page_assume); /** * Releases page ownership without unlocking the page. * * Moves cl_page into cl_page_state::CPS_CACHED without releasing a lock * on the underlying VM page (as VM is supposed to do this itself). * * \pre cl_page_is_owned(cp, io) * \post !cl_page_is_owned(cp, io) */ void cl_page_unassume(const struct lu_env *env, struct cl_io *io, struct cl_page *cp) { struct page *vmpage; ENTRY; PINVRNT(env, cp, cl_page_is_owned(cp, io)); PINVRNT(env, cp, cl_page_invariant(cp)); cl_page_owner_clear(cp); if (cp->cp_type != CPT_TRANSIENT) cl_page_state_set(env, cp, CPS_CACHED); if (cp->cp_type == CPT_CACHEABLE) { vmpage = cp->cp_vmpage; LASSERT(vmpage != NULL); LASSERT(PageLocked(vmpage)); } EXIT; } EXPORT_SYMBOL(cl_page_unassume); /** * Releases page ownership. * * Moves page into cl_page_state::CPS_CACHED. * * \pre cl_page_is_owned(pg, io) * \post !cl_page_is_owned(pg, io) * * \see cl_page_own() */ void cl_page_disown(const struct lu_env *env, struct cl_io *io, struct cl_page *pg) { if (pg->cp_type != CPT_TRANSIENT) { PINVRNT(env, pg, cl_page_is_owned(pg, cl_io_top(io)) || pg->cp_state == CPS_FREEING); } __cl_page_disown(env, pg); } EXPORT_SYMBOL(cl_page_disown); /** * Called when cl_page is to be removed from the object, e.g., * as a result of truncate. * * Calls cl_page_operations::cpo_discard() top-to-bottom. * * \pre cl_page_is_owned(cl_page, io) * * \see cl_page_operations::cpo_discard() */ void cl_page_discard(const struct lu_env *env, struct cl_io *io, struct cl_page *cp) { struct page *vmpage; const struct cl_page_slice *slice; int i; PINVRNT(env, cp, cl_page_is_owned(cp, io)); PINVRNT(env, cp, cl_page_invariant(cp)); cl_page_slice_for_each(cp, slice, i) { if (slice->cpl_ops->cpo_discard != NULL) (*slice->cpl_ops->cpo_discard)(env, slice, io); } if (cp->cp_type == CPT_CACHEABLE) { vmpage = cp->cp_vmpage; LASSERT(vmpage != NULL); LASSERT(PageLocked(vmpage)); generic_error_remove_folio(vmpage->mapping, page_folio(vmpage)); } else { cl_page_delete(env, cp); } } EXPORT_SYMBOL(cl_page_discard); /** * Version of cl_page_delete() that can be called for not fully constructed * cl_pages, e.g. in an error handling cl_page_find()->__cl_page_delete() * path. Doesn't check cl_page invariant. */ static void __cl_page_delete(const struct lu_env *env, struct cl_page *cp) { const struct cl_page_slice *slice; int i; ENTRY; if (cp->cp_type != CPT_TRANSIENT) PASSERT(env, cp, cp->cp_state != CPS_FREEING); /* Severe all ways to obtain new pointers to @pg. */ cl_page_owner_clear(cp); if (cp->cp_type != CPT_TRANSIENT) __cl_page_state_set(env, cp, CPS_FREEING); cl_page_slice_for_each_reverse(cp, slice, i) { if (slice->cpl_ops->cpo_delete != NULL) (*slice->cpl_ops->cpo_delete)(env, slice); } EXIT; } /** * Called when a decision is made to throw page out of memory. * * Notifies all layers about page destruction by calling * cl_page_operations::cpo_delete() method top-to-bottom. * * Moves page into cl_page_state::CPS_FREEING state (this is the only place * where transition to this state happens). * * Eliminates all venues through which new references to the page can be * obtained: * * - removes page from the radix trees, * * - breaks linkage from VM page to cl_page. * * Once page reaches cl_page_state::CPS_FREEING, all remaining references will * drain after some time, at which point page will be recycled. * * \pre VM page is locked * \post pg->cp_state == CPS_FREEING * * \see cl_page_operations::cpo_delete() */ void cl_page_delete(const struct lu_env *env, struct cl_page *pg) { PINVRNT(env, pg, cl_page_invariant(pg)); ENTRY; __cl_page_delete(env, pg); EXIT; } EXPORT_SYMBOL(cl_page_delete); void cl_page_touch(const struct lu_env *env, const struct cl_page *cl_page, size_t to) { const struct cl_page_slice *slice; int i; ENTRY; cl_page_slice_for_each(cl_page, slice, i) { if (slice->cpl_ops->cpo_page_touch != NULL) (*slice->cpl_ops->cpo_page_touch)(env, slice, to); } EXIT; } EXPORT_SYMBOL(cl_page_touch); static enum cl_page_state cl_req_type_state(enum cl_req_type crt) { ENTRY; RETURN(crt == CRT_WRITE ? CPS_PAGEOUT : CPS_PAGEIN); } static void cl_page_io_start(const struct lu_env *env, struct cl_page *pg, enum cl_req_type crt) { /* Page is queued for IO, change its state. */ ENTRY; cl_page_owner_clear(pg); if (pg->cp_type != CPT_TRANSIENT) cl_page_state_set(env, pg, cl_req_type_state(crt)); EXIT; } /** * Prepares page for immediate transfer. Return -EALREADY if this page * should be omitted from transfer. */ int cl_page_prep(const struct lu_env *env, struct cl_io *io, struct cl_page *cp, enum cl_req_type crt) { struct page *vmpage = cp->cp_vmpage; int rc; PASSERT(env, cp, crt < CRT_NR); PINVRNT(env, cp, cl_page_is_owned(cp, io)); PINVRNT(env, cp, cl_page_invariant(cp)); if (cp->cp_type == CPT_TRANSIENT) { /* Nothing to do. */ } else if (crt == CRT_READ) { if (PageUptodate(vmpage)) GOTO(out, rc = -EALREADY); } else { LASSERT(PageLocked(vmpage)); LASSERT(!PageDirty(vmpage)); /* ll_writepage path is not a sync write, so need to * set page writeback flag */ if (cp->cp_sync_io == NULL) set_page_writeback(vmpage); } cl_page_io_start(env, cp, crt); rc = 0; out: CL_PAGE_HEADER(D_TRACE, env, cp, "%d %d\n", crt, rc); return rc; } EXPORT_SYMBOL(cl_page_prep); /** * Notify layers about transfer completion. * * Invoked by transfer sub-system (which is a part of osc) to notify layers * that a transfer, of which this page is a part of has completed. * * Completion call-backs are executed in the bottom-up order, so that * uppermost layer (llite), responsible for the VFS/VM interaction runs last * and can release locks safely. * * \pre cl_page->cp_state == CPS_PAGEIN || cl_page->cp_state == CPS_PAGEOUT * \post cl_page->cl_page_state == CPS_CACHED * * \see cl_page_operations::cpo_completion() */ void cl_page_completion(const struct lu_env *env, struct cl_page *cl_page, enum cl_req_type crt, int ioret) { const struct cl_page_slice *slice; struct cl_sync_io *anchor = cl_page->cp_sync_io; int i; ENTRY; PASSERT(env, cl_page, crt < CRT_NR); if (cl_page->cp_type != CPT_TRANSIENT) PASSERT(env, cl_page, cl_page->cp_state == cl_req_type_state(crt)); CL_PAGE_HEADER(D_TRACE, env, cl_page, "%d %d\n", crt, ioret); if (cl_page->cp_type != CPT_TRANSIENT) cl_page_state_set(env, cl_page, CPS_CACHED); if (crt >= CRT_NR) return; cl_page_slice_for_each_reverse(cl_page, slice, i) { if (slice->cpl_ops->io[crt].cpo_completion != NULL) (*slice->cpl_ops->io[crt].cpo_completion)(env, slice, ioret); } if (anchor != NULL) { LASSERT(cl_page->cp_sync_io == anchor); cl_page->cp_sync_io = NULL; cl_sync_io_note(env, anchor, ioret); } EXIT; } EXPORT_SYMBOL(cl_page_completion); /** * Notify layers that transfer formation engine decided to yank this page from * the cache and to make it a part of a transfer. * * \pre cl_page->cp_state == CPS_CACHED * \post cl_page->cp_state == CPS_PAGEIN || cl_page->cp_state == CPS_PAGEOUT */ int cl_page_make_ready(const struct lu_env *env, struct cl_page *cp, enum cl_req_type crt) { struct page *vmpage = cp->cp_vmpage; bool unlock = false; int rc; ENTRY; PASSERT(env, cp, crt == CRT_WRITE); if (cp->cp_type == CPT_TRANSIENT) GOTO(out, rc = 0); lock_page(vmpage); PASSERT(env, cp, PageUptodate(vmpage)); unlock = true; if (clear_page_dirty_for_io(vmpage)) { LASSERT(cp->cp_state == CPS_CACHED); /* This actually clears the dirty bit in the radix tree */ set_page_writeback(vmpage); CL_PAGE_HEADER(D_PAGE, env, cp, "readied\n"); rc = 0; } else if (cp->cp_state == CPS_PAGEOUT) { /* is it possible for osc_flush_async_page() * to already make it ready? */ rc = -EALREADY; } else { CL_PAGE_DEBUG(D_ERROR, env, cp, "unexpecting page state %d\n", cp->cp_state); LBUG(); } out: if (rc == 0) { PASSERT(env, cp, cp->cp_state == CPS_CACHED); cl_page_io_start(env, cp, crt); } if (unlock) unlock_page(vmpage); CL_PAGE_HEADER(D_TRACE, env, cp, "%d %d\n", crt, rc); return rc; } EXPORT_SYMBOL(cl_page_make_ready); /** * Called if a page is being written back by kernel's intention. * * \pre cl_page_is_owned(cl_page, io) * \post ergo(result == 0, cl_page->cp_state == CPS_PAGEOUT) * * \see cl_page_operations::cpo_flush() */ int cl_page_flush(const struct lu_env *env, struct cl_io *io, struct cl_page *cl_page) { const struct cl_page_slice *slice; int result = 0; int i; ENTRY; PINVRNT(env, cl_page, cl_page_is_owned(cl_page, io)); PINVRNT(env, cl_page, cl_page_invariant(cl_page)); cl_page_slice_for_each(cl_page, slice, i) { if (slice->cpl_ops->cpo_flush != NULL) result = (*slice->cpl_ops->cpo_flush)(env, slice, io); if (result != 0) break; } if (result > 0) result = 0; CL_PAGE_HEADER(D_TRACE, env, cl_page, "%d\n", result); RETURN(result); } EXPORT_SYMBOL(cl_page_flush); /** * Tells transfer engine that only part of a page is to be transmitted. * * \see cl_page_operations::cpo_clip() */ void cl_page_clip(const struct lu_env *env, struct cl_page *cl_page, int from, int to) { const struct cl_page_slice *slice; int i; PINVRNT(env, cl_page, cl_page_invariant(cl_page)); CL_PAGE_HEADER(D_TRACE, env, cl_page, "%d %d\n", from, to); cl_page_slice_for_each(cl_page, slice, i) { if (slice->cpl_ops->cpo_clip != NULL) (*slice->cpl_ops->cpo_clip)(env, slice, from, to); } } EXPORT_SYMBOL(cl_page_clip); /* Prints human readable representation of \a pg to the \a f. */ void cl_page_header_print(const struct lu_env *env, void *cookie, lu_printer_t printer, const struct cl_page *pg) { (*printer)(env, cookie, "page@%p[%d %p %d %d %p]\n", pg, refcount_read(&pg->cp_ref), pg->cp_obj, pg->cp_state, pg->cp_type, pg->cp_owner); } EXPORT_SYMBOL(cl_page_header_print); /* Prints human readable representation of \a cl_page to the \a f. */ void cl_page_print(const struct lu_env *env, void *cookie, lu_printer_t printer, const struct cl_page *cp) { struct page *vmpage = cp->cp_vmpage; const struct cl_page_slice *slice; int result = 0; int i; cl_page_header_print(env, cookie, printer, cp); (*printer)(env, cookie, "vmpage @%p", vmpage); if (vmpage != NULL) { (*printer)(env, cookie, " %lx %d:%d %lx %lu %slru", (long)vmpage->flags, page_count(vmpage), page_mapcount(vmpage), vmpage->private, page_index(vmpage), list_empty(&vmpage->lru) ? "not-" : ""); } (*printer)(env, cookie, "\n"); cl_page_slice_for_each(cp, slice, i) { if (slice->cpl_ops->cpo_print != NULL) result = (*slice->cpl_ops->cpo_print)(env, slice, cookie, printer); if (result != 0) break; } (*printer)(env, cookie, "end page@%p\n", cp); } EXPORT_SYMBOL(cl_page_print); /** * Adds page slice to the compound page. * * This is called by cl_object_operations::coo_page_init() methods to add a * per-layer state to the page. New state is added at the end of * cl_page::cp_layers list, that is, it is at the bottom of the stack. * * \see cl_lock_slice_add(), cl_req_slice_add(), cl_io_slice_add() */ void cl_page_slice_add(struct cl_page *cl_page, struct cl_page_slice *slice, struct cl_object *obj, const struct cl_page_operations *ops) { unsigned int offset = (char *)slice - ((char *)cl_page + sizeof(*cl_page)); ENTRY; LASSERT(cl_page->cp_layer_count < CP_MAX_LAYER); LASSERT(offset < (1 << sizeof(cl_page->cp_layer_offset[0]) * 8)); cl_page->cp_layer_offset[cl_page->cp_layer_count++] = offset; slice->cpl_ops = ops; slice->cpl_page = cl_page; EXIT; } EXPORT_SYMBOL(cl_page_slice_add); /* Allocate and initialize cl_cache, called by ll_init_sbi(). */ struct cl_client_cache *cl_cache_init(unsigned long lru_page_max) { struct cl_client_cache *cache = NULL; ENTRY; OBD_ALLOC(cache, sizeof(*cache)); if (cache == NULL) RETURN(NULL); /* Initialize cache data */ refcount_set(&cache->ccc_users, 1); cache->ccc_lru_max = lru_page_max; atomic_long_set(&cache->ccc_lru_left, lru_page_max); spin_lock_init(&cache->ccc_lru_lock); INIT_LIST_HEAD(&cache->ccc_lru); cache->ccc_unstable_check = 1; atomic_long_set(&cache->ccc_unstable_nr, 0); mutex_init(&cache->ccc_max_cache_mb_lock); RETURN(cache); } EXPORT_SYMBOL(cl_cache_init); /* Increase cl_cache refcount */ void cl_cache_incref(struct cl_client_cache *cache) { refcount_inc(&cache->ccc_users); } EXPORT_SYMBOL(cl_cache_incref); /** * Decrease cl_cache refcount and free the cache if refcount=0. * Since llite, lov and osc all hold cl_cache refcount, * the free will not cause race. (LU-6173) */ void cl_cache_decref(struct cl_client_cache *cache) { if (refcount_dec_and_test(&cache->ccc_users)) OBD_FREE(cache, sizeof(*cache)); } EXPORT_SYMBOL(cl_cache_decref);