/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2017, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * * Client Lustre Object. * * Author: Nikita Danilov * Author: Jinshan Xiong */ /* * Locking. * * i_mutex * PG_locked * ->coh_attr_guard * ->ls_guard */ #define DEBUG_SUBSYSTEM S_CLASS #include #include #include #include #include #include #include #include "cl_internal.h" static struct kmem_cache *cl_env_kmem; struct kmem_cache *cl_dio_aio_kmem; struct kmem_cache *cl_sub_dio_kmem; struct kmem_cache *cl_page_kmem_array[16]; unsigned short cl_page_kmem_size_array[16]; /** Lock class of cl_object_header::coh_attr_guard */ static struct lock_class_key cl_attr_guard_class; /** * Initialize cl_object_header. */ int cl_object_header_init(struct cl_object_header *h) { int result; ENTRY; result = lu_object_header_init(&h->coh_lu); if (result == 0) { spin_lock_init(&h->coh_attr_guard); lockdep_set_class(&h->coh_attr_guard, &cl_attr_guard_class); h->coh_page_bufsize = 0; } RETURN(result); } EXPORT_SYMBOL(cl_object_header_init); /** * Finalize cl_object_header. */ void cl_object_header_fini(struct cl_object_header *h) { lu_object_header_fini(&h->coh_lu); } /** * Returns a cl_object with a given \a fid. * * Returns either cached or newly created object. Additional reference on the * returned object is acquired. * * \see lu_object_find(), cl_page_find(), cl_lock_find() */ struct cl_object *cl_object_find(const struct lu_env *env, struct cl_device *cd, const struct lu_fid *fid, const struct cl_object_conf *c) { might_sleep(); return lu2cl(lu_object_find_slice(env, cl2lu_dev(cd), fid, &c->coc_lu)); } EXPORT_SYMBOL(cl_object_find); /** * Releases a reference on \a o. * * When last reference is released object is returned to the cache, unless * lu_object_header_flags::LU_OBJECT_HEARD_BANSHEE bit is set in its header. * * \see cl_page_put(), cl_lock_put(). */ void cl_object_put(const struct lu_env *env, struct cl_object *o) { lu_object_put(env, &o->co_lu); } EXPORT_SYMBOL(cl_object_put); /** * Acquire an additional reference to the object \a o. * * This can only be used to acquire _additional_ reference, i.e., caller * already has to possess at least one reference to \a o before calling this. * * \see cl_page_get(), cl_lock_get(). */ void cl_object_get(struct cl_object *o) { lu_object_get(&o->co_lu); } EXPORT_SYMBOL(cl_object_get); /** * Returns the top-object for a given \a o. * * \see cl_io_top() */ struct cl_object *cl_object_top(struct cl_object *o) { struct cl_object_header *hdr = cl_object_header(o); struct cl_object *top; while (hdr->coh_parent != NULL) hdr = hdr->coh_parent; top = lu2cl(lu_object_top(&hdr->coh_lu)); CDEBUG(D_TRACE, "%p -> %p\n", o, top); return top; } EXPORT_SYMBOL(cl_object_top); /** * Returns pointer to the lock protecting data-attributes for the given object * \a o. * * Data-attributes are protected by the cl_object_header::coh_attr_guard * spin-lock in the top-object. * * \see cl_attr, cl_object_attr_lock(), cl_object_operations::coo_attr_get(). */ static spinlock_t *cl_object_attr_guard(struct cl_object *o) { return &cl_object_header(cl_object_top(o))->coh_attr_guard; } /** * Locks data-attributes. * * Prevents data-attributes from changing, until lock is released by * cl_object_attr_unlock(). This has to be called before calls to * cl_object_attr_get(), cl_object_attr_update(). */ void cl_object_attr_lock(struct cl_object *o) __acquires(cl_object_attr_guard(o)) { spin_lock(cl_object_attr_guard(o)); } EXPORT_SYMBOL(cl_object_attr_lock); /** * Releases data-attributes lock, acquired by cl_object_attr_lock(). */ void cl_object_attr_unlock(struct cl_object *o) __releases(cl_object_attr_guard(o)) { spin_unlock(cl_object_attr_guard(o)); } EXPORT_SYMBOL(cl_object_attr_unlock); /** * Returns data-attributes of an object \a obj. * * Every layer is asked (by calling cl_object_operations::coo_attr_get()) * top-to-bottom to fill in parts of \a attr that this layer is responsible * for. */ int cl_object_attr_get(const struct lu_env *env, struct cl_object *top, struct cl_attr *attr) { struct cl_object *obj; int result = 0; assert_spin_locked(cl_object_attr_guard(top)); ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_attr_get != NULL) { result = obj->co_ops->coo_attr_get(env, obj, attr); if (result != 0) { if (result > 0) result = 0; break; } } } RETURN(result); } EXPORT_SYMBOL(cl_object_attr_get); /** * Updates data-attributes of an object \a obj. * * Only attributes, mentioned in a validness bit-mask \a v are * updated. Calls cl_object_operations::coo_upd_attr() on every layer, bottom * to top. */ int cl_object_attr_update(const struct lu_env *env, struct cl_object *top, const struct cl_attr *attr, unsigned v) { struct cl_object *obj; int result = 0; assert_spin_locked(cl_object_attr_guard(top)); ENTRY; cl_object_for_each_reverse(obj, top) { if (obj->co_ops->coo_attr_update != NULL) { result = obj->co_ops->coo_attr_update(env, obj, attr, v); if (result != 0) { if (result > 0) result = 0; break; } } } RETURN(result); } EXPORT_SYMBOL(cl_object_attr_update); /** * Mark the inode as dirty when the inode has uncommitted (unstable) pages. * Thus when the system is under momory pressure, it will trigger writeback * on background to commit and unpin the pages. */ void cl_object_dirty_for_sync(const struct lu_env *env, struct cl_object *top) { struct cl_object *obj; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_dirty_for_sync != NULL) obj->co_ops->coo_dirty_for_sync(env, obj); } EXIT; } EXPORT_SYMBOL(cl_object_dirty_for_sync); /** * Notifies layers (bottom-to-top) that glimpse AST was received. * * Layers have to fill \a lvb fields with information that will be shipped * back to glimpse issuer. * * \see cl_lock_operations::clo_glimpse() */ int cl_object_glimpse(const struct lu_env *env, struct cl_object *top, struct ost_lvb *lvb) { struct cl_object *obj; int result = 0; ENTRY; cl_object_for_each_reverse(obj, top) { if (obj->co_ops->coo_glimpse != NULL) { result = obj->co_ops->coo_glimpse(env, obj, lvb); if (result != 0) break; } } LU_OBJECT_HEADER(D_DLMTRACE, env, lu_object_top(top->co_lu.lo_header), "size: %llu mtime: %llu atime: %llu " "ctime: %llu blocks: %llu\n", lvb->lvb_size, lvb->lvb_mtime, lvb->lvb_atime, lvb->lvb_ctime, lvb->lvb_blocks); RETURN(result); } EXPORT_SYMBOL(cl_object_glimpse); /** * Updates a configuration of an object \a obj. */ int cl_conf_set(const struct lu_env *env, struct cl_object *top, const struct cl_object_conf *conf) { struct cl_object *obj; int result = 0; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_conf_set != NULL) { result = obj->co_ops->coo_conf_set(env, obj, conf); if (result) break; } } RETURN(result); } EXPORT_SYMBOL(cl_conf_set); /** * Prunes caches of pages and locks for this object. */ int cl_object_prune(const struct lu_env *env, struct cl_object *top) { struct cl_object *obj; int result = 0; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_prune != NULL) { result = obj->co_ops->coo_prune(env, obj); if (result) break; } } RETURN(result); } EXPORT_SYMBOL(cl_object_prune); /** * Get stripe information of this object. */ int cl_object_getstripe(const struct lu_env *env, struct cl_object *top, struct lov_user_md __user *uarg, size_t size) { struct cl_object *obj; int result = 0; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_getstripe) { result = obj->co_ops->coo_getstripe(env, obj, uarg, size); if (result) break; } } RETURN(result); } EXPORT_SYMBOL(cl_object_getstripe); /** * Get fiemap extents from file object. * * \param env [in] lustre environment * \param obj [in] file object * \param key [in] fiemap request argument * \param fiemap [out] fiemap extents mapping retrived * \param buflen [in] max buffer length of @fiemap * * \retval 0 success * \retval < 0 error */ int cl_object_fiemap(const struct lu_env *env, struct cl_object *top, struct ll_fiemap_info_key *key, struct fiemap *fiemap, size_t *buflen) { struct cl_object *obj; int result = 0; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_fiemap) { result = obj->co_ops->coo_fiemap(env, obj, key, fiemap, buflen); if (result) break; } } RETURN(result); } EXPORT_SYMBOL(cl_object_fiemap); int cl_object_layout_get(const struct lu_env *env, struct cl_object *top, struct cl_layout *cl) { struct cl_object *obj; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_layout_get) return obj->co_ops->coo_layout_get(env, obj, cl); } RETURN(-EOPNOTSUPP); } EXPORT_SYMBOL(cl_object_layout_get); loff_t cl_object_maxbytes(struct cl_object *top) { struct cl_object *obj; loff_t maxbytes = LLONG_MAX; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_maxbytes) maxbytes = min_t(loff_t, obj->co_ops->coo_maxbytes(obj), maxbytes); } RETURN(maxbytes); } EXPORT_SYMBOL(cl_object_maxbytes); int cl_object_flush(const struct lu_env *env, struct cl_object *top, struct ldlm_lock *lock) { struct cl_object *obj; int rc = 0; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_object_flush) { rc = obj->co_ops->coo_object_flush(env, obj, lock); if (rc) break; } } RETURN(rc); } EXPORT_SYMBOL(cl_object_flush); int cl_object_inode_ops(const struct lu_env *env, struct cl_object *top, enum coo_inode_opc opc, void *data) { struct cl_object *obj; int rc = 0; ENTRY; cl_object_for_each(obj, top) { if (obj->co_ops->coo_inode_ops) { rc = obj->co_ops->coo_inode_ops(env, obj, opc, data); if (rc) break; } } RETURN(rc); } EXPORT_SYMBOL(cl_object_inode_ops); /** * Helper function removing all object locks, and marking object for * deletion. All object pages must have been deleted at this point. * * This is called by cl_inode_fini() and lov_object_delete() to destroy top- * and sub- objects respectively. */ void cl_object_kill(const struct lu_env *env, struct cl_object *obj) { struct cl_object_header *hdr = cl_object_header(obj); set_bit(LU_OBJECT_HEARD_BANSHEE, &hdr->coh_lu.loh_flags); } EXPORT_SYMBOL(cl_object_kill); void cache_stats_init(struct cache_stats *cs, const char *name) { int i; cs->cs_name = name; for (i = 0; i < CS_NR; i++) atomic_set(&cs->cs_stats[i], 0); } static int cache_stats_print(const struct cache_stats *cs, struct seq_file *m, int h) { int i; /* * lookup hit total cached create * env: ...... ...... ...... ...... ...... */ if (h) { const char *names[CS_NR] = CS_NAMES; seq_printf(m, "%6s", " "); for (i = 0; i < CS_NR; i++) seq_printf(m, "%8s", names[i]); seq_printf(m, "\n"); } seq_printf(m, "%5.5s:", cs->cs_name); for (i = 0; i < CS_NR; i++) seq_printf(m, "%8u", atomic_read(&cs->cs_stats[i])); return 0; } static void cl_env_percpu_refill(void); /** * Initialize client site. * * Perform common initialization (lu_site_init()), and initialize statistical * counters. Also perform global initializations on the first call. */ int cl_site_init(struct cl_site *s, struct cl_device *d) { size_t i; int result; result = lu_site_init(&s->cs_lu, &d->cd_lu_dev); if (result == 0) { cache_stats_init(&s->cs_pages, "pages"); for (i = 0; i < ARRAY_SIZE(s->cs_pages_state); ++i) atomic_set(&s->cs_pages_state[0], 0); cl_env_percpu_refill(); } return result; } EXPORT_SYMBOL(cl_site_init); /** * Finalize client site. Dual to cl_site_init(). */ void cl_site_fini(struct cl_site *s) { lu_site_fini(&s->cs_lu); } EXPORT_SYMBOL(cl_site_fini); static struct cache_stats cl_env_stats = { .cs_name = "envs", .cs_stats = { ATOMIC_INIT(0), } }; /** * Outputs client site statistical counters into a buffer. Suitable for * ll_rd_*()-style functions. */ int cl_site_stats_print(const struct cl_site *site, struct seq_file *m) { static const char *const pstate[] = { [CPS_CACHED] = "c", [CPS_OWNED] = "o", [CPS_PAGEOUT] = "w", [CPS_PAGEIN] = "r", [CPS_FREEING] = "f" }; size_t i; /* lookup hit total busy create pages: ...... ...... ...... ...... ...... [...... ...... ...... ......] locks: ...... ...... ...... ...... ...... [...... ...... ...... ...... ......] env: ...... ...... ...... ...... ...... */ lu_site_stats_seq_print(&site->cs_lu, m); cache_stats_print(&site->cs_pages, m, 1); seq_printf(m, " ["); for (i = 0; i < ARRAY_SIZE(site->cs_pages_state); ++i) seq_printf(m, "%s: %u ", pstate[i], atomic_read(&site->cs_pages_state[i])); seq_printf(m, "]\n"); cache_stats_print(&cl_env_stats, m, 0); seq_printf(m, "\n"); return 0; } EXPORT_SYMBOL(cl_site_stats_print); /***************************************************************************** * * lu_env handling on client. * */ static unsigned cl_envs_cached_max = 32; /* XXX: prototype: arbitrary limit * for now. */ static struct cl_env_cache { rwlock_t cec_guard; unsigned cec_count; struct list_head cec_envs; } *cl_envs = NULL; struct cl_env { void *ce_magic; struct lu_env ce_lu; struct lu_context ce_ses; /* * Linkage into global list of all client environments. Used for * garbage collection. */ struct list_head ce_linkage; /* * */ int ce_ref; /* * Debugging field: address of the caller who made original * allocation. */ void *ce_debug; }; static void cl_env_inc(enum cache_stats_item item) { #ifdef CONFIG_DEBUG_PAGESTATE_TRACKING atomic_inc(&cl_env_stats.cs_stats[item]); #endif } static void cl_env_dec(enum cache_stats_item item) { #ifdef CONFIG_DEBUG_PAGESTATE_TRACKING LASSERT(atomic_read(&cl_env_stats.cs_stats[item]) > 0); atomic_dec(&cl_env_stats.cs_stats[item]); #endif } static void cl_env_init0(struct cl_env *cle, void *debug) { LASSERT(cle->ce_ref == 0); LASSERT(cle->ce_magic == &cl_env_init0); LASSERT(cle->ce_debug == NULL); cle->ce_ref = 1; cle->ce_debug = debug; cl_env_inc(CS_busy); } static struct lu_env *cl_env_new(__u32 ctx_tags, __u32 ses_tags, void *debug) { struct lu_env *env; struct cl_env *cle; OBD_SLAB_ALLOC_PTR_GFP(cle, cl_env_kmem, GFP_NOFS); if (cle != NULL) { int rc; INIT_LIST_HEAD(&cle->ce_linkage); cle->ce_magic = &cl_env_init0; env = &cle->ce_lu; rc = lu_env_init(env, LCT_CL_THREAD|ctx_tags); if (rc == 0) { rc = lu_context_init(&cle->ce_ses, LCT_SESSION | ses_tags); if (rc == 0) { lu_context_enter(&cle->ce_ses); env->le_ses = &cle->ce_ses; cl_env_init0(cle, debug); } else lu_env_fini(env); } if (rc != 0) { OBD_SLAB_FREE_PTR(cle, cl_env_kmem); env = ERR_PTR(rc); } else { cl_env_inc(CS_create); cl_env_inc(CS_total); } } else env = ERR_PTR(-ENOMEM); return env; } static void cl_env_fini(struct cl_env *cle) { cl_env_dec(CS_total); lu_context_fini(&cle->ce_lu.le_ctx); lu_context_fini(&cle->ce_ses); OBD_SLAB_FREE_PTR(cle, cl_env_kmem); } /* Get a cl_env, either from the per-CPU cache for the current CPU, or by * allocating a new one. */ static struct lu_env *cl_env_obtain(void *debug) { struct cl_env *cle; struct lu_env *env; int cpu = get_cpu(); ENTRY; read_lock(&cl_envs[cpu].cec_guard); LASSERT(equi(cl_envs[cpu].cec_count == 0, list_empty(&cl_envs[cpu].cec_envs))); if (cl_envs[cpu].cec_count > 0) { int rc; cle = container_of(cl_envs[cpu].cec_envs.next, struct cl_env, ce_linkage); list_del_init(&cle->ce_linkage); cl_envs[cpu].cec_count--; read_unlock(&cl_envs[cpu].cec_guard); put_cpu(); env = &cle->ce_lu; rc = lu_env_refill(env); if (rc == 0) { cl_env_init0(cle, debug); lu_context_enter(&env->le_ctx); lu_context_enter(&cle->ce_ses); } else { cl_env_fini(cle); env = ERR_PTR(rc); } } else { read_unlock(&cl_envs[cpu].cec_guard); put_cpu(); env = cl_env_new(lu_context_tags_default, lu_session_tags_default, debug); } RETURN(env); } static inline struct cl_env *cl_env_container(struct lu_env *env) { return container_of(env, struct cl_env, ce_lu); } /** * Returns an lu_env. * * No link to thread, this returns an env from the cache or * allocates a new one. * * If you need to get the specific environment you created for this thread, * you must either pass the pointer directly or store it in the file/inode * private data and retrieve it from there using ll_cl_add/ll_cl_find. * * \param refcheck pointer to a counter used to detect environment leaks. In * the usual case cl_env_get() and cl_env_put() are called in the same lexical * scope and pointer to the same integer is passed as \a refcheck. This is * used to detect missed cl_env_put(). * * \see cl_env_put() */ struct lu_env *cl_env_get(__u16 *refcheck) { struct lu_env *env; env = cl_env_obtain(__builtin_return_address(0)); if (!IS_ERR(env)) { struct cl_env *cle; cle = cl_env_container(env); *refcheck = cle->ce_ref; CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle); } return env; } EXPORT_SYMBOL(cl_env_get); /** * Forces an allocation of a fresh environment with given tags. * * \see cl_env_get() */ struct lu_env *cl_env_alloc(__u16 *refcheck, __u32 tags) { struct lu_env *env; env = cl_env_new(tags, tags, __builtin_return_address(0)); if (!IS_ERR(env)) { struct cl_env *cle; cle = cl_env_container(env); *refcheck = cle->ce_ref; CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle); } return env; } EXPORT_SYMBOL(cl_env_alloc); static void cl_env_exit(struct cl_env *cle) { lu_context_exit(&cle->ce_lu.le_ctx); lu_context_exit(&cle->ce_ses); } /** * Finalizes and frees a given number of cached environments. This is done to * (1) free some memory (not currently hooked into VM), or (2) release * references to modules. */ unsigned cl_env_cache_purge(unsigned nr) { struct cl_env *cle; unsigned i; ENTRY; for_each_possible_cpu(i) { write_lock(&cl_envs[i].cec_guard); for (; !list_empty(&cl_envs[i].cec_envs) && nr > 0; --nr) { cle = container_of(cl_envs[i].cec_envs.next, struct cl_env, ce_linkage); list_del_init(&cle->ce_linkage); LASSERT(cl_envs[i].cec_count > 0); cl_envs[i].cec_count--; write_unlock(&cl_envs[i].cec_guard); cl_env_fini(cle); write_lock(&cl_envs[i].cec_guard); } LASSERT(equi(cl_envs[i].cec_count == 0, list_empty(&cl_envs[i].cec_envs))); write_unlock(&cl_envs[i].cec_guard); } RETURN(nr); } EXPORT_SYMBOL(cl_env_cache_purge); /** * Release an environment. * * Decrement \a env reference counter. When counter drops to 0, nothing in * this thread is using environment and it is returned to the per-CPU cache or * freed immediately if the cache is full. */ void cl_env_put(struct lu_env *env, __u16 *refcheck) { struct cl_env *cle; cle = cl_env_container(env); LASSERT(cle->ce_ref > 0); LASSERT(ergo(refcheck != NULL, cle->ce_ref == *refcheck)); CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle); if (--cle->ce_ref == 0) { int cpu = get_cpu(); cl_env_dec(CS_busy); cle->ce_debug = NULL; cl_env_exit(cle); /* * Don't bother to take a lock here. * * Return environment to the cache only when it was allocated * with the standard tags. */ if (cl_envs[cpu].cec_count < cl_envs_cached_max && (env->le_ctx.lc_tags & ~LCT_HAS_EXIT) == lu_context_tags_default && (env->le_ses->lc_tags & ~LCT_HAS_EXIT) == lu_session_tags_default) { read_lock(&cl_envs[cpu].cec_guard); list_add(&cle->ce_linkage, &cl_envs[cpu].cec_envs); cl_envs[cpu].cec_count++; read_unlock(&cl_envs[cpu].cec_guard); } else cl_env_fini(cle); put_cpu(); } } EXPORT_SYMBOL(cl_env_put); /** * Converts struct cl_attr to struct ost_lvb. * * \see cl_lvb2attr */ void cl_attr2lvb(struct ost_lvb *lvb, const struct cl_attr *attr) { lvb->lvb_size = attr->cat_size; lvb->lvb_mtime = attr->cat_mtime; lvb->lvb_atime = attr->cat_atime; lvb->lvb_ctime = attr->cat_ctime; lvb->lvb_blocks = attr->cat_blocks; } /** * Converts struct ost_lvb to struct cl_attr. * * \see cl_attr2lvb */ void cl_lvb2attr(struct cl_attr *attr, const struct ost_lvb *lvb) { attr->cat_size = lvb->lvb_size; attr->cat_mtime = lvb->lvb_mtime; attr->cat_atime = lvb->lvb_atime; attr->cat_ctime = lvb->lvb_ctime; attr->cat_blocks = lvb->lvb_blocks; } EXPORT_SYMBOL(cl_lvb2attr); static struct cl_env cl_env_percpu[NR_CPUS]; static DEFINE_MUTEX(cl_env_percpu_mutex); static int cl_env_percpu_init(void) { struct cl_env *cle; int tags = LCT_REMEMBER | LCT_NOREF; int i, j; int rc = 0; for_each_possible_cpu(i) { struct lu_env *env; rwlock_init(&cl_envs[i].cec_guard); INIT_LIST_HEAD(&cl_envs[i].cec_envs); cl_envs[i].cec_count = 0; cle = &cl_env_percpu[i]; env = &cle->ce_lu; INIT_LIST_HEAD(&cle->ce_linkage); cle->ce_magic = &cl_env_init0; rc = lu_env_init(env, LCT_CL_THREAD | tags); if (rc == 0) { rc = lu_context_init(&cle->ce_ses, LCT_SESSION | tags); if (rc == 0) { lu_context_enter(&cle->ce_ses); env->le_ses = &cle->ce_ses; } else { lu_env_fini(env); } } if (rc != 0) break; } if (rc != 0) { /* Indices 0 to i (excluding i) were correctly initialized, * thus we must uninitialize up to i, the rest are undefined. */ for (j = 0; j < i; j++) { cle = &cl_env_percpu[j]; lu_context_exit(&cle->ce_ses); lu_context_fini(&cle->ce_ses); lu_env_fini(&cle->ce_lu); } } return rc; } static void cl_env_percpu_fini(void) { int i; for_each_possible_cpu(i) { struct cl_env *cle = &cl_env_percpu[i]; lu_context_exit(&cle->ce_ses); lu_context_fini(&cle->ce_ses); lu_env_fini(&cle->ce_lu); } } static void cl_env_percpu_refill(void) { int i; mutex_lock(&cl_env_percpu_mutex); for_each_possible_cpu(i) lu_env_refill(&cl_env_percpu[i].ce_lu); mutex_unlock(&cl_env_percpu_mutex); } void cl_env_percpu_put(struct lu_env *env) { struct cl_env *cle; int cpu; cpu = smp_processor_id(); cle = cl_env_container(env); LASSERT(cle == &cl_env_percpu[cpu]); cle->ce_ref--; LASSERT(cle->ce_ref == 0); cl_env_dec(CS_busy); cle->ce_debug = NULL; put_cpu(); } EXPORT_SYMBOL(cl_env_percpu_put); struct lu_env *cl_env_percpu_get(void) { struct cl_env *cle; cle = &cl_env_percpu[get_cpu()]; cl_env_init0(cle, __builtin_return_address(0)); return &cle->ce_lu; } EXPORT_SYMBOL(cl_env_percpu_get); /***************************************************************************** * * Temporary prototype thing: mirror obd-devices into cl devices. * */ struct cl_device *cl_type_setup(const struct lu_env *env, struct lu_site *site, struct lu_device_type *ldt, struct lu_device *next) { const char *typename; struct lu_device *d; LASSERT(ldt != NULL); typename = ldt->ldt_name; d = ldt->ldt_ops->ldto_device_alloc(env, ldt, NULL); if (!IS_ERR(d)) { int rc; if (site != NULL) d->ld_site = site; rc = ldt->ldt_ops->ldto_device_init(env, d, typename, next); if (rc == 0) { lu_device_get(d); lu_ref_add(&d->ld_reference, "lu-stack", &lu_site_init); } else { ldt->ldt_ops->ldto_device_free(env, d); CERROR("can't init device '%s', %d\n", typename, rc); d = ERR_PTR(rc); } } else CERROR("Cannot allocate device: '%s'\n", typename); return lu2cl_dev(d); } EXPORT_SYMBOL(cl_type_setup); /** * Finalize device stack by calling lu_stack_fini(). */ void cl_stack_fini(const struct lu_env *env, struct cl_device *cl) { lu_stack_fini(env, cl2lu_dev(cl)); } EXPORT_SYMBOL(cl_stack_fini); static struct lu_context_key cl_key; struct cl_thread_info *cl_env_info(const struct lu_env *env) { return lu_context_key_get(&env->le_ctx, &cl_key); } /* defines cl_key_{init,fini}() */ LU_KEY_INIT_FINI(cl, struct cl_thread_info); static struct lu_context_key cl_key = { .lct_tags = LCT_CL_THREAD, .lct_init = cl_key_init, .lct_fini = cl_key_fini, }; static struct lu_kmem_descr cl_object_caches[] = { { .ckd_cache = &cl_env_kmem, .ckd_name = "cl_env_kmem", .ckd_size = sizeof(struct cl_env) }, { .ckd_cache = &cl_dio_aio_kmem, .ckd_name = "cl_dio_aio_kmem", .ckd_size = sizeof(struct cl_dio_aio) }, { .ckd_cache = &cl_sub_dio_kmem, .ckd_name = "cl_sub_dio_kmem", .ckd_size = sizeof(struct cl_sub_dio) }, { .ckd_cache = NULL } }; /** * Global initialization of cl-data. Create kmem caches, register * lu_context_key's, etc. * * \see cl_global_fini() */ int cl_global_init(void) { int result; OBD_ALLOC_PTR_ARRAY(cl_envs, num_possible_cpus()); if (cl_envs == NULL) GOTO(out, result = -ENOMEM); result = lu_kmem_init(cl_object_caches); if (result) GOTO(out_envs, result); LU_CONTEXT_KEY_INIT(&cl_key); result = lu_context_key_register(&cl_key); if (result) GOTO(out_kmem, result); result = cl_env_percpu_init(); if (result) /* no cl_env_percpu_fini on error */ GOTO(out_keys, result); return 0; out_keys: lu_context_key_degister(&cl_key); out_kmem: lu_kmem_fini(cl_object_caches); out_envs: OBD_FREE_PTR_ARRAY(cl_envs, num_possible_cpus()); out: return result; } /** * Finalization of global cl-data. Dual to cl_global_init(). */ void cl_global_fini(void) { int i; for (i = 0; i < ARRAY_SIZE(cl_page_kmem_array); i++) { if (cl_page_kmem_array[i]) { kmem_cache_destroy(cl_page_kmem_array[i]); cl_page_kmem_array[i] = NULL; } } cl_env_percpu_fini(); lu_context_key_degister(&cl_key); lu_kmem_fini(cl_object_caches); OBD_FREE_PTR_ARRAY(cl_envs, num_possible_cpus()); }