/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * Client Lustre Object. * * Author: Nikita Danilov */ /* * Locking. * * i_mutex * PG_locked * ->coh_page_guard * ->coh_lock_guard * ->coh_attr_guard * ->ls_guard */ #define DEBUG_SUBSYSTEM S_CLASS #ifndef EXPORT_SYMTAB # define EXPORT_SYMTAB #endif #include /* class_put_type() */ #include #include #include #include #include /* for cfs_hash stuff */ /* lu_time_global_{init,fini}() */ #include #include #include "cl_internal.h" static cfs_mem_cache_t *cl_env_kmem; /** Lock class of cl_object_header::coh_page_guard */ static cfs_lock_class_key_t cl_page_guard_class; /** Lock class of cl_object_header::coh_lock_guard */ static cfs_lock_class_key_t cl_lock_guard_class; /** Lock class of cl_object_header::coh_attr_guard */ static cfs_lock_class_key_t cl_attr_guard_class; /** * Initialize cl_object_header. */ int cl_object_header_init(struct cl_object_header *h) { int result; ENTRY; result = lu_object_header_init(&h->coh_lu); if (result == 0) { cfs_spin_lock_init(&h->coh_page_guard); cfs_spin_lock_init(&h->coh_lock_guard); cfs_spin_lock_init(&h->coh_attr_guard); cfs_lockdep_set_class(&h->coh_attr_guard, &cl_page_guard_class); cfs_lockdep_set_class(&h->coh_attr_guard, &cl_lock_guard_class); cfs_lockdep_set_class(&h->coh_attr_guard, &cl_attr_guard_class); h->coh_pages = 0; /* XXX hard coded GFP_* mask. */ INIT_RADIX_TREE(&h->coh_tree, GFP_ATOMIC); CFS_INIT_LIST_HEAD(&h->coh_locks); } RETURN(result); } EXPORT_SYMBOL(cl_object_header_init); /** * Finalize cl_object_header. */ void cl_object_header_fini(struct cl_object_header *h) { LASSERT(cfs_list_empty(&h->coh_locks)); lu_object_header_fini(&h->coh_lu); } EXPORT_SYMBOL(cl_object_header_fini); /** * Returns a cl_object with a given \a fid. * * Returns either cached or newly created object. Additional reference on the * returned object is acquired. * * \see lu_object_find(), cl_page_find(), cl_lock_find() */ struct cl_object *cl_object_find(const struct lu_env *env, struct cl_device *cd, const struct lu_fid *fid, const struct cl_object_conf *c) { cfs_might_sleep(); return lu2cl(lu_object_find_slice(env, cl2lu_dev(cd), fid, &c->coc_lu)); } EXPORT_SYMBOL(cl_object_find); /** * Releases a reference on \a o. * * When last reference is released object is returned to the cache, unless * lu_object_header_flags::LU_OBJECT_HEARD_BANSHEE bit is set in its header. * * \see cl_page_put(), cl_lock_put(). */ void cl_object_put(const struct lu_env *env, struct cl_object *o) { lu_object_put(env, &o->co_lu); } EXPORT_SYMBOL(cl_object_put); /** * Acquire an additional reference to the object \a o. * * This can only be used to acquire _additional_ reference, i.e., caller * already has to possess at least one reference to \a o before calling this. * * \see cl_page_get(), cl_lock_get(). */ void cl_object_get(struct cl_object *o) { lu_object_get(&o->co_lu); } EXPORT_SYMBOL(cl_object_get); /** * Returns the top-object for a given \a o. * * \see cl_page_top(), cl_io_top() */ struct cl_object *cl_object_top(struct cl_object *o) { struct cl_object_header *hdr = cl_object_header(o); struct cl_object *top; while (hdr->coh_parent != NULL) hdr = hdr->coh_parent; top = lu2cl(lu_object_top(&hdr->coh_lu)); CDEBUG(D_TRACE, "%p -> %p\n", o, top); return top; } EXPORT_SYMBOL(cl_object_top); /** * Returns pointer to the lock protecting data-attributes for the given object * \a o. * * Data-attributes are protected by the cl_object_header::coh_attr_guard * spin-lock in the top-object. * * \see cl_attr, cl_object_attr_lock(), cl_object_operations::coo_attr_get(). */ static cfs_spinlock_t *cl_object_attr_guard(struct cl_object *o) { return &cl_object_header(cl_object_top(o))->coh_attr_guard; } /** * Locks data-attributes. * * Prevents data-attributes from changing, until lock is released by * cl_object_attr_unlock(). This has to be called before calls to * cl_object_attr_get(), cl_object_attr_set(). */ void cl_object_attr_lock(struct cl_object *o) { cfs_spin_lock(cl_object_attr_guard(o)); } EXPORT_SYMBOL(cl_object_attr_lock); /** * Releases data-attributes lock, acquired by cl_object_attr_lock(). */ void cl_object_attr_unlock(struct cl_object *o) { cfs_spin_unlock(cl_object_attr_guard(o)); } EXPORT_SYMBOL(cl_object_attr_unlock); /** * Returns data-attributes of an object \a obj. * * Every layer is asked (by calling cl_object_operations::coo_attr_get()) * top-to-bottom to fill in parts of \a attr that this layer is responsible * for. */ int cl_object_attr_get(const struct lu_env *env, struct cl_object *obj, struct cl_attr *attr) { struct lu_object_header *top; int result; LASSERT_SPIN_LOCKED(cl_object_attr_guard(obj)); ENTRY; top = obj->co_lu.lo_header; result = 0; cfs_list_for_each_entry(obj, &top->loh_layers, co_lu.lo_linkage) { if (obj->co_ops->coo_attr_get != NULL) { result = obj->co_ops->coo_attr_get(env, obj, attr); if (result != 0) { if (result > 0) result = 0; break; } } } RETURN(result); } EXPORT_SYMBOL(cl_object_attr_get); /** * Updates data-attributes of an object \a obj. * * Only attributes, mentioned in a validness bit-mask \a v are * updated. Calls cl_object_operations::coo_attr_set() on every layer, bottom * to top. */ int cl_object_attr_set(const struct lu_env *env, struct cl_object *obj, const struct cl_attr *attr, unsigned v) { struct lu_object_header *top; int result; LASSERT_SPIN_LOCKED(cl_object_attr_guard(obj)); ENTRY; top = obj->co_lu.lo_header; result = 0; cfs_list_for_each_entry_reverse(obj, &top->loh_layers, co_lu.lo_linkage) { if (obj->co_ops->coo_attr_set != NULL) { result = obj->co_ops->coo_attr_set(env, obj, attr, v); if (result != 0) { if (result > 0) result = 0; break; } } } RETURN(result); } EXPORT_SYMBOL(cl_object_attr_set); /** * Notifies layers (bottom-to-top) that glimpse AST was received. * * Layers have to fill \a lvb fields with information that will be shipped * back to glimpse issuer. * * \see cl_lock_operations::clo_glimpse() */ int cl_object_glimpse(const struct lu_env *env, struct cl_object *obj, struct ost_lvb *lvb) { struct lu_object_header *top; int result; ENTRY; top = obj->co_lu.lo_header; result = 0; cfs_list_for_each_entry_reverse(obj, &top->loh_layers, co_lu.lo_linkage) { if (obj->co_ops->coo_glimpse != NULL) { result = obj->co_ops->coo_glimpse(env, obj, lvb); if (result != 0) break; } } LU_OBJECT_HEADER(D_DLMTRACE, env, lu_object_top(top), "size: "LPU64" mtime: "LPU64" atime: "LPU64" " "ctime: "LPU64" blocks: "LPU64"\n", lvb->lvb_size, lvb->lvb_mtime, lvb->lvb_atime, lvb->lvb_ctime, lvb->lvb_blocks); RETURN(result); } EXPORT_SYMBOL(cl_object_glimpse); /** * Updates a configuration of an object \a obj. */ int cl_conf_set(const struct lu_env *env, struct cl_object *obj, const struct cl_object_conf *conf) { struct lu_object_header *top; int result; ENTRY; top = obj->co_lu.lo_header; result = 0; cfs_list_for_each_entry(obj, &top->loh_layers, co_lu.lo_linkage) { if (obj->co_ops->coo_conf_set != NULL) { result = obj->co_ops->coo_conf_set(env, obj, conf); if (result != 0) break; } } RETURN(result); } EXPORT_SYMBOL(cl_conf_set); /** * Helper function removing all object locks, and marking object for * deletion. All object pages must have been deleted at this point. * * This is called by cl_inode_fini() and lov_object_delete() to destroy top- * and sub- objects respectively. */ void cl_object_kill(const struct lu_env *env, struct cl_object *obj) { struct cl_object_header *hdr; hdr = cl_object_header(obj); LASSERT(hdr->coh_tree.rnode == NULL); LASSERT(hdr->coh_pages == 0); cfs_set_bit(LU_OBJECT_HEARD_BANSHEE, &hdr->coh_lu.loh_flags); /* * Destroy all locks. Object destruction (including cl_inode_fini()) * cannot cancel the locks, because in the case of a local client, * where client and server share the same thread running * prune_icache(), this can dead-lock with ldlm_cancel_handler() * waiting on __wait_on_freeing_inode(). */ cl_locks_prune(env, obj, 0); } EXPORT_SYMBOL(cl_object_kill); /** * Prunes caches of pages and locks for this object. */ void cl_object_prune(const struct lu_env *env, struct cl_object *obj) { ENTRY; cl_pages_prune(env, obj); cl_locks_prune(env, obj, 1); EXIT; } EXPORT_SYMBOL(cl_object_prune); /** * Check if the object has locks. */ int cl_object_has_locks(struct cl_object *obj) { struct cl_object_header *head = cl_object_header(obj); int has; cfs_spin_lock(&head->coh_lock_guard); has = cfs_list_empty(&head->coh_locks); cfs_spin_unlock(&head->coh_lock_guard); return (has == 0); } EXPORT_SYMBOL(cl_object_has_locks); void cache_stats_init(struct cache_stats *cs, const char *name) { cs->cs_name = name; cfs_atomic_set(&cs->cs_lookup, 0); cfs_atomic_set(&cs->cs_hit, 0); cfs_atomic_set(&cs->cs_total, 0); cfs_atomic_set(&cs->cs_busy, 0); } int cache_stats_print(const struct cache_stats *cs, char *page, int count, int h) { int nob = 0; /* lookup hit total cached create env: ...... ...... ...... ...... ...... */ if (h) nob += snprintf(page, count, " lookup hit total busy create\n"); nob += snprintf(page + nob, count - nob, "%5.5s: %6u %6u %6u %6u %6u", cs->cs_name, cfs_atomic_read(&cs->cs_lookup), cfs_atomic_read(&cs->cs_hit), cfs_atomic_read(&cs->cs_total), cfs_atomic_read(&cs->cs_busy), cfs_atomic_read(&cs->cs_created)); return nob; } /** * Initialize client site. * * Perform common initialization (lu_site_init()), and initialize statistical * counters. Also perform global initializations on the first call. */ int cl_site_init(struct cl_site *s, struct cl_device *d) { int i; int result; result = lu_site_init(&s->cs_lu, &d->cd_lu_dev); if (result == 0) { cache_stats_init(&s->cs_pages, "pages"); cache_stats_init(&s->cs_locks, "locks"); for (i = 0; i < ARRAY_SIZE(s->cs_pages_state); ++i) cfs_atomic_set(&s->cs_pages_state[0], 0); for (i = 0; i < ARRAY_SIZE(s->cs_locks_state); ++i) cfs_atomic_set(&s->cs_locks_state[i], 0); } return result; } EXPORT_SYMBOL(cl_site_init); /** * Finalize client site. Dual to cl_site_init(). */ void cl_site_fini(struct cl_site *s) { lu_site_fini(&s->cs_lu); } EXPORT_SYMBOL(cl_site_fini); static struct cache_stats cl_env_stats = { .cs_name = "envs", .cs_created = CFS_ATOMIC_INIT(0), .cs_lookup = CFS_ATOMIC_INIT(0), .cs_hit = CFS_ATOMIC_INIT(0), .cs_total = CFS_ATOMIC_INIT(0), .cs_busy = CFS_ATOMIC_INIT(0) }; /** * Outputs client site statistical counters into a buffer. Suitable for * ll_rd_*()-style functions. */ int cl_site_stats_print(const struct cl_site *site, char *page, int count) { int nob; int i; static const char *pstate[] = { [CPS_CACHED] = "c", [CPS_OWNED] = "o", [CPS_PAGEOUT] = "w", [CPS_PAGEIN] = "r", [CPS_FREEING] = "f" }; static const char *lstate[] = { [CLS_NEW] = "n", [CLS_QUEUING] = "q", [CLS_ENQUEUED] = "e", [CLS_HELD] = "h", [CLS_INTRANSIT] = "t", [CLS_CACHED] = "c", [CLS_FREEING] = "f" }; /* lookup hit total busy create pages: ...... ...... ...... ...... ...... [...... ...... ...... ......] locks: ...... ...... ...... ...... ...... [...... ...... ...... ...... ......] env: ...... ...... ...... ...... ...... */ nob = lu_site_stats_print(&site->cs_lu, page, count); nob += cache_stats_print(&site->cs_pages, page + nob, count - nob, 1); nob += snprintf(page + nob, count - nob, " ["); for (i = 0; i < ARRAY_SIZE(site->cs_pages_state); ++i) nob += snprintf(page + nob, count - nob, "%s: %u ", pstate[i], cfs_atomic_read(&site->cs_pages_state[i])); nob += snprintf(page + nob, count - nob, "]\n"); nob += cache_stats_print(&site->cs_locks, page + nob, count - nob, 0); nob += snprintf(page + nob, count - nob, " ["); for (i = 0; i < ARRAY_SIZE(site->cs_locks_state); ++i) nob += snprintf(page + nob, count - nob, "%s: %u ", lstate[i], cfs_atomic_read(&site->cs_locks_state[i])); nob += snprintf(page + nob, count - nob, "]\n"); nob += cache_stats_print(&cl_env_stats, page + nob, count - nob, 0); nob += snprintf(page + nob, count - nob, "\n"); return nob; } EXPORT_SYMBOL(cl_site_stats_print); /***************************************************************************** * * lu_env handling on client. * */ static CFS_LIST_HEAD(cl_envs); static unsigned cl_envs_cached_nr = 0; static unsigned cl_envs_cached_max = 128; /* XXX: prototype: arbitrary limit * for now. */ static cfs_spinlock_t cl_envs_guard = CFS_SPIN_LOCK_UNLOCKED; struct cl_env { void *ce_magic; struct lu_env ce_lu; struct lu_context ce_ses; /** * This allows cl_env to be entered into cl_env_hash which implements * the current thread -> client environment lookup. */ cfs_hlist_node_t ce_node; /** * Owner for the current cl_env, the key for cfs_hash. * Now current thread pointer is stored. */ void *ce_owner; /* * Linkage into global list of all client environments. Used for * garbage collection. */ cfs_list_t ce_linkage; /* * */ int ce_ref; /* * Debugging field: address of the caller who made original * allocation. */ void *ce_debug; }; #define CL_ENV_INC(counter) cfs_atomic_inc(&cl_env_stats.counter) #define CL_ENV_DEC(counter) \ do { \ LASSERT(cfs_atomic_read(&cl_env_stats.counter) > 0); \ cfs_atomic_dec(&cl_env_stats.counter); \ } while (0) /***************************************************************************** * Routins to use cfs_hash functionality to bind the current thread * to cl_env */ /** lustre hash to manage the cl_env for current thread */ static cfs_hash_t *cl_env_hash; static void cl_env_init0(struct cl_env *cle, void *debug); static unsigned cl_env_hops_hash(cfs_hash_t *lh, void *key, unsigned mask) { #if BITS_PER_LONG == 64 return cfs_hash_u64_hash((__u64)key, mask); #else return cfs_hash_u32_hash((__u32)key, mask); #endif } static void *cl_env_hops_obj(cfs_hlist_node_t *hn) { struct cl_env *cle = cfs_hlist_entry(hn, struct cl_env, ce_node); LASSERT(cle->ce_magic == &cl_env_init0); return (void *)cle; } static int cl_env_hops_compare(void *key, cfs_hlist_node_t *hn) { struct cl_env *cle = cl_env_hops_obj(hn); LASSERT(cle->ce_owner != NULL); return (key == cle->ce_owner); } static cfs_hash_ops_t cl_env_hops = { .hs_hash = cl_env_hops_hash, .hs_compare = cl_env_hops_compare, .hs_key = cl_env_hops_obj, .hs_get = cl_env_hops_obj, .hs_put = cl_env_hops_obj, }; static inline struct cl_env *cl_env_fetch(void) { struct cl_env *cle; cle = cfs_hash_lookup(cl_env_hash, cfs_current()); LASSERT(ergo(cle, cle->ce_magic == &cl_env_init0)); return cle; } static inline void cl_env_attach(struct cl_env *cle) { if (cle) { int rc; LASSERT(cle->ce_owner == NULL); cle->ce_owner = cfs_current(); rc = cfs_hash_add_unique(cl_env_hash, cle->ce_owner, &cle->ce_node); LASSERT(rc == 0); } } static inline struct cl_env *cl_env_detach(struct cl_env *cle) { if (cle == NULL) cle = cl_env_fetch(); if (cle && cle->ce_owner) { void *cookie; LASSERT(cle->ce_owner == cfs_current()); cookie = cfs_hash_del(cl_env_hash, cle->ce_owner, &cle->ce_node); cle->ce_owner = NULL; LASSERT(cookie == cle); } return cle; } /* ----------------------- hash routines end ---------------------------- */ static void cl_env_init0(struct cl_env *cle, void *debug) { LASSERT(cle->ce_ref == 0); LASSERT(cle->ce_magic == &cl_env_init0); LASSERT(cle->ce_debug == NULL && cle->ce_owner == NULL); cle->ce_ref = 1; cle->ce_debug = debug; CL_ENV_INC(cs_busy); } static struct lu_env *cl_env_new(__u32 tags, void *debug) { struct lu_env *env; struct cl_env *cle; OBD_SLAB_ALLOC_PTR_GFP(cle, cl_env_kmem, CFS_ALLOC_IO); if (cle != NULL) { int rc; CFS_INIT_LIST_HEAD(&cle->ce_linkage); cle->ce_magic = &cl_env_init0; env = &cle->ce_lu; rc = lu_env_init(env, LCT_CL_THREAD|tags); if (rc == 0) { rc = lu_context_init(&cle->ce_ses, LCT_SESSION|tags); if (rc == 0) { lu_context_enter(&cle->ce_ses); env->le_ses = &cle->ce_ses; cl_env_init0(cle, debug); } else lu_env_fini(env); } if (rc != 0) { OBD_SLAB_FREE_PTR(cle, cl_env_kmem); env = ERR_PTR(rc); } else { CL_ENV_INC(cs_created); CL_ENV_INC(cs_total); } } else env = ERR_PTR(-ENOMEM); return env; } static void cl_env_fini(struct cl_env *cle) { CL_ENV_DEC(cs_total); lu_context_fini(&cle->ce_lu.le_ctx); lu_context_fini(&cle->ce_ses); OBD_SLAB_FREE_PTR(cle, cl_env_kmem); } static struct lu_env *cl_env_obtain(void *debug) { struct cl_env *cle; struct lu_env *env; ENTRY; cfs_spin_lock(&cl_envs_guard); LASSERT(equi(cl_envs_cached_nr == 0, cfs_list_empty(&cl_envs))); if (cl_envs_cached_nr > 0) { int rc; cle = container_of(cl_envs.next, struct cl_env, ce_linkage); cfs_list_del_init(&cle->ce_linkage); cl_envs_cached_nr--; cfs_spin_unlock(&cl_envs_guard); env = &cle->ce_lu; rc = lu_env_refill(env); if (rc == 0) { cl_env_init0(cle, debug); lu_context_enter(&env->le_ctx); lu_context_enter(&cle->ce_ses); } else { cl_env_fini(cle); env = ERR_PTR(rc); } } else { cfs_spin_unlock(&cl_envs_guard); env = cl_env_new(0, debug); } RETURN(env); } static inline struct cl_env *cl_env_container(struct lu_env *env) { return container_of(env, struct cl_env, ce_lu); } struct lu_env *cl_env_peek(int *refcheck) { struct lu_env *env; struct cl_env *cle; CL_ENV_INC(cs_lookup); /* check that we don't go far from untrusted pointer */ CLASSERT(offsetof(struct cl_env, ce_magic) == 0); env = NULL; cle = cl_env_fetch(); if (cle != NULL) { CL_ENV_INC(cs_hit); env = &cle->ce_lu; *refcheck = ++cle->ce_ref; } CDEBUG(D_OTHER, "%d@%p\n", cle ? cle->ce_ref : 0, cle); return env; } EXPORT_SYMBOL(cl_env_peek); /** * Returns lu_env: if there already is an environment associated with the * current thread, it is returned, otherwise, new environment is allocated. * * Allocations are amortized through the global cache of environments. * * \param refcheck pointer to a counter used to detect environment leaks. In * the usual case cl_env_get() and cl_env_put() are called in the same lexical * scope and pointer to the same integer is passed as \a refcheck. This is * used to detect missed cl_env_put(). * * \see cl_env_put() */ struct lu_env *cl_env_get(int *refcheck) { struct lu_env *env; env = cl_env_peek(refcheck); if (env == NULL) { env = cl_env_obtain(__builtin_return_address(0)); if (!IS_ERR(env)) { struct cl_env *cle; cle = cl_env_container(env); cl_env_attach(cle); *refcheck = cle->ce_ref; CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle); } } return env; } EXPORT_SYMBOL(cl_env_get); /** * Forces an allocation of a fresh environment with given tags. * * \see cl_env_get() */ struct lu_env *cl_env_alloc(int *refcheck, __u32 tags) { struct lu_env *env; LASSERT(cl_env_peek(refcheck) == NULL); env = cl_env_new(tags, __builtin_return_address(0)); if (!IS_ERR(env)) { struct cl_env *cle; cle = cl_env_container(env); *refcheck = cle->ce_ref; CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle); } return env; } EXPORT_SYMBOL(cl_env_alloc); static void cl_env_exit(struct cl_env *cle) { LASSERT(cle->ce_owner == NULL); lu_context_exit(&cle->ce_lu.le_ctx); lu_context_exit(&cle->ce_ses); } /** * Finalizes and frees a given number of cached environments. This is done to * (1) free some memory (not currently hooked into VM), or (2) release * references to modules. */ unsigned cl_env_cache_purge(unsigned nr) { struct cl_env *cle; ENTRY; cfs_spin_lock(&cl_envs_guard); for (; !cfs_list_empty(&cl_envs) && nr > 0; --nr) { cle = container_of(cl_envs.next, struct cl_env, ce_linkage); cfs_list_del_init(&cle->ce_linkage); LASSERT(cl_envs_cached_nr > 0); cl_envs_cached_nr--; cfs_spin_unlock(&cl_envs_guard); cl_env_fini(cle); cfs_spin_lock(&cl_envs_guard); } LASSERT(equi(cl_envs_cached_nr == 0, cfs_list_empty(&cl_envs))); cfs_spin_unlock(&cl_envs_guard); RETURN(nr); } EXPORT_SYMBOL(cl_env_cache_purge); /** * Release an environment. * * Decrement \a env reference counter. When counter drops to 0, nothing in * this thread is using environment and it is returned to the allocation * cache, or freed straight away, if cache is large enough. */ void cl_env_put(struct lu_env *env, int *refcheck) { struct cl_env *cle; cle = cl_env_container(env); LASSERT(cle->ce_ref > 0); LASSERT(ergo(refcheck != NULL, cle->ce_ref == *refcheck)); CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle); if (--cle->ce_ref == 0) { CL_ENV_DEC(cs_busy); cl_env_detach(cle); cle->ce_debug = NULL; cl_env_exit(cle); /* * Don't bother to take a lock here. * * Return environment to the cache only when it was allocated * with the standard tags. */ if (cl_envs_cached_nr < cl_envs_cached_max && (env->le_ctx.lc_tags & ~LCT_HAS_EXIT) == LCT_CL_THREAD && (env->le_ses->lc_tags & ~LCT_HAS_EXIT) == LCT_SESSION) { cfs_spin_lock(&cl_envs_guard); cfs_list_add(&cle->ce_linkage, &cl_envs); cl_envs_cached_nr++; cfs_spin_unlock(&cl_envs_guard); } else cl_env_fini(cle); } } EXPORT_SYMBOL(cl_env_put); /** * Declares a point of re-entrancy. * * \see cl_env_reexit() */ void *cl_env_reenter(void) { return cl_env_detach(NULL); } EXPORT_SYMBOL(cl_env_reenter); /** * Exits re-entrancy. */ void cl_env_reexit(void *cookie) { cl_env_detach(NULL); cl_env_attach(cookie); } EXPORT_SYMBOL(cl_env_reexit); /** * Setup user-supplied \a env as a current environment. This is to be used to * guaranteed that environment exists even when cl_env_get() fails. It is up * to user to ensure proper concurrency control. * * \see cl_env_unplant() */ void cl_env_implant(struct lu_env *env, int *refcheck) { struct cl_env *cle = cl_env_container(env); LASSERT(cle->ce_ref > 0); cl_env_attach(cle); cl_env_get(refcheck); CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle); } EXPORT_SYMBOL(cl_env_implant); /** * Detach environment installed earlier by cl_env_implant(). */ void cl_env_unplant(struct lu_env *env, int *refcheck) { struct cl_env *cle = cl_env_container(env); LASSERT(cle->ce_ref > 1); CDEBUG(D_OTHER, "%d@%p\n", cle->ce_ref, cle); cl_env_detach(cle); cl_env_put(env, refcheck); } EXPORT_SYMBOL(cl_env_unplant); struct lu_env *cl_env_nested_get(struct cl_env_nest *nest) { struct lu_env *env; nest->cen_cookie = NULL; env = cl_env_peek(&nest->cen_refcheck); if (env != NULL) { if (!cl_io_is_going(env)) return env; else { cl_env_put(env, &nest->cen_refcheck); nest->cen_cookie = cl_env_reenter(); } } env = cl_env_get(&nest->cen_refcheck); if (IS_ERR(env)) { cl_env_reexit(nest->cen_cookie); return env; } LASSERT(!cl_io_is_going(env)); return env; } EXPORT_SYMBOL(cl_env_nested_get); void cl_env_nested_put(struct cl_env_nest *nest, struct lu_env *env) { cl_env_put(env, &nest->cen_refcheck); cl_env_reexit(nest->cen_cookie); } EXPORT_SYMBOL(cl_env_nested_put); /** * Converts struct cl_attr to struct ost_lvb. * * \see cl_lvb2attr */ void cl_attr2lvb(struct ost_lvb *lvb, const struct cl_attr *attr) { ENTRY; lvb->lvb_size = attr->cat_size; lvb->lvb_mtime = attr->cat_mtime; lvb->lvb_atime = attr->cat_atime; lvb->lvb_ctime = attr->cat_ctime; lvb->lvb_blocks = attr->cat_blocks; EXIT; } EXPORT_SYMBOL(cl_attr2lvb); /** * Converts struct ost_lvb to struct cl_attr. * * \see cl_attr2lvb */ void cl_lvb2attr(struct cl_attr *attr, const struct ost_lvb *lvb) { ENTRY; attr->cat_size = lvb->lvb_size; attr->cat_mtime = lvb->lvb_mtime; attr->cat_atime = lvb->lvb_atime; attr->cat_ctime = lvb->lvb_ctime; attr->cat_blocks = lvb->lvb_blocks; EXIT; } EXPORT_SYMBOL(cl_lvb2attr); /***************************************************************************** * * Temporary prototype thing: mirror obd-devices into cl devices. * */ struct cl_device *cl_type_setup(const struct lu_env *env, struct lu_site *site, struct lu_device_type *ldt, struct lu_device *next) { const char *typename; struct lu_device *d; LASSERT(ldt != NULL); typename = ldt->ldt_name; d = ldt->ldt_ops->ldto_device_alloc(env, ldt, NULL); if (!IS_ERR(d)) { int rc; if (site != NULL) d->ld_site = site; rc = ldt->ldt_ops->ldto_device_init(env, d, typename, next); if (rc == 0) { lu_device_get(d); lu_ref_add(&d->ld_reference, "lu-stack", &lu_site_init); } else { ldt->ldt_ops->ldto_device_free(env, d); CERROR("can't init device '%s', %d\n", typename, rc); d = ERR_PTR(rc); } } else CERROR("Cannot allocate device: '%s'\n", typename); return lu2cl_dev(d); } EXPORT_SYMBOL(cl_type_setup); /** * Finalize device stack by calling lu_stack_fini(). */ void cl_stack_fini(const struct lu_env *env, struct cl_device *cl) { lu_stack_fini(env, cl2lu_dev(cl)); } EXPORT_SYMBOL(cl_stack_fini); int cl_lock_init(void); void cl_lock_fini(void); int cl_page_init(void); void cl_page_fini(void); static struct lu_context_key cl_key; struct cl_thread_info *cl_env_info(const struct lu_env *env) { return lu_context_key_get(&env->le_ctx, &cl_key); } /* defines cl0_key_{init,fini}() */ LU_KEY_INIT_FINI(cl0, struct cl_thread_info); static void *cl_key_init(const struct lu_context *ctx, struct lu_context_key *key) { struct cl_thread_info *info; info = cl0_key_init(ctx, key); if (!IS_ERR(info)) { int i; for (i = 0; i < ARRAY_SIZE(info->clt_counters); ++i) lu_ref_init(&info->clt_counters[i].ctc_locks_locked); } return info; } static void cl_key_fini(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct cl_thread_info *info; int i; info = data; for (i = 0; i < ARRAY_SIZE(info->clt_counters); ++i) lu_ref_fini(&info->clt_counters[i].ctc_locks_locked); cl0_key_fini(ctx, key, data); } static void cl_key_exit(const struct lu_context *ctx, struct lu_context_key *key, void *data) { struct cl_thread_info *info = data; int i; for (i = 0; i < ARRAY_SIZE(info->clt_counters); ++i) { LASSERT(info->clt_counters[i].ctc_nr_held == 0); LASSERT(info->clt_counters[i].ctc_nr_used == 0); LASSERT(info->clt_counters[i].ctc_nr_locks_acquired == 0); LASSERT(info->clt_counters[i].ctc_nr_locks_locked == 0); lu_ref_fini(&info->clt_counters[i].ctc_locks_locked); lu_ref_init(&info->clt_counters[i].ctc_locks_locked); } } static struct lu_context_key cl_key = { .lct_tags = LCT_CL_THREAD, .lct_init = cl_key_init, .lct_fini = cl_key_fini, .lct_exit = cl_key_exit }; static struct lu_kmem_descr cl_object_caches[] = { { .ckd_cache = &cl_env_kmem, .ckd_name = "cl_env_kmem", .ckd_size = sizeof (struct cl_env) }, { .ckd_cache = NULL } }; /** * Global initialization of cl-data. Create kmem caches, register * lu_context_key's, etc. * * \see cl_global_fini() */ int cl_global_init(void) { int result; cl_env_hash = cfs_hash_create("cl_env", 8, 10, &cl_env_hops, CFS_HASH_REHASH); if (cl_env_hash == NULL) return -ENOMEM; result = lu_kmem_init(cl_object_caches); if (result == 0) { LU_CONTEXT_KEY_INIT(&cl_key); result = lu_context_key_register(&cl_key); if (result == 0) { result = cl_lock_init(); if (result == 0) result = cl_page_init(); } } if (result) cfs_hash_putref(cl_env_hash); return result; } /** * Finalization of global cl-data. Dual to cl_global_init(). */ void cl_global_fini(void) { cl_lock_fini(); cl_page_fini(); lu_context_key_degister(&cl_key); lu_kmem_fini(cl_object_caches); cfs_hash_putref(cl_env_hash); }