/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/mdt/mdt_lproc.c * * Author: Lai Siyao * Author: Fan Yong */ #ifndef EXPORT_SYMTAB # define EXPORT_SYMTAB #endif #define DEBUG_SUBSYSTEM S_MDS #include #include #include /* LUSTRE_VERSION_CODE */ #include /* * struct OBD_{ALLOC,FREE}*() * MDT_FAIL_CHECK */ #include /* struct obd_export */ #include /* struct obd_device */ #include #include #include #include #include #include #include "mdt_internal.h" #include static const char *mdt_proc_names[LPROC_MDT_NR] = { }; int mdt_procfs_init(struct mdt_device *mdt, const char *name) { struct lu_device *ld = &mdt->mdt_md_dev.md_lu_dev; struct obd_device *obd = ld->ld_obd; struct lprocfs_static_vars lvars; int rc; ENTRY; LASSERT(name != NULL); lprocfs_mdt_init_vars(&lvars); rc = lprocfs_obd_setup(obd, lvars.obd_vars); if (rc) { CERROR("Can't init lprocfs, rc %d\n", rc); return rc; } ptlrpc_lprocfs_register_obd(obd); mdt->mdt_proc_entry = obd->obd_proc_entry; LASSERT(mdt->mdt_proc_entry != NULL); rc = lu_time_init(&mdt->mdt_stats, mdt->mdt_proc_entry, mdt_proc_names, ARRAY_SIZE(mdt_proc_names)); if (rc == 0) rc = lu_time_named_init(&ld->ld_site->ls_time_stats, "site_time", mdt->mdt_proc_entry, lu_time_names, ARRAY_SIZE(lu_time_names)); if (rc) return rc; obd->obd_proc_exports_entry = proc_mkdir("exports", obd->obd_proc_entry); if (obd->obd_proc_exports_entry) lprocfs_add_simple(obd->obd_proc_exports_entry, "clear", lprocfs_nid_stats_clear_read, lprocfs_nid_stats_clear_write, obd, NULL); rc = lprocfs_alloc_md_stats(obd, LPROC_MDT_NR); RETURN(rc); } int mdt_procfs_fini(struct mdt_device *mdt) { struct lu_device *ld = &mdt->mdt_md_dev.md_lu_dev; struct obd_device *obd = ld->ld_obd; if (mdt->mdt_proc_entry) { lu_time_fini(&ld->ld_site->ls_time_stats); lu_time_fini(&mdt->mdt_stats); mdt->mdt_proc_entry = NULL; } if (obd->obd_proc_exports_entry) { lprocfs_remove_proc_entry("clear", obd->obd_proc_exports_entry); obd->obd_proc_exports_entry = NULL; } ptlrpc_lprocfs_unregister_obd(obd); lprocfs_free_md_stats(obd); lprocfs_obd_cleanup(obd); RETURN(0); } void mdt_time_start(const struct mdt_thread_info *info) { lu_lprocfs_time_start(info->mti_env); } void mdt_time_end(const struct mdt_thread_info *info, int idx) { lu_lprocfs_time_end(info->mti_env, info->mti_mdt->mdt_stats, idx); } static int lprocfs_rd_identity_expire(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); *eof = 1; return snprintf(page, count, "%lu\n", mdt->mdt_identity_cache->uc_entry_expire / CFS_HZ); } static int lprocfs_wr_identity_expire(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int rc, val; rc = lprocfs_write_helper(buffer, count, &val); if (rc) return rc; mdt->mdt_identity_cache->uc_entry_expire = val * CFS_HZ; return count; } static int lprocfs_rd_identity_acquire_expire(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); *eof = 1; return snprintf(page, count, "%lu\n", mdt->mdt_identity_cache->uc_acquire_expire / CFS_HZ); } static int lprocfs_wr_identity_acquire_expire(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int rc, val; rc = lprocfs_write_helper(buffer, count, &val); if (rc) return rc; mdt->mdt_identity_cache->uc_acquire_expire = val * CFS_HZ; return count; } static int lprocfs_rd_identity_upcall(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); struct upcall_cache *hash = mdt->mdt_identity_cache; int len; *eof = 1; cfs_read_lock(&hash->uc_upcall_rwlock); len = snprintf(page, count, "%s\n", hash->uc_upcall); cfs_read_unlock(&hash->uc_upcall_rwlock); return len; } static int lprocfs_wr_identity_upcall(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); struct upcall_cache *hash = mdt->mdt_identity_cache; char kernbuf[UC_CACHE_UPCALL_MAXPATH] = { '\0' }; if (count >= UC_CACHE_UPCALL_MAXPATH) { CERROR("%s: identity upcall too long\n", obd->obd_name); return -EINVAL; } if (cfs_copy_from_user(kernbuf, buffer, min_t(unsigned long, count, UC_CACHE_UPCALL_MAXPATH - 1))) return -EFAULT; /* Remove any extraneous bits from the upcall (e.g. linefeeds) */ cfs_write_lock(&hash->uc_upcall_rwlock); sscanf(kernbuf, "%s", hash->uc_upcall); cfs_write_unlock(&hash->uc_upcall_rwlock); if (strcmp(hash->uc_name, obd->obd_name) != 0) CWARN("%s: write to upcall name %s\n", obd->obd_name, hash->uc_upcall); if (strcmp(hash->uc_upcall, "NONE") == 0 && mdt->mdt_opts.mo_acl) CWARN("%s: disable \"identity_upcall\" with ACL enabled maybe " "cause unexpected \"EACCESS\"\n", obd->obd_name); CWARN("%s: identity upcall set to %s\n", obd->obd_name, hash->uc_upcall); return count; } static int lprocfs_wr_identity_flush(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int rc, uid; rc = lprocfs_write_helper(buffer, count, &uid); if (rc) return rc; mdt_flush_identity(mdt->mdt_identity_cache, uid); return count; } static int lprocfs_wr_identity_info(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); struct identity_downcall_data sparam, *param = &sparam; int size = 0, rc = 0; if (count < sizeof(*param)) { CERROR("%s: invalid data size %lu\n", obd->obd_name, count); return count; } if (cfs_copy_from_user(&sparam, buffer, sizeof(sparam))) { CERROR("%s: bad identity data\n", obd->obd_name); GOTO(out, rc = -EFAULT); } if (sparam.idd_magic != IDENTITY_DOWNCALL_MAGIC) { CERROR("%s: MDS identity downcall bad params\n", obd->obd_name); GOTO(out, rc = -EINVAL); } if (sparam.idd_nperms > N_PERMS_MAX) { CERROR("%s: perm count %d more than maximum %d\n", obd->obd_name, sparam.idd_nperms, N_PERMS_MAX); GOTO(out, rc = -EINVAL); } if (sparam.idd_ngroups > NGROUPS_MAX) { CERROR("%s: group count %d more than maximum %d\n", obd->obd_name, sparam.idd_ngroups, NGROUPS_MAX); GOTO(out, rc = -EINVAL); } if (sparam.idd_ngroups) { size = offsetof(struct identity_downcall_data, idd_groups[sparam.idd_ngroups]); OBD_ALLOC(param, size); if (!param) { CERROR("%s: fail to alloc %d bytes for uid %u" " with %d groups\n", obd->obd_name, size, sparam.idd_uid, sparam.idd_ngroups); param = &sparam; param->idd_ngroups = 0; } else if (cfs_copy_from_user(param, buffer, size)) { CERROR("%s: uid %u bad supplementary group data\n", obd->obd_name, sparam.idd_uid); OBD_FREE(param, size); param = &sparam; param->idd_ngroups = 0; } } rc = upcall_cache_downcall(mdt->mdt_identity_cache, param->idd_err, param->idd_uid, param); out: if (param && (param != &sparam)) OBD_FREE(param, size); return rc ?: count; } /* for debug only */ static int lprocfs_rd_capa(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); return snprintf(page, count, "capability on: %s %s\n", mdt->mdt_opts.mo_oss_capa ? "oss" : "", mdt->mdt_opts.mo_mds_capa ? "mds" : ""); } static int lprocfs_wr_capa(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int val, rc; rc = lprocfs_write_helper(buffer, count, &val); if (rc) return rc; if (val < 0 || val > 3) { CERROR("invalid capability mode, only 0/2/3 is accepted.\n" " 0: disable fid capability\n" " 2: enable MDS fid capability\n" " 3: enable both MDS and OSS fid capability\n"); return -EINVAL; } /* OSS fid capability needs enable both MDS and OSS fid capability on * MDS */ if (val == 1) { CERROR("can't enable OSS fid capability only, you should use " "'3' to enable both MDS and OSS fid capability.\n"); return -EINVAL; } mdt->mdt_opts.mo_oss_capa = (val & 0x1); mdt->mdt_opts.mo_mds_capa = !!(val & 0x2); mdt->mdt_capa_conf = 1; LCONSOLE_INFO("MDS %s %s MDS fid capability.\n", obd->obd_name, mdt->mdt_opts.mo_mds_capa ? "enabled" : "disabled"); LCONSOLE_INFO("MDS %s %s OSS fid capability.\n", obd->obd_name, mdt->mdt_opts.mo_oss_capa ? "enabled" : "disabled"); return count; } static int lprocfs_rd_capa_count(char *page, char **start, off_t off, int count, int *eof, void *data) { return snprintf(page, count, "%d %d\n", capa_count[CAPA_SITE_CLIENT], capa_count[CAPA_SITE_SERVER]); } static int lprocfs_rd_site_stats(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); return lu_site_stats_print(mdt_lu_site(mdt), page, count); } static int lprocfs_rd_capa_timeout(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); return snprintf(page, count, "%lu\n", mdt->mdt_capa_timeout); } static int lprocfs_wr_capa_timeout(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int val, rc; rc = lprocfs_write_helper(buffer, count, &val); if (rc) return rc; mdt->mdt_capa_timeout = (unsigned long)val; mdt->mdt_capa_conf = 1; return count; } static int lprocfs_rd_ck_timeout(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); return snprintf(page, count, "%lu\n", mdt->mdt_ck_timeout); } static int lprocfs_wr_ck_timeout(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int val, rc; rc = lprocfs_write_helper(buffer, count, &val); if (rc) return rc; mdt->mdt_ck_timeout = (unsigned long)val; mdt->mdt_capa_conf = 1; return count; } static int lprocfs_mdt_wr_evict_client(struct file *file, const char *buffer, unsigned long count, void *data) { char tmpbuf[sizeof(struct obd_uuid)]; sscanf(buffer, "%40s", tmpbuf); if (strncmp(tmpbuf, "nid:", 4) != 0) return lprocfs_wr_evict_client(file, buffer, count, data); CERROR("NOT implement evict client by nid %s\n", tmpbuf); return count; } static int lprocfs_rd_sec_level(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); return snprintf(page, count, "%d\n", mdt->mdt_sec_level); } static int lprocfs_wr_sec_level(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int val, rc; rc = lprocfs_write_helper(buffer, count, &val); if (rc) return rc; if (val > LUSTRE_SEC_ALL || val < LUSTRE_SEC_NONE) return -EINVAL; if (val == LUSTRE_SEC_SPECIFY) { CWARN("security level %d will be supported in future.\n", LUSTRE_SEC_SPECIFY); return -EINVAL; } mdt->mdt_sec_level = val; return count; } static int lprocfs_rd_cos(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); return snprintf(page, count, "%u\n", mdt_cos_is_enabled(mdt)); } static int lprocfs_wr_cos(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int val, rc; rc = lprocfs_write_helper(buffer, count, &val); if (rc) return rc; mdt_enable_cos(mdt, val); return count; } static int lprocfs_rd_root_squash(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); ENTRY; return snprintf(page, count, "%u:%u\n", mdt->mdt_squash_uid, mdt->mdt_squash_gid); } static int safe_strtoul(const char *str, char **endp, unsigned long *res) { char n[24]; *res = simple_strtoul(str, endp, 0); if (str == *endp) return 1; sprintf(n, "%lu", *res); if (strncmp(n, str, *endp - str)) /* overflow */ return 1; return 0; } static int lprocfs_wr_root_squash(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int rc; char kernbuf[50], *tmp, *end, *errmsg; unsigned long uid, gid; int nouid, nogid; ENTRY; if (count >= sizeof(kernbuf)) { errmsg = "string too long"; GOTO(failed, rc = -EINVAL); } if (cfs_copy_from_user(kernbuf, buffer, count)) { errmsg = "bad address"; GOTO(failed, rc = -EFAULT); } kernbuf[count] = '\0'; nouid = nogid = 0; if (safe_strtoul(buffer, &tmp, &uid)) { uid = mdt->mdt_squash_uid; nouid = 1; } /* skip ':' */ if (*tmp == ':') { tmp++; if (safe_strtoul(tmp, &end, &gid)) { gid = mdt->mdt_squash_gid; nogid = 1; } } else { gid = mdt->mdt_squash_gid; nogid = 1; } mdt->mdt_squash_uid = uid; mdt->mdt_squash_gid = gid; if (nouid && nogid) { errmsg = "needs uid:gid format"; GOTO(failed, rc = -EINVAL); } LCONSOLE_INFO("%s: root_squash is set to %u:%u\n", obd->obd_name, mdt->mdt_squash_uid, mdt->mdt_squash_gid); RETURN(count); failed: CWARN("%s: failed to set root_squash to \"%s\", %s: rc %d\n", obd->obd_name, buffer, errmsg, rc); RETURN(rc); } static int lprocfs_rd_nosquash_nids(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); if (mdt->mdt_nosquash_str) return snprintf(page, count, "%s\n", mdt->mdt_nosquash_str); return snprintf(page, count, "NONE\n"); } static int lprocfs_wr_nosquash_nids(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); int rc; char *kernbuf, *errmsg; cfs_list_t tmp; ENTRY; OBD_ALLOC(kernbuf, count + 1); if (kernbuf == NULL) { errmsg = "no memory"; GOTO(failed, rc = -ENOMEM); } if (cfs_copy_from_user(kernbuf, buffer, count)) { errmsg = "bad address"; GOTO(failed, rc = -EFAULT); } kernbuf[count] = '\0'; if (!strcmp(kernbuf, "NONE") || !strcmp(kernbuf, "clear")) { /* empty string is special case */ cfs_down_write(&mdt->mdt_squash_sem); if (!cfs_list_empty(&mdt->mdt_nosquash_nids)) { cfs_free_nidlist(&mdt->mdt_nosquash_nids); OBD_FREE(mdt->mdt_nosquash_str, mdt->mdt_nosquash_strlen); mdt->mdt_nosquash_str = NULL; mdt->mdt_nosquash_strlen = 0; } cfs_up_write(&mdt->mdt_squash_sem); LCONSOLE_INFO("%s: nosquash_nids is cleared\n", obd->obd_name); OBD_FREE(kernbuf, count + 1); RETURN(count); } CFS_INIT_LIST_HEAD(&tmp); if (cfs_parse_nidlist(kernbuf, count, &tmp) <= 0) { errmsg = "can't parse"; GOTO(failed, rc = -EINVAL); } cfs_down_write(&mdt->mdt_squash_sem); if (!cfs_list_empty(&mdt->mdt_nosquash_nids)) { cfs_free_nidlist(&mdt->mdt_nosquash_nids); OBD_FREE(mdt->mdt_nosquash_str, mdt->mdt_nosquash_strlen); } mdt->mdt_nosquash_str = kernbuf; mdt->mdt_nosquash_strlen = count + 1; cfs_list_splice(&tmp, &mdt->mdt_nosquash_nids); LCONSOLE_INFO("%s: nosquash_nids is set to %s\n", obd->obd_name, kernbuf); cfs_up_write(&mdt->mdt_squash_sem); RETURN(count); failed: CWARN("%s: failed to set nosquash_nids to \"%s\", %s: rc %d\n", obd->obd_name, kernbuf, errmsg, rc); if (kernbuf) OBD_FREE(kernbuf, count + 1); RETURN(rc); } static int lprocfs_rd_mdt_som(char *page, char **start, off_t off, int count, int *eof, void *data) { struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); return snprintf(page, count, "%sabled\n", mdt->mdt_som_conf ? "en" : "dis"); } static int lprocfs_wr_mdt_som(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_export *exp; struct obd_device *obd = data; struct mdt_device *mdt = mdt_dev(obd->obd_lu_dev); char kernbuf[16]; unsigned long val = 0; if (count > (sizeof(kernbuf) - 1)) return -EINVAL; if (cfs_copy_from_user(kernbuf, buffer, count)) return -EFAULT; kernbuf[count] = '\0'; if (!strcmp(kernbuf, "enabled")) val = 1; else if (strcmp(kernbuf, "disabled")) return -EINVAL; if (mdt->mdt_som_conf == val) return count; if (!obd->obd_process_conf) { CERROR("Temporary SOM change is not supported, use lctl " "conf_param for permanent setting\n"); return count; } /* 1 stands for self export. */ cfs_list_for_each_entry(exp, &obd->obd_exports, exp_obd_chain) { if (exp == obd->obd_self_export) continue; if (exp->exp_connect_flags & OBD_CONNECT_MDS_MDS) continue; /* Some clients are already connected, skip the change */ LCONSOLE_INFO("%s is already connected, SOM will be %s on " "the next mount\n", exp->exp_client_uuid.uuid, val ? "enabled" : "disabled"); return count; } mdt->mdt_som_conf = val; LCONSOLE_INFO("Enabling SOM\n"); return count; } /* Temporary; for testing purposes only */ static int lprocfs_mdt_wr_mdc(struct file *file, const char *buffer, unsigned long count, void *data) { struct obd_device *obd = data; struct obd_export *exp = NULL; struct obd_uuid uuid; char tmpbuf[sizeof(struct obd_uuid)]; sscanf(buffer, "%40s", tmpbuf); obd_str2uuid(&uuid, tmpbuf); exp = cfs_hash_lookup(obd->obd_uuid_hash, &uuid); if (exp == NULL) { CERROR("%s: no export %s found\n", obd->obd_name, obd_uuid2str(&uuid)); } else { mdt_hsm_copytool_send(exp); class_export_put(exp); } return count; } static struct lprocfs_vars lprocfs_mdt_obd_vars[] = { { "uuid", lprocfs_rd_uuid, 0, 0 }, { "recovery_status", lprocfs_obd_rd_recovery_status, 0, 0 }, { "num_exports", lprocfs_rd_num_exports, 0, 0 }, { "identity_expire", lprocfs_rd_identity_expire, lprocfs_wr_identity_expire, 0 }, { "identity_acquire_expire", lprocfs_rd_identity_acquire_expire, lprocfs_wr_identity_acquire_expire, 0 }, { "identity_upcall", lprocfs_rd_identity_upcall, lprocfs_wr_identity_upcall, 0 }, { "identity_flush", 0, lprocfs_wr_identity_flush, 0 }, { "identity_info", 0, lprocfs_wr_identity_info, 0 }, { "capa", lprocfs_rd_capa, lprocfs_wr_capa, 0 }, { "capa_timeout", lprocfs_rd_capa_timeout, lprocfs_wr_capa_timeout, 0 }, { "capa_key_timeout", lprocfs_rd_ck_timeout, lprocfs_wr_ck_timeout, 0 }, { "capa_count", lprocfs_rd_capa_count, 0, 0 }, { "site_stats", lprocfs_rd_site_stats, 0, 0 }, { "evict_client", 0, lprocfs_mdt_wr_evict_client, 0 }, { "hash_stats", lprocfs_obd_rd_hash, 0, 0 }, { "sec_level", lprocfs_rd_sec_level, lprocfs_wr_sec_level, 0 }, { "commit_on_sharing", lprocfs_rd_cos, lprocfs_wr_cos, 0 }, { "root_squash", lprocfs_rd_root_squash, lprocfs_wr_root_squash, 0 }, { "nosquash_nids", lprocfs_rd_nosquash_nids, lprocfs_wr_nosquash_nids, 0 }, { "som", lprocfs_rd_mdt_som, lprocfs_wr_mdt_som, 0 }, { "mdccomm", 0, lprocfs_mdt_wr_mdc, 0 }, { 0 } }; static struct lprocfs_vars lprocfs_mdt_module_vars[] = { { "num_refs", lprocfs_rd_numrefs, 0, 0 }, { 0 } }; void lprocfs_mdt_init_vars(struct lprocfs_static_vars *lvars) { lvars->module_vars = lprocfs_mdt_module_vars; lvars->obd_vars = lprocfs_mdt_obd_vars; }