/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved * Use is subject to license terms. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. */ #ifndef EXPORT_SYMTAB # define EXPORT_SYMTAB #endif #define DEBUG_SUBSYSTEM S_MDC #ifdef __KERNEL__ # include # include # include # include #else # include #endif #include #include #include /* fid_res_name_eq() */ #include #include #include "mdc_internal.h" int it_disposition(struct lookup_intent *it, int flag) { return it->d.lustre.it_disposition & flag; } EXPORT_SYMBOL(it_disposition); void it_set_disposition(struct lookup_intent *it, int flag) { it->d.lustre.it_disposition |= flag; } EXPORT_SYMBOL(it_set_disposition); void it_clear_disposition(struct lookup_intent *it, int flag) { it->d.lustre.it_disposition &= ~flag; } EXPORT_SYMBOL(it_clear_disposition); int it_open_error(int phase, struct lookup_intent *it) { if (it_disposition(it, DISP_OPEN_OPEN)) { if (phase >= DISP_OPEN_OPEN) return it->d.lustre.it_status; else return 0; } if (it_disposition(it, DISP_OPEN_CREATE)) { if (phase >= DISP_OPEN_CREATE) return it->d.lustre.it_status; else return 0; } if (it_disposition(it, DISP_LOOKUP_EXECD)) { if (phase >= DISP_LOOKUP_EXECD) return it->d.lustre.it_status; else return 0; } if (it_disposition(it, DISP_IT_EXECD)) { if (phase >= DISP_IT_EXECD) return it->d.lustre.it_status; else return 0; } CERROR("it disp: %X, status: %d\n", it->d.lustre.it_disposition, it->d.lustre.it_status); LBUG(); return 0; } EXPORT_SYMBOL(it_open_error); /* this must be called on a lockh that is known to have a referenced lock */ int mdc_set_lock_data(struct obd_export *exp, __u64 *lockh, void *data) { struct ldlm_lock *lock; ENTRY; if (!*lockh) { EXIT; RETURN(0); } lock = ldlm_handle2lock((struct lustre_handle *)lockh); LASSERT(lock != NULL); lock_res_and_lock(lock); #ifdef __KERNEL__ if (lock->l_ast_data && lock->l_ast_data != data) { struct inode *new_inode = data; struct inode *old_inode = lock->l_ast_data; LASSERTF(old_inode->i_state & I_FREEING, "Found existing inode %p/%lu/%u state %lu in lock: " "setting data to %p/%lu/%u\n", old_inode, old_inode->i_ino, old_inode->i_generation, old_inode->i_state, new_inode, new_inode->i_ino, new_inode->i_generation); } #endif lock->l_ast_data = data; unlock_res_and_lock(lock); LDLM_LOCK_PUT(lock); RETURN(0); } ldlm_mode_t mdc_lock_match(struct obd_export *exp, int flags, const struct lu_fid *fid, ldlm_type_t type, ldlm_policy_data_t *policy, ldlm_mode_t mode, struct lustre_handle *lockh) { struct ldlm_res_id res_id; ldlm_mode_t rc; ENTRY; fid_build_reg_res_name(fid, &res_id); rc = ldlm_lock_match(class_exp2obd(exp)->obd_namespace, flags, &res_id, type, policy, mode, lockh, 0); RETURN(rc); } int mdc_cancel_unused(struct obd_export *exp, const struct lu_fid *fid, ldlm_policy_data_t *policy, ldlm_mode_t mode, int flags, void *opaque) { struct ldlm_res_id res_id; struct obd_device *obd = class_exp2obd(exp); int rc; ENTRY; fid_build_reg_res_name(fid, &res_id); rc = ldlm_cli_cancel_unused_resource(obd->obd_namespace, &res_id, policy, mode, flags, opaque); RETURN(rc); } int mdc_change_cbdata(struct obd_export *exp, const struct lu_fid *fid, ldlm_iterator_t it, void *data) { struct ldlm_res_id res_id; ENTRY; fid_build_reg_res_name(fid, &res_id); ldlm_resource_iterate(class_exp2obd(exp)->obd_namespace, &res_id, it, data); EXIT; return 0; } static inline void mdc_clear_replay_flag(struct ptlrpc_request *req, int rc) { /* Don't hold error requests for replay. */ if (req->rq_replay) { spin_lock(&req->rq_lock); req->rq_replay = 0; spin_unlock(&req->rq_lock); } if (rc && req->rq_transno != 0) { DEBUG_REQ(D_ERROR, req, "transno returned on error rc %d", rc); LBUG(); } } /* Save a large LOV EA into the request buffer so that it is available * for replay. We don't do this in the initial request because the * original request doesn't need this buffer (at most it sends just the * lov_mds_md) and it is a waste of RAM/bandwidth to send the empty * buffer and may also be difficult to allocate and save a very large * request buffer for each open. (bug 5707) * * OOM here may cause recovery failure if lmm is needed (only for the * original open if the MDS crashed just when this client also OOM'd) * but this is incredibly unlikely, and questionable whether the client * could do MDS recovery under OOM anyways... */ static void mdc_realloc_openmsg(struct ptlrpc_request *req, struct mdt_body *body) { int rc; /* FIXME: remove this explicit offset. */ rc = sptlrpc_cli_enlarge_reqbuf(req, DLM_INTENT_REC_OFF + 4, body->eadatasize); if (rc) { CERROR("Can't enlarge segment %d size to %d\n", DLM_INTENT_REC_OFF + 4, body->eadatasize); body->valid &= ~OBD_MD_FLEASIZE; body->eadatasize = 0; } } static struct ptlrpc_request *mdc_intent_open_pack(struct obd_export *exp, struct lookup_intent *it, struct md_op_data *op_data, void *lmm, int lmmsize, void *cb_data) { struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); struct ldlm_intent *lit; int joinfile = !!((it->it_create_mode & M_JOIN_FILE) && op_data->op_data); CFS_LIST_HEAD(cancels); int count = 0; int mode; int rc; ENTRY; it->it_create_mode = (it->it_create_mode & ~S_IFMT) | S_IFREG; /* XXX: openlock is not cancelled for cross-refs. */ /* If inode is known, cancel conflicting OPEN locks. */ if (fid_is_sane(&op_data->op_fid2)) { if (it->it_flags & (FMODE_WRITE|MDS_OPEN_TRUNC)) mode = LCK_CW; #ifdef FMODE_EXEC else if (it->it_flags & FMODE_EXEC) mode = LCK_PR; #endif else mode = LCK_CR; count = mdc_resource_get_unused(exp, &op_data->op_fid2, &cancels, mode, MDS_INODELOCK_OPEN); } /* If CREATE or JOIN_FILE, cancel parent's UPDATE lock. */ if (it->it_op & IT_CREAT || joinfile) mode = LCK_EX; else mode = LCK_CR; count += mdc_resource_get_unused(exp, &op_data->op_fid1, &cancels, mode, MDS_INODELOCK_UPDATE); req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_INTENT_OPEN); if (req == NULL) { ldlm_lock_list_put(&cancels, l_bl_ast, count); RETURN(ERR_PTR(-ENOMEM)); } /* parent capability */ mdc_set_capa_size(req, &RMF_CAPA1, op_data->op_capa1); /* child capability, reserve the size according to parent capa, it will * be filled after we get the reply */ mdc_set_capa_size(req, &RMF_CAPA2, op_data->op_capa1); req_capsule_set_size(&req->rq_pill, &RMF_NAME, RCL_CLIENT, op_data->op_namelen + 1); req_capsule_set_size(&req->rq_pill, &RMF_EADATA, RCL_CLIENT, max(lmmsize, obddev->u.cli.cl_default_mds_easize)); if (!joinfile) { req_capsule_set_size(&req->rq_pill, &RMF_REC_JOINFILE, RCL_CLIENT, 0); } rc = ldlm_prep_enqueue_req(exp, req, &cancels, count); if (rc) { ptlrpc_request_free(req); return NULL; } if (joinfile) { __u64 head_size = *(__u64 *)op_data->op_data; mdc_join_pack(req, op_data, head_size); } spin_lock(&req->rq_lock); req->rq_replay = 1; spin_unlock(&req->rq_lock); /* pack the intent */ lit = req_capsule_client_get(&req->rq_pill, &RMF_LDLM_INTENT); lit->opc = (__u64)it->it_op; /* pack the intended request */ mdc_open_pack(req, op_data, it->it_create_mode, 0, it->it_flags, lmm, lmmsize); /* for remote client, fetch remote perm for current user */ if (client_is_remote(exp)) req_capsule_set_size(&req->rq_pill, &RMF_ACL, RCL_SERVER, sizeof(struct mdt_remote_perm)); ptlrpc_request_set_replen(req); return req; } static struct ptlrpc_request *mdc_intent_unlink_pack(struct obd_export *exp, struct lookup_intent *it, struct md_op_data *op_data) { struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); struct ldlm_intent *lit; int rc; ENTRY; req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_INTENT_UNLINK); if (req == NULL) RETURN(ERR_PTR(-ENOMEM)); mdc_set_capa_size(req, &RMF_CAPA1, op_data->op_capa1); req_capsule_set_size(&req->rq_pill, &RMF_NAME, RCL_CLIENT, op_data->op_namelen + 1); rc = ldlm_prep_enqueue_req(exp, req, NULL, 0); if (rc) { ptlrpc_request_free(req); RETURN(ERR_PTR(rc)); } /* pack the intent */ lit = req_capsule_client_get(&req->rq_pill, &RMF_LDLM_INTENT); lit->opc = (__u64)it->it_op; /* pack the intended request */ mdc_unlink_pack(req, op_data); req_capsule_set_size(&req->rq_pill, &RMF_MDT_MD, RCL_SERVER, obddev->u.cli.cl_max_mds_easize); req_capsule_set_size(&req->rq_pill, &RMF_ACL, RCL_SERVER, obddev->u.cli.cl_max_mds_cookiesize); ptlrpc_request_set_replen(req); RETURN(req); } static struct ptlrpc_request *mdc_intent_getattr_pack(struct obd_export *exp, struct lookup_intent *it, struct md_op_data *op_data) { struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); obd_valid valid = OBD_MD_FLGETATTR | OBD_MD_FLEASIZE | OBD_MD_FLMODEASIZE | OBD_MD_FLDIREA | OBD_MD_FLMDSCAPA | OBD_MD_MEA | (client_is_remote(exp) ? OBD_MD_FLRMTPERM : OBD_MD_FLACL); struct ldlm_intent *lit; int rc; ENTRY; req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_INTENT_GETATTR); if (req == NULL) RETURN(ERR_PTR(-ENOMEM)); mdc_set_capa_size(req, &RMF_CAPA1, op_data->op_capa1); req_capsule_set_size(&req->rq_pill, &RMF_NAME, RCL_CLIENT, op_data->op_namelen + 1); rc = ldlm_prep_enqueue_req(exp, req, NULL, 0); if (rc) { ptlrpc_request_free(req); RETURN(ERR_PTR(rc)); } /* pack the intent */ lit = req_capsule_client_get(&req->rq_pill, &RMF_LDLM_INTENT); lit->opc = (__u64)it->it_op; /* pack the intended request */ mdc_getattr_pack(req, valid, it->it_flags, op_data); req_capsule_set_size(&req->rq_pill, &RMF_MDT_MD, RCL_SERVER, obddev->u.cli.cl_max_mds_easize); if (client_is_remote(exp)) req_capsule_set_size(&req->rq_pill, &RMF_ACL, RCL_SERVER, sizeof(struct mdt_remote_perm)); ptlrpc_request_set_replen(req); RETURN(req); } static struct ptlrpc_request *ldlm_enqueue_pack(struct obd_export *exp) { struct ptlrpc_request *req; int rc; ENTRY; req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_LDLM_ENQUEUE); if (req == NULL) RETURN(ERR_PTR(-ENOMEM)); rc = ldlm_prep_enqueue_req(exp, req, NULL, 0); if (rc) { ptlrpc_request_free(req); RETURN(ERR_PTR(rc)); } ptlrpc_request_set_replen(req); RETURN(req); } static int mdc_finish_enqueue(struct obd_export *exp, struct ptlrpc_request *req, struct ldlm_enqueue_info *einfo, struct lookup_intent *it, struct lustre_handle *lockh, int rc) { struct req_capsule *pill = &req->rq_pill; struct ldlm_request *lockreq; struct ldlm_reply *lockrep; ENTRY; LASSERT(rc >= 0); /* Similarly, if we're going to replay this request, we don't want to * actually get a lock, just perform the intent. */ if (req->rq_transno || req->rq_replay) { lockreq = req_capsule_client_get(pill, &RMF_DLM_REQ); lockreq->lock_flags |= LDLM_FL_INTENT_ONLY; } if (rc == ELDLM_LOCK_ABORTED) { einfo->ei_mode = 0; memset(lockh, 0, sizeof(*lockh)); rc = 0; } else { /* rc = 0 */ struct ldlm_lock *lock = ldlm_handle2lock(lockh); LASSERT(lock); /* If the server gave us back a different lock mode, we should * fix up our variables. */ if (lock->l_req_mode != einfo->ei_mode) { ldlm_lock_addref(lockh, lock->l_req_mode); ldlm_lock_decref(lockh, einfo->ei_mode); einfo->ei_mode = lock->l_req_mode; } LDLM_LOCK_PUT(lock); } lockrep = req_capsule_server_get(pill, &RMF_DLM_REP); LASSERT(lockrep != NULL); /* checked by ldlm_cli_enqueue() */ it->d.lustre.it_disposition = (int)lockrep->lock_policy_res1; it->d.lustre.it_status = (int)lockrep->lock_policy_res2; it->d.lustre.it_lock_mode = einfo->ei_mode; it->d.lustre.it_lock_handle = lockh->cookie; it->d.lustre.it_data = req; if (it->d.lustre.it_status < 0 && req->rq_replay) mdc_clear_replay_flag(req, it->d.lustre.it_status); /* If we're doing an IT_OPEN which did not result in an actual * successful open, then we need to remove the bit which saves * this request for unconditional replay. * * It's important that we do this first! Otherwise we might exit the * function without doing so, and try to replay a failed create * (bug 3440) */ if (it->it_op & IT_OPEN && req->rq_replay && (!it_disposition(it, DISP_OPEN_OPEN) ||it->d.lustre.it_status != 0)) mdc_clear_replay_flag(req, it->d.lustre.it_status); DEBUG_REQ(D_RPCTRACE, req, "op: %d disposition: %x, status: %d", it->it_op,it->d.lustre.it_disposition,it->d.lustre.it_status); /* We know what to expect, so we do any byte flipping required here */ if (it->it_op & (IT_OPEN | IT_UNLINK | IT_LOOKUP | IT_GETATTR)) { struct mdt_body *body; body = req_capsule_server_get(pill, &RMF_MDT_BODY); if (body == NULL) { CERROR ("Can't swab mdt_body\n"); RETURN (-EPROTO); } if (it_disposition(it, DISP_OPEN_OPEN) && !it_open_error(DISP_OPEN_OPEN, it)) { /* * If this is a successful OPEN request, we need to set * replay handler and data early, so that if replay * happens immediately after swabbing below, new reply * is swabbed by that handler correctly. */ mdc_set_open_replay_data(NULL, NULL, req); } if ((body->valid & (OBD_MD_FLDIREA | OBD_MD_FLEASIZE)) != 0) { void *eadata; /* * The eadata is opaque; just check that it is there. * Eventually, obd_unpackmd() will check the contents. */ eadata = req_capsule_server_sized_get(pill, &RMF_MDT_MD, body->eadatasize); if (eadata == NULL) RETURN(-EPROTO); /* * We save the reply LOV EA in case we have to replay a * create for recovery. If we didn't allocate a large * enough request buffer above we need to reallocate it * here to hold the actual LOV EA. * * To not save LOV EA if request is not going to replay * (for example error one). */ if ((it->it_op & IT_OPEN) && req->rq_replay) { void *lmm; if (req_capsule_get_size(pill, &RMF_EADATA, RCL_CLIENT) < body->eadatasize) { mdc_realloc_openmsg(req, body); req_capsule_set_size(pill, &RMF_EADATA, RCL_CLIENT, body->eadatasize); } lmm = req_capsule_client_get(pill, &RMF_EADATA); if (lmm) memcpy(lmm, eadata, body->eadatasize); } } if (body->valid & OBD_MD_FLRMTPERM) { struct mdt_remote_perm *perm; LASSERT(client_is_remote(exp)); perm = req_capsule_server_swab_get(pill, &RMF_ACL, lustre_swab_mdt_remote_perm); if (perm == NULL) RETURN(-EPROTO); } if (body->valid & OBD_MD_FLMDSCAPA) { struct lustre_capa *capa, *p; capa = req_capsule_server_get(pill, &RMF_CAPA1); if (capa == NULL) RETURN(-EPROTO); if (it->it_op & IT_OPEN) { /* client fid capa will be checked in replay */ p = req_capsule_client_get(pill, &RMF_CAPA2); LASSERT(p); *p = *capa; } } if (body->valid & OBD_MD_FLOSSCAPA) { struct lustre_capa *capa; capa = req_capsule_server_get(pill, &RMF_CAPA2); if (capa == NULL) RETURN(-EPROTO); } } RETURN(rc); } /* We always reserve enough space in the reply packet for a stripe MD, because * we don't know in advance the file type. */ int mdc_enqueue(struct obd_export *exp, struct ldlm_enqueue_info *einfo, struct lookup_intent *it, struct md_op_data *op_data, struct lustre_handle *lockh, void *lmm, int lmmsize, struct ptlrpc_request **reqp, int extra_lock_flags) { struct obd_device *obddev = class_exp2obd(exp); struct ptlrpc_request *req = NULL; struct req_capsule *pill; int flags = extra_lock_flags; int rc; struct ldlm_res_id res_id; ldlm_policy_data_t policy = { .l_inodebits = { MDS_INODELOCK_LOOKUP } }; ENTRY; LASSERTF(!it || einfo->ei_type == LDLM_IBITS, "lock type %d\n", einfo->ei_type); fid_build_reg_res_name(&op_data->op_fid1, &res_id); if (it) flags |= LDLM_FL_HAS_INTENT; if (it && it->it_op & (IT_UNLINK | IT_GETATTR | IT_READDIR)) policy.l_inodebits.bits = MDS_INODELOCK_UPDATE; if (reqp) req = *reqp; if (!it) { /* The only way right now is FLOCK, in this case we hide flock policy as lmm, but lmmsize is 0 */ LASSERT(lmm && lmmsize == 0); LASSERTF(einfo->ei_type == LDLM_FLOCK, "lock type %d\n", einfo->ei_type); policy = *(ldlm_policy_data_t *)lmm; res_id.name[3] = LDLM_FLOCK; } else if (it->it_op & IT_OPEN) { int joinfile = !!((it->it_create_mode & M_JOIN_FILE) && op_data->op_data); req = mdc_intent_open_pack(exp, it, op_data, lmm, lmmsize, einfo->ei_cbdata); if (!joinfile) { policy.l_inodebits.bits = MDS_INODELOCK_UPDATE; einfo->ei_cbdata = NULL; lmm = NULL; } else it->it_create_mode &= ~M_JOIN_FILE; } else if (it->it_op & IT_UNLINK) req = mdc_intent_unlink_pack(exp, it, op_data); else if (it->it_op & (IT_GETATTR | IT_LOOKUP)) req = mdc_intent_getattr_pack(exp, it, op_data); else if (it->it_op == IT_READDIR) req = ldlm_enqueue_pack(exp); else { LBUG(); RETURN(-EINVAL); } if (IS_ERR(req)) RETURN(PTR_ERR(req)); pill = &req->rq_pill; /* It is important to obtain rpc_lock first (if applicable), so that * threads that are serialised with rpc_lock are not polluting our * rpcs in flight counter. We do not do flock request limiting, though*/ if (it) { mdc_get_rpc_lock(obddev->u.cli.cl_rpc_lock, it); mdc_enter_request(&obddev->u.cli); } rc = ldlm_cli_enqueue(exp, &req, einfo, &res_id, &policy, &flags, NULL, 0, NULL, lockh, 0); if (reqp) *reqp = req; if (it) { mdc_exit_request(&obddev->u.cli); mdc_put_rpc_lock(obddev->u.cli.cl_rpc_lock, it); } if (!it) { /* For flock requests we immediatelly return without further delay and let caller deal with the rest, since rest of this function metadata processing makes no sense for flock requests anyway */ RETURN(rc); } if (rc < 0) { CERROR("ldlm_cli_enqueue: %d\n", rc); mdc_clear_replay_flag(req, rc); ptlrpc_req_finished(req); RETURN(rc); } rc = mdc_finish_enqueue(exp, req, einfo, it, lockh, rc); RETURN(rc); } static int mdc_finish_intent_lock(struct obd_export *exp, struct ptlrpc_request *request, struct md_op_data *op_data, struct lookup_intent *it, struct lustre_handle *lockh) { struct lustre_handle old_lock; struct mdt_body *mdt_body; struct ldlm_lock *lock; int rc; LASSERT(request != NULL); LASSERT(request != LP_POISON); LASSERT(request->rq_repmsg != LP_POISON); if (!it_disposition(it, DISP_IT_EXECD)) { /* The server failed before it even started executing the * intent, i.e. because it couldn't unpack the request. */ LASSERT(it->d.lustre.it_status != 0); RETURN(it->d.lustre.it_status); } rc = it_open_error(DISP_IT_EXECD, it); if (rc) RETURN(rc); mdt_body = req_capsule_server_get(&request->rq_pill, &RMF_MDT_BODY); LASSERT(mdt_body != NULL); /* mdc_enqueue checked */ /* If we were revalidating a fid/name pair, mark the intent in * case we fail and get called again from lookup */ if (fid_is_sane(&op_data->op_fid2) && it->it_create_mode & M_CHECK_STALE && it->it_op != IT_GETATTR) { it_set_disposition(it, DISP_ENQ_COMPLETE); /* Also: did we find the same inode? */ /* sever can return one of two fids: * op_fid2 - new allocated fid - if file is created. * op_fid3 - existent fid - if file only open. * op_fid3 is saved in lmv_intent_open */ if ((!lu_fid_eq(&op_data->op_fid2, &mdt_body->fid1)) && (!lu_fid_eq(&op_data->op_fid3, &mdt_body->fid1))) { CDEBUG(D_DENTRY, "Found stale data "DFID"("DFID")/"DFID "\n", PFID(&op_data->op_fid2), PFID(&op_data->op_fid2), PFID(&mdt_body->fid1)); RETURN(-ESTALE); } } rc = it_open_error(DISP_LOOKUP_EXECD, it); if (rc) RETURN(rc); /* keep requests around for the multiple phases of the call * this shows the DISP_XX must guarantee we make it into the call */ if (!it_disposition(it, DISP_ENQ_CREATE_REF) && it_disposition(it, DISP_OPEN_CREATE) && !it_open_error(DISP_OPEN_CREATE, it)) { it_set_disposition(it, DISP_ENQ_CREATE_REF); ptlrpc_request_addref(request); /* balanced in ll_create_node */ } if (!it_disposition(it, DISP_ENQ_OPEN_REF) && it_disposition(it, DISP_OPEN_OPEN) && !it_open_error(DISP_OPEN_OPEN, it)) { it_set_disposition(it, DISP_ENQ_OPEN_REF); ptlrpc_request_addref(request); /* balanced in ll_file_open */ /* BUG 11546 - eviction in the middle of open rpc processing */ OBD_FAIL_TIMEOUT(OBD_FAIL_MDC_ENQUEUE_PAUSE, obd_timeout); } if (it->it_op & IT_CREAT) { /* XXX this belongs in ll_create_it */ } else if (it->it_op == IT_OPEN) { LASSERT(!it_disposition(it, DISP_OPEN_CREATE)); } else { LASSERT(it->it_op & (IT_GETATTR | IT_LOOKUP)); } /* If we already have a matching lock, then cancel the new * one. We have to set the data here instead of in * mdc_enqueue, because we need to use the child's inode as * the l_ast_data to match, and that's not available until * intent_finish has performed the iget().) */ lock = ldlm_handle2lock(lockh); if (lock) { ldlm_policy_data_t policy = lock->l_policy_data; LDLM_DEBUG(lock, "matching against this"); LASSERTF(fid_res_name_eq(&mdt_body->fid1, &lock->l_resource->lr_name), "Lock res_id: %lu/%lu/%lu, fid: %lu/%lu/%lu.\n", (unsigned long)lock->l_resource->lr_name.name[0], (unsigned long)lock->l_resource->lr_name.name[1], (unsigned long)lock->l_resource->lr_name.name[2], (unsigned long)fid_seq(&mdt_body->fid1), (unsigned long)fid_oid(&mdt_body->fid1), (unsigned long)fid_ver(&mdt_body->fid1)); LDLM_LOCK_PUT(lock); memcpy(&old_lock, lockh, sizeof(*lockh)); if (ldlm_lock_match(NULL, LDLM_FL_BLOCK_GRANTED, NULL, LDLM_IBITS, &policy, LCK_NL, &old_lock, 0)) { ldlm_lock_decref_and_cancel(lockh, it->d.lustre.it_lock_mode); memcpy(lockh, &old_lock, sizeof(old_lock)); it->d.lustre.it_lock_handle = lockh->cookie; } } CDEBUG(D_DENTRY,"D_IT dentry %.*s intent: %s status %d disp %x rc %d\n", op_data->op_namelen, op_data->op_name, ldlm_it2str(it->it_op), it->d.lustre.it_status, it->d.lustre.it_disposition, rc); RETURN(rc); } /* * This long block is all about fixing up the lock and request state * so that it is correct as of the moment _before_ the operation was * applied; that way, the VFS will think that everything is normal and * call Lustre's regular VFS methods. * * If we're performing a creation, that means that unless the creation * failed with EEXIST, we should fake up a negative dentry. * * For everything else, we want to lookup to succeed. * * One additional note: if CREATE or OPEN succeeded, we add an extra * reference to the request because we need to keep it around until * ll_create/ll_open gets called. * * The server will return to us, in it_disposition, an indication of * exactly what d.lustre.it_status refers to. * * If DISP_OPEN_OPEN is set, then d.lustre.it_status refers to the open() call, * otherwise if DISP_OPEN_CREATE is set, then it status is the * creation failure mode. In either case, one of DISP_LOOKUP_NEG or * DISP_LOOKUP_POS will be set, indicating whether the child lookup * was successful. * * Else, if DISP_LOOKUP_EXECD then d.lustre.it_status is the rc of the * child lookup. */ int mdc_intent_lock(struct obd_export *exp, struct md_op_data *op_data, void *lmm, int lmmsize, struct lookup_intent *it, int lookup_flags, struct ptlrpc_request **reqp, ldlm_blocking_callback cb_blocking, int extra_lock_flags) { struct lustre_handle lockh; int rc = 0; ENTRY; LASSERT(it); CDEBUG(D_DLMTRACE, "(name: %.*s,"DFID") in obj "DFID ", intent: %s flags %#o\n", op_data->op_namelen, op_data->op_name, PFID(&op_data->op_fid2), PFID(&op_data->op_fid1), ldlm_it2str(it->it_op), it->it_flags); lockh.cookie = 0; if (fid_is_sane(&op_data->op_fid2) && (it->it_op & (IT_LOOKUP | IT_GETATTR))) { /* We could just return 1 immediately, but since we should only * be called in revalidate_it if we already have a lock, let's * verify that. */ ldlm_policy_data_t policy; ldlm_mode_t mode; /* As not all attributes are kept under update lock, e.g. owner/group/acls are under lookup lock, we need both ibits for GETATTR. */ /* For CMD, UPDATE lock and LOOKUP lock can not be got * at the same for cross-object, so we can not match * the 2 lock at the same time FIXME: but how to handle * the above situation */ policy.l_inodebits.bits = (it->it_op == IT_GETATTR) ? MDS_INODELOCK_UPDATE : MDS_INODELOCK_LOOKUP; mode = mdc_lock_match(exp, LDLM_FL_BLOCK_GRANTED, &op_data->op_fid2, LDLM_IBITS, &policy, LCK_CR|LCK_CW|LCK_PR|LCK_PW, &lockh); if (mode) { it->d.lustre.it_lock_handle = lockh.cookie; it->d.lustre.it_lock_mode = mode; } /* Only return failure if it was not GETATTR by cfid (from inode_revalidate) */ if (mode || op_data->op_namelen != 0) RETURN(!!mode); } /* lookup_it may be called only after revalidate_it has run, because * revalidate_it cannot return errors, only zero. Returning zero causes * this call to lookup, which *can* return an error. * * We only want to execute the request associated with the intent one * time, however, so don't send the request again. Instead, skip past * this and use the request from revalidate. In this case, revalidate * never dropped its reference, so the refcounts are all OK */ if (!it_disposition(it, DISP_ENQ_COMPLETE)) { struct ldlm_enqueue_info einfo = { LDLM_IBITS, it_to_lock_mode(it), cb_blocking, ldlm_completion_ast, NULL, NULL, NULL }; /* For case if upper layer did not alloc fid, do it now. */ if (!fid_is_sane(&op_data->op_fid2) && it->it_op & IT_CREAT) { rc = mdc_fid_alloc(exp, &op_data->op_fid2, op_data); if (rc < 0) { CERROR("Can't alloc new fid, rc %d\n", rc); RETURN(rc); } } rc = mdc_enqueue(exp, &einfo, it, op_data, &lockh, lmm, lmmsize, NULL, extra_lock_flags); if (rc < 0) RETURN(rc); } else if (!fid_is_sane(&op_data->op_fid2) || !(it->it_create_mode & M_CHECK_STALE)) { /* DISP_ENQ_COMPLETE set means there is extra reference on * request referenced from this intent, saved for subsequent * lookup. This path is executed when we proceed to this * lookup, so we clear DISP_ENQ_COMPLETE */ it_clear_disposition(it, DISP_ENQ_COMPLETE); } *reqp = it->d.lustre.it_data; rc = mdc_finish_intent_lock(exp, *reqp, op_data, it, &lockh); RETURN(rc); } static int mdc_intent_getattr_async_interpret(const struct lu_env *env, struct ptlrpc_request *req, void *unused, int rc) { struct obd_export *exp = req->rq_async_args.pointer_arg[0]; struct md_enqueue_info *minfo = req->rq_async_args.pointer_arg[1]; struct ldlm_enqueue_info *einfo = req->rq_async_args.pointer_arg[2]; struct lookup_intent *it; struct lustre_handle *lockh; struct obd_device *obddev; int flags = LDLM_FL_HAS_INTENT; ENTRY; it = &minfo->mi_it; lockh = &minfo->mi_lockh; obddev = class_exp2obd(exp); mdc_exit_request(&obddev->u.cli); if (OBD_FAIL_CHECK(OBD_FAIL_MDC_GETATTR_ENQUEUE)) rc = -ETIMEDOUT; rc = ldlm_cli_enqueue_fini(exp, req, einfo->ei_type, 1, einfo->ei_mode, &flags, NULL, 0, NULL, lockh, rc); if (rc < 0) { CERROR("ldlm_cli_enqueue_fini: %d\n", rc); mdc_clear_replay_flag(req, rc); GOTO(out, rc); } rc = mdc_finish_enqueue(exp, req, einfo, it, lockh, rc); if (rc) GOTO(out, rc); rc = mdc_finish_intent_lock(exp, req, &minfo->mi_data, it, lockh); EXIT; out: OBD_FREE_PTR(einfo); minfo->mi_cb(req, minfo, rc); return 0; } int mdc_intent_getattr_async(struct obd_export *exp, struct md_enqueue_info *minfo, struct ldlm_enqueue_info *einfo) { struct md_op_data *op_data = &minfo->mi_data; struct lookup_intent *it = &minfo->mi_it; struct ptlrpc_request *req; struct obd_device *obddev = class_exp2obd(exp); struct ldlm_res_id res_id; ldlm_policy_data_t policy = { .l_inodebits = { MDS_INODELOCK_LOOKUP } }; int rc; int flags = LDLM_FL_HAS_INTENT; ENTRY; CDEBUG(D_DLMTRACE,"name: %.*s in inode "DFID", intent: %s flags %#o\n", op_data->op_namelen, op_data->op_name, PFID(&op_data->op_fid1), ldlm_it2str(it->it_op), it->it_flags); fid_build_reg_res_name(&op_data->op_fid1, &res_id); req = mdc_intent_getattr_pack(exp, it, op_data); if (!req) RETURN(-ENOMEM); mdc_enter_request(&obddev->u.cli); rc = ldlm_cli_enqueue(exp, &req, einfo, &res_id, &policy, &flags, NULL, 0, NULL, &minfo->mi_lockh, 1); if (rc < 0) { mdc_exit_request(&obddev->u.cli); RETURN(rc); } req->rq_async_args.pointer_arg[0] = exp; req->rq_async_args.pointer_arg[1] = minfo; req->rq_async_args.pointer_arg[2] = einfo; req->rq_interpret_reply = mdc_intent_getattr_async_interpret; ptlrpcd_add_req(req, PSCOPE_OTHER); RETURN(0); } int mdc_revalidate_lock(struct obd_export *exp, struct lookup_intent *it, struct lu_fid *fid) { /* We could just return 1 immediately, but since we should only * be called in revalidate_it if we already have a lock, let's * verify that. */ struct ldlm_res_id res_id; struct lustre_handle lockh; ldlm_policy_data_t policy; ldlm_mode_t mode; ENTRY; fid_build_reg_res_name(fid, &res_id); /* As not all attributes are kept under update lock, e.g. owner/group/acls are under lookup lock, we need both ibits for GETATTR. */ policy.l_inodebits.bits = (it->it_op == IT_GETATTR) ? MDS_INODELOCK_UPDATE | MDS_INODELOCK_LOOKUP : MDS_INODELOCK_LOOKUP; mode = ldlm_lock_match(exp->exp_obd->obd_namespace, LDLM_FL_BLOCK_GRANTED, &res_id, LDLM_IBITS, &policy, LCK_CR|LCK_CW|LCK_PR|LCK_PW, &lockh, 0); if (mode) { it->d.lustre.it_lock_handle = lockh.cookie; it->d.lustre.it_lock_mode = mode; } RETURN(!!mode); }