/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * lustre/lib/lvfs_linux.c * Lustre filesystem abstraction routines * * Copyright (C) 2002, 2003 Cluster File Systems, Inc. * Author: Andreas Dilger * * This file is part of Lustre, http://www.lustre.org. * * Lustre is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * Lustre is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Lustre; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef EXPORT_SYMTAB # define EXPORT_SYMTAB #endif #define DEBUG_SUBSYSTEM S_FILTER #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "lvfs_internal.h" #include #include #include /* for mds_grp_hash_entry */ atomic_t obd_memory; int obd_memmax; /* Debugging check only needed during development */ #ifdef OBD_CTXT_DEBUG # define ASSERT_CTXT_MAGIC(magic) LASSERT((magic) == OBD_RUN_CTXT_MAGIC) # define ASSERT_NOT_KERNEL_CTXT(msg) LASSERTF(!segment_eq(get_fs(), get_ds()),\ msg) # define ASSERT_KERNEL_CTXT(msg) LASSERTF(segment_eq(get_fs(), get_ds()), msg) #else # define ASSERT_CTXT_MAGIC(magic) do {} while(0) # define ASSERT_NOT_KERNEL_CTXT(msg) do {} while(0) # define ASSERT_KERNEL_CTXT(msg) do {} while(0) #endif static void push_group_info(struct lvfs_run_ctxt *save, struct group_info *ginfo) { if (!ginfo) { save->ngroups = current_ngroups; current_ngroups = 0; } else { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4) task_lock(current); save->group_info = current->group_info; current->group_info = ginfo; task_unlock(current); #else LASSERT(ginfo->ngroups <= NGROUPS); /* save old */ save->group_info.ngroups = current->ngroups; if (current->ngroups) memcpy(save->group_info.small_block, current->groups, current->ngroups); /* push new */ current->ngroups = ginfo->ngroups; if (ginfo->ngroups) memcpy(current->groups, ginfo->small_block, current->ngroups); #endif } } static void pop_group_info(struct lvfs_run_ctxt *save, struct group_info *ginfo) { if (!ginfo) { current_ngroups = save->ngroups; } else { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,4) task_lock(current); current->group_info = save->group_info; task_unlock(current); #else current->ngroups = ginfo->ngroups; if (current->ngroups) memcpy(current->groups, save->group_info.small_block, current->ngroups); #endif } } /* push / pop to root of obd store */ void push_ctxt(struct lvfs_run_ctxt *save, struct lvfs_run_ctxt *new_ctx, struct lvfs_ucred *uc) { //ASSERT_NOT_KERNEL_CTXT("already in kernel context!\n"); ASSERT_CTXT_MAGIC(new_ctx->magic); LASSERT(save->magic != OBD_RUN_CTXT_MAGIC || save->pid != current->pid); OBD_SET_CTXT_MAGIC(save); save->pid = current->pid; /* CDEBUG(D_INFO, "= push %p->%p = cur fs %p pwd %p:d%d:i%d (%.*s), pwdmnt %p:%d\n", save, current, current->fs, current->fs->pwd, atomic_read(¤t->fs->pwd->d_count), atomic_read(¤t->fs->pwd->d_inode->i_count), current->fs->pwd->d_name.len, current->fs->pwd->d_name.name, current->fs->pwdmnt, atomic_read(¤t->fs->pwdmnt->mnt_count)); */ save->fs = get_fs(); LASSERT(atomic_read(¤t->fs->pwd->d_count)); LASSERT(atomic_read(&new_ctx->pwd->d_count)); save->pwd = dget(current->fs->pwd); save->pwdmnt = mntget(current->fs->pwdmnt); save->ngroups = current_ngroups; save->luc.luc_umask = current->fs->umask; LASSERT(save->pwd); LASSERT(save->pwdmnt); LASSERT(new_ctx->pwd); LASSERT(new_ctx->pwdmnt); if (uc) { save->luc.luc_uid = current->uid; save->luc.luc_gid = current->gid; save->luc.luc_fsuid = current->fsuid; save->luc.luc_fsgid = current->fsgid; save->luc.luc_cap = current->cap_effective; current->uid = uc->luc_uid; current->gid = uc->luc_gid; current->fsuid = uc->luc_fsuid; current->fsgid = uc->luc_fsgid; current->cap_effective = uc->luc_cap; push_group_info(save, uc->luc_ginfo); } current->fs->umask = 0; /* umask already applied on client */ set_fs(new_ctx->fs); set_fs_pwd(current->fs, new_ctx->pwdmnt, new_ctx->pwd); /* CDEBUG(D_INFO, "= push %p->%p = cur fs %p pwd %p:d%d:i%d (%.*s), pwdmnt %p:%d\n", new_ctx, current, current->fs, current->fs->pwd, atomic_read(¤t->fs->pwd->d_count), atomic_read(¤t->fs->pwd->d_inode->i_count), current->fs->pwd->d_name.len, current->fs->pwd->d_name.name, current->fs->pwdmnt, atomic_read(¤t->fs->pwdmnt->mnt_count)); */ } EXPORT_SYMBOL(push_ctxt); void pop_ctxt(struct lvfs_run_ctxt *saved, struct lvfs_run_ctxt *new_ctx, struct lvfs_ucred *uc) { //printk("pc0"); ASSERT_CTXT_MAGIC(saved->magic); LASSERT(saved->pid == current->pid); saved->magic = 0; saved->pid = 0; //printk("pc1"); ASSERT_KERNEL_CTXT("popping non-kernel context!\n"); /* CDEBUG(D_INFO, " = pop %p==%p = cur %p pwd %p:d%d:i%d (%.*s), pwdmnt %p:%d\n", new_ctx, current, current->fs, current->fs->pwd, atomic_read(¤t->fs->pwd->d_count), atomic_read(¤t->fs->pwd->d_inode->i_count), current->fs->pwd->d_name.len, current->fs->pwd->d_name.name, current->fs->pwdmnt, atomic_read(¤t->fs->pwdmnt->mnt_count)); */ LASSERT(current->fs->pwd == new_ctx->pwd); LASSERT(current->fs->pwdmnt == new_ctx->pwdmnt); set_fs(saved->fs); set_fs_pwd(current->fs, saved->pwdmnt, saved->pwd); dput(saved->pwd); mntput(saved->pwdmnt); current->fs->umask = saved->luc.luc_umask; if (uc) { current->uid = saved->luc.luc_uid; current->gid = saved->luc.luc_gid; current->fsuid = saved->luc.luc_fsuid; current->fsgid = saved->luc.luc_fsgid; current->cap_effective = saved->luc.luc_cap; pop_group_info(saved, uc->luc_ginfo); } /* CDEBUG(D_INFO, "= pop %p->%p = cur fs %p pwd %p:d%d:i%d (%.*s), pwdmnt %p:%d\n", saved, current, current->fs, current->fs->pwd, atomic_read(¤t->fs->pwd->d_count), atomic_read(¤t->fs->pwd->d_inode->i_count), current->fs->pwd->d_name.len, current->fs->pwd->d_name.name, current->fs->pwdmnt, atomic_read(¤t->fs->pwdmnt->mnt_count)); */ } EXPORT_SYMBOL(pop_ctxt); /* utility to make a file */ struct dentry *simple_mknod(struct dentry *dir, char *name, int mode, int fix) { struct dentry *dchild; int err = 0; ENTRY; ASSERT_KERNEL_CTXT("kernel doing mknod outside kernel context\n"); CDEBUG(D_INODE, "creating file %.*s\n", (int)strlen(name), name); dchild = ll_lookup_one_len(name, dir, strlen(name)); if (IS_ERR(dchild)) GOTO(out_up, dchild); if (dchild->d_inode) { int old_mode = dchild->d_inode->i_mode; if (!S_ISREG(old_mode)) GOTO(out_err, err = -EEXIST); /* Fixup file permissions if necessary */ if (fix && (old_mode & S_IALLUGO) != (mode & S_IALLUGO)) { CWARN("fixing permissions on %s from %o to %o\n", name, old_mode, mode); dchild->d_inode->i_mode = (mode & S_IALLUGO) | (old_mode & ~S_IALLUGO); mark_inode_dirty(dchild->d_inode); } GOTO(out_up, dchild); } err = ll_vfs_create(dir->d_inode, dchild, (mode & ~S_IFMT) | S_IFREG, NULL); if (err) GOTO(out_err, err); RETURN(dchild); out_err: dput(dchild); dchild = ERR_PTR(err); out_up: return dchild; } EXPORT_SYMBOL(simple_mknod); /* utility to make a directory */ struct dentry *simple_mkdir(struct dentry *dir, char *name, int mode, int fix) { struct dentry *dchild; int err = 0; ENTRY; ASSERT_KERNEL_CTXT("kernel doing mkdir outside kernel context\n"); CDEBUG(D_INODE, "creating directory %.*s\n", (int)strlen(name), name); dchild = ll_lookup_one_len(name, dir, strlen(name)); if (IS_ERR(dchild)) GOTO(out_up, dchild); if (dchild->d_inode) { int old_mode = dchild->d_inode->i_mode; if (!S_ISDIR(old_mode)) { CERROR("found %s (%lu/%u) is mode %o\n", name, dchild->d_inode->i_ino, dchild->d_inode->i_generation, old_mode); GOTO(out_err, err = -ENOTDIR); } /* Fixup directory permissions if necessary */ if (fix && (old_mode & S_IALLUGO) != (mode & S_IALLUGO)) { CWARN("fixing permissions on %s from %o to %o\n", name, old_mode, mode); dchild->d_inode->i_mode = (mode & S_IALLUGO) | (old_mode & ~S_IALLUGO); mark_inode_dirty(dchild->d_inode); } GOTO(out_up, dchild); } err = vfs_mkdir(dir->d_inode, dchild, mode); if (err) GOTO(out_err, err); RETURN(dchild); out_err: dput(dchild); dchild = ERR_PTR(err); out_up: return dchild; } EXPORT_SYMBOL(simple_mkdir); /* * Read a file from within kernel context. Prior to calling this * function we should already have done a push_ctxt(). */ int lustre_fread(struct file *file, void *buf, int len, loff_t *off) { ASSERT_KERNEL_CTXT("kernel doing read outside kernel context\n"); if (!file || !file->f_op || !file->f_op->read || !off) RETURN(-ENOSYS); return file->f_op->read(file, buf, len, off); } EXPORT_SYMBOL(lustre_fread); /* * Write a file from within kernel context. Prior to calling this * function we should already have done a push_ctxt(). */ int lustre_fwrite(struct file *file, const void *buf, int len, loff_t *off) { ENTRY; ASSERT_KERNEL_CTXT("kernel doing write outside kernel context\n"); if (!file) RETURN(-ENOENT); if (!file->f_op) RETURN(-ENOSYS); if (!off) RETURN(-EINVAL); if (!file->f_op->write) RETURN(-EROFS); RETURN(file->f_op->write(file, buf, len, off)); } EXPORT_SYMBOL(lustre_fwrite); /* * Sync a file from within kernel context. Prior to calling this * function we should already have done a push_ctxt(). */ int lustre_fsync(struct file *file) { ENTRY; ASSERT_KERNEL_CTXT("kernel doing sync outside kernel context\n"); if (!file || !file->f_op || !file->f_op->fsync) RETURN(-ENOSYS); RETURN(file->f_op->fsync(file, file->f_dentry, 0)); } EXPORT_SYMBOL(lustre_fsync); struct l_file *l_dentry_open(struct lvfs_run_ctxt *ctxt, struct l_dentry *de, int flags) { mntget(ctxt->pwdmnt); return dentry_open(de, ctxt->pwdmnt, flags); } EXPORT_SYMBOL(l_dentry_open); static int l_filldir(void *__buf, const char *name, int namlen, loff_t offset, ino_t ino, unsigned int d_type) { struct l_linux_dirent *dirent; struct l_readdir_callback *buf = (struct l_readdir_callback *)__buf; dirent = buf->lrc_dirent; if (dirent) dirent->lld_off = offset; OBD_ALLOC(dirent, sizeof(*dirent)); list_add_tail(&dirent->lld_list, buf->lrc_list); buf->lrc_dirent = dirent; dirent->lld_ino = ino; LASSERT(sizeof(dirent->lld_name) >= namlen + 1); memcpy(dirent->lld_name, name, namlen); return 0; } long l_readdir(struct file *file, struct list_head *dentry_list) { struct l_linux_dirent *lastdirent; struct l_readdir_callback buf; int error; buf.lrc_dirent = NULL; buf.lrc_list = dentry_list; error = vfs_readdir(file, l_filldir, &buf); if (error < 0) return error; lastdirent = buf.lrc_dirent; if (lastdirent) lastdirent->lld_off = file->f_pos; return 0; } EXPORT_SYMBOL(l_readdir); EXPORT_SYMBOL(obd_memory); EXPORT_SYMBOL(obd_memmax); #if defined (CONFIG_DEBUG_MEMORY) && defined(__KERNEL__) static spinlock_t obd_memlist_lock = SPIN_LOCK_UNLOCKED; static struct hlist_head *obd_memtable; static unsigned long obd_memtable_size; static int lvfs_memdbg_init(int size) { struct hlist_head *head; int i; LASSERT(size > sizeof(sizeof(struct hlist_head))); obd_memtable_size = size / sizeof(struct hlist_head); CWARN("allocating %lu malloc entries...\n", (unsigned long)obd_memtable_size); obd_memtable = kmalloc(size, GFP_KERNEL); if (!obd_memtable) return -ENOMEM; i = obd_memtable_size; head = obd_memtable; do { INIT_HLIST_HEAD(head); head++; i--; } while(i); return 0; } static int lvfs_memdbg_cleanup(void) { struct hlist_node *node = NULL, *tmp = NULL; struct hlist_head *head; struct mem_track *mt; int i; spin_lock(&obd_memlist_lock); for (i = 0, head = obd_memtable; i < obd_memtable_size; i++, head++) { hlist_for_each_safe(node, tmp, head) { mt = hlist_entry(node, struct mem_track, m_hash); hlist_del_init(&mt->m_hash); kfree(mt); } } spin_unlock(&obd_memlist_lock); kfree(obd_memtable); return 0; } static inline unsigned long const hashfn(void *ptr) { return (unsigned long)ptr & (obd_memtable_size - 1); } static void __lvfs_memdbg_insert(struct mem_track *mt) { struct hlist_head *head = obd_memtable + hashfn(mt->m_ptr); hlist_add_head(&mt->m_hash, head); } void lvfs_memdbg_insert(struct mem_track *mt) { spin_lock(&obd_memlist_lock); __lvfs_memdbg_insert(mt); spin_unlock(&obd_memlist_lock); } EXPORT_SYMBOL(lvfs_memdbg_insert); static void __lvfs_memdbg_remove(struct mem_track *mt) { hlist_del_init(&mt->m_hash); } void lvfs_memdbg_remove(struct mem_track *mt) { spin_lock(&obd_memlist_lock); __lvfs_memdbg_remove(mt); spin_unlock(&obd_memlist_lock); } EXPORT_SYMBOL(lvfs_memdbg_remove); static struct mem_track *__lvfs_memdbg_find(void *ptr) { struct hlist_node *node = NULL; struct mem_track *mt = NULL; struct hlist_head *head; head = obd_memtable + hashfn(ptr); hlist_for_each(node, head) { mt = hlist_entry(node, struct mem_track, m_hash); if ((unsigned long)mt->m_ptr == (unsigned long)ptr) break; mt = NULL; } return mt; } struct mem_track *lvfs_memdbg_find(void *ptr) { struct mem_track *mt; spin_lock(&obd_memlist_lock); mt = __lvfs_memdbg_find(ptr); spin_unlock(&obd_memlist_lock); return mt; } EXPORT_SYMBOL(lvfs_memdbg_find); int lvfs_memdbg_check_insert(struct mem_track *mt) { spin_lock(&obd_memlist_lock); if (!__lvfs_memdbg_find(mt->m_ptr)) { __lvfs_memdbg_insert(mt); spin_unlock(&obd_memlist_lock); return 1; } spin_unlock(&obd_memlist_lock); return 0; } EXPORT_SYMBOL(lvfs_memdbg_check_insert); struct mem_track * lvfs_memdbg_check_remove(void *ptr) { struct mem_track *mt; spin_lock(&obd_memlist_lock); mt = __lvfs_memdbg_find(ptr); if (mt) { __lvfs_memdbg_remove(mt); spin_unlock(&obd_memlist_lock); return mt; } spin_unlock(&obd_memlist_lock); return NULL; } EXPORT_SYMBOL(lvfs_memdbg_check_remove); #endif void lvfs_memdbg_show(void) { #if defined (CONFIG_DEBUG_MEMORY) && defined(__KERNEL__) struct hlist_node *node = NULL; struct hlist_head *head; struct mem_track *mt; #endif int leaked; #if defined (CONFIG_DEBUG_MEMORY) && defined(__KERNEL__) int i; #endif leaked = atomic_read(&obd_memory); if (leaked > 0) { CWARN("memory leaks detected (max %d, leaked %d)\n", obd_memmax, leaked); #if defined (CONFIG_DEBUG_MEMORY) && defined(__KERNEL__) spin_lock(&obd_memlist_lock); for (i = 0, head = obd_memtable; i < obd_memtable_size; i++, head++) { hlist_for_each(node, head) { mt = hlist_entry(node, struct mem_track, m_hash); CWARN(" ptr: 0x%p, size: %d, src at \"%s\"\n", mt->m_ptr, mt->m_size, mt->m_loc); } } spin_unlock(&obd_memlist_lock); #endif } } EXPORT_SYMBOL(lvfs_memdbg_show); static int __init lvfs_linux_init(void) { ENTRY; #if defined (CONFIG_DEBUG_MEMORY) && defined(__KERNEL__) lvfs_memdbg_init(PAGE_SIZE); #endif lvfs_mount_list_init(); RETURN(0); } static void __exit lvfs_linux_exit(void) { ENTRY; lvfs_mount_list_cleanup(); lvfs_memdbg_show(); #if defined (CONFIG_DEBUG_MEMORY) && defined(__KERNEL__) lvfs_memdbg_cleanup(); #endif EXIT; return; } MODULE_AUTHOR("Cluster File Systems, Inc. "); MODULE_DESCRIPTION("Lustre VFS Filesystem Helper v0.1"); MODULE_LICENSE("GPL"); module_init(lvfs_linux_init); module_exit(lvfs_linux_exit);