/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2012, 2017, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * Internal interfaces of LOV layer. * * Author: Nikita Danilov * Author: Jinshan Xiong */ #ifndef LOV_CL_INTERNAL_H #define LOV_CL_INTERNAL_H #include #include #include #include "lov_internal.h" /** \defgroup lov lov * Logical object volume layer. This layer implements data striping (raid0). * * At the lov layer top-entity (object, page, lock, io) is connected to one or * more sub-entities: top-object, representing a file is connected to a set of * sub-objects, each representing a stripe, file-level top-lock is connected * to a set of per-stripe sub-locks, top-page is connected to a (single) * sub-page, and a top-level IO is connected to a set of (potentially * concurrent) sub-IO's. * * Sub-object, sub-page, and sub-io have well-defined top-object and top-page * respectively, while a single sub-lock can be part of multiple top-locks. * * Reference counting models are different for different types of entities: * * - top-object keeps a reference to its sub-objects, and destroys them * when it is destroyed. * * - top-page keeps a reference to its sub-page, and destroys it when it * is destroyed. * * - IO's are not reference counted. * * To implement a connection between top and sub entities, lov layer is split * into two pieces: lov ("upper half"), and lovsub ("bottom half"), both * implementing full set of cl-interfaces. For example, top-object has vvp and * lov layers, and it's sub-object has lovsub and osc layers. lovsub layer is * used to track child-parent relationship. * * @{ */ struct lovsub_device; struct lovsub_object; enum lov_device_flags { LOV_DEV_INITIALIZED = 1 << 0 }; /* * Upper half. */ /* Data-on-MDT array item in lov_device::ld_md_tgts[] */ struct lovdom_device { struct cl_device *ldm_mdc; int ldm_idx; }; struct lov_device { /* * XXX Locking of lov-private data is missing. */ struct cl_device ld_cl; struct lov_obd *ld_lov; /** size of lov_device::ld_target[] array */ __u32 ld_target_nr; struct lovsub_device **ld_target; __u32 ld_flags; /* Data-on-MDT devices */ __u32 ld_md_tgts_nr; struct lovdom_device *ld_md_tgts; struct obd_device *ld_lmv; /* LU site for subdevices */ struct lu_site ld_site; }; /** * Layout type. */ enum lov_layout_type { LLT_EMPTY, /** empty file without body (mknod + truncate) */ LLT_RELEASED, /** file with no objects (data in HSM) */ LLT_COMP, /** support composite layout */ LLT_NR }; static inline char *llt2str(enum lov_layout_type llt) { switch (llt) { case LLT_EMPTY: return "EMPTY"; case LLT_RELEASED: return "RELEASED"; case LLT_COMP: return "COMPOSITE"; case LLT_NR: LBUG(); } LBUG(); return ""; } /** * Return lov_layout_entry_type associated with a given composite layout * entry. */ static inline __u32 lov_entry_type(struct lov_stripe_md_entry *lsme) { if ((lov_pattern(lsme->lsme_pattern) == LOV_PATTERN_RAID0) || (lov_pattern(lsme->lsme_pattern) == LOV_PATTERN_MDT)) return lov_pattern(lsme->lsme_pattern); return 0; } struct lov_layout_entry; struct lov_object; struct lov_lock_sub; struct lov_comp_layout_entry_ops { int (*lco_init)(const struct lu_env *env, struct lov_device *dev, struct lov_object *lov, unsigned int index, const struct cl_object_conf *conf, struct lov_layout_entry *lle); void (*lco_fini)(const struct lu_env *env, struct lov_layout_entry *lle); int (*lco_getattr)(const struct lu_env *env, struct lov_object *obj, unsigned int index, struct lov_layout_entry *lle, struct cl_attr **attr); }; struct lov_layout_raid0 { unsigned lo_nr; /** * When this is true, lov_object::lo_attr contains * valid up to date attributes for a top-level * object. This field is reset to 0 when attributes of * any sub-object change. */ bool lo_attr_valid; /** * Array of sub-objects. Allocated when top-object is * created (lov_init_raid0()). * * Top-object is a strict master of its sub-objects: * it is created before them, and outlives its * children (this later is necessary so that basic * functions like cl_object_top() always * work). Top-object keeps a reference on every * sub-object. * * When top-object is destroyed (lov_delete_raid0()) * it releases its reference to a sub-object and waits * until the latter is finally destroyed. */ struct lovsub_object **lo_sub; /** * protect lo_sub */ spinlock_t lo_sub_lock; /** * Cached object attribute, built from sub-object * attributes. */ struct cl_attr lo_attr; }; struct lov_layout_dom { /* keep this always at first place so DOM layout entry * can be addressed also as RAID0 after initialization. */ struct lov_layout_raid0 lo_dom_r0; struct lovsub_object *lo_dom; struct lov_oinfo *lo_loi; }; struct lov_layout_entry { __u32 lle_type; unsigned int lle_valid:1; struct lu_extent *lle_extent; struct lov_stripe_md_entry *lle_lsme; struct lov_comp_layout_entry_ops *lle_comp_ops; union { struct lov_layout_raid0 lle_raid0; struct lov_layout_dom lle_dom; }; }; struct lov_mirror_entry { unsigned short lre_mirror_id; unsigned short lre_preferred:1, lre_stale:1, /* set if any components is stale */ lre_valid:1; /* set if at least one of components * in this mirror is valid */ unsigned short lre_start; /* index to lo_entries, start index of * this mirror */ unsigned short lre_end; /* end index of this mirror */ }; /** * lov-specific file state. * * lov object has particular layout type, determining how top-object is built * on top of sub-objects. Layout type can change dynamically. When this * happens, lov_object::lo_type_guard semaphore is taken in exclusive mode, * all state pertaining to the old layout type is destroyed, and new state is * constructed. All object methods take said semaphore in the shared mode, * providing serialization against transition between layout types. * * To avoid multiple `if' or `switch' statements, selecting behavior for the * current layout type, object methods perform double-dispatch, invoking * function corresponding to the current layout type. */ struct lov_object { struct cl_object lo_cl; /** * Serializes object operations with transitions between layout types. * * This semaphore is taken in shared mode by all object methods, and * is taken in exclusive mode when object type is changed. * * \see lov_object::lo_type */ struct rw_semaphore lo_type_guard; /** * Type of an object. Protected by lov_object::lo_type_guard. */ enum lov_layout_type lo_type; /** * True if layout is invalid. This bit is cleared when layout lock * is lost. */ bool lo_layout_invalid; /** * How many IOs are on going on this object. Layout can be changed * only if there is no active IO. */ atomic_t lo_active_ios; /** * Waitq - wait for no one else is using lo_lsm */ wait_queue_head_t lo_waitq; /** * Layout metadata. NULL if empty layout. */ struct lov_stripe_md *lo_lsm; union lov_layout_state { struct lov_layout_state_empty { } empty; struct lov_layout_state_released { } released; struct lov_layout_composite { /** * flags of lov_comp_md_v1::lcm_flags. Mainly used * by FLR. */ uint32_t lo_flags; /** * For FLR: index of preferred mirror to read. * Preferred mirror is initialized by the preferred * bit of lsme. It can be changed when the preferred * is inaccessible. * In order to make lov_lsm_entry() return the same * mirror in the same IO context, it's only possible * to change the preferred mirror when the * lo_active_ios reaches zero. */ int lo_preferred_mirror; /** * For FLR: the lock to protect access to * lo_preferred_mirror. */ spinlock_t lo_write_lock; /** * For FLR: Number of (valid) mirrors. */ unsigned lo_mirror_count; struct lov_mirror_entry *lo_mirrors; /** * Current entry count of lo_entries, include * invalid entries. */ unsigned int lo_entry_count; struct lov_layout_entry *lo_entries; } composite; } u; /** * Thread that acquired lov_object::lo_type_guard in an exclusive * mode. */ struct task_struct *lo_owner; }; static inline struct lov_layout_raid0 *lov_r0(struct lov_object *lov, int i) { LASSERT(lov->lo_type == LLT_COMP); LASSERTF(i < lov->u.composite.lo_entry_count, "entry %d entry_count %d", i, lov->u.composite.lo_entry_count); return &lov->u.composite.lo_entries[i].lle_raid0; } static inline struct lov_stripe_md_entry *lov_lse(struct lov_object *lov, int i) { LASSERT(lov->lo_lsm != NULL); LASSERT(i < lov->lo_lsm->lsm_entry_count); return lov->lo_lsm->lsm_entries[i]; } static inline unsigned lov_flr_state(const struct lov_object *lov) { if (lov->lo_type != LLT_COMP) return LCM_FL_NONE; return lov->u.composite.lo_flags & LCM_FL_FLR_MASK; } static inline bool lov_is_flr(const struct lov_object *lov) { return lov_flr_state(lov) != LCM_FL_NONE; } static inline struct lov_layout_entry *lov_entry(struct lov_object *lov, int i) { LASSERT(lov->lo_type == LLT_COMP); LASSERTF(i < lov->u.composite.lo_entry_count, "entry %d entry_count %d", i, lov->u.composite.lo_entry_count); return &lov->u.composite.lo_entries[i]; } #define lov_for_layout_entry(lov, entry, start, end) \ for (entry = lov_entry(lov, start); \ entry <= lov_entry(lov, end); entry++) #define lov_foreach_layout_entry(lov, entry) \ lov_for_layout_entry(lov, entry, 0, \ (lov)->u.composite.lo_entry_count - 1) #define lov_foreach_mirror_layout_entry(lov, entry, lre) \ lov_for_layout_entry(lov, entry, (lre)->lre_start, (lre)->lre_end) static inline struct lov_mirror_entry * lov_mirror_entry(struct lov_object *lov, int i) { LASSERT(i < lov->u.composite.lo_mirror_count); return &lov->u.composite.lo_mirrors[i]; } #define lov_foreach_mirror_entry(lov, lre) \ for (lre = lov_mirror_entry(lov, 0); \ lre <= lov_mirror_entry(lov, \ lov->u.composite.lo_mirror_count - 1); \ lre++) static inline unsigned lov_layout_entry_index(struct lov_object *lov, struct lov_layout_entry *entry) { struct lov_layout_entry *first = &lov->u.composite.lo_entries[0]; unsigned index = (unsigned)(entry - first); LASSERT(entry >= first); LASSERT(index < lov->u.composite.lo_entry_count); return index; } /** * State lov_lock keeps for each sub-lock. */ struct lov_lock_sub { /** sub-lock itself */ struct cl_lock sub_lock; /** Set if the sublock has ever been enqueued, meaning it may * hold resources of underlying layers */ unsigned int sub_is_enqueued:1, sub_initialized:1; int sub_index; }; /** * lov-specific lock state. */ struct lov_lock { struct cl_lock_slice lls_cl; /** Number of sub-locks in this lock */ int lls_nr; /** sublock array */ struct lov_lock_sub lls_sub[0]; }; struct lov_page { struct cl_page_slice lps_cl; /** layout_entry + stripe index, composed using lov_comp_index() */ unsigned int lps_index; /* the layout gen when this page was created */ __u32 lps_layout_gen; }; /* * Bottom half. */ struct lovsub_device { struct cl_device acid_cl; struct cl_device *acid_next; }; struct lovsub_object { struct cl_object_header lso_header; struct cl_object lso_cl; struct lov_object *lso_super; int lso_index; }; /** * Describe the environment settings for sublocks. */ struct lov_sublock_env { const struct lu_env *lse_env; struct cl_io *lse_io; }; struct lov_thread_info { struct cl_object_conf lti_stripe_conf; struct lu_fid lti_fid; struct ost_lvb lti_lvb; struct cl_2queue lti_cl2q; struct cl_page_list lti_plist; wait_queue_entry_t lti_waiter; }; /** * State that lov_io maintains for every sub-io. */ struct lov_io_sub { /** * Linkage into a list (hanging off lov_io::lis_subios) */ struct list_head sub_list; /** * Linkage into a list (hanging off lov_io::lis_active) of all * sub-io's active for the current IO iteration. */ struct list_head sub_linkage; unsigned int sub_subio_index; /** * sub-io for a stripe. Ideally sub-io's can be stopped and resumed * independently, with lov acting as a scheduler to maximize overall * throughput. */ struct cl_io sub_io; /** * environment, in which sub-io executes. */ struct lu_env *sub_env; /** * environment's refcheck. * * \see cl_env_get() */ __u16 sub_refcheck; __u16 sub_reenter; }; /** * IO state private for LOV. */ struct lov_io { /** super-class */ struct cl_io_slice lis_cl; /** * FLR: index to lo_mirrors. Valid only if lov_is_flr() returns true. * * The mirror index of this io. Preserved over cl_io_init() * if io->ci_ndelay_tried is greater than zero. */ int lis_mirror_index; /** * FLR: the layout gen when lis_mirror_index was cached. The * mirror index makes sense only when the layout gen doesn't * change. */ int lis_mirror_layout_gen; /** * fields below this will be initialized in lov_io_init(). */ unsigned lis_preserved; /** * Pointer to the object slice. This is a duplicate of * lov_io::lis_cl::cis_object. */ struct lov_object *lis_object; /** * Original end-of-io position for this IO, set by the upper layer as * cl_io::u::ci_rw::pos + cl_io::u::ci_rw::count. lov remembers this, * changes pos and count to fit IO into a single stripe and uses saved * value to determine when IO iterations have to stop. * * This is used only for CIT_READ and CIT_WRITE io's. */ loff_t lis_io_endpos; /** * starting position within a file, for the current io loop iteration * (stripe), used by ci_io_loop(). */ loff_t lis_pos; /** * end position with in a file, for the current stripe io. This is * exclusive (i.e., next offset after last byte affected by io). */ loff_t lis_endpos; int lis_nr_subios; /** * the index of ls_single_subio in ls_subios array */ int lis_single_subio_index; struct lov_io_sub lis_single_subio; /** * List of active sub-io's. Active sub-io's are under the range * of [lis_pos, lis_endpos). */ struct list_head lis_active; /** * All sub-io's created in this lov_io. */ struct list_head lis_subios; }; struct lov_session { struct lov_io ls_io; struct lov_sublock_env ls_subenv; }; extern struct lu_device_type lov_device_type; extern struct lu_device_type lovsub_device_type; extern struct lu_context_key lov_key; extern struct lu_context_key lov_session_key; extern struct kmem_cache *lov_lock_kmem; extern struct kmem_cache *lov_object_kmem; extern struct kmem_cache *lov_thread_kmem; extern struct kmem_cache *lov_session_kmem; extern struct kmem_cache *lovsub_object_kmem; int lov_object_init (const struct lu_env *env, struct lu_object *obj, const struct lu_object_conf *conf); int lovsub_object_init (const struct lu_env *env, struct lu_object *obj, const struct lu_object_conf *conf); int lov_lock_init (const struct lu_env *env, struct cl_object *obj, struct cl_lock *lock, const struct cl_io *io); int lov_io_init (const struct lu_env *env, struct cl_object *obj, struct cl_io *io); int lov_lock_init_composite(const struct lu_env *env, struct cl_object *obj, struct cl_lock *lock, const struct cl_io *io); int lov_lock_init_empty (const struct lu_env *env, struct cl_object *obj, struct cl_lock *lock, const struct cl_io *io); int lov_io_init_composite(const struct lu_env *env, struct cl_object *obj, struct cl_io *io); int lov_io_init_empty (const struct lu_env *env, struct cl_object *obj, struct cl_io *io); int lov_io_init_released(const struct lu_env *env, struct cl_object *obj, struct cl_io *io); struct lov_io_sub *lov_sub_get(const struct lu_env *env, struct lov_io *lio, int stripe); int lov_page_init (const struct lu_env *env, struct cl_object *ob, struct cl_page *page, pgoff_t index); int lov_page_init_empty (const struct lu_env *env, struct cl_object *obj, struct cl_page *page, pgoff_t index); int lov_page_init_composite(const struct lu_env *env, struct cl_object *obj, struct cl_page *page, pgoff_t index); struct lu_object *lov_object_alloc (const struct lu_env *env, const struct lu_object_header *hdr, struct lu_device *dev); struct lu_object *lovsub_object_alloc(const struct lu_env *env, const struct lu_object_header *hdr, struct lu_device *dev); struct lov_stripe_md *lov_lsm_addref(struct lov_object *lov); int lov_page_stripe(const struct cl_page *page); bool lov_page_is_empty(const struct cl_page *page); int lov_lsm_entry(const struct lov_stripe_md *lsm, __u64 offset); int lov_io_layout_at(struct lov_io *lio, __u64 offset); #define lov_foreach_target(lov, var) \ for (var = 0; var < lov_targets_nr(lov); ++var) static inline struct lu_extent *lov_io_extent(struct lov_io *io, int i) { return &lov_lse(io->lis_object, i)->lsme_extent; } /** * For layout entries within @ext. */ #define lov_foreach_io_layout(ind, lio, ext) \ for (ind = lov_io_layout_at(lio, (ext)->e_start); \ ind >= 0 && \ lu_extent_is_overlapped(lov_io_extent(lio, ind), ext); \ ind = lov_io_layout_at(lio, lov_io_extent(lio, ind)->e_end)) /***************************************************************************** * * Type conversions. * * Accessors. * */ static inline struct lov_session *lov_env_session(const struct lu_env *env) { struct lov_session *ses; ses = lu_context_key_get(env->le_ses, &lov_session_key); LASSERT(ses != NULL); return ses; } static inline struct lov_io *lov_env_io(const struct lu_env *env) { return &lov_env_session(env)->ls_io; } static inline int lov_is_object(const struct lu_object *obj) { return obj->lo_dev->ld_type == &lov_device_type; } static inline int lovsub_is_object(const struct lu_object *obj) { return obj->lo_dev->ld_type == &lovsub_device_type; } static inline struct lu_device *lov2lu_dev(struct lov_device *lov) { return &lov->ld_cl.cd_lu_dev; } static inline struct lov_device *lu2lov_dev(const struct lu_device *d) { LINVRNT(d->ld_type == &lov_device_type); return container_of0(d, struct lov_device, ld_cl.cd_lu_dev); } static inline struct cl_device *lovsub2cl_dev(struct lovsub_device *lovsub) { return &lovsub->acid_cl; } static inline struct lu_device *lovsub2lu_dev(struct lovsub_device *lovsub) { return &lovsub2cl_dev(lovsub)->cd_lu_dev; } static inline struct lovsub_device *lu2lovsub_dev(const struct lu_device *d) { LINVRNT(d->ld_type == &lovsub_device_type); return container_of0(d, struct lovsub_device, acid_cl.cd_lu_dev); } static inline struct lovsub_device *cl2lovsub_dev(const struct cl_device *d) { LINVRNT(d->cd_lu_dev.ld_type == &lovsub_device_type); return container_of0(d, struct lovsub_device, acid_cl); } static inline struct lu_object *lov2lu(struct lov_object *lov) { return &lov->lo_cl.co_lu; } static inline struct cl_object *lov2cl(struct lov_object *lov) { return &lov->lo_cl; } static inline struct lov_object *lu2lov(const struct lu_object *obj) { LINVRNT(lov_is_object(obj)); return container_of0(obj, struct lov_object, lo_cl.co_lu); } static inline struct lov_object *cl2lov(const struct cl_object *obj) { LINVRNT(lov_is_object(&obj->co_lu)); return container_of0(obj, struct lov_object, lo_cl); } static inline struct lu_object *lovsub2lu(struct lovsub_object *los) { return &los->lso_cl.co_lu; } static inline struct cl_object *lovsub2cl(struct lovsub_object *los) { return &los->lso_cl; } static inline struct lovsub_object *cl2lovsub(const struct cl_object *obj) { LINVRNT(lovsub_is_object(&obj->co_lu)); return container_of0(obj, struct lovsub_object, lso_cl); } static inline struct lovsub_object *lu2lovsub(const struct lu_object *obj) { LINVRNT(lovsub_is_object(obj)); return container_of0(obj, struct lovsub_object, lso_cl.co_lu); } static inline struct lov_lock *cl2lov_lock(const struct cl_lock_slice *slice) { LINVRNT(lov_is_object(&slice->cls_obj->co_lu)); return container_of(slice, struct lov_lock, lls_cl); } static inline struct lov_page *cl2lov_page(const struct cl_page_slice *slice) { LINVRNT(lov_is_object(&slice->cpl_obj->co_lu)); return container_of0(slice, struct lov_page, lps_cl); } static inline struct lov_io *cl2lov_io(const struct lu_env *env, const struct cl_io_slice *ios) { struct lov_io *lio; lio = container_of(ios, struct lov_io, lis_cl); LASSERT(lio == lov_env_io(env)); return lio; } static inline int lov_targets_nr(const struct lov_device *lov) { return lov->ld_lov->desc.ld_tgt_count; } static inline struct lov_thread_info *lov_env_info(const struct lu_env *env) { struct lov_thread_info *info; info = lu_context_key_get(&env->le_ctx, &lov_key); LASSERT(info != NULL); return info; } /* lov_pack.c */ int lov_getstripe(const struct lu_env *env, struct lov_object *obj, struct lov_stripe_md *lsm, struct lov_user_md __user *lump, size_t size); /** @} lov */ #endif