/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License version 2 for more details. A copy is * included in the COPYING file that accompanied this code. * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved * Use is subject to license terms. * * Copyright (c) 2012, 2014, Intel Corporation. */ /* * lustre/lod/lod_lov.c * * A set of helpers to maintain Logical Object Volume (LOV) * Extended Attribute (EA) and known OST targets * * Author: Alex Zhuravlev */ #define DEBUG_SUBSYSTEM S_MDS #include #include #include #include "lod_internal.h" /** * Increase reference count on the target table. * * Increase reference count on the target table usage to prevent racing with * addition/deletion. Any function that expects the table to remain * stationary must take a ref. * * \param[in] ltd target table (lod_ost_descs or lod_mdt_descs) */ void lod_getref(struct lod_tgt_descs *ltd) { down_read(<d->ltd_rw_sem); mutex_lock(<d->ltd_mutex); ltd->ltd_refcount++; mutex_unlock(<d->ltd_mutex); } /** * Decrease reference count on the target table. * * Companion of lod_getref() to release a reference on the target table. * If this is the last reference and the OST entry was scheduled for deletion, * the descriptor is removed from the table. * * \param[in] lod LOD device from which we release a reference * \param[in] ltd target table (lod_ost_descs or lod_mdt_descs) */ void lod_putref(struct lod_device *lod, struct lod_tgt_descs *ltd) { mutex_lock(<d->ltd_mutex); ltd->ltd_refcount--; if (ltd->ltd_refcount == 0 && ltd->ltd_death_row) { struct lod_tgt_desc *tgt_desc, *tmp; struct list_head kill; unsigned int idx; CDEBUG(D_CONFIG, "destroying %d ltd desc\n", ltd->ltd_death_row); INIT_LIST_HEAD(&kill); cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx) { tgt_desc = LTD_TGT(ltd, idx); LASSERT(tgt_desc); if (!tgt_desc->ltd_reap) continue; list_add(&tgt_desc->ltd_kill, &kill); LTD_TGT(ltd, idx) = NULL; /*FIXME: only support ost pool for now */ if (ltd == &lod->lod_ost_descs) { lod_ost_pool_remove(&lod->lod_pool_info, idx); if (tgt_desc->ltd_active) lod->lod_desc.ld_active_tgt_count--; } ltd->ltd_tgtnr--; cfs_bitmap_clear(ltd->ltd_tgt_bitmap, idx); ltd->ltd_death_row--; } mutex_unlock(<d->ltd_mutex); up_read(<d->ltd_rw_sem); list_for_each_entry_safe(tgt_desc, tmp, &kill, ltd_kill) { int rc; list_del(&tgt_desc->ltd_kill); if (ltd == &lod->lod_ost_descs) { /* remove from QoS structures */ rc = qos_del_tgt(lod, tgt_desc); if (rc) CERROR("%s: qos_del_tgt(%s) failed:" "rc = %d\n", lod2obd(lod)->obd_name, obd_uuid2str(&tgt_desc->ltd_uuid), rc); } rc = obd_disconnect(tgt_desc->ltd_exp); if (rc) CERROR("%s: failed to disconnect %s: rc = %d\n", lod2obd(lod)->obd_name, obd_uuid2str(&tgt_desc->ltd_uuid), rc); OBD_FREE_PTR(tgt_desc); } } else { mutex_unlock(<d->ltd_mutex); up_read(<d->ltd_rw_sem); } } /** * Expand size of target table. * * When the target table is full, we have to extend the table. To do so, * we allocate new memory with some reserve, move data from the old table * to the new one and release memory consumed by the old table. * Notice we take ltd_rw_sem exclusively to ensure atomic switch. * * \param[in] ltd target table * \param[in] newsize new size of the table * * \retval 0 on success * \retval -ENOMEM if reallocation failed */ static int ltd_bitmap_resize(struct lod_tgt_descs *ltd, __u32 newsize) { cfs_bitmap_t *new_bitmap, *old_bitmap = NULL; int rc = 0; ENTRY; /* grab write reference on the lod. Relocating the array requires * exclusive access */ down_write(<d->ltd_rw_sem); if (newsize <= ltd->ltd_tgts_size) /* someone else has already resize the array */ GOTO(out, rc = 0); /* allocate new bitmap */ new_bitmap = CFS_ALLOCATE_BITMAP(newsize); if (!new_bitmap) GOTO(out, rc = -ENOMEM); if (ltd->ltd_tgts_size > 0) { /* the bitmap already exists, we need * to copy data from old one */ cfs_bitmap_copy(new_bitmap, ltd->ltd_tgt_bitmap); old_bitmap = ltd->ltd_tgt_bitmap; } ltd->ltd_tgts_size = newsize; ltd->ltd_tgt_bitmap = new_bitmap; if (old_bitmap) CFS_FREE_BITMAP(old_bitmap); CDEBUG(D_CONFIG, "tgt size: %d\n", ltd->ltd_tgts_size); EXIT; out: up_write(<d->ltd_rw_sem); return rc; } /** * Connect LOD to a new OSP and add it to the target table. * * Connect to the OSP device passed, initialize all the internal * structures related to the device and add it to the target table. * * \param[in] env execution environment for this thread * \param[in] lod LOD device to be connected to the new OSP * \param[in] osp name of OSP device name to be added * \param[in] index index of the new target * \param[in] gen target's generation number * \param[in] tgt_index OSP's group * \param[in] type type of device (mdc or osc) * \param[in] active state of OSP: 0 - inactive, 1 - active * * \retval 0 if added successfully * \retval negative error number on failure */ int lod_add_device(const struct lu_env *env, struct lod_device *lod, char *osp, unsigned index, unsigned gen, int tgt_index, char *type, int active) { struct obd_connect_data *data = NULL; struct obd_export *exp = NULL; struct obd_device *obd; struct lu_device *ldev; struct dt_device *d; int rc; struct lod_tgt_desc *tgt_desc; struct lod_tgt_descs *ltd; struct obd_uuid obd_uuid; bool for_ost; ENTRY; CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, index, gen); if (gen <= 0) { CERROR("request to add OBD %s with invalid generation: %d\n", osp, gen); RETURN(-EINVAL); } obd_str2uuid(&obd_uuid, osp); obd = class_find_client_obd(&obd_uuid, LUSTRE_OSP_NAME, &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid); if (obd == NULL) { CERROR("can't find %s device\n", osp); RETURN(-EINVAL); } OBD_ALLOC_PTR(data); if (data == NULL) RETURN(-ENOMEM); data->ocd_connect_flags = OBD_CONNECT_INDEX | OBD_CONNECT_VERSION; data->ocd_version = LUSTRE_VERSION_CODE; data->ocd_index = index; if (strcmp(LUSTRE_OSC_NAME, type) == 0) { for_ost = true; data->ocd_connect_flags |= OBD_CONNECT_AT | OBD_CONNECT_FULL20 | OBD_CONNECT_INDEX | #ifdef HAVE_LRU_RESIZE_SUPPORT OBD_CONNECT_LRU_RESIZE | #endif OBD_CONNECT_MDS | OBD_CONNECT_REQPORTAL | OBD_CONNECT_SKIP_ORPHAN | OBD_CONNECT_FID | OBD_CONNECT_LVB_TYPE | OBD_CONNECT_VERSION | OBD_CONNECT_PINGLESS | OBD_CONNECT_LFSCK; data->ocd_group = tgt_index; ltd = &lod->lod_ost_descs; } else { struct obd_import *imp = obd->u.cli.cl_import; for_ost = false; data->ocd_ibits_known = MDS_INODELOCK_UPDATE; data->ocd_connect_flags |= OBD_CONNECT_ACL | OBD_CONNECT_IBITS | OBD_CONNECT_MDS_MDS | OBD_CONNECT_FID | OBD_CONNECT_AT | OBD_CONNECT_FULL20 | OBD_CONNECT_LFSCK; spin_lock(&imp->imp_lock); imp->imp_server_timeout = 1; spin_unlock(&imp->imp_lock); imp->imp_client->cli_request_portal = OUT_PORTAL; CDEBUG(D_OTHER, "%s: Set 'mds' portal and timeout\n", obd->obd_name); ltd = &lod->lod_mdt_descs; } rc = obd_connect(env, &exp, obd, &obd->obd_uuid, data, NULL); OBD_FREE_PTR(data); if (rc) { CERROR("%s: cannot connect to next dev %s (%d)\n", obd->obd_name, osp, rc); GOTO(out_free, rc); } LASSERT(obd->obd_lu_dev); LASSERT(obd->obd_lu_dev->ld_site == lod->lod_dt_dev.dd_lu_dev.ld_site); ldev = obd->obd_lu_dev; d = lu2dt_dev(ldev); /* Allocate ost descriptor and fill it */ OBD_ALLOC_PTR(tgt_desc); if (!tgt_desc) GOTO(out_conn, rc = -ENOMEM); tgt_desc->ltd_tgt = d; tgt_desc->ltd_exp = exp; tgt_desc->ltd_uuid = obd->u.cli.cl_target_uuid; tgt_desc->ltd_gen = gen; tgt_desc->ltd_index = index; tgt_desc->ltd_active = active; lod_getref(ltd); if (index >= ltd->ltd_tgts_size) { /* we have to increase the size of the lod_osts array */ __u32 newsize; newsize = max(ltd->ltd_tgts_size, (__u32)2); while (newsize < index + 1) newsize = newsize << 1; /* lod_bitmap_resize() needs lod_rw_sem * which we hold with th reference */ lod_putref(lod, ltd); rc = ltd_bitmap_resize(ltd, newsize); if (rc) GOTO(out_desc, rc); lod_getref(ltd); } mutex_lock(<d->ltd_mutex); if (cfs_bitmap_check(ltd->ltd_tgt_bitmap, index)) { CERROR("%s: device %d is registered already\n", obd->obd_name, index); GOTO(out_mutex, rc = -EEXIST); } if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) { OBD_ALLOC_PTR(ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK]); if (ltd->ltd_tgt_idx[index / TGT_PTRS_PER_BLOCK] == NULL) { CERROR("can't allocate index to add %s\n", obd->obd_name); GOTO(out_mutex, rc = -ENOMEM); } } if (for_ost) { /* pool and qos are not supported for MDS stack yet */ rc = lod_ost_pool_add(&lod->lod_pool_info, index, lod->lod_osts_size); if (rc) { CERROR("%s: can't set up pool, failed with %d\n", obd->obd_name, rc); GOTO(out_mutex, rc); } rc = qos_add_tgt(lod, tgt_desc); if (rc) { CERROR("%s: qos_add_tgt failed with %d\n", obd->obd_name, rc); GOTO(out_pool, rc); } /* The new OST is now a full citizen */ if (index >= lod->lod_desc.ld_tgt_count) lod->lod_desc.ld_tgt_count = index + 1; if (active) lod->lod_desc.ld_active_tgt_count++; } LTD_TGT(ltd, index) = tgt_desc; cfs_bitmap_set(ltd->ltd_tgt_bitmap, index); ltd->ltd_tgtnr++; mutex_unlock(<d->ltd_mutex); lod_putref(lod, ltd); if (lod->lod_recovery_completed) ldev->ld_ops->ldo_recovery_complete(env, ldev); if (!for_ost && lod->lod_initialized) { rc = lod_sub_init_llog(env, lod, tgt_desc->ltd_tgt); if (rc != 0) { CERROR("%s: cannot start llog on %s:rc = %d\n", lod2obd(lod)->obd_name, osp, rc); GOTO(out_pool, rc); } } rc = lfsck_add_target(env, lod->lod_child, d, exp, index, for_ost); if (rc != 0) { CERROR("Fail to add LFSCK target: name = %s, type = %s, " "index = %u, rc = %d\n", osp, type, index, rc); GOTO(out_fini_llog, rc); } RETURN(rc); out_fini_llog: lod_sub_fini_llog(env, tgt_desc->ltd_tgt, tgt_desc->ltd_recovery_thread); out_pool: lod_ost_pool_remove(&lod->lod_pool_info, index); out_mutex: mutex_unlock(<d->ltd_mutex); lod_putref(lod, ltd); out_desc: OBD_FREE_PTR(tgt_desc); out_conn: obd_disconnect(exp); out_free: return rc; } /** * Schedule target removal from the target table. * * Mark the device as dead. The device is not removed here because it may * still be in use. The device will be removed in lod_putref() when the * last reference is released. * * \param[in] env execution environment for this thread * \param[in] lod LOD device the target table belongs to * \param[in] ltd target table * \param[in] idx index of the target * \param[in] for_ost type of the target: 0 - MDT, 1 - OST */ static void __lod_del_device(const struct lu_env *env, struct lod_device *lod, struct lod_tgt_descs *ltd, unsigned idx, bool for_ost) { LASSERT(LTD_TGT(ltd, idx)); lfsck_del_target(env, lod->lod_child, LTD_TGT(ltd, idx)->ltd_tgt, idx, for_ost); if (!for_ost && LTD_TGT(ltd, idx)->ltd_recovery_thread != NULL) { struct ptlrpc_thread *thread; thread = LTD_TGT(ltd, idx)->ltd_recovery_thread; OBD_FREE_PTR(thread); } if (LTD_TGT(ltd, idx)->ltd_reap == 0) { LTD_TGT(ltd, idx)->ltd_reap = 1; ltd->ltd_death_row++; } } /** * Schedule removal of all the targets from the given target table. * * See more details in the description for __lod_del_device() * * \param[in] env execution environment for this thread * \param[in] lod LOD device the target table belongs to * \param[in] ltd target table * \param[in] for_ost type of the target: MDT or OST * * \retval 0 always */ int lod_fini_tgt(const struct lu_env *env, struct lod_device *lod, struct lod_tgt_descs *ltd, bool for_ost) { unsigned int idx; if (ltd->ltd_tgts_size <= 0) return 0; lod_getref(ltd); mutex_lock(<d->ltd_mutex); cfs_foreach_bit(ltd->ltd_tgt_bitmap, idx) __lod_del_device(env, lod, ltd, idx, for_ost); mutex_unlock(<d->ltd_mutex); lod_putref(lod, ltd); CFS_FREE_BITMAP(ltd->ltd_tgt_bitmap); for (idx = 0; idx < TGT_PTRS; idx++) { if (ltd->ltd_tgt_idx[idx]) OBD_FREE_PTR(ltd->ltd_tgt_idx[idx]); } ltd->ltd_tgts_size = 0; return 0; } /** * Remove device by name. * * Remove a device identified by \a osp from the target table. Given * the device can be in use, the real deletion happens in lod_putref(). * * \param[in] env execution environment for this thread * \param[in] lod LOD device to be connected to the new OSP * \param[in] ltd target table * \param[in] osp name of OSP device to be removed * \param[in] idx index of the target * \param[in] gen generation number, not used currently * \param[in] for_ost type of the target: 0 - MDT, 1 - OST * * \retval 0 if the device was scheduled for removal * \retval -EINVAL if no device was found */ int lod_del_device(const struct lu_env *env, struct lod_device *lod, struct lod_tgt_descs *ltd, char *osp, unsigned idx, unsigned gen, bool for_ost) { struct obd_device *obd; int rc = 0; struct obd_uuid uuid; ENTRY; CDEBUG(D_CONFIG, "osp:%s idx:%d gen:%d\n", osp, idx, gen); obd_str2uuid(&uuid, osp); obd = class_find_client_obd(&uuid, LUSTRE_OSP_NAME, &lod->lod_dt_dev.dd_lu_dev.ld_obd->obd_uuid); if (obd == NULL) { CERROR("can't find %s device\n", osp); RETURN(-EINVAL); } if (gen <= 0) { CERROR("%s: request to remove OBD %s with invalid generation %d" "\n", obd->obd_name, osp, gen); RETURN(-EINVAL); } obd_str2uuid(&uuid, osp); lod_getref(ltd); mutex_lock(<d->ltd_mutex); /* check that the index is allocated in the bitmap */ if (!cfs_bitmap_check(ltd->ltd_tgt_bitmap, idx) || !LTD_TGT(ltd, idx)) { CERROR("%s: device %d is not set up\n", obd->obd_name, idx); GOTO(out, rc = -EINVAL); } /* check that the UUID matches */ if (!obd_uuid_equals(&uuid, <D_TGT(ltd, idx)->ltd_uuid)) { CERROR("%s: LOD target UUID %s at index %d does not match %s\n", obd->obd_name, obd_uuid2str(<D_TGT(ltd,idx)->ltd_uuid), idx, osp); GOTO(out, rc = -EINVAL); } __lod_del_device(env, lod, ltd, idx, for_ost); EXIT; out: mutex_unlock(<d->ltd_mutex); lod_putref(lod, ltd); return(rc); } /** * Resize per-thread storage to hold specified size. * * A helper function to resize per-thread temporary storage. This storage * is used to process LOV/LVM EAs and may be quite large. We do not want to * allocate/release it every time, so instead we put it into the env and * reallocate on demand. The memory is released when the correspondent thread * is finished. * * \param[in] info LOD-specific storage in the environment * \param[in] size new size to grow the buffer to * \retval 0 on success, -ENOMEM if reallocation failed */ int lod_ea_store_resize(struct lod_thread_info *info, size_t size) { __u32 round = size_roundup_power2(size); LASSERT(round <= lov_mds_md_size(LOV_MAX_STRIPE_COUNT, LOV_MAGIC_V3)); if (info->lti_ea_store) { LASSERT(info->lti_ea_store_size); LASSERT(info->lti_ea_store_size < round); CDEBUG(D_INFO, "EA store size %d is not enough, need %d\n", info->lti_ea_store_size, round); OBD_FREE_LARGE(info->lti_ea_store, info->lti_ea_store_size); info->lti_ea_store = NULL; info->lti_ea_store_size = 0; } OBD_ALLOC_LARGE(info->lti_ea_store, round); if (info->lti_ea_store == NULL) RETURN(-ENOMEM); info->lti_ea_store_size = round; RETURN(0); } /** * Make LOV EA for striped object. * * Generate striping information and store it in the LOV EA of the given * object. The caller must ensure nobody else is calling the function * against the object concurrently. The transaction must be started. * FLDB service must be running as well; it's used to map FID to the target, * which is stored in LOV EA. * * \param[in] env execution environment for this thread * \param[in] lo LOD object * \param[in] th transaction handle * * \retval 0 if LOV EA is stored successfully * \retval negative error number on failure */ int lod_generate_and_set_lovea(const struct lu_env *env, struct lod_object *lo, struct thandle *th) { struct lod_thread_info *info = lod_env_info(env); struct dt_object *next = dt_object_child(&lo->ldo_obj); const struct lu_fid *fid = lu_object_fid(&lo->ldo_obj.do_lu); struct lov_mds_md_v1 *lmm; struct lov_ost_data_v1 *objs; __u32 magic; int i, rc; size_t lmm_size; ENTRY; LASSERT(lo); magic = lo->ldo_pool != NULL ? LOV_MAGIC_V3 : LOV_MAGIC_V1; lmm_size = lov_mds_md_size(lo->ldo_stripenr, magic); if (info->lti_ea_store_size < lmm_size) { rc = lod_ea_store_resize(info, lmm_size); if (rc) RETURN(rc); } if (lo->ldo_pattern == 0) /* default striping */ lo->ldo_pattern = LOV_PATTERN_RAID0; lmm = info->lti_ea_store; lmm->lmm_magic = cpu_to_le32(magic); lmm->lmm_pattern = cpu_to_le32(lo->ldo_pattern); fid_to_lmm_oi(fid, &lmm->lmm_oi); if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_BAD_LMMOI)) lmm->lmm_oi.oi.oi_id++; lmm_oi_cpu_to_le(&lmm->lmm_oi, &lmm->lmm_oi); lmm->lmm_stripe_size = cpu_to_le32(lo->ldo_stripe_size); lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_stripenr); if (lo->ldo_pattern & LOV_PATTERN_F_RELEASED) lmm->lmm_stripe_count = cpu_to_le16(lo->ldo_released_stripenr); lmm->lmm_layout_gen = 0; if (magic == LOV_MAGIC_V1) { objs = &lmm->lmm_objects[0]; } else { struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm; size_t cplen = strlcpy(v3->lmm_pool_name, lo->ldo_pool, sizeof(v3->lmm_pool_name)); if (cplen >= sizeof(v3->lmm_pool_name)) RETURN(-E2BIG); objs = &v3->lmm_objects[0]; } for (i = 0; i < lo->ldo_stripenr; i++) { struct lu_fid *fid = &info->lti_fid; struct lod_device *lod; __u32 index; int type = LU_SEQ_RANGE_OST; lod = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev); LASSERT(lo->ldo_stripe[i]); *fid = *lu_object_fid(&lo->ldo_stripe[i]->do_lu); if (OBD_FAIL_CHECK(OBD_FAIL_LFSCK_MULTIPLE_REF)) { if (cfs_fail_val == 0) cfs_fail_val = fid->f_oid; else fid->f_oid = cfs_fail_val; } rc = fid_to_ostid(fid, &info->lti_ostid); LASSERT(rc == 0); ostid_cpu_to_le(&info->lti_ostid, &objs[i].l_ost_oi); objs[i].l_ost_gen = cpu_to_le32(0); rc = lod_fld_lookup(env, lod, fid, &index, &type); if (rc < 0) { CERROR("%s: Can not locate "DFID": rc = %d\n", lod2obd(lod)->obd_name, PFID(fid), rc); lod_object_free_striping(env, lo); RETURN(rc); } objs[i].l_ost_idx = cpu_to_le32(index); } info->lti_buf.lb_buf = lmm; info->lti_buf.lb_len = lmm_size; rc = lod_sub_object_xattr_set(env, next, &info->lti_buf, XATTR_NAME_LOV, 0, th); if (rc < 0) { lod_object_free_striping(env, lo); RETURN(rc); } RETURN(rc); } /** * Get LOV EA. * * Fill lti_ea_store buffer in the environment with a value for the given * EA. The buffer is reallocated if the value doesn't fit. * * \param[in,out] env execution environment for this thread * .lti_ea_store buffer is filled with EA's value * \param[in] lo LOD object * \param[in] name name of the EA * * \retval 0 if EA is fetched successfully * \retval negative error number on failure */ int lod_get_ea(const struct lu_env *env, struct lod_object *lo, const char *name) { struct lod_thread_info *info = lod_env_info(env); struct dt_object *next = dt_object_child(&lo->ldo_obj); int rc; ENTRY; LASSERT(info); if (unlikely(info->lti_ea_store == NULL)) { /* just to enter in allocation block below */ rc = -ERANGE; } else { repeat: info->lti_buf.lb_buf = info->lti_ea_store; info->lti_buf.lb_len = info->lti_ea_store_size; rc = dt_xattr_get(env, next, &info->lti_buf, name); } /* if object is not striped or inaccessible */ if (rc == -ENODATA || rc == -ENOENT) RETURN(0); if (rc == -ERANGE) { /* EA doesn't fit, reallocate new buffer */ rc = dt_xattr_get(env, next, &LU_BUF_NULL, name); if (rc == -ENODATA || rc == -ENOENT) RETURN(0); else if (rc < 0) RETURN(rc); LASSERT(rc > 0); rc = lod_ea_store_resize(info, rc); if (rc) RETURN(rc); goto repeat; } RETURN(rc); } /** * Verify the target index is present in the current configuration. * * \param[in] md LOD device where the target table is stored * \param[in] idx target's index * * \retval 0 if the index is present * \retval -EINVAL if not */ static int validate_lod_and_idx(struct lod_device *md, __u32 idx) { if (unlikely(idx >= md->lod_ost_descs.ltd_tgts_size || !cfs_bitmap_check(md->lod_ost_bitmap, idx))) { CERROR("%s: bad idx: %d of %d\n", lod2obd(md)->obd_name, idx, md->lod_ost_descs.ltd_tgts_size); return -EINVAL; } if (unlikely(OST_TGT(md, idx) == NULL)) { CERROR("%s: bad lod_tgt_desc for idx: %d\n", lod2obd(md)->obd_name, idx); return -EINVAL; } if (unlikely(OST_TGT(md, idx)->ltd_ost == NULL)) { CERROR("%s: invalid lod device, for idx: %d\n", lod2obd(md)->obd_name , idx); return -EINVAL; } return 0; } /** * Instantiate objects for stripes. * * Allocate and initialize LU-objects representing the stripes. The number * of the stripes (ldo_stripenr) must be initialized already. The caller * must ensure nobody else is calling the function on the object at the same * time. FLDB service must be running to be able to map a FID to the targets * and find appropriate device representing that target. * * \param[in] env execution environment for this thread * \param[in,out] lo LOD object * \param[in] objs an array of IDs to creates the objects from * * \retval 0 if the objects are instantiated successfully * \retval negative error number on failure */ int lod_initialize_objects(const struct lu_env *env, struct lod_object *lo, struct lov_ost_data_v1 *objs) { struct lod_thread_info *info = lod_env_info(env); struct lod_device *md; struct lu_object *o, *n; struct lu_device *nd; struct dt_object **stripe; int stripe_len; int i, rc = 0; __u32 idx; ENTRY; LASSERT(lo != NULL); md = lu2lod_dev(lo->ldo_obj.do_lu.lo_dev); LASSERT(lo->ldo_stripe == NULL); LASSERT(lo->ldo_stripenr > 0); LASSERT(lo->ldo_stripe_size > 0); stripe_len = lo->ldo_stripenr; OBD_ALLOC(stripe, sizeof(stripe[0]) * stripe_len); if (stripe == NULL) RETURN(-ENOMEM); for (i = 0; i < lo->ldo_stripenr; i++) { if (unlikely(lovea_slot_is_dummy(&objs[i]))) continue; ostid_le_to_cpu(&objs[i].l_ost_oi, &info->lti_ostid); idx = le32_to_cpu(objs[i].l_ost_idx); rc = ostid_to_fid(&info->lti_fid, &info->lti_ostid, idx); if (rc != 0) GOTO(out, rc); LASSERTF(fid_is_sane(&info->lti_fid), ""DFID" insane!\n", PFID(&info->lti_fid)); lod_getref(&md->lod_ost_descs); rc = validate_lod_and_idx(md, idx); if (unlikely(rc != 0)) { lod_putref(md, &md->lod_ost_descs); GOTO(out, rc); } nd = &OST_TGT(md,idx)->ltd_ost->dd_lu_dev; lod_putref(md, &md->lod_ost_descs); /* In the function below, .hs_keycmp resolves to * u_obj_hop_keycmp() */ /* coverity[overrun-buffer-val] */ o = lu_object_find_at(env, nd, &info->lti_fid, NULL); if (IS_ERR(o)) GOTO(out, rc = PTR_ERR(o)); n = lu_object_locate(o->lo_header, nd->ld_type); LASSERT(n); stripe[i] = container_of(n, struct dt_object, do_lu); } out: if (rc != 0) { for (i = 0; i < stripe_len; i++) if (stripe[i] != NULL) lu_object_put(env, &stripe[i]->do_lu); OBD_FREE(stripe, sizeof(stripe[0]) * stripe_len); lo->ldo_stripenr = 0; } else { lo->ldo_stripe = stripe; lo->ldo_stripes_allocated = stripe_len; } RETURN(rc); } /** * Instantiate objects for striping. * * Parse striping information in \a buf and instantiate the objects * representing the stripes. * * \param[in] env execution environment for this thread * \param[in] lo LOD object * \param[in] buf buffer storing LOV EA to parse * * \retval 0 if parsing and objects creation succeed * \retval negative error number on failure */ int lod_parse_striping(const struct lu_env *env, struct lod_object *lo, const struct lu_buf *buf) { struct lov_mds_md_v1 *lmm; struct lov_ost_data_v1 *objs; __u32 magic; __u32 pattern; int rc = 0; ENTRY; LASSERT(buf); LASSERT(buf->lb_buf); LASSERT(buf->lb_len); lmm = (struct lov_mds_md_v1 *) buf->lb_buf; magic = le32_to_cpu(lmm->lmm_magic); pattern = le32_to_cpu(lmm->lmm_pattern); if (magic != LOV_MAGIC_V1 && magic != LOV_MAGIC_V3) GOTO(out, rc = -EINVAL); if (lov_pattern(pattern) != LOV_PATTERN_RAID0) GOTO(out, rc = -EINVAL); lo->ldo_pattern = pattern; lo->ldo_stripe_size = le32_to_cpu(lmm->lmm_stripe_size); lo->ldo_layout_gen = le16_to_cpu(lmm->lmm_layout_gen); lo->ldo_stripenr = le16_to_cpu(lmm->lmm_stripe_count); /* released file stripenr fixup. */ if (pattern & LOV_PATTERN_F_RELEASED) lo->ldo_stripenr = 0; LASSERT(buf->lb_len >= lov_mds_md_size(lo->ldo_stripenr, magic)); if (magic == LOV_MAGIC_V3) { struct lov_mds_md_v3 *v3 = (struct lov_mds_md_v3 *) lmm; objs = &v3->lmm_objects[0]; lod_object_set_pool(lo, v3->lmm_pool_name); } else { objs = &lmm->lmm_objects[0]; } if (lo->ldo_stripenr > 0) rc = lod_initialize_objects(env, lo, objs); out: RETURN(rc); } /** * Initialize the object representing the stripes. * * Unless the stripes are initialized already, fetch LOV (for regular * objects) or LMV (for directory objects) EA and call lod_parse_striping() * to instantiate the objects representing the stripes. * * \param[in] env execution environment for this thread * \param[in,out] lo LOD object * * \retval 0 if parsing and object creation succeed * \retval negative error number on failure */ int lod_load_striping_locked(const struct lu_env *env, struct lod_object *lo) { struct lod_thread_info *info = lod_env_info(env); struct lu_buf *buf = &info->lti_buf; struct dt_object *next = dt_object_child(&lo->ldo_obj); int rc = 0; ENTRY; /* already initialized? */ if (lo->ldo_stripe != NULL) GOTO(out, rc = 0); if (!dt_object_exists(next)) GOTO(out, rc = 0); /* Do not load stripe for slaves of striped dir */ if (lo->ldo_dir_slave_stripe) GOTO(out, rc = 0); if (S_ISREG(lu_object_attr(lod2lu_obj(lo)))) { rc = lod_get_lov_ea(env, lo); if (rc <= 0) GOTO(out, rc); /* * there is LOV EA (striping information) in this object * let's parse it and create in-core objects for the stripes */ buf->lb_buf = info->lti_ea_store; buf->lb_len = info->lti_ea_store_size; rc = lod_parse_striping(env, lo, buf); } else if (S_ISDIR(lu_object_attr(lod2lu_obj(lo)))) { rc = lod_get_lmv_ea(env, lo); if (rc < (typeof(rc))sizeof(struct lmv_mds_md_v1)) GOTO(out, rc = rc > 0 ? -EINVAL : rc); buf->lb_buf = info->lti_ea_store; buf->lb_len = info->lti_ea_store_size; if (rc == sizeof(struct lmv_mds_md_v1)) { rc = lod_load_lmv_shards(env, lo, buf, true); if (buf->lb_buf != info->lti_ea_store) { OBD_FREE_LARGE(info->lti_ea_store, info->lti_ea_store_size); info->lti_ea_store = buf->lb_buf; info->lti_ea_store_size = buf->lb_len; } if (rc < 0) GOTO(out, rc); } /* * there is LOV EA (striping information) in this object * let's parse it and create in-core objects for the stripes */ rc = lod_parse_dir_striping(env, lo, buf); } if (rc == 0) lo->ldo_striping_cached = 1; out: RETURN(rc); } /** * A generic function to initialize the stripe objects. * * A protected version of lod_load_striping_locked() - load the striping * information from storage, parse that and instantiate LU objects to * represent the stripes. The LOD object \a lo supplies a pointer to the * next sub-object in the LU stack so we can lock it. Also use \a lo to * return an array of references to the newly instantiated objects. * * \param[in] env execution environment for this thread * \param[in,out] lo LOD object, where striping is stored and * which gets an array of references * * \retval 0 if parsing and object creation succeed * \retval negative error number on failure **/ int lod_load_striping(const struct lu_env *env, struct lod_object *lo) { struct dt_object *next = dt_object_child(&lo->ldo_obj); int rc = 0; /* currently this code is supposed to be called from declaration * phase only, thus the object is not expected to be locked by caller */ dt_write_lock(env, next, 0); rc = lod_load_striping_locked(env, lo); dt_write_unlock(env, next); return rc; } /** * Verify striping. * * Check the validity of all fields including the magic, stripe size, * stripe count, stripe offset and that the pool is present. Also check * that each target index points to an existing target. The additional * \a is_from_disk turns additional checks. In some cases zero fields * are allowed (like pattern=0). * * \param[in] d LOD device * \param[in] buf buffer with LOV EA to verify * \param[in] is_from_disk 0 - from user, allow some fields to be 0 * 1 - from disk, do not allow * * \retval 0 if the striping is valid * \retval -EINVAL if striping is invalid */ int lod_verify_striping(struct lod_device *d, const struct lu_buf *buf, bool is_from_disk) { struct lov_user_md_v1 *lum; struct lov_user_md_v3 *lum3; struct pool_desc *pool = NULL; __u32 magic; __u32 stripe_size; __u16 stripe_count; __u16 stripe_offset; size_t lum_size; int rc = 0; ENTRY; lum = buf->lb_buf; LASSERT(sizeof(*lum) < sizeof(*lum3)); if (buf->lb_len < sizeof(*lum)) { CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md\n", buf->lb_len); GOTO(out, rc = -EINVAL); } magic = le32_to_cpu(lum->lmm_magic); if (magic != LOV_USER_MAGIC_V1 && magic != LOV_USER_MAGIC_V3 && magic != LOV_MAGIC_V1_DEF && magic != LOV_MAGIC_V3_DEF) { CDEBUG(D_IOCTL, "bad userland LOV MAGIC: %#x\n", magic); GOTO(out, rc = -EINVAL); } /* the user uses "0" for default stripe pattern normally. */ if (!is_from_disk && lum->lmm_pattern == 0) lum->lmm_pattern = cpu_to_le32(LOV_PATTERN_RAID0); if (le32_to_cpu(lum->lmm_pattern) != LOV_PATTERN_RAID0) { CDEBUG(D_IOCTL, "bad userland stripe pattern: %#x\n", le32_to_cpu(lum->lmm_pattern)); GOTO(out, rc = -EINVAL); } /* 64kB is the largest common page size we see (ia64), and matches the * check in lfs */ stripe_size = le32_to_cpu(lum->lmm_stripe_size); if (stripe_size & (LOV_MIN_STRIPE_SIZE - 1)) { CDEBUG(D_IOCTL, "stripe size %u not a multiple of %u\n", stripe_size, LOV_MIN_STRIPE_SIZE); GOTO(out, rc = -EINVAL); } stripe_offset = le16_to_cpu(lum->lmm_stripe_offset); if (stripe_offset != LOV_OFFSET_DEFAULT) { /* if offset is not within valid range [0, osts_size) */ if (stripe_offset >= d->lod_osts_size) { CDEBUG(D_IOCTL, "stripe offset %u >= bitmap size %u\n", stripe_offset, d->lod_osts_size); GOTO(out, rc = -EINVAL); } /* if lmm_stripe_offset is *not* in bitmap */ if (!cfs_bitmap_check(d->lod_ost_bitmap, stripe_offset)) { CDEBUG(D_IOCTL, "stripe offset %u not in bitmap\n", stripe_offset); GOTO(out, rc = -EINVAL); } } if (magic == LOV_USER_MAGIC_V1 || magic == LOV_MAGIC_V1_DEF) lum_size = offsetof(struct lov_user_md_v1, lmm_objects[0]); else if (magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF) lum_size = offsetof(struct lov_user_md_v3, lmm_objects[0]); else GOTO(out, rc = -EINVAL); stripe_count = le16_to_cpu(lum->lmm_stripe_count); if (buf->lb_len != lum_size) { CDEBUG(D_IOCTL, "invalid buf len %zu for lov_user_md with " "magic %#x and stripe_count %u\n", buf->lb_len, magic, stripe_count); GOTO(out, rc = -EINVAL); } if (!(magic == LOV_USER_MAGIC_V3 || magic == LOV_MAGIC_V3_DEF)) goto out; lum3 = buf->lb_buf; if (buf->lb_len < sizeof(*lum3)) { CDEBUG(D_IOCTL, "buf len %zu too small for lov_user_md_v3\n", buf->lb_len); GOTO(out, rc = -EINVAL); } /* In the function below, .hs_keycmp resolves to * pool_hashkey_keycmp() */ /* coverity[overrun-buffer-val] */ pool = lod_find_pool(d, lum3->lmm_pool_name); if (pool == NULL) goto out; if (stripe_offset != LOV_OFFSET_DEFAULT) { rc = lod_check_index_in_pool(stripe_offset, pool); if (rc < 0) GOTO(out, rc = -EINVAL); } if (is_from_disk && stripe_count > pool_tgt_count(pool)) { CDEBUG(D_IOCTL, "stripe count %u > # OSTs %u in the pool\n", stripe_count, pool_tgt_count(pool)); GOTO(out, rc = -EINVAL); } out: if (pool != NULL) lod_pool_putref(pool); RETURN(rc); } void lod_fix_desc_stripe_size(__u64 *val) { if (*val < LOV_MIN_STRIPE_SIZE) { if (*val != 0) LCONSOLE_INFO("Increasing default stripe size to " "minimum value %u\n", LOV_DESC_STRIPE_SIZE_DEFAULT); *val = LOV_DESC_STRIPE_SIZE_DEFAULT; } else if (*val & (LOV_MIN_STRIPE_SIZE - 1)) { *val &= ~(LOV_MIN_STRIPE_SIZE - 1); LCONSOLE_WARN("Changing default stripe size to "LPU64" (a " "multiple of %u)\n", *val, LOV_MIN_STRIPE_SIZE); } } void lod_fix_desc_stripe_count(__u32 *val) { if (*val == 0) *val = 1; } void lod_fix_desc_pattern(__u32 *val) { /* from lov_setstripe */ if ((*val != 0) && (*val != LOV_PATTERN_RAID0)) { LCONSOLE_WARN("Unknown stripe pattern: %#x\n", *val); *val = 0; } } void lod_fix_desc_qos_maxage(__u32 *val) { /* fix qos_maxage */ if (*val == 0) *val = LOV_DESC_QOS_MAXAGE_DEFAULT; } /** * Used to fix insane default striping. * * \param[in] desc striping description */ void lod_fix_desc(struct lov_desc *desc) { lod_fix_desc_stripe_size(&desc->ld_default_stripe_size); lod_fix_desc_stripe_count(&desc->ld_default_stripe_count); lod_fix_desc_pattern(&desc->ld_pattern); lod_fix_desc_qos_maxage(&desc->ld_qos_maxage); } /** * Initialize the structures used to store pools and default striping. * * \param[in] lod LOD device * \param[in] lcfg configuration structure storing default striping. * * \retval 0 if initialization succeeds * \retval negative error number on failure */ int lod_pools_init(struct lod_device *lod, struct lustre_cfg *lcfg) { struct obd_device *obd; struct lov_desc *desc; int rc; ENTRY; obd = class_name2obd(lustre_cfg_string(lcfg, 0)); LASSERT(obd != NULL); obd->obd_lu_dev = &lod->lod_dt_dev.dd_lu_dev; if (LUSTRE_CFG_BUFLEN(lcfg, 1) < 1) { CERROR("LOD setup requires a descriptor\n"); RETURN(-EINVAL); } desc = (struct lov_desc *)lustre_cfg_buf(lcfg, 1); if (sizeof(*desc) > LUSTRE_CFG_BUFLEN(lcfg, 1)) { CERROR("descriptor size wrong: %d > %d\n", (int)sizeof(*desc), LUSTRE_CFG_BUFLEN(lcfg, 1)); RETURN(-EINVAL); } if (desc->ld_magic != LOV_DESC_MAGIC) { if (desc->ld_magic == __swab32(LOV_DESC_MAGIC)) { CDEBUG(D_OTHER, "%s: Swabbing lov desc %p\n", obd->obd_name, desc); lustre_swab_lov_desc(desc); } else { CERROR("%s: Bad lov desc magic: %#x\n", obd->obd_name, desc->ld_magic); RETURN(-EINVAL); } } lod_fix_desc(desc); desc->ld_active_tgt_count = 0; lod->lod_desc = *desc; lod->lod_sp_me = LUSTRE_SP_CLI; /* Set up allocation policy (QoS and RR) */ INIT_LIST_HEAD(&lod->lod_qos.lq_oss_list); init_rwsem(&lod->lod_qos.lq_rw_sem); lod->lod_qos.lq_dirty = 1; lod->lod_qos.lq_rr.lqr_dirty = 1; lod->lod_qos.lq_reset = 1; /* Default priority is toward free space balance */ lod->lod_qos.lq_prio_free = 232; /* Default threshold for rr (roughly 17%) */ lod->lod_qos.lq_threshold_rr = 43; /* Set up OST pool environment */ lod->lod_pools_hash_body = cfs_hash_create("POOLS", HASH_POOLS_CUR_BITS, HASH_POOLS_MAX_BITS, HASH_POOLS_BKT_BITS, 0, CFS_HASH_MIN_THETA, CFS_HASH_MAX_THETA, &pool_hash_operations, CFS_HASH_DEFAULT); if (lod->lod_pools_hash_body == NULL) RETURN(-ENOMEM); INIT_LIST_HEAD(&lod->lod_pool_list); lod->lod_pool_count = 0; rc = lod_ost_pool_init(&lod->lod_pool_info, 0); if (rc) GOTO(out_hash, rc); rc = lod_ost_pool_init(&lod->lod_qos.lq_rr.lqr_pool, 0); if (rc) GOTO(out_pool_info, rc); RETURN(0); out_pool_info: lod_ost_pool_free(&lod->lod_pool_info); out_hash: cfs_hash_putref(lod->lod_pools_hash_body); return rc; } /** * Release the structures describing the pools. * * \param[in] lod LOD device from which we release the structures * * \retval 0 always */ int lod_pools_fini(struct lod_device *lod) { struct obd_device *obd = lod2obd(lod); struct pool_desc *pool, *tmp; ENTRY; list_for_each_entry_safe(pool, tmp, &lod->lod_pool_list, pool_list) { /* free pool structs */ CDEBUG(D_INFO, "delete pool %p\n", pool); /* In the function below, .hs_keycmp resolves to * pool_hashkey_keycmp() */ /* coverity[overrun-buffer-val] */ lod_pool_del(obd, pool->pool_name); } cfs_hash_putref(lod->lod_pools_hash_body); lod_ost_pool_free(&(lod->lod_qos.lq_rr.lqr_pool)); lod_ost_pool_free(&lod->lod_pool_info); RETURN(0); }