/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2013, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. */ #define DEBUG_SUBSYSTEM S_LMV #ifdef __KERNEL__ #include #include #include #include #include #include #include #include #include #else #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "lmv_internal.h" /* This hash is only for testing purpose */ static inline unsigned int lmv_hash_all_chars(unsigned int count, const char *name, int namelen) { unsigned int c = 0; const unsigned char *p = (const unsigned char *)name; while (--namelen >= 0) c += p[namelen]; c = c % count; return c; } static inline unsigned int lmv_hash_fnv1a(unsigned int count, const char *name, int namelen) { __u64 hash; hash = lustre_hash_fnv_1a_64(name, namelen); hash = hash % count; return hash; } int lmv_name_to_stripe_index(__u32 lmv_hash_type, unsigned int stripe_count, const char *name, int namelen) { int idx; __u32 hash_type = lmv_hash_type & LMV_HASH_TYPE_MASK; LASSERT(namelen > 0); if (stripe_count <= 1) return 0; /* for migrating object, always start from 0 stripe */ if (lmv_hash_type & LMV_HASH_FLAG_MIGRATION) return 0; switch (hash_type) { case LMV_HASH_TYPE_ALL_CHARS: idx = lmv_hash_all_chars(stripe_count, name, namelen); break; case LMV_HASH_TYPE_FNV_1A_64: idx = lmv_hash_fnv1a(stripe_count, name, namelen); break; default: CERROR("Unknown hash type 0x%x\n", hash_type); return -EINVAL; } CDEBUG(D_INFO, "name %.*s hash_type %d idx %d\n", namelen, name, hash_type, idx); return idx; } static void lmv_activate_target(struct lmv_obd *lmv, struct lmv_tgt_desc *tgt, int activate) { if (tgt->ltd_active == activate) return; tgt->ltd_active = activate; lmv->desc.ld_active_tgt_count += (activate ? 1 : -1); } /** * Error codes: * * -EINVAL : UUID can't be found in the LMV's target list * -ENOTCONN: The UUID is found, but the target connection is bad (!) * -EBADF : The UUID is found, but the OBD of the wrong type (!) */ static int lmv_set_mdc_active(struct lmv_obd *lmv, const struct obd_uuid *uuid, int activate) { struct lmv_tgt_desc *tgt = NULL; struct obd_device *obd; __u32 i; int rc = 0; ENTRY; CDEBUG(D_INFO, "Searching in lmv %p for uuid %s (activate=%d)\n", lmv, uuid->uuid, activate); spin_lock(&lmv->lmv_lock); for (i = 0; i < lmv->desc.ld_tgt_count; i++) { tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL) continue; CDEBUG(D_INFO, "Target idx %d is %s conn "LPX64"\n", i, tgt->ltd_uuid.uuid, tgt->ltd_exp->exp_handle.h_cookie); if (obd_uuid_equals(uuid, &tgt->ltd_uuid)) break; } if (i == lmv->desc.ld_tgt_count) GOTO(out_lmv_lock, rc = -EINVAL); obd = class_exp2obd(tgt->ltd_exp); if (obd == NULL) GOTO(out_lmv_lock, rc = -ENOTCONN); CDEBUG(D_INFO, "Found OBD %s=%s device %d (%p) type %s at LMV idx %d\n", obd->obd_name, obd->obd_uuid.uuid, obd->obd_minor, obd, obd->obd_type->typ_name, i); LASSERT(strcmp(obd->obd_type->typ_name, LUSTRE_MDC_NAME) == 0); if (tgt->ltd_active == activate) { CDEBUG(D_INFO, "OBD %p already %sactive!\n", obd, activate ? "" : "in"); GOTO(out_lmv_lock, rc); } CDEBUG(D_INFO, "Marking OBD %p %sactive\n", obd, activate ? "" : "in"); lmv_activate_target(lmv, tgt, activate); EXIT; out_lmv_lock: spin_unlock(&lmv->lmv_lock); return rc; } struct obd_uuid *lmv_get_uuid(struct obd_export *exp) { struct lmv_obd *lmv = &exp->exp_obd->u.lmv; struct lmv_tgt_desc *tgt = lmv->tgts[0]; return (tgt == NULL) ? NULL : obd_get_uuid(tgt->ltd_exp); } static int lmv_notify(struct obd_device *obd, struct obd_device *watched, enum obd_notify_event ev, void *data) { struct obd_connect_data *conn_data; struct lmv_obd *lmv = &obd->u.lmv; struct obd_uuid *uuid; int rc = 0; ENTRY; if (strcmp(watched->obd_type->typ_name, LUSTRE_MDC_NAME)) { CERROR("unexpected notification of %s %s!\n", watched->obd_type->typ_name, watched->obd_name); RETURN(-EINVAL); } uuid = &watched->u.cli.cl_target_uuid; if (ev == OBD_NOTIFY_ACTIVE || ev == OBD_NOTIFY_INACTIVE) { /* * Set MDC as active before notifying the observer, so the * observer can use the MDC normally. */ rc = lmv_set_mdc_active(lmv, uuid, ev == OBD_NOTIFY_ACTIVE); if (rc) { CERROR("%sactivation of %s failed: %d\n", ev == OBD_NOTIFY_ACTIVE ? "" : "de", uuid->uuid, rc); RETURN(rc); } } else if (ev == OBD_NOTIFY_OCD) { conn_data = &watched->u.cli.cl_import->imp_connect_data; /* * XXX: Make sure that ocd_connect_flags from all targets are * the same. Otherwise one of MDTs runs wrong version or * something like this. --umka */ obd->obd_self_export->exp_connect_data = *conn_data; } #if 0 else if (ev == OBD_NOTIFY_DISCON) { /* * For disconnect event, flush fld cache for failout MDS case. */ fld_client_flush(&lmv->lmv_fld); } #endif /* * Pass the notification up the chain. */ if (obd->obd_observer) rc = obd_notify(obd->obd_observer, watched, ev, data); RETURN(rc); } /** * This is fake connect function. Its purpose is to initialize lmv and say * caller that everything is okay. Real connection will be performed later. */ static int lmv_connect(const struct lu_env *env, struct obd_export **exp, struct obd_device *obd, struct obd_uuid *cluuid, struct obd_connect_data *data, void *localdata) { struct lmv_obd *lmv = &obd->u.lmv; struct lustre_handle conn = { 0 }; int rc = 0; ENTRY; /* * We don't want to actually do the underlying connections more than * once, so keep track. */ lmv->refcount++; if (lmv->refcount > 1) { *exp = NULL; RETURN(0); } rc = class_connect(&conn, obd, cluuid); if (rc) { CERROR("class_connection() returned %d\n", rc); RETURN(rc); } *exp = class_conn2export(&conn); class_export_get(*exp); lmv->exp = *exp; lmv->connected = 0; lmv->cluuid = *cluuid; if (data) lmv->conn_data = *data; if (lmv->targets_proc_entry == NULL) { lmv->targets_proc_entry = lprocfs_seq_register("target_obds", obd->obd_proc_entry, NULL, NULL); if (IS_ERR(lmv->targets_proc_entry)) { CERROR("could not register /proc/fs/lustre/%s/%s/target_obds.", obd->obd_type->typ_name, obd->obd_name); lmv->targets_proc_entry = NULL; } } /* * All real clients should perform actual connection right away, because * it is possible, that LMV will not have opportunity to connect targets * and MDC stuff will be called directly, for instance while reading * ../mdc/../kbytesfree procfs file, etc. */ if (data != NULL && (data->ocd_connect_flags & OBD_CONNECT_REAL)) rc = lmv_check_connect(obd); if (rc && lmv->targets_proc_entry != NULL) lprocfs_remove(&lmv->targets_proc_entry); RETURN(rc); } static void lmv_set_timeouts(struct obd_device *obd) { struct lmv_obd *lmv; __u32 i; lmv = &obd->u.lmv; if (lmv->server_timeout == 0) return; if (lmv->connected == 0) return; for (i = 0; i < lmv->desc.ld_tgt_count; i++) { struct lmv_tgt_desc *tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL || !tgt->ltd_active) continue; obd_set_info_async(NULL, tgt->ltd_exp, sizeof(KEY_INTERMDS), KEY_INTERMDS, 0, NULL, NULL); } } static int lmv_init_ea_size(struct obd_export *exp, int easize, int def_easize, int cookiesize, int def_cookiesize) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; __u32 i; int rc = 0; int change = 0; ENTRY; if (lmv->max_easize < easize) { lmv->max_easize = easize; change = 1; } if (lmv->max_def_easize < def_easize) { lmv->max_def_easize = def_easize; change = 1; } if (lmv->max_cookiesize < cookiesize) { lmv->max_cookiesize = cookiesize; change = 1; } if (lmv->max_def_cookiesize < def_cookiesize) { lmv->max_def_cookiesize = def_cookiesize; change = 1; } if (change == 0) RETURN(0); if (lmv->connected == 0) RETURN(0); for (i = 0; i < lmv->desc.ld_tgt_count; i++) { struct lmv_tgt_desc *tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL || !tgt->ltd_active) { CWARN("%s: NULL export for %d\n", obd->obd_name, i); continue; } rc = md_init_ea_size(tgt->ltd_exp, easize, def_easize, cookiesize, def_cookiesize); if (rc) { CERROR("%s: obd_init_ea_size() failed on MDT target %d:" " rc = %d.\n", obd->obd_name, i, rc); break; } } RETURN(rc); } #define MAX_STRING_SIZE 128 int lmv_connect_mdc(struct obd_device *obd, struct lmv_tgt_desc *tgt) { struct lmv_obd *lmv = &obd->u.lmv; struct obd_uuid *cluuid = &lmv->cluuid; struct obd_uuid lmv_mdc_uuid = { "LMV_MDC_UUID" }; struct obd_device *mdc_obd; struct obd_export *mdc_exp; struct lu_fld_target target; int rc; ENTRY; mdc_obd = class_find_client_obd(&tgt->ltd_uuid, LUSTRE_MDC_NAME, &obd->obd_uuid); if (!mdc_obd) { CERROR("target %s not attached\n", tgt->ltd_uuid.uuid); RETURN(-EINVAL); } CDEBUG(D_CONFIG, "connect to %s(%s) - %s, %s FOR %s\n", mdc_obd->obd_name, mdc_obd->obd_uuid.uuid, tgt->ltd_uuid.uuid, obd->obd_uuid.uuid, cluuid->uuid); if (!mdc_obd->obd_set_up) { CERROR("target %s is not set up\n", tgt->ltd_uuid.uuid); RETURN(-EINVAL); } rc = obd_connect(NULL, &mdc_exp, mdc_obd, &lmv_mdc_uuid, &lmv->conn_data, NULL); if (rc) { CERROR("target %s connect error %d\n", tgt->ltd_uuid.uuid, rc); RETURN(rc); } /* * Init fid sequence client for this mdc and add new fld target. */ rc = obd_fid_init(mdc_obd, mdc_exp, LUSTRE_SEQ_METADATA); if (rc) RETURN(rc); target.ft_srv = NULL; target.ft_exp = mdc_exp; target.ft_idx = tgt->ltd_idx; fld_client_add_target(&lmv->lmv_fld, &target); rc = obd_register_observer(mdc_obd, obd); if (rc) { obd_disconnect(mdc_exp); CERROR("target %s register_observer error %d\n", tgt->ltd_uuid.uuid, rc); RETURN(rc); } if (obd->obd_observer) { /* * Tell the observer about the new target. */ rc = obd_notify(obd->obd_observer, mdc_exp->exp_obd, OBD_NOTIFY_ACTIVE, (void *)(tgt - lmv->tgts[0])); if (rc) { obd_disconnect(mdc_exp); RETURN(rc); } } tgt->ltd_active = 1; tgt->ltd_exp = mdc_exp; lmv->desc.ld_active_tgt_count++; md_init_ea_size(tgt->ltd_exp, lmv->max_easize, lmv->max_def_easize, lmv->max_cookiesize, lmv->max_def_cookiesize); CDEBUG(D_CONFIG, "Connected to %s(%s) successfully (%d)\n", mdc_obd->obd_name, mdc_obd->obd_uuid.uuid, atomic_read(&obd->obd_refcount)); if (lmv->targets_proc_entry != NULL) { struct proc_dir_entry *mdc_symlink; LASSERT(mdc_obd->obd_type != NULL); LASSERT(mdc_obd->obd_type->typ_name != NULL); mdc_symlink = lprocfs_add_symlink(mdc_obd->obd_name, lmv->targets_proc_entry, "../../../%s/%s", mdc_obd->obd_type->typ_name, mdc_obd->obd_name); if (mdc_symlink == NULL) { CERROR("Could not register LMV target " "/proc/fs/lustre/%s/%s/target_obds/%s.", obd->obd_type->typ_name, obd->obd_name, mdc_obd->obd_name); } } RETURN(0); } static void lmv_del_target(struct lmv_obd *lmv, int index) { if (lmv->tgts[index] == NULL) return; OBD_FREE_PTR(lmv->tgts[index]); lmv->tgts[index] = NULL; return; } static int lmv_add_target(struct obd_device *obd, struct obd_uuid *uuidp, __u32 index, int gen) { struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc = 0; ENTRY; CDEBUG(D_CONFIG, "Target uuid: %s. index %d\n", uuidp->uuid, index); lmv_init_lock(lmv); if (lmv->desc.ld_tgt_count == 0) { struct obd_device *mdc_obd; mdc_obd = class_find_client_obd(uuidp, LUSTRE_MDC_NAME, &obd->obd_uuid); if (!mdc_obd) { lmv_init_unlock(lmv); CERROR("%s: Target %s not attached: rc = %d\n", obd->obd_name, uuidp->uuid, -EINVAL); RETURN(-EINVAL); } } if ((index < lmv->tgts_size) && (lmv->tgts[index] != NULL)) { tgt = lmv->tgts[index]; CERROR("%s: UUID %s already assigned at LOV target index %d:" " rc = %d\n", obd->obd_name, obd_uuid2str(&tgt->ltd_uuid), index, -EEXIST); lmv_init_unlock(lmv); RETURN(-EEXIST); } if (index >= lmv->tgts_size) { /* We need to reallocate the lmv target array. */ struct lmv_tgt_desc **newtgts, **old = NULL; __u32 newsize = 1; __u32 oldsize = 0; while (newsize < index + 1) newsize = newsize << 1; OBD_ALLOC(newtgts, sizeof(*newtgts) * newsize); if (newtgts == NULL) { lmv_init_unlock(lmv); RETURN(-ENOMEM); } if (lmv->tgts_size) { memcpy(newtgts, lmv->tgts, sizeof(*newtgts) * lmv->tgts_size); old = lmv->tgts; oldsize = lmv->tgts_size; } lmv->tgts = newtgts; lmv->tgts_size = newsize; smp_rmb(); if (old) OBD_FREE(old, sizeof(*old) * oldsize); CDEBUG(D_CONFIG, "tgts: %p size: %d\n", lmv->tgts, lmv->tgts_size); } OBD_ALLOC_PTR(tgt); if (!tgt) { lmv_init_unlock(lmv); RETURN(-ENOMEM); } mutex_init(&tgt->ltd_fid_mutex); tgt->ltd_idx = index; tgt->ltd_uuid = *uuidp; tgt->ltd_active = 0; lmv->tgts[index] = tgt; if (index >= lmv->desc.ld_tgt_count) lmv->desc.ld_tgt_count = index + 1; if (lmv->connected) { rc = lmv_connect_mdc(obd, tgt); if (rc) { spin_lock(&lmv->lmv_lock); lmv->desc.ld_tgt_count--; memset(tgt, 0, sizeof(*tgt)); spin_unlock(&lmv->lmv_lock); } else { int easize = sizeof(struct lmv_stripe_md) + lmv->desc.ld_tgt_count * sizeof(struct lu_fid); lmv_init_ea_size(obd->obd_self_export, easize, 0, 0, 0); } } lmv_init_unlock(lmv); RETURN(rc); } int lmv_check_connect(struct obd_device *obd) { struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; __u32 i; int rc; int easize; ENTRY; if (lmv->connected) RETURN(0); lmv_init_lock(lmv); if (lmv->connected) { lmv_init_unlock(lmv); RETURN(0); } if (lmv->desc.ld_tgt_count == 0) { lmv_init_unlock(lmv); CERROR("%s: no targets configured.\n", obd->obd_name); RETURN(-EINVAL); } LASSERT(lmv->tgts != NULL); if (lmv->tgts[0] == NULL) { lmv_init_unlock(lmv); CERROR("%s: no target configured for index 0.\n", obd->obd_name); RETURN(-EINVAL); } CDEBUG(D_CONFIG, "Time to connect %s to %s\n", lmv->cluuid.uuid, obd->obd_name); for (i = 0; i < lmv->desc.ld_tgt_count; i++) { tgt = lmv->tgts[i]; if (tgt == NULL) continue; rc = lmv_connect_mdc(obd, tgt); if (rc) GOTO(out_disc, rc); } lmv_set_timeouts(obd); class_export_put(lmv->exp); lmv->connected = 1; easize = lmv_mds_md_size(lmv->desc.ld_tgt_count, LMV_MAGIC); lmv_init_ea_size(obd->obd_self_export, easize, 0, 0, 0); lmv_init_unlock(lmv); RETURN(0); out_disc: while (i-- > 0) { int rc2; tgt = lmv->tgts[i]; if (tgt == NULL) continue; tgt->ltd_active = 0; if (tgt->ltd_exp) { --lmv->desc.ld_active_tgt_count; rc2 = obd_disconnect(tgt->ltd_exp); if (rc2) { CERROR("LMV target %s disconnect on " "MDC idx %d: error %d\n", tgt->ltd_uuid.uuid, i, rc2); } } } class_disconnect(lmv->exp); lmv_init_unlock(lmv); RETURN(rc); } static int lmv_disconnect_mdc(struct obd_device *obd, struct lmv_tgt_desc *tgt) { struct lmv_obd *lmv = &obd->u.lmv; struct obd_device *mdc_obd; int rc; ENTRY; LASSERT(tgt != NULL); LASSERT(obd != NULL); mdc_obd = class_exp2obd(tgt->ltd_exp); if (mdc_obd) { mdc_obd->obd_force = obd->obd_force; mdc_obd->obd_fail = obd->obd_fail; mdc_obd->obd_no_recov = obd->obd_no_recov; } if (lmv->targets_proc_entry != NULL) lprocfs_remove_proc_entry(mdc_obd->obd_name, lmv->targets_proc_entry); rc = obd_fid_fini(tgt->ltd_exp->exp_obd); if (rc) CERROR("Can't finanize fids factory\n"); CDEBUG(D_INFO, "Disconnected from %s(%s) successfully\n", tgt->ltd_exp->exp_obd->obd_name, tgt->ltd_exp->exp_obd->obd_uuid.uuid); obd_register_observer(tgt->ltd_exp->exp_obd, NULL); rc = obd_disconnect(tgt->ltd_exp); if (rc) { if (tgt->ltd_active) { CERROR("Target %s disconnect error %d\n", tgt->ltd_uuid.uuid, rc); } } lmv_activate_target(lmv, tgt, 0); tgt->ltd_exp = NULL; RETURN(0); } static int lmv_disconnect(struct obd_export *exp) { struct obd_device *obd = class_exp2obd(exp); struct lmv_obd *lmv = &obd->u.lmv; int rc; __u32 i; ENTRY; if (!lmv->tgts) goto out_local; /* * Only disconnect the underlying layers on the final disconnect. */ lmv->refcount--; if (lmv->refcount != 0) goto out_local; for (i = 0; i < lmv->desc.ld_tgt_count; i++) { if (lmv->tgts[i] == NULL || lmv->tgts[i]->ltd_exp == NULL) continue; lmv_disconnect_mdc(obd, lmv->tgts[i]); } if (lmv->targets_proc_entry != NULL) lprocfs_remove(&lmv->targets_proc_entry); else CERROR("/proc/fs/lustre/%s/%s/target_obds missing\n", obd->obd_type->typ_name, obd->obd_name); out_local: /* * This is the case when no real connection is established by * lmv_check_connect(). */ if (!lmv->connected) class_export_put(exp); rc = class_disconnect(exp); if (lmv->refcount == 0) lmv->connected = 0; RETURN(rc); } static int lmv_fid2path(struct obd_export *exp, int len, void *karg, void *uarg) { struct obd_device *obddev = class_exp2obd(exp); struct lmv_obd *lmv = &obddev->u.lmv; struct getinfo_fid2path *gf; struct lmv_tgt_desc *tgt; struct getinfo_fid2path *remote_gf = NULL; int remote_gf_size = 0; int rc; gf = (struct getinfo_fid2path *)karg; tgt = lmv_find_target(lmv, &gf->gf_fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); repeat_fid2path: rc = obd_iocontrol(OBD_IOC_FID2PATH, tgt->ltd_exp, len, gf, uarg); if (rc != 0 && rc != -EREMOTE) GOTO(out_fid2path, rc); /* If remote_gf != NULL, it means just building the * path on the remote MDT, copy this path segement to gf */ if (remote_gf != NULL) { struct getinfo_fid2path *ori_gf; char *ptr; ori_gf = (struct getinfo_fid2path *)karg; if (strlen(ori_gf->gf_path) + strlen(gf->gf_path) > ori_gf->gf_pathlen) GOTO(out_fid2path, rc = -EOVERFLOW); ptr = ori_gf->gf_path; memmove(ptr + strlen(gf->gf_path) + 1, ptr, strlen(ori_gf->gf_path)); strncpy(ptr, gf->gf_path, strlen(gf->gf_path)); ptr += strlen(gf->gf_path); *ptr = '/'; } CDEBUG(D_INFO, "%s: get path %s "DFID" rec: "LPU64" ln: %u\n", tgt->ltd_exp->exp_obd->obd_name, gf->gf_path, PFID(&gf->gf_fid), gf->gf_recno, gf->gf_linkno); if (rc == 0) GOTO(out_fid2path, rc); /* sigh, has to go to another MDT to do path building further */ if (remote_gf == NULL) { remote_gf_size = sizeof(*remote_gf) + PATH_MAX; OBD_ALLOC(remote_gf, remote_gf_size); if (remote_gf == NULL) GOTO(out_fid2path, rc = -ENOMEM); remote_gf->gf_pathlen = PATH_MAX; } if (!fid_is_sane(&gf->gf_fid)) { CERROR("%s: invalid FID "DFID": rc = %d\n", tgt->ltd_exp->exp_obd->obd_name, PFID(&gf->gf_fid), -EINVAL); GOTO(out_fid2path, rc = -EINVAL); } tgt = lmv_find_target(lmv, &gf->gf_fid); if (IS_ERR(tgt)) GOTO(out_fid2path, rc = -EINVAL); remote_gf->gf_fid = gf->gf_fid; remote_gf->gf_recno = -1; remote_gf->gf_linkno = -1; memset(remote_gf->gf_path, 0, remote_gf->gf_pathlen); gf = remote_gf; goto repeat_fid2path; out_fid2path: if (remote_gf != NULL) OBD_FREE(remote_gf, remote_gf_size); RETURN(rc); } static int lmv_hsm_req_count(struct lmv_obd *lmv, const struct hsm_user_request *hur, const struct lmv_tgt_desc *tgt_mds) { __u32 i; int nr = 0; struct lmv_tgt_desc *curr_tgt; /* count how many requests must be sent to the given target */ for (i = 0; i < hur->hur_request.hr_itemcount; i++) { curr_tgt = lmv_find_target(lmv, &hur->hur_user_item[i].hui_fid); if (obd_uuid_equals(&curr_tgt->ltd_uuid, &tgt_mds->ltd_uuid)) nr++; } return nr; } static void lmv_hsm_req_build(struct lmv_obd *lmv, struct hsm_user_request *hur_in, const struct lmv_tgt_desc *tgt_mds, struct hsm_user_request *hur_out) { __u32 i, nr_out; struct lmv_tgt_desc *curr_tgt; /* build the hsm_user_request for the given target */ hur_out->hur_request = hur_in->hur_request; nr_out = 0; for (i = 0; i < hur_in->hur_request.hr_itemcount; i++) { curr_tgt = lmv_find_target(lmv, &hur_in->hur_user_item[i].hui_fid); if (obd_uuid_equals(&curr_tgt->ltd_uuid, &tgt_mds->ltd_uuid)) { hur_out->hur_user_item[nr_out] = hur_in->hur_user_item[i]; nr_out++; } } hur_out->hur_request.hr_itemcount = nr_out; memcpy(hur_data(hur_out), hur_data(hur_in), hur_in->hur_request.hr_data_len); } static int lmv_hsm_ct_unregister(struct lmv_obd *lmv, unsigned int cmd, int len, struct lustre_kernelcomm *lk, void *uarg) { __u32 i; int rc; struct kkuc_ct_data *kcd = NULL; ENTRY; /* unregister request (call from llapi_hsm_copytool_fini) */ for (i = 0; i < lmv->desc.ld_tgt_count; i++) { struct lmv_tgt_desc *tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL) continue; /* best effort: try to clean as much as possible * (continue on error) */ obd_iocontrol(cmd, tgt->ltd_exp, len, lk, uarg); } /* Whatever the result, remove copytool from kuc groups. * Unreached coordinators will get EPIPE on next requests * and will unregister automatically. */ rc = libcfs_kkuc_group_rem(lk->lk_uid, lk->lk_group, (void **)&kcd); if (kcd != NULL) OBD_FREE_PTR(kcd); RETURN(rc); } static int lmv_hsm_ct_register(struct lmv_obd *lmv, unsigned int cmd, int len, struct lustre_kernelcomm *lk, void *uarg) { struct file *filp; __u32 i, j; int err, rc; bool any_set = false; struct kkuc_ct_data *kcd; ENTRY; /* All or nothing: try to register to all MDS. * In case of failure, unregister from previous MDS, * except if it because of inactive target. */ for (i = 0; i < lmv->desc.ld_tgt_count; i++) { struct lmv_tgt_desc *tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL) continue; err = obd_iocontrol(cmd, tgt->ltd_exp, len, lk, uarg); if (err) { if (tgt->ltd_active) { /* permanent error */ CERROR("%s: iocontrol MDC %s on MDT" " idx %d cmd %x: err = %d\n", class_exp2obd(lmv->exp)->obd_name, tgt->ltd_uuid.uuid, i, cmd, err); rc = err; lk->lk_flags |= LK_FLG_STOP; /* unregister from previous MDS */ for (j = 0; j < i; j++) { tgt = lmv->tgts[j]; if (tgt == NULL || tgt->ltd_exp == NULL) continue; obd_iocontrol(cmd, tgt->ltd_exp, len, lk, uarg); } RETURN(rc); } /* else: transient error. * kuc will register to the missing MDT * when it is back */ } else { any_set = true; } } if (!any_set) /* no registration done: return error */ RETURN(-ENOTCONN); /* at least one registration done, with no failure */ filp = fget(lk->lk_wfd); if (filp == NULL) RETURN(-EBADF); OBD_ALLOC_PTR(kcd); if (kcd == NULL) { fput(filp); RETURN(-ENOMEM); } kcd->kcd_magic = KKUC_CT_DATA_MAGIC; kcd->kcd_uuid = lmv->cluuid; kcd->kcd_archive = lk->lk_data; rc = libcfs_kkuc_group_add(filp, lk->lk_uid, lk->lk_group, kcd); if (rc != 0) { if (filp != NULL) fput(filp); OBD_FREE_PTR(kcd); } RETURN(rc); } static int lmv_iocontrol(unsigned int cmd, struct obd_export *exp, int len, void *karg, void *uarg) { struct obd_device *obddev = class_exp2obd(exp); struct lmv_obd *lmv = &obddev->u.lmv; struct lmv_tgt_desc *tgt = NULL; __u32 i = 0; int rc = 0; int set = 0; __u32 count = lmv->desc.ld_tgt_count; ENTRY; if (count == 0) RETURN(-ENOTTY); switch (cmd) { case IOC_OBD_STATFS: { struct obd_ioctl_data *data = karg; struct obd_device *mdc_obd; struct obd_statfs stat_buf = {0}; __u32 index; memcpy(&index, data->ioc_inlbuf2, sizeof(__u32)); if ((index >= count)) RETURN(-ENODEV); tgt = lmv->tgts[index]; if (tgt == NULL || !tgt->ltd_active) RETURN(-ENODATA); mdc_obd = class_exp2obd(tgt->ltd_exp); if (!mdc_obd) RETURN(-EINVAL); /* copy UUID */ if (copy_to_user(data->ioc_pbuf2, obd2cli_tgt(mdc_obd), min((int) data->ioc_plen2, (int) sizeof(struct obd_uuid)))) RETURN(-EFAULT); rc = obd_statfs(NULL, tgt->ltd_exp, &stat_buf, cfs_time_shift_64(-OBD_STATFS_CACHE_SECONDS), 0); if (rc) RETURN(rc); if (copy_to_user(data->ioc_pbuf1, &stat_buf, min((int) data->ioc_plen1, (int) sizeof(stat_buf)))) RETURN(-EFAULT); break; } case OBD_IOC_QUOTACTL: { struct if_quotactl *qctl = karg; struct obd_quotactl *oqctl; if (qctl->qc_valid == QC_MDTIDX) { if (count <= qctl->qc_idx) RETURN(-EINVAL); tgt = lmv->tgts[qctl->qc_idx]; if (tgt == NULL || tgt->ltd_exp == NULL) RETURN(-EINVAL); } else if (qctl->qc_valid == QC_UUID) { for (i = 0; i < count; i++) { tgt = lmv->tgts[i]; if (tgt == NULL) continue; if (!obd_uuid_equals(&tgt->ltd_uuid, &qctl->obd_uuid)) continue; if (tgt->ltd_exp == NULL) RETURN(-EINVAL); break; } } else { RETURN(-EINVAL); } if (i >= count) RETURN(-EAGAIN); LASSERT(tgt != NULL && tgt->ltd_exp != NULL); OBD_ALLOC_PTR(oqctl); if (!oqctl) RETURN(-ENOMEM); QCTL_COPY(oqctl, qctl); rc = obd_quotactl(tgt->ltd_exp, oqctl); if (rc == 0) { QCTL_COPY(qctl, oqctl); qctl->qc_valid = QC_MDTIDX; qctl->obd_uuid = tgt->ltd_uuid; } OBD_FREE_PTR(oqctl); break; } case OBD_IOC_CHANGELOG_SEND: case OBD_IOC_CHANGELOG_CLEAR: { struct ioc_changelog *icc = karg; if (icc->icc_mdtindex >= count) RETURN(-ENODEV); tgt = lmv->tgts[icc->icc_mdtindex]; if (tgt == NULL || tgt->ltd_exp == NULL || !tgt->ltd_active) RETURN(-ENODEV); rc = obd_iocontrol(cmd, tgt->ltd_exp, sizeof(*icc), icc, NULL); break; } case LL_IOC_GET_CONNECT_FLAGS: { tgt = lmv->tgts[0]; if (tgt == NULL || tgt->ltd_exp == NULL) RETURN(-ENODATA); rc = obd_iocontrol(cmd, tgt->ltd_exp, len, karg, uarg); break; } case OBD_IOC_FID2PATH: { rc = lmv_fid2path(exp, len, karg, uarg); break; } case LL_IOC_HSM_STATE_GET: case LL_IOC_HSM_STATE_SET: case LL_IOC_HSM_ACTION: { struct md_op_data *op_data = karg; tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); if (tgt->ltd_exp == NULL) RETURN(-EINVAL); rc = obd_iocontrol(cmd, tgt->ltd_exp, len, karg, uarg); break; } case LL_IOC_HSM_PROGRESS: { const struct hsm_progress_kernel *hpk = karg; tgt = lmv_find_target(lmv, &hpk->hpk_fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = obd_iocontrol(cmd, tgt->ltd_exp, len, karg, uarg); break; } case LL_IOC_HSM_REQUEST: { struct hsm_user_request *hur = karg; unsigned int reqcount = hur->hur_request.hr_itemcount; if (reqcount == 0) RETURN(0); /* if the request is about a single fid * or if there is a single MDS, no need to split * the request. */ if (reqcount == 1 || count == 1) { tgt = lmv_find_target(lmv, &hur->hur_user_item[0].hui_fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = obd_iocontrol(cmd, tgt->ltd_exp, len, karg, uarg); } else { /* split fid list to their respective MDS */ for (i = 0; i < count; i++) { unsigned int nr, reqlen; int rc1; struct hsm_user_request *req; tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL) continue; nr = lmv_hsm_req_count(lmv, hur, tgt); if (nr == 0) /* nothing for this MDS */ continue; /* build a request with fids for this MDS */ reqlen = offsetof(typeof(*hur), hur_user_item[nr]) + hur->hur_request.hr_data_len; OBD_ALLOC_LARGE(req, reqlen); if (req == NULL) RETURN(-ENOMEM); lmv_hsm_req_build(lmv, hur, tgt, req); rc1 = obd_iocontrol(cmd, tgt->ltd_exp, reqlen, req, uarg); if (rc1 != 0 && rc == 0) rc = rc1; OBD_FREE_LARGE(req, reqlen); } } break; } case LL_IOC_LOV_SWAP_LAYOUTS: { struct md_op_data *op_data = karg; struct lmv_tgt_desc *tgt1, *tgt2; tgt1 = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(tgt1)) RETURN(PTR_ERR(tgt1)); tgt2 = lmv_find_target(lmv, &op_data->op_fid2); if (IS_ERR(tgt2)) RETURN(PTR_ERR(tgt2)); if ((tgt1->ltd_exp == NULL) || (tgt2->ltd_exp == NULL)) RETURN(-EINVAL); /* only files on same MDT can have their layouts swapped */ if (tgt1->ltd_idx != tgt2->ltd_idx) RETURN(-EPERM); rc = obd_iocontrol(cmd, tgt1->ltd_exp, len, karg, uarg); break; } case LL_IOC_HSM_CT_START: { struct lustre_kernelcomm *lk = karg; if (lk->lk_flags & LK_FLG_STOP) rc = lmv_hsm_ct_unregister(lmv, cmd, len, lk, uarg); else rc = lmv_hsm_ct_register(lmv, cmd, len, lk, uarg); break; } default: for (i = 0; i < count; i++) { struct obd_device *mdc_obd; int err; tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL) continue; /* ll_umount_begin() sets force flag but for lmv, not * mdc. Let's pass it through */ mdc_obd = class_exp2obd(tgt->ltd_exp); mdc_obd->obd_force = obddev->obd_force; err = obd_iocontrol(cmd, tgt->ltd_exp, len, karg, uarg); if (err == -ENODATA && cmd == OBD_IOC_POLL_QUOTACHECK) { RETURN(err); } else if (err) { if (tgt->ltd_active) { CERROR("error: iocontrol MDC %s on MDT" " idx %d cmd %x: err = %d\n", tgt->ltd_uuid.uuid, i, cmd, err); if (!rc) rc = err; } } else set = 1; } if (!set && !rc) rc = -EIO; } RETURN(rc); } #if 0 static int lmv_all_chars_policy(int count, const char *name, int len) { unsigned int c = 0; while (len > 0) c += name[--len]; c = c % count; return c; } static int lmv_nid_policy(struct lmv_obd *lmv) { struct obd_import *imp; __u32 id; /* * XXX: To get nid we assume that underlying obd device is mdc. */ imp = class_exp2cliimp(lmv->tgts[0].ltd_exp); id = imp->imp_connection->c_self ^ (imp->imp_connection->c_self >> 32); return id % lmv->desc.ld_tgt_count; } static int lmv_choose_mds(struct lmv_obd *lmv, struct md_op_data *op_data, placement_policy_t placement) { switch (placement) { case PLACEMENT_CHAR_POLICY: return lmv_all_chars_policy(lmv->desc.ld_tgt_count, op_data->op_name, op_data->op_namelen); case PLACEMENT_NID_POLICY: return lmv_nid_policy(lmv); default: break; } CERROR("Unsupported placement policy %x\n", placement); return -EINVAL; } #endif /** * This is _inode_ placement policy function (not name). */ static int lmv_placement_policy(struct obd_device *obd, struct md_op_data *op_data, mdsno_t *mds) { struct lmv_obd *lmv = &obd->u.lmv; ENTRY; LASSERT(mds != NULL); if (lmv->desc.ld_tgt_count == 1) { *mds = 0; RETURN(0); } /** * If stripe_offset is provided during setdirstripe * (setdirstripe -i xx), xx MDS will be choosen. */ if (op_data->op_cli_flags & CLI_SET_MEA && op_data->op_data != NULL) { struct lmv_user_md *lum; lum = op_data->op_data; if (le32_to_cpu(lum->lum_stripe_offset) != (__u32)-1) { *mds = le32_to_cpu(lum->lum_stripe_offset); } else { /* -1 means default, which will be in the same MDT with * the stripe */ *mds = op_data->op_mds; lum->lum_stripe_offset = cpu_to_le32(op_data->op_mds); } } else { /* Allocate new fid on target according to operation type and * parent home mds. */ *mds = op_data->op_mds; } RETURN(0); } int __lmv_fid_alloc(struct lmv_obd *lmv, struct lu_fid *fid, mdsno_t mds) { struct lmv_tgt_desc *tgt; int rc; ENTRY; tgt = lmv_get_target(lmv, mds); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); /* * New seq alloc and FLD setup should be atomic. Otherwise we may find * on server that seq in new allocated fid is not yet known. */ mutex_lock(&tgt->ltd_fid_mutex); if (tgt->ltd_active == 0 || tgt->ltd_exp == NULL) GOTO(out, rc = -ENODEV); /* * Asking underlying tgt layer to allocate new fid. */ rc = obd_fid_alloc(NULL, tgt->ltd_exp, fid, NULL); if (rc > 0) { LASSERT(fid_is_sane(fid)); rc = 0; } EXIT; out: mutex_unlock(&tgt->ltd_fid_mutex); return rc; } int lmv_fid_alloc(const struct lu_env *env, struct obd_export *exp, struct lu_fid *fid, struct md_op_data *op_data) { struct obd_device *obd = class_exp2obd(exp); struct lmv_obd *lmv = &obd->u.lmv; mdsno_t mds = 0; int rc; ENTRY; LASSERT(op_data != NULL); LASSERT(fid != NULL); rc = lmv_placement_policy(obd, op_data, &mds); if (rc) { CERROR("Can't get target for allocating fid, " "rc %d\n", rc); RETURN(rc); } rc = __lmv_fid_alloc(lmv, fid, mds); if (rc) { CERROR("Can't alloc new fid, rc %d\n", rc); RETURN(rc); } RETURN(rc); } static int lmv_setup(struct obd_device *obd, struct lustre_cfg *lcfg) { struct lmv_obd *lmv = &obd->u.lmv; struct lmv_desc *desc; int rc; ENTRY; if (LUSTRE_CFG_BUFLEN(lcfg, 1) < 1) { CERROR("LMV setup requires a descriptor\n"); RETURN(-EINVAL); } desc = (struct lmv_desc *)lustre_cfg_buf(lcfg, 1); if (sizeof(*desc) > LUSTRE_CFG_BUFLEN(lcfg, 1)) { CERROR("Lmv descriptor size wrong: %d > %d\n", (int)sizeof(*desc), LUSTRE_CFG_BUFLEN(lcfg, 1)); RETURN(-EINVAL); } OBD_ALLOC(lmv->tgts, sizeof(*lmv->tgts) * 32); if (lmv->tgts == NULL) RETURN(-ENOMEM); lmv->tgts_size = 32; obd_str2uuid(&lmv->desc.ld_uuid, desc->ld_uuid.uuid); lmv->desc.ld_tgt_count = 0; lmv->desc.ld_active_tgt_count = 0; lmv->max_cookiesize = 0; lmv->max_def_easize = 0; lmv->max_easize = 0; lmv->lmv_placement = PLACEMENT_CHAR_POLICY; spin_lock_init(&lmv->lmv_lock); mutex_init(&lmv->init_mutex); #ifdef LPROCFS obd->obd_vars = lprocfs_lmv_obd_vars; lprocfs_seq_obd_setup(obd); lprocfs_alloc_md_stats(obd, 0); rc = lprocfs_seq_create(obd->obd_proc_entry, "target_obd", 0444, &lmv_proc_target_fops, obd); if (rc) CWARN("%s: error adding LMV target_obd file: rc = %d\n", obd->obd_name, rc); #endif rc = fld_client_init(&lmv->lmv_fld, obd->obd_name, LUSTRE_CLI_FLD_HASH_DHT); if (rc) { CERROR("Can't init FLD, err %d\n", rc); GOTO(out, rc); } RETURN(0); out: return rc; } static int lmv_cleanup(struct obd_device *obd) { struct lmv_obd *lmv = &obd->u.lmv; ENTRY; fld_client_fini(&lmv->lmv_fld); if (lmv->tgts != NULL) { int i; for (i = 0; i < lmv->desc.ld_tgt_count; i++) { if (lmv->tgts[i] == NULL) continue; lmv_del_target(lmv, i); } OBD_FREE(lmv->tgts, sizeof(*lmv->tgts) * lmv->tgts_size); lmv->tgts_size = 0; } RETURN(0); } static int lmv_process_config(struct obd_device *obd, obd_count len, void *buf) { struct lustre_cfg *lcfg = buf; struct obd_uuid obd_uuid; int gen; __u32 index; int rc; ENTRY; switch (lcfg->lcfg_command) { case LCFG_ADD_MDC: /* modify_mdc_tgts add 0:lustre-clilmv 1:lustre-MDT0000_UUID * 2:0 3:1 4:lustre-MDT0000-mdc_UUID */ if (LUSTRE_CFG_BUFLEN(lcfg, 1) > sizeof(obd_uuid.uuid)) GOTO(out, rc = -EINVAL); obd_str2uuid(&obd_uuid, lustre_cfg_buf(lcfg, 1)); if (sscanf(lustre_cfg_buf(lcfg, 2), "%u", &index) != 1) GOTO(out, rc = -EINVAL); if (sscanf(lustre_cfg_buf(lcfg, 3), "%d", &gen) != 1) GOTO(out, rc = -EINVAL); rc = lmv_add_target(obd, &obd_uuid, index, gen); GOTO(out, rc); default: CERROR("Unknown command: %d\n", lcfg->lcfg_command); GOTO(out, rc = -EINVAL); } out: RETURN(rc); } static int lmv_statfs(const struct lu_env *env, struct obd_export *exp, struct obd_statfs *osfs, __u64 max_age, __u32 flags) { struct obd_device *obd = class_exp2obd(exp); struct lmv_obd *lmv = &obd->u.lmv; struct obd_statfs *temp; int rc = 0; __u32 i; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); OBD_ALLOC(temp, sizeof(*temp)); if (temp == NULL) RETURN(-ENOMEM); for (i = 0; i < lmv->desc.ld_tgt_count; i++) { if (lmv->tgts[i] == NULL || lmv->tgts[i]->ltd_exp == NULL) continue; rc = obd_statfs(env, lmv->tgts[i]->ltd_exp, temp, max_age, flags); if (rc) { CERROR("can't stat MDS #%d (%s), error %d\n", i, lmv->tgts[i]->ltd_exp->exp_obd->obd_name, rc); GOTO(out_free_temp, rc); } if (i == 0) { *osfs = *temp; /* If the statfs is from mount, it will needs * retrieve necessary information from MDT0. * i.e. mount does not need the merged osfs * from all of MDT. * And also clients can be mounted as long as * MDT0 is in service*/ if (flags & OBD_STATFS_FOR_MDT0) GOTO(out_free_temp, rc); } else { osfs->os_bavail += temp->os_bavail; osfs->os_blocks += temp->os_blocks; osfs->os_ffree += temp->os_ffree; osfs->os_files += temp->os_files; } } EXIT; out_free_temp: OBD_FREE(temp, sizeof(*temp)); return rc; } static int lmv_getstatus(struct obd_export *exp, struct lu_fid *fid, struct obd_capa **pc) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); rc = md_getstatus(lmv->tgts[0]->ltd_exp, fid, pc); RETURN(rc); } static int lmv_getxattr(struct obd_export *exp, const struct lu_fid *fid, struct obd_capa *oc, obd_valid valid, const char *name, const char *input, int input_size, int output_size, int flags, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_find_target(lmv, fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_getxattr(tgt->ltd_exp, fid, oc, valid, name, input, input_size, output_size, flags, request); RETURN(rc); } static int lmv_setxattr(struct obd_export *exp, const struct lu_fid *fid, struct obd_capa *oc, obd_valid valid, const char *name, const char *input, int input_size, int output_size, int flags, __u32 suppgid, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_find_target(lmv, fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_setxattr(tgt->ltd_exp, fid, oc, valid, name, input, input_size, output_size, flags, suppgid, request); RETURN(rc); } static int lmv_getattr(struct obd_export *exp, struct md_op_data *op_data, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); if (op_data->op_flags & MF_GET_MDT_IDX) { op_data->op_mds = tgt->ltd_idx; RETURN(0); } rc = md_getattr(tgt->ltd_exp, op_data, request); RETURN(rc); } static int lmv_null_inode(struct obd_export *exp, const struct lu_fid *fid) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; __u32 i; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); CDEBUG(D_INODE, "CBDATA for "DFID"\n", PFID(fid)); /* * With DNE every object can have two locks in different namespaces: * lookup lock in space of MDT storing direntry and update/open lock in * space of MDT storing inode. */ for (i = 0; i < lmv->desc.ld_tgt_count; i++) { if (lmv->tgts[i] == NULL || lmv->tgts[i]->ltd_exp == NULL) continue; md_null_inode(lmv->tgts[i]->ltd_exp, fid); } RETURN(0); } static int lmv_find_cbdata(struct obd_export *exp, const struct lu_fid *fid, ldlm_iterator_t it, void *data) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; __u32 i; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); CDEBUG(D_INODE, "CBDATA for "DFID"\n", PFID(fid)); /* * With DNE every object can have two locks in different namespaces: * lookup lock in space of MDT storing direntry and update/open lock in * space of MDT storing inode. */ for (i = 0; i < lmv->desc.ld_tgt_count; i++) { if (lmv->tgts[i] == NULL || lmv->tgts[i]->ltd_exp == NULL) continue; rc = md_find_cbdata(lmv->tgts[i]->ltd_exp, fid, it, data); if (rc) RETURN(rc); } RETURN(rc); } static int lmv_close(struct obd_export *exp, struct md_op_data *op_data, struct md_open_data *mod, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); CDEBUG(D_INODE, "CLOSE "DFID"\n", PFID(&op_data->op_fid1)); rc = md_close(tgt->ltd_exp, op_data, mod, request); RETURN(rc); } /** * Choosing the MDT by name or FID in @op_data. * For non-striped directory, it will locate MDT by fid. * For striped-directory, it will locate MDT by name. And also * it will reset op_fid1 with the FID of the choosen stripe. **/ struct lmv_tgt_desc * lmv_locate_target_for_name(struct lmv_obd *lmv, struct lmv_stripe_md *lsm, const char *name, int namelen, struct lu_fid *fid, mdsno_t *mds) { struct lmv_tgt_desc *tgt; const struct lmv_oinfo *oinfo; oinfo = lsm_name_to_stripe_info(lsm, name, namelen); if (IS_ERR(oinfo)) RETURN((void *)oinfo); *fid = oinfo->lmo_fid; *mds = oinfo->lmo_mds; tgt = lmv_get_target(lmv, *mds); CDEBUG(D_INFO, "locate on mds %u "DFID"\n", *mds, PFID(fid)); return tgt; } struct lmv_tgt_desc *lmv_locate_mds(struct lmv_obd *lmv, struct md_op_data *op_data, struct lu_fid *fid) { struct lmv_stripe_md *lsm = op_data->op_mea1; struct lmv_tgt_desc *tgt; if (lsm == NULL || op_data->op_namelen == 0) { tgt = lmv_find_target(lmv, fid); if (IS_ERR(tgt)) return tgt; op_data->op_mds = tgt->ltd_idx; return tgt; } return lmv_locate_target_for_name(lmv, lsm, op_data->op_name, op_data->op_namelen, fid, &op_data->op_mds); } int lmv_create(struct obd_export *exp, struct md_op_data *op_data, const void *data, int datalen, int mode, __u32 uid, __u32 gid, cfs_cap_t cap_effective, __u64 rdev, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); if (!lmv->desc.ld_active_tgt_count) RETURN(-EIO); tgt = lmv_locate_mds(lmv, op_data, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); CDEBUG(D_INODE, "CREATE name '%.*s' on "DFID" -> mds #%x\n", op_data->op_namelen, op_data->op_name, PFID(&op_data->op_fid1), op_data->op_mds); rc = lmv_fid_alloc(NULL, exp, &op_data->op_fid2, op_data); if (rc) RETURN(rc); /* Send the create request to the MDT where the object * will be located */ tgt = lmv_find_target(lmv, &op_data->op_fid2); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); op_data->op_mds = tgt->ltd_idx; CDEBUG(D_INODE, "CREATE obj "DFID" -> mds #%x\n", PFID(&op_data->op_fid2), op_data->op_mds); op_data->op_flags |= MF_MDC_CANCEL_FID1; rc = md_create(tgt->ltd_exp, op_data, data, datalen, mode, uid, gid, cap_effective, rdev, request); if (rc == 0) { if (*request == NULL) RETURN(rc); CDEBUG(D_INODE, "Created - "DFID"\n", PFID(&op_data->op_fid2)); } RETURN(rc); } static int lmv_done_writing(struct obd_export *exp, struct md_op_data *op_data, struct md_open_data *mod) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_done_writing(tgt->ltd_exp, op_data, mod); RETURN(rc); } static int lmv_enqueue(struct obd_export *exp, struct ldlm_enqueue_info *einfo, const union ldlm_policy_data *policy, struct lookup_intent *it, struct md_op_data *op_data, struct lustre_handle *lockh, __u64 extra_lock_flags) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); CDEBUG(D_INODE, "ENQUEUE '%s' on "DFID"\n", LL_IT2STR(it), PFID(&op_data->op_fid1)); tgt = lmv_locate_mds(lmv, op_data, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); CDEBUG(D_INODE, "ENQUEUE '%s' on "DFID" -> mds #%d\n", LL_IT2STR(it), PFID(&op_data->op_fid1), tgt->ltd_idx); rc = md_enqueue(tgt->ltd_exp, einfo, policy, it, op_data, lockh, extra_lock_flags); RETURN(rc); } static int lmv_getattr_name(struct obd_export *exp,struct md_op_data *op_data, struct ptlrpc_request **preq) { struct ptlrpc_request *req = NULL; struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; struct mdt_body *body; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_locate_mds(lmv, op_data, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); CDEBUG(D_INODE, "GETATTR_NAME for %*s on "DFID" -> mds #%d\n", op_data->op_namelen, op_data->op_name, PFID(&op_data->op_fid1), tgt->ltd_idx); rc = md_getattr_name(tgt->ltd_exp, op_data, preq); if (rc != 0) RETURN(rc); body = req_capsule_server_get(&(*preq)->rq_pill, &RMF_MDT_BODY); LASSERT(body != NULL); if (body->valid & OBD_MD_MDS) { struct lu_fid rid = body->fid1; CDEBUG(D_INODE, "Request attrs for "DFID"\n", PFID(&rid)); tgt = lmv_find_target(lmv, &rid); if (IS_ERR(tgt)) { ptlrpc_req_finished(*preq); preq = NULL; RETURN(PTR_ERR(tgt)); } op_data->op_fid1 = rid; op_data->op_valid |= OBD_MD_FLCROSSREF; op_data->op_namelen = 0; op_data->op_name = NULL; rc = md_getattr_name(tgt->ltd_exp, op_data, &req); ptlrpc_req_finished(*preq); *preq = req; } RETURN(rc); } #define md_op_data_fid(op_data, fl) \ (fl == MF_MDC_CANCEL_FID1 ? &op_data->op_fid1 : \ fl == MF_MDC_CANCEL_FID2 ? &op_data->op_fid2 : \ fl == MF_MDC_CANCEL_FID3 ? &op_data->op_fid3 : \ fl == MF_MDC_CANCEL_FID4 ? &op_data->op_fid4 : \ NULL) static int lmv_early_cancel(struct obd_export *exp, struct lmv_tgt_desc *tgt, struct md_op_data *op_data, int op_tgt, ldlm_mode_t mode, int bits, int flag) { struct lu_fid *fid = md_op_data_fid(op_data, flag); struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; ldlm_policy_data_t policy = {{ 0 }}; int rc = 0; ENTRY; if (!fid_is_sane(fid)) RETURN(0); if (tgt == NULL) { tgt = lmv_find_target(lmv, fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); } if (tgt->ltd_idx != op_tgt) { CDEBUG(D_INODE, "EARLY_CANCEL on "DFID"\n", PFID(fid)); policy.l_inodebits.bits = bits; rc = md_cancel_unused(tgt->ltd_exp, fid, &policy, mode, LCF_ASYNC, NULL); } else { CDEBUG(D_INODE, "EARLY_CANCEL skip operation target %d on "DFID"\n", op_tgt, PFID(fid)); op_data->op_flags |= flag; rc = 0; } RETURN(rc); } /* * llite passes fid of an target inode in op_data->op_fid1 and id of directory in * op_data->op_fid2 */ static int lmv_link(struct obd_export *exp, struct md_op_data *op_data, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); LASSERT(op_data->op_namelen != 0); CDEBUG(D_INODE, "LINK "DFID":%*s to "DFID"\n", PFID(&op_data->op_fid2), op_data->op_namelen, op_data->op_name, PFID(&op_data->op_fid1)); op_data->op_fsuid = from_kuid(&init_user_ns, current_fsuid()); op_data->op_fsgid = from_kgid(&init_user_ns, current_fsgid()); op_data->op_cap = cfs_curproc_cap_pack(); if (op_data->op_mea2 != NULL) { struct lmv_stripe_md *lsm = op_data->op_mea2; const struct lmv_oinfo *oinfo; oinfo = lsm_name_to_stripe_info(lsm, op_data->op_name, op_data->op_namelen); if (IS_ERR(oinfo)) RETURN(PTR_ERR(oinfo)); op_data->op_fid2 = oinfo->lmo_fid; } tgt = lmv_locate_mds(lmv, op_data, &op_data->op_fid2); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); /* * Cancel UPDATE lock on child (fid1). */ op_data->op_flags |= MF_MDC_CANCEL_FID2; rc = lmv_early_cancel(exp, NULL, op_data, tgt->ltd_idx, LCK_EX, MDS_INODELOCK_UPDATE, MF_MDC_CANCEL_FID1); if (rc != 0) RETURN(rc); rc = md_link(tgt->ltd_exp, op_data, request); RETURN(rc); } static int lmv_rename(struct obd_export *exp, struct md_op_data *op_data, const char *old, int oldlen, const char *new, int newlen, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *src_tgt; int rc; ENTRY; LASSERT(oldlen != 0); CDEBUG(D_INODE, "RENAME %.*s in "DFID":%d to %.*s in "DFID":%d\n", oldlen, old, PFID(&op_data->op_fid1), op_data->op_mea1 ? op_data->op_mea1->lsm_md_stripe_count : 0, newlen, new, PFID(&op_data->op_fid2), op_data->op_mea2 ? op_data->op_mea2->lsm_md_stripe_count : 0); rc = lmv_check_connect(obd); if (rc) RETURN(rc); op_data->op_fsuid = from_kuid(&init_user_ns, current_fsuid()); op_data->op_fsgid = from_kgid(&init_user_ns, current_fsgid()); op_data->op_cap = cfs_curproc_cap_pack(); if (op_data->op_cli_flags & CLI_MIGRATE) { LASSERTF(fid_is_sane(&op_data->op_fid3), "invalid FID "DFID"\n", PFID(&op_data->op_fid3)); rc = lmv_fid_alloc(NULL, exp, &op_data->op_fid2, op_data); if (rc) RETURN(rc); src_tgt = lmv_locate_mds(lmv, op_data, &op_data->op_fid3); } else { if (op_data->op_mea1 != NULL) { struct lmv_stripe_md *lsm = op_data->op_mea1; src_tgt = lmv_locate_target_for_name(lmv, lsm, old, oldlen, &op_data->op_fid1, &op_data->op_mds); if (IS_ERR(src_tgt)) RETURN(PTR_ERR(src_tgt)); } else { src_tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(src_tgt)) RETURN(PTR_ERR(src_tgt)); op_data->op_mds = src_tgt->ltd_idx; } if (op_data->op_mea2) { struct lmv_stripe_md *lsm = op_data->op_mea2; const struct lmv_oinfo *oinfo; oinfo = lsm_name_to_stripe_info(lsm, new, newlen); if (IS_ERR(oinfo)) RETURN(PTR_ERR(oinfo)); op_data->op_fid2 = oinfo->lmo_fid; } } if (IS_ERR(src_tgt)) RETURN(PTR_ERR(src_tgt)); /* * LOOKUP lock on src child (fid3) should also be cancelled for * src_tgt in mdc_rename. */ op_data->op_flags |= MF_MDC_CANCEL_FID1 | MF_MDC_CANCEL_FID3; /* * Cancel UPDATE locks on tgt parent (fid2), tgt_tgt is its * own target. */ rc = lmv_early_cancel(exp, NULL, op_data, src_tgt->ltd_idx, LCK_EX, MDS_INODELOCK_UPDATE, MF_MDC_CANCEL_FID2); if (rc != 0) RETURN(rc); /* * Cancel LOOKUP locks on source child (fid3) for parent tgt_tgt. */ if (fid_is_sane(&op_data->op_fid3)) { struct lmv_tgt_desc *tgt; tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); /* Cancel LOOKUP lock on its parent */ rc = lmv_early_cancel(exp, tgt, op_data, src_tgt->ltd_idx, LCK_EX, MDS_INODELOCK_LOOKUP, MF_MDC_CANCEL_FID3); if (rc != 0) RETURN(rc); rc = lmv_early_cancel(exp, NULL, op_data, src_tgt->ltd_idx, LCK_EX, MDS_INODELOCK_FULL, MF_MDC_CANCEL_FID3); if (rc != 0) RETURN(rc); } /* * Cancel all the locks on tgt child (fid4). */ if (fid_is_sane(&op_data->op_fid4)) rc = lmv_early_cancel(exp, NULL, op_data, src_tgt->ltd_idx, LCK_EX, MDS_INODELOCK_FULL, MF_MDC_CANCEL_FID4); CDEBUG(D_INODE, DFID":m%d to "DFID"\n", PFID(&op_data->op_fid1), op_data->op_mds, PFID(&op_data->op_fid2)); rc = md_rename(src_tgt->ltd_exp, op_data, old, oldlen, new, newlen, request); RETURN(rc); } static int lmv_setattr(struct obd_export *exp, struct md_op_data *op_data, void *ea, int ealen, void *ea2, int ea2len, struct ptlrpc_request **request, struct md_open_data **mod) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc = 0; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); CDEBUG(D_INODE, "SETATTR for "DFID", valid 0x%x\n", PFID(&op_data->op_fid1), op_data->op_attr.ia_valid); op_data->op_flags |= MF_MDC_CANCEL_FID1; tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_setattr(tgt->ltd_exp, op_data, ea, ealen, ea2, ea2len, request, mod); RETURN(rc); } static int lmv_fsync(struct obd_export *exp, const struct lu_fid *fid, struct obd_capa *oc, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc != 0) RETURN(rc); tgt = lmv_find_target(lmv, fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_fsync(tgt->ltd_exp, fid, oc, request); RETURN(rc); } /* * Adjust a set of pages, each page containing an array of lu_dirpages, * so that each page can be used as a single logical lu_dirpage. * * A lu_dirpage is laid out as follows, where s = ldp_hash_start, * e = ldp_hash_end, f = ldp_flags, p = padding, and each "ent" is a * struct lu_dirent. It has size up to LU_PAGE_SIZE. The ldp_hash_end * value is used as a cookie to request the next lu_dirpage in a * directory listing that spans multiple pages (two in this example): * ________ * | | * .|--------v------- -----. * |s|e|f|p|ent|ent| ... |ent| * '--|-------------- -----' Each CFS_PAGE contains a single * '------. lu_dirpage. * .---------v------- -----. * |s|e|f|p|ent| 0 | ... | 0 | * '----------------- -----' * * However, on hosts where the native VM page size (PAGE_CACHE_SIZE) is * larger than LU_PAGE_SIZE, a single host page may contain multiple * lu_dirpages. After reading the lu_dirpages from the MDS, the * ldp_hash_end of the first lu_dirpage refers to the one immediately * after it in the same CFS_PAGE (arrows simplified for brevity, but * in general e0==s1, e1==s2, etc.): * * .-------------------- -----. * |s0|e0|f0|p|ent|ent| ... |ent| * |---v---------------- -----| * |s1|e1|f1|p|ent|ent| ... |ent| * |---v---------------- -----| Here, each CFS_PAGE contains * ... multiple lu_dirpages. * |---v---------------- -----| * |s'|e'|f'|p|ent|ent| ... |ent| * '---|---------------- -----' * v * .----------------------------. * | next CFS_PAGE | * * This structure is transformed into a single logical lu_dirpage as follows: * * - Replace e0 with e' so the request for the next lu_dirpage gets the page * labeled 'next CFS_PAGE'. * * - Copy the LDF_COLLIDE flag from f' to f0 to correctly reflect whether * a hash collision with the next page exists. * * - Adjust the lde_reclen of the ending entry of each lu_dirpage to span * to the first entry of the next lu_dirpage. */ #if PAGE_CACHE_SIZE > LU_PAGE_SIZE static void lmv_adjust_dirpages(struct page **pages, int ncfspgs, int nlupgs) { int i; for (i = 0; i < ncfspgs; i++) { struct lu_dirpage *dp = kmap(pages[i]); struct lu_dirpage *first = dp; struct lu_dirent *end_dirent = NULL; struct lu_dirent *ent; __u64 hash_end = dp->ldp_hash_end; __u32 flags = dp->ldp_flags; while (--nlupgs > 0) { ent = lu_dirent_start(dp); for (end_dirent = ent; ent != NULL; end_dirent = ent, ent = lu_dirent_next(ent)); /* Advance dp to next lu_dirpage. */ dp = (struct lu_dirpage *)((char *)dp + LU_PAGE_SIZE); /* Check if we've reached the end of the CFS_PAGE. */ if (!((unsigned long)dp & ~CFS_PAGE_MASK)) break; /* Save the hash and flags of this lu_dirpage. */ hash_end = dp->ldp_hash_end; flags = dp->ldp_flags; /* Check if lu_dirpage contains no entries. */ if (!end_dirent) break; /* Enlarge the end entry lde_reclen from 0 to * first entry of next lu_dirpage. */ LASSERT(le16_to_cpu(end_dirent->lde_reclen) == 0); end_dirent->lde_reclen = cpu_to_le16((char *)(dp->ldp_entries) - (char *)end_dirent); } first->ldp_hash_end = hash_end; first->ldp_flags &= ~cpu_to_le32(LDF_COLLIDE); first->ldp_flags |= flags & cpu_to_le32(LDF_COLLIDE); kunmap(pages[i]); } LASSERTF(nlupgs == 0, "left = %d", nlupgs); } #else #define lmv_adjust_dirpages(pages, ncfspgs, nlupgs) do {} while (0) #endif /* PAGE_CACHE_SIZE > LU_PAGE_SIZE */ /** * This function will read entry from a striped directory, bascially, it will * read entries from all of stripes, and choose one closest to the required * offset(&op_data->op_hash_offset). A few notes * 1. skip . and .. for non-zero stripes, because there can only have one . * and .. in a directory. * 2. op_data will be shared by all of stripes, instead of allocating new * one, so need to restore before reusing. * 3. release the entry page if that is not being chosen. * * param[in]exp obd export refer to LMV * param[in]op_data hold those MD parameters of read_entry. * param[in]cb_op ldlm callback being used in enqueue in mdc_read_entry * param[out]ldp the entry being read. * param[out]ppage the page holding the entry, note: because the entry * will be accessed in upper layer, so we need hold the * page until the usages of entry is finished, see * ll_dir_entry_next. * * retval =0 if get entry successfully * <0 can not get entry. */ #define NORMAL_MAX_STRIPES 4 static int lmv_read_striped_entry(struct obd_export *exp, struct md_op_data *op_data, struct md_callback *cb_op, struct lu_dirent **ldp, struct page **ppage) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_stripe_md *lsm = op_data->op_mea1; struct lmv_tgt_desc *tgt; struct lu_dirent *tmp_ents[NORMAL_MAX_STRIPES]; struct lu_dirent **ents = NULL; struct lu_fid master_fid = op_data->op_fid1; void *master_data = op_data->op_data; __u64 last_idx = op_data->op_stripe_offset; __u64 hash_offset = op_data->op_hash_offset; __u32 same_hash_offset = op_data->op_same_hash_offset; __u32 cli_flags = op_data->op_cli_flags; int stripe_count; __u64 min_hash; int min_same_hash_offset = 0; int min_idx = 0; struct page *min_page = NULL; int i; int rc; ENTRY; LASSERT(lsm != NULL); rc = lmv_check_connect(obd); if (rc) RETURN(rc); /* . and .. will be stored on the master object, so we need iterate * the master object as well */ stripe_count = lsm->lsm_md_stripe_count; if (stripe_count > NORMAL_MAX_STRIPES) { OBD_ALLOC(ents, sizeof(ents[0]) * stripe_count); if (ents == NULL) GOTO(out, rc = -ENOMEM); } else { ents = tmp_ents; memset(ents, 0, sizeof(ents[0]) * stripe_count); } min_hash = MDS_DIR_END_OFF; for (i = 0; i < stripe_count; i++) { struct page *page = NULL; tgt = lmv_get_target(lmv, lsm->lsm_md_oinfo[i].lmo_mds); if (IS_ERR(tgt)) GOTO(out, rc = PTR_ERR(tgt)); if (last_idx != i) op_data->op_same_hash_offset = 0; else op_data->op_same_hash_offset = same_hash_offset; /* op_data will be shared by each stripe, so we need * reset these value for each stripe */ op_data->op_stripe_offset = i; op_data->op_hash_offset = hash_offset; op_data->op_cli_flags = cli_flags; op_data->op_fid1 = lsm->lsm_md_oinfo[i].lmo_fid; op_data->op_fid2 = lsm->lsm_md_oinfo[i].lmo_fid; op_data->op_data = lsm->lsm_md_oinfo[i].lmo_root; next: rc = md_read_entry(tgt->ltd_exp, op_data, cb_op, &ents[i], &page); if (rc != 0) GOTO(out, rc); if (ents[i] != NULL && (strncmp(ents[i]->lde_name, ".", le16_to_cpu(ents[i]->lde_namelen)) == 0 || strncmp(ents[i]->lde_name, "..", le16_to_cpu(ents[i]->lde_namelen)) == 0)) { if (i == 0) { /* replace . with master FID */ if (le16_to_cpu(ents[i]->lde_namelen) == 1) fid_cpu_to_le(&ents[i]->lde_fid, &master_fid); else fid_cpu_to_le(&ents[i]->lde_fid, &op_data->op_fid3); } else { /* skip . and .. for other stripes */ op_data->op_cli_flags |= CLI_NEXT_ENTRY; op_data->op_hash_offset = le64_to_cpu(ents[i]->lde_hash); kunmap(page); page_cache_release(page); goto next; } } if (ents[i] != NULL) { /* If the hash value of read_entry is equal to the * current min_hash, which is very rare and only * happens if two entries have the same hash value * but on different stripes, in this case, we need * make sure these entries are being reading forward, * not backward, i.e. only reset the min_entry, if * current stripe is ahead of last entry. Note: if * there are hash conflict inside the entry, MDC * (see mdc_read_entry) will resolve them. */ if (le64_to_cpu(ents[i]->lde_hash) < min_hash || (le64_to_cpu(ents[i]->lde_hash) == min_hash && i >= last_idx)) { if (min_page != NULL) { kunmap(min_page); page_cache_release(min_page); } min_page = page; min_hash = le64_to_cpu(ents[i]->lde_hash); min_same_hash_offset = op_data->op_same_hash_offset; min_idx = i; } else { kunmap(page); page_cache_release(page); } } } if (min_hash != MDS_DIR_END_OFF) { *ldp = ents[min_idx]; op_data->op_stripe_offset = min_idx; op_data->op_same_hash_offset = min_same_hash_offset; *ppage = min_page; } else { *ldp = NULL; *ppage = NULL; } out: /* We do not want to allocate md_op_data during each * dir entry reading, so op_data will be shared by every stripe, * then we need to restore it back to original value before * return to the upper layer */ op_data->op_hash_offset = hash_offset; op_data->op_fid1 = master_fid; op_data->op_fid2 = master_fid; op_data->op_data = master_data; op_data->op_cli_flags = cli_flags; if (stripe_count > NORMAL_MAX_STRIPES && ents != NULL) OBD_FREE(ents, sizeof(ents[0]) * stripe_count); if (rc != 0 && min_page != NULL) { kunmap(min_page); page_cache_release(min_page); } RETURN(rc); } int lmv_read_entry(struct obd_export *exp, struct md_op_data *op_data, struct md_callback *cb_op, struct lu_dirent **ldp, struct page **ppage) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_stripe_md *lsm = op_data->op_mea1; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc != 0) RETURN(rc); if (unlikely(lsm != NULL)) { rc = lmv_read_striped_entry(exp, op_data, cb_op, ldp, ppage); RETURN(rc); } tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_read_entry(tgt->ltd_exp, op_data, cb_op, ldp, ppage); RETURN(rc); } static int lmv_unlink(struct obd_export *exp, struct md_op_data *op_data, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt = NULL; struct lmv_tgt_desc *parent_tgt = NULL; struct mdt_body *body; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); retry: /* Send unlink requests to the MDT where the child is located */ if (likely(!fid_is_zero(&op_data->op_fid2))) { tgt = lmv_find_target(lmv, &op_data->op_fid2); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); /* For striped dir, we need to locate the parent as well */ if (op_data->op_mea1 != NULL) { struct lmv_tgt_desc *tmp; LASSERT(op_data->op_name != NULL && op_data->op_namelen != 0); tmp = lmv_locate_target_for_name(lmv, op_data->op_mea1, op_data->op_name, op_data->op_namelen, &op_data->op_fid1, &op_data->op_mds); if (IS_ERR(tmp)) RETURN(PTR_ERR(tmp)); } } else { tgt = lmv_locate_mds(lmv, op_data, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); } op_data->op_fsuid = from_kuid(&init_user_ns, current_fsuid()); op_data->op_fsgid = from_kgid(&init_user_ns, current_fsgid()); op_data->op_cap = cfs_curproc_cap_pack(); /* * If child's fid is given, cancel unused locks for it if it is from * another export than parent. * * LOOKUP lock for child (fid3) should also be cancelled on parent * tgt_tgt in mdc_unlink(). */ op_data->op_flags |= MF_MDC_CANCEL_FID1 | MF_MDC_CANCEL_FID3; /* * Cancel FULL locks on child (fid3). */ parent_tgt = lmv_find_target(lmv, &op_data->op_fid1); if (IS_ERR(parent_tgt)) RETURN(PTR_ERR(parent_tgt)); if (parent_tgt != tgt) { rc = lmv_early_cancel(exp, parent_tgt, op_data, tgt->ltd_idx, LCK_EX, MDS_INODELOCK_LOOKUP, MF_MDC_CANCEL_FID3); } rc = lmv_early_cancel(exp, NULL, op_data, tgt->ltd_idx, LCK_EX, MDS_INODELOCK_FULL, MF_MDC_CANCEL_FID3); if (rc != 0) RETURN(rc); CDEBUG(D_INODE, "unlink with fid="DFID"/"DFID" -> mds #%d\n", PFID(&op_data->op_fid1), PFID(&op_data->op_fid2), tgt->ltd_idx); rc = md_unlink(tgt->ltd_exp, op_data, request); if (rc != 0 && rc != -EREMOTE) RETURN(rc); body = req_capsule_server_get(&(*request)->rq_pill, &RMF_MDT_BODY); if (body == NULL) RETURN(-EPROTO); /* Not cross-ref case, just get out of here. */ if (likely(!(body->valid & OBD_MD_MDS))) RETURN(0); CDEBUG(D_INODE, "%s: try unlink to another MDT for "DFID"\n", exp->exp_obd->obd_name, PFID(&body->fid1)); /* This is a remote object, try remote MDT, Note: it may * try more than 1 time here, Considering following case * /mnt/lustre is root on MDT0, remote1 is on MDT1 * 1. Initially A does not know where remote1 is, it send * unlink RPC to MDT0, MDT0 return -EREMOTE, it will * resend unlink RPC to MDT1 (retry 1st time). * * 2. During the unlink RPC in flight, * client B mv /mnt/lustre/remote1 /mnt/lustre/remote2 * and create new remote1, but on MDT0 * * 3. MDT1 get unlink RPC(from A), then do remote lock on * /mnt/lustre, then lookup get fid of remote1, and find * it is remote dir again, and replay -EREMOTE again. * * 4. Then A will resend unlink RPC to MDT0. (retry 2nd times). * * In theory, it might try unlimited time here, but it should * be very rare case. */ op_data->op_fid2 = body->fid1; ptlrpc_req_finished(*request); *request = NULL; goto retry; } static int lmv_precleanup(struct obd_device *obd, enum obd_cleanup_stage stage) { struct lmv_obd *lmv = &obd->u.lmv; int rc = 0; switch (stage) { case OBD_CLEANUP_EARLY: /* XXX: here should be calling obd_precleanup() down to * stack. */ break; case OBD_CLEANUP_EXPORTS: fld_client_proc_fini(&lmv->lmv_fld); lprocfs_obd_cleanup(obd); lprocfs_free_md_stats(obd); break; default: break; } RETURN(rc); } static int lmv_get_info(const struct lu_env *env, struct obd_export *exp, __u32 keylen, void *key, __u32 *vallen, void *val, struct lov_stripe_md *lsm) { struct obd_device *obd; struct lmv_obd *lmv; int rc = 0; ENTRY; obd = class_exp2obd(exp); if (obd == NULL) { CDEBUG(D_IOCTL, "Invalid client cookie "LPX64"\n", exp->exp_handle.h_cookie); RETURN(-EINVAL); } lmv = &obd->u.lmv; if (keylen >= strlen("remote_flag") && !strcmp(key, "remote_flag")) { int i; rc = lmv_check_connect(obd); if (rc) RETURN(rc); LASSERT(*vallen == sizeof(__u32)); for (i = 0; i < lmv->desc.ld_tgt_count; i++) { struct lmv_tgt_desc *tgt = lmv->tgts[i]; /* * All tgts should be connected when this gets called. */ if (tgt == NULL || tgt->ltd_exp == NULL) continue; if (!obd_get_info(env, tgt->ltd_exp, keylen, key, vallen, val, NULL)) RETURN(0); } RETURN(-EINVAL); } else if (KEY_IS(KEY_MAX_EASIZE) || KEY_IS(KEY_DEFAULT_EASIZE) || KEY_IS(KEY_MAX_COOKIESIZE) || KEY_IS(KEY_DEFAULT_COOKIESIZE) || KEY_IS(KEY_CONN_DATA)) { rc = lmv_check_connect(obd); if (rc) RETURN(rc); /* * Forwarding this request to first MDS, it should know LOV * desc. */ rc = obd_get_info(env, lmv->tgts[0]->ltd_exp, keylen, key, vallen, val, NULL); if (!rc && KEY_IS(KEY_CONN_DATA)) exp->exp_connect_data = *(struct obd_connect_data *)val; RETURN(rc); } else if (KEY_IS(KEY_TGT_COUNT)) { *((int *)val) = lmv->desc.ld_tgt_count; RETURN(0); } CDEBUG(D_IOCTL, "Invalid key\n"); RETURN(-EINVAL); } int lmv_set_info_async(const struct lu_env *env, struct obd_export *exp, obd_count keylen, void *key, obd_count vallen, void *val, struct ptlrpc_request_set *set) { struct lmv_tgt_desc *tgt = NULL; struct obd_device *obd; struct lmv_obd *lmv; int rc = 0; ENTRY; obd = class_exp2obd(exp); if (obd == NULL) { CDEBUG(D_IOCTL, "Invalid client cookie "LPX64"\n", exp->exp_handle.h_cookie); RETURN(-EINVAL); } lmv = &obd->u.lmv; if (KEY_IS(KEY_READ_ONLY) || KEY_IS(KEY_FLUSH_CTX)) { int i, err = 0; for (i = 0; i < lmv->desc.ld_tgt_count; i++) { tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL) continue; err = obd_set_info_async(env, tgt->ltd_exp, keylen, key, vallen, val, set); if (err && rc == 0) rc = err; } RETURN(rc); } RETURN(-EINVAL); } static int lmv_pack_md_v1(const struct lmv_stripe_md *lsm, struct lmv_mds_md_v1 *lmm1) { int cplen; int i; lmm1->lmv_magic = cpu_to_le32(lsm->lsm_md_magic); lmm1->lmv_stripe_count = cpu_to_le32(lsm->lsm_md_stripe_count); lmm1->lmv_master_mdt_index = cpu_to_le32(lsm->lsm_md_master_mdt_index); lmm1->lmv_hash_type = cpu_to_le32(lsm->lsm_md_hash_type); cplen = strlcpy(lmm1->lmv_pool_name, lsm->lsm_md_pool_name, sizeof(lmm1->lmv_pool_name)); if (cplen >= sizeof(lmm1->lmv_pool_name)) return -E2BIG; for (i = 0; i < lsm->lsm_md_stripe_count; i++) fid_cpu_to_le(&lmm1->lmv_stripe_fids[i], &lsm->lsm_md_oinfo[i].lmo_fid); return 0; } int lmv_pack_md(union lmv_mds_md **lmmp, const struct lmv_stripe_md *lsm, int stripe_count) { int lmm_size = 0; bool allocated = false; int rc = 0; ENTRY; LASSERT(lmmp != NULL); /* Free lmm */ if (*lmmp != NULL && lsm == NULL) { int stripe_count; stripe_count = lmv_mds_md_stripe_count_get(*lmmp); lmm_size = lmv_mds_md_size(stripe_count, le32_to_cpu((*lmmp)->lmv_magic)); if (lmm_size == 0) RETURN(-EINVAL); OBD_FREE(*lmmp, lmm_size); *lmmp = NULL; RETURN(0); } /* Alloc lmm */ if (*lmmp == NULL && lsm == NULL) { lmm_size = lmv_mds_md_size(stripe_count, LMV_MAGIC); LASSERT(lmm_size > 0); OBD_ALLOC(*lmmp, lmm_size); if (*lmmp == NULL) RETURN(-ENOMEM); lmv_mds_md_stripe_count_set(*lmmp, stripe_count); (*lmmp)->lmv_magic = cpu_to_le32(LMV_MAGIC); RETURN(lmm_size); } /* pack lmm */ LASSERT(lsm != NULL); lmm_size = lmv_mds_md_size(lsm->lsm_md_stripe_count, lsm->lsm_md_magic); if (*lmmp == NULL) { OBD_ALLOC(*lmmp, lmm_size); if (*lmmp == NULL) RETURN(-ENOMEM); allocated = true; } switch (lsm->lsm_md_magic) { case LMV_MAGIC_V1: rc = lmv_pack_md_v1(lsm, &(*lmmp)->lmv_md_v1); break; default: rc = -EINVAL; break; } if (rc != 0 && allocated) { OBD_FREE(*lmmp, lmm_size); *lmmp = NULL; } RETURN(lmm_size); } EXPORT_SYMBOL(lmv_pack_md); static int lmv_unpack_md_v1(struct obd_export *exp, struct lmv_stripe_md *lsm, const struct lmv_mds_md_v1 *lmm1) { struct lmv_obd *lmv = &exp->exp_obd->u.lmv; int stripe_count; int cplen; int i; int rc = 0; ENTRY; lsm->lsm_md_magic = le32_to_cpu(lmm1->lmv_magic); lsm->lsm_md_stripe_count = le32_to_cpu(lmm1->lmv_stripe_count); lsm->lsm_md_master_mdt_index = le32_to_cpu(lmm1->lmv_master_mdt_index); lsm->lsm_md_hash_type = le32_to_cpu(lmm1->lmv_hash_type); lsm->lsm_md_layout_version = le32_to_cpu(lmm1->lmv_layout_version); fid_le_to_cpu(&lsm->lsm_md_master_fid, &lmm1->lmv_master_fid); cplen = strlcpy(lsm->lsm_md_pool_name, lmm1->lmv_pool_name, sizeof(lsm->lsm_md_pool_name)); if (!fid_is_sane(&lsm->lsm_md_master_fid)) RETURN(-EPROTO); if (cplen >= sizeof(lsm->lsm_md_pool_name)) RETURN(-E2BIG); CDEBUG(D_INFO, "unpack lsm count %d, master %d hash_type %d" "layout_version %d\n", lsm->lsm_md_stripe_count, lsm->lsm_md_master_mdt_index, lsm->lsm_md_hash_type, lsm->lsm_md_layout_version); stripe_count = le32_to_cpu(lmm1->lmv_stripe_count); for (i = 0; i < le32_to_cpu(stripe_count); i++) { fid_le_to_cpu(&lsm->lsm_md_oinfo[i].lmo_fid, &lmm1->lmv_stripe_fids[i]); rc = lmv_fld_lookup(lmv, &lsm->lsm_md_oinfo[i].lmo_fid, &lsm->lsm_md_oinfo[i].lmo_mds); if (rc != 0) RETURN(rc); CDEBUG(D_INFO, "unpack fid #%d "DFID"\n", i, PFID(&lsm->lsm_md_oinfo[i].lmo_fid)); } RETURN(rc); } int lmv_unpack_md(struct obd_export *exp, struct lmv_stripe_md **lsmp, const union lmv_mds_md *lmm, int stripe_count) { struct lmv_stripe_md *lsm; int lsm_size; int rc; bool allocated = false; ENTRY; LASSERT(lsmp != NULL); lsm = *lsmp; /* Free memmd */ if (lsm != NULL && lmm == NULL) { #ifdef __KERNEL__ int i; for (i = 0; i < lsm->lsm_md_stripe_count; i++) { /* For migrating inode, the master stripe and master * object will be the same, so do not need iput, see * ll_update_lsm_md */ if (!(lsm->lsm_md_hash_type & LMV_HASH_FLAG_MIGRATION && i == 0) && lsm->lsm_md_oinfo[i].lmo_root != NULL) iput(lsm->lsm_md_oinfo[i].lmo_root); } #endif lsm_size = lmv_stripe_md_size(lsm->lsm_md_stripe_count); OBD_FREE(lsm, lsm_size); *lsmp = NULL; RETURN(0); } /* Alloc memmd */ if (lsm == NULL && lmm == NULL) { lsm_size = lmv_stripe_md_size(stripe_count); OBD_ALLOC(lsm, lsm_size); if (lsm == NULL) RETURN(-ENOMEM); lsm->lsm_md_stripe_count = stripe_count; *lsmp = lsm; RETURN(0); } if (le32_to_cpu(lmm->lmv_magic) == LMV_MAGIC_STRIPE) RETURN(-EPERM); /* Unpack memmd */ if (le32_to_cpu(lmm->lmv_magic) != LMV_MAGIC_V1 && le32_to_cpu(lmm->lmv_magic) != LMV_USER_MAGIC) { CERROR("%s: invalid lmv magic %x: rc = %d\n", exp->exp_obd->obd_name, le32_to_cpu(lmm->lmv_magic), -EIO); RETURN(-EIO); } if (le32_to_cpu(lmm->lmv_magic) == LMV_MAGIC_V1) lsm_size = lmv_stripe_md_size(lmv_mds_md_stripe_count_get(lmm)); else /** * Unpack default dirstripe(lmv_user_md) to lmv_stripe_md, * stripecount should be 0 then. */ lsm_size = lmv_stripe_md_size(0); lsm_size = lmv_stripe_md_size(lmv_mds_md_stripe_count_get(lmm)); if (lsm == NULL) { OBD_ALLOC(lsm, lsm_size); if (lsm == NULL) RETURN(-ENOMEM); allocated = true; *lsmp = lsm; } switch (le32_to_cpu(lmm->lmv_magic)) { case LMV_MAGIC_V1: rc = lmv_unpack_md_v1(exp, lsm, &lmm->lmv_md_v1); break; default: CERROR("%s: unrecognized magic %x\n", exp->exp_obd->obd_name, le32_to_cpu(lmm->lmv_magic)); rc = -EINVAL; break; } if (rc != 0 && allocated) { OBD_FREE(lsm, lsm_size); *lsmp = NULL; lsm_size = rc; } RETURN(lsm_size); } int lmv_alloc_memmd(struct lmv_stripe_md **lsmp, int stripes) { return lmv_unpack_md(NULL, lsmp, NULL, stripes); } EXPORT_SYMBOL(lmv_alloc_memmd); void lmv_free_memmd(struct lmv_stripe_md *lsm) { lmv_unpack_md(NULL, &lsm, NULL, 0); } EXPORT_SYMBOL(lmv_free_memmd); int lmv_unpackmd(struct obd_export *exp, struct lov_stripe_md **lsmp, struct lov_mds_md *lmm, int disk_len) { return lmv_unpack_md(exp, (struct lmv_stripe_md **)lsmp, (union lmv_mds_md *)lmm, disk_len); } int lmv_packmd(struct obd_export *exp, struct lov_mds_md **lmmp, struct lov_stripe_md *lsm) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv_obd = &obd->u.lmv; const struct lmv_stripe_md *lmv = (struct lmv_stripe_md *)lsm; int stripe_count; if (lmmp == NULL) { if (lsm != NULL) stripe_count = lmv->lsm_md_stripe_count; else stripe_count = lmv_obd->desc.ld_tgt_count; return lmv_mds_md_size(stripe_count, LMV_MAGIC_V1); } return lmv_pack_md((union lmv_mds_md **)lmmp, lmv, 0); } static int lmv_cancel_unused(struct obd_export *exp, const struct lu_fid *fid, ldlm_policy_data_t *policy, ldlm_mode_t mode, ldlm_cancel_flags_t flags, void *opaque) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; int rc = 0; int err; __u32 i; ENTRY; LASSERT(fid != NULL); for (i = 0; i < lmv->desc.ld_tgt_count; i++) { struct lmv_tgt_desc *tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL || !tgt->ltd_active) continue; err = md_cancel_unused(tgt->ltd_exp, fid, policy, mode, flags, opaque); if (!rc) rc = err; } RETURN(rc); } int lmv_set_lock_data(struct obd_export *exp, __u64 *lockh, void *data, __u64 *bits) { struct lmv_obd *lmv = &exp->exp_obd->u.lmv; struct lmv_tgt_desc *tgt = lmv->tgts[0]; int rc; ENTRY; if (tgt == NULL || tgt->ltd_exp == NULL) RETURN(-EINVAL); rc = md_set_lock_data(tgt->ltd_exp, lockh, data, bits); RETURN(rc); } ldlm_mode_t lmv_lock_match(struct obd_export *exp, __u64 flags, const struct lu_fid *fid, ldlm_type_t type, ldlm_policy_data_t *policy, ldlm_mode_t mode, struct lustre_handle *lockh) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; ldlm_mode_t rc; __u32 i; ENTRY; CDEBUG(D_INODE, "Lock match for "DFID"\n", PFID(fid)); /* * With CMD every object can have two locks in different namespaces: * lookup lock in space of mds storing direntry and update/open lock in * space of mds storing inode. Thus we check all targets, not only that * one fid was created in. */ for (i = 0; i < lmv->desc.ld_tgt_count; i++) { struct lmv_tgt_desc *tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL || !tgt->ltd_active) continue; rc = md_lock_match(tgt->ltd_exp, flags, fid, type, policy, mode, lockh); if (rc) RETURN(rc); } RETURN(0); } int lmv_get_lustre_md(struct obd_export *exp, struct ptlrpc_request *req, struct obd_export *dt_exp, struct obd_export *md_exp, struct lustre_md *md) { struct lmv_obd *lmv = &exp->exp_obd->u.lmv; struct lmv_tgt_desc *tgt = lmv->tgts[0]; if (tgt == NULL || tgt->ltd_exp == NULL) RETURN(-EINVAL); return md_get_lustre_md(lmv->tgts[0]->ltd_exp, req, dt_exp, md_exp, md); } int lmv_free_lustre_md(struct obd_export *exp, struct lustre_md *md) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt = lmv->tgts[0]; ENTRY; if (md->lmv != NULL) { lmv_free_memmd(md->lmv); md->lmv = NULL; } if (tgt == NULL || tgt->ltd_exp == NULL) RETURN(-EINVAL); RETURN(md_free_lustre_md(lmv->tgts[0]->ltd_exp, md)); } int lmv_set_open_replay_data(struct obd_export *exp, struct obd_client_handle *och, struct lookup_intent *it) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; ENTRY; tgt = lmv_find_target(lmv, &och->och_fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); RETURN(md_set_open_replay_data(tgt->ltd_exp, och, it)); } int lmv_clear_open_replay_data(struct obd_export *exp, struct obd_client_handle *och) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; ENTRY; tgt = lmv_find_target(lmv, &och->och_fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); RETURN(md_clear_open_replay_data(tgt->ltd_exp, och)); } static int lmv_get_remote_perm(struct obd_export *exp, const struct lu_fid *fid, struct obd_capa *oc, __u32 suppgid, struct ptlrpc_request **request) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_find_target(lmv, fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_get_remote_perm(tgt->ltd_exp, fid, oc, suppgid, request); RETURN(rc); } static int lmv_renew_capa(struct obd_export *exp, struct obd_capa *oc, renew_capa_cb_t cb) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_find_target(lmv, &oc->c_capa.lc_fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_renew_capa(tgt->ltd_exp, oc, cb); RETURN(rc); } int lmv_unpack_capa(struct obd_export *exp, struct ptlrpc_request *req, const struct req_msg_field *field, struct obd_capa **oc) { struct lmv_obd *lmv = &exp->exp_obd->u.lmv; struct lmv_tgt_desc *tgt = lmv->tgts[0]; if (tgt == NULL || tgt->ltd_exp == NULL) RETURN(-EINVAL); return md_unpack_capa(tgt->ltd_exp, req, field, oc); } int lmv_intent_getattr_async(struct obd_export *exp, struct md_enqueue_info *minfo, struct ldlm_enqueue_info *einfo) { struct md_op_data *op_data = &minfo->mi_data; struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt = NULL; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_locate_mds(lmv, op_data, &op_data->op_fid1); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_intent_getattr_async(tgt->ltd_exp, minfo, einfo); RETURN(rc); } int lmv_revalidate_lock(struct obd_export *exp, struct lookup_intent *it, struct lu_fid *fid, __u64 *bits) { struct obd_device *obd = exp->exp_obd; struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; int rc; ENTRY; rc = lmv_check_connect(obd); if (rc) RETURN(rc); tgt = lmv_find_target(lmv, fid); if (IS_ERR(tgt)) RETURN(PTR_ERR(tgt)); rc = md_revalidate_lock(tgt->ltd_exp, it, fid, bits); RETURN(rc); } /** * For lmv, only need to send request to master MDT, and the master MDT will * process with other slave MDTs. The only exception is Q_GETOQUOTA for which * we directly fetch data from the slave MDTs. */ int lmv_quotactl(struct obd_device *unused, struct obd_export *exp, struct obd_quotactl *oqctl) { struct obd_device *obd = class_exp2obd(exp); struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt = lmv->tgts[0]; int rc = 0; __u32 i; __u64 curspace, curinodes; ENTRY; if (tgt == NULL || tgt->ltd_exp == NULL || !tgt->ltd_active || lmv->desc.ld_tgt_count == 0) { CERROR("master lmv inactive\n"); RETURN(-EIO); } if (oqctl->qc_cmd != Q_GETOQUOTA) { rc = obd_quotactl(tgt->ltd_exp, oqctl); RETURN(rc); } curspace = curinodes = 0; for (i = 0; i < lmv->desc.ld_tgt_count; i++) { int err; tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL || !tgt->ltd_active) continue; err = obd_quotactl(tgt->ltd_exp, oqctl); if (err) { CERROR("getquota on mdt %d failed. %d\n", i, err); if (!rc) rc = err; } else { curspace += oqctl->qc_dqblk.dqb_curspace; curinodes += oqctl->qc_dqblk.dqb_curinodes; } } oqctl->qc_dqblk.dqb_curspace = curspace; oqctl->qc_dqblk.dqb_curinodes = curinodes; RETURN(rc); } int lmv_quotacheck(struct obd_device *unused, struct obd_export *exp, struct obd_quotactl *oqctl) { struct obd_device *obd = class_exp2obd(exp); struct lmv_obd *lmv = &obd->u.lmv; struct lmv_tgt_desc *tgt; __u32 i; int rc = 0; ENTRY; for (i = 0; i < lmv->desc.ld_tgt_count; i++) { int err; tgt = lmv->tgts[i]; if (tgt == NULL || tgt->ltd_exp == NULL || !tgt->ltd_active) { CERROR("lmv idx %d inactive\n", i); RETURN(-EIO); } err = obd_quotacheck(tgt->ltd_exp, oqctl); if (err && !rc) rc = err; } RETURN(rc); } int lmv_update_lsm_md(struct obd_export *exp, struct lmv_stripe_md *lsm, struct mdt_body *body, ldlm_blocking_callback cb_blocking) { return lmv_revalidate_slaves(exp, body, lsm, cb_blocking, 0); } int lmv_merge_attr(struct obd_export *exp, const struct lmv_stripe_md *lsm, struct cl_attr *attr) { #ifdef __KERNEL__ int i; for (i = 0; i < lsm->lsm_md_stripe_count; i++) { struct inode *inode = lsm->lsm_md_oinfo[i].lmo_root; CDEBUG(D_INFO, ""DFID" size %llu, nlink %u, atime %lu ctime" "%lu, mtime %lu.\n", PFID(&lsm->lsm_md_oinfo[i].lmo_fid), i_size_read(inode), inode->i_nlink, LTIME_S(inode->i_atime), LTIME_S(inode->i_ctime), LTIME_S(inode->i_mtime)); /* for slave stripe, it needs to subtract nlink for . and .. */ if (i != 0) attr->cat_nlink += inode->i_nlink - 2; else attr->cat_nlink = inode->i_nlink; attr->cat_size += i_size_read(inode); if (attr->cat_atime < LTIME_S(inode->i_atime)) attr->cat_atime = LTIME_S(inode->i_atime); if (attr->cat_ctime < LTIME_S(inode->i_ctime)) attr->cat_ctime = LTIME_S(inode->i_ctime); if (attr->cat_mtime < LTIME_S(inode->i_mtime)) attr->cat_mtime = LTIME_S(inode->i_mtime); } #endif return 0; } struct obd_ops lmv_obd_ops = { .o_owner = THIS_MODULE, .o_setup = lmv_setup, .o_cleanup = lmv_cleanup, .o_precleanup = lmv_precleanup, .o_process_config = lmv_process_config, .o_connect = lmv_connect, .o_disconnect = lmv_disconnect, .o_statfs = lmv_statfs, .o_get_info = lmv_get_info, .o_set_info_async = lmv_set_info_async, .o_packmd = lmv_packmd, .o_unpackmd = lmv_unpackmd, .o_notify = lmv_notify, .o_get_uuid = lmv_get_uuid, .o_iocontrol = lmv_iocontrol, .o_quotacheck = lmv_quotacheck, .o_quotactl = lmv_quotactl }; struct md_ops lmv_md_ops = { .m_getstatus = lmv_getstatus, .m_null_inode = lmv_null_inode, .m_find_cbdata = lmv_find_cbdata, .m_close = lmv_close, .m_create = lmv_create, .m_done_writing = lmv_done_writing, .m_enqueue = lmv_enqueue, .m_getattr = lmv_getattr, .m_getxattr = lmv_getxattr, .m_getattr_name = lmv_getattr_name, .m_intent_lock = lmv_intent_lock, .m_link = lmv_link, .m_rename = lmv_rename, .m_setattr = lmv_setattr, .m_setxattr = lmv_setxattr, .m_fsync = lmv_fsync, .m_read_entry = lmv_read_entry, .m_unlink = lmv_unlink, .m_init_ea_size = lmv_init_ea_size, .m_cancel_unused = lmv_cancel_unused, .m_set_lock_data = lmv_set_lock_data, .m_lock_match = lmv_lock_match, .m_get_lustre_md = lmv_get_lustre_md, .m_free_lustre_md = lmv_free_lustre_md, .m_update_lsm_md = lmv_update_lsm_md, .m_merge_attr = lmv_merge_attr, .m_set_open_replay_data = lmv_set_open_replay_data, .m_clear_open_replay_data = lmv_clear_open_replay_data, .m_renew_capa = lmv_renew_capa, .m_unpack_capa = lmv_unpack_capa, .m_get_remote_perm = lmv_get_remote_perm, .m_intent_getattr_async = lmv_intent_getattr_async, .m_revalidate_lock = lmv_revalidate_lock }; int __init lmv_init(void) { return class_register_type(&lmv_obd_ops, &lmv_md_ops, true, NULL, #ifndef HAVE_ONLY_PROCFS_SEQ NULL, #endif LUSTRE_LMV_NAME, NULL); } #ifdef __KERNEL__ static void lmv_exit(void) { class_unregister_type(LUSTRE_LMV_NAME); } MODULE_AUTHOR("Sun Microsystems, Inc. "); MODULE_DESCRIPTION("Lustre Logical Metadata Volume OBD driver"); MODULE_LICENSE("GPL"); module_init(lmv_init); module_exit(lmv_exit); #endif