/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2011, 2017, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/lustre/llite/rw26.c * * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version */ #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_MIGRATE_H #include #elif defined(HAVE_MIGRATE_MODE_H) #include #endif #define DEBUG_SUBSYSTEM S_LLITE #include "llite_internal.h" #include /** * Implements Linux VM address_space::invalidatepage() method. This method is * called when the page is truncate from a file, either as a result of * explicit truncate, or when inode is removed from memory (as a result of * final iput(), umount, or memory pressure induced icache shrinking). * * [0, offset] bytes of the page remain valid (this is for a case of not-page * aligned truncate). Lustre leaves partially truncated page in the cache, * relying on struct inode::i_size to limit further accesses. */ static void ll_invalidatepage(struct page *vmpage, #ifdef HAVE_INVALIDATE_RANGE unsigned int offset, unsigned int length #else unsigned long offset #endif ) { struct inode *inode; struct lu_env *env; struct cl_page *page; struct cl_object *obj; LASSERT(PageLocked(vmpage)); LASSERT(!PageWriteback(vmpage)); /* * It is safe to not check anything in invalidatepage/releasepage * below because they are run with page locked and all our io is * happening with locked page too */ #ifdef HAVE_INVALIDATE_RANGE if (offset == 0 && length == PAGE_SIZE) { #else if (offset == 0) { #endif /* See the comment in ll_releasepage() */ env = cl_env_percpu_get(); LASSERT(!IS_ERR(env)); inode = vmpage->mapping->host; obj = ll_i2info(inode)->lli_clob; if (obj != NULL) { page = cl_vmpage_page(vmpage, obj); if (page != NULL) { cl_page_delete(env, page); cl_page_put(env, page); } } else LASSERT(vmpage->private == 0); cl_env_percpu_put(env); } } #ifdef HAVE_RELEASEPAGE_WITH_INT #define RELEASEPAGE_ARG_TYPE int #else #define RELEASEPAGE_ARG_TYPE gfp_t #endif static int ll_releasepage(struct page *vmpage, RELEASEPAGE_ARG_TYPE gfp_mask) { struct lu_env *env; struct cl_object *obj; struct cl_page *page; struct address_space *mapping; int result = 0; LASSERT(PageLocked(vmpage)); if (PageWriteback(vmpage) || PageDirty(vmpage)) return 0; mapping = vmpage->mapping; if (mapping == NULL) return 1; obj = ll_i2info(mapping->host)->lli_clob; if (obj == NULL) return 1; page = cl_vmpage_page(vmpage, obj); if (page == NULL) return 1; env = cl_env_percpu_get(); LASSERT(!IS_ERR(env)); if (!cl_page_in_use(page)) { result = 1; cl_page_delete(env, page); } /* To use percpu env array, the call path can not be rescheduled; * otherwise percpu array will be messed if ll_releaspage() called * again on the same CPU. * * If this page holds the last refc of cl_object, the following * call path may cause reschedule: * cl_page_put -> cl_page_free -> cl_object_put -> * lu_object_put -> lu_object_free -> lov_delete_raid0. * * However, the kernel can't get rid of this inode until all pages have * been cleaned up. Now that we hold page lock here, it's pretty safe * that we won't get into object delete path. */ LASSERT(cl_object_refc(obj) > 1); cl_page_put(env, page); cl_env_percpu_put(env); return result; } #define MAX_DIRECTIO_SIZE 2*1024*1024*1024UL static ssize_t ll_direct_IO_seg(const struct lu_env *env, struct cl_io *io, int rw, struct inode *inode, size_t size, loff_t file_offset, struct page **pages, int page_count) { struct cl_page *clp; struct cl_2queue *queue; struct cl_object *obj = io->ci_obj; int i; ssize_t rc = 0; size_t page_size = cl_page_size(obj); size_t orig_size = size; bool do_io; int io_pages = 0; ENTRY; queue = &io->ci_queue; cl_2queue_init(queue); for (i = 0; i < page_count; i++) { LASSERT(!(file_offset & (page_size - 1))); clp = cl_page_find(env, obj, cl_index(obj, file_offset), pages[i], CPT_TRANSIENT); if (IS_ERR(clp)) { rc = PTR_ERR(clp); break; } rc = cl_page_own(env, io, clp); if (rc) { LASSERT(clp->cp_state == CPS_FREEING); cl_page_put(env, clp); break; } do_io = true; /* check the page type: if the page is a host page, then do * write directly */ if (clp->cp_type == CPT_CACHEABLE) { struct page *vmpage = cl_page_vmpage(clp); struct page *src_page; struct page *dst_page; void *src; void *dst; src_page = (rw == WRITE) ? pages[i] : vmpage; dst_page = (rw == WRITE) ? vmpage : pages[i]; src = ll_kmap_atomic(src_page, KM_USER0); dst = ll_kmap_atomic(dst_page, KM_USER1); memcpy(dst, src, min(page_size, size)); ll_kunmap_atomic(dst, KM_USER1); ll_kunmap_atomic(src, KM_USER0); /* make sure page will be added to the transfer by * cl_io_submit()->...->vvp_page_prep_write(). */ if (rw == WRITE) set_page_dirty(vmpage); if (rw == READ) { /* do not issue the page for read, since it * may reread a ra page which has NOT uptodate * bit set. */ cl_page_disown(env, io, clp); do_io = false; } } if (likely(do_io)) { cl_2queue_add(queue, clp); /* * Set page clip to tell transfer formation engine * that page has to be sent even if it is beyond KMS. */ cl_page_clip(env, clp, 0, min(size, page_size)); ++io_pages; } /* drop the reference count for cl_page_find */ cl_page_put(env, clp); size -= page_size; file_offset += page_size; } if (rc == 0 && io_pages) { rc = cl_io_submit_sync(env, io, rw == READ ? CRT_READ : CRT_WRITE, queue, 0); } if (rc == 0) rc = orig_size; cl_2queue_discard(env, io, queue); cl_2queue_disown(env, io, queue); cl_2queue_fini(env, queue); RETURN(rc); } /* ll_free_user_pages - tear down page struct array * @pages: array of page struct pointers underlying target buffer */ static void ll_free_user_pages(struct page **pages, int npages, int do_dirty) { int i; for (i = 0; i < npages; i++) { if (pages[i] == NULL) break; if (do_dirty) set_page_dirty_lock(pages[i]); put_page(pages[i]); } #if defined(HAVE_DIRECTIO_ITER) || defined(HAVE_IOV_ITER_RW) kvfree(pages); #else OBD_FREE_LARGE(pages, npages * sizeof(*pages)); #endif } #ifdef KMALLOC_MAX_SIZE #define MAX_MALLOC KMALLOC_MAX_SIZE #else #define MAX_MALLOC (128 * 1024) #endif /* This is the maximum size of a single O_DIRECT request, based on the * kmalloc limit. We need to fit all of the brw_page structs, each one * representing PAGE_SIZE worth of user data, into a single buffer, and * then truncate this to be a full-sized RPC. For 4kB PAGE_SIZE this is * up to 22MB for 128kB kmalloc and up to 682MB for 4MB kmalloc. */ #define MAX_DIO_SIZE ((MAX_MALLOC / sizeof(struct brw_page) * PAGE_SIZE) & \ ~(DT_MAX_BRW_SIZE - 1)) #ifndef HAVE_IOV_ITER_RW # define iov_iter_rw(iter) rw #endif #if defined(HAVE_DIRECTIO_ITER) || defined(HAVE_IOV_ITER_RW) static ssize_t ll_direct_IO( # ifndef HAVE_IOV_ITER_RW int rw, # endif struct kiocb *iocb, struct iov_iter *iter # ifndef HAVE_DIRECTIO_2ARGS , loff_t file_offset # endif ) { #ifdef HAVE_DIRECTIO_2ARGS loff_t file_offset = iocb->ki_pos; #endif struct ll_cl_context *lcc; const struct lu_env *env; struct cl_io *io; struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; ssize_t count = iov_iter_count(iter); ssize_t tot_bytes = 0, result = 0; size_t size = MAX_DIO_SIZE; /* Check EOF by ourselves */ if (iov_iter_rw(iter) == READ && file_offset >= i_size_read(inode)) return 0; /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */ if ((file_offset & ~PAGE_MASK) || (count & ~PAGE_MASK)) return -EINVAL; CDEBUG(D_VFSTRACE, "VFS Op:inode="DFID"(%p), size=%zd (max %lu), " "offset=%lld=%llx, pages %zd (max %lu)\n", PFID(ll_inode2fid(inode)), inode, count, MAX_DIO_SIZE, file_offset, file_offset, count >> PAGE_SHIFT, MAX_DIO_SIZE >> PAGE_SHIFT); /* Check that all user buffers are aligned as well */ if (iov_iter_alignment(iter) & ~PAGE_MASK) return -EINVAL; lcc = ll_cl_find(file); if (lcc == NULL) RETURN(-EIO); env = lcc->lcc_env; LASSERT(!IS_ERR(env)); io = lcc->lcc_io; LASSERT(io != NULL); /* 0. Need locking between buffered and direct access. and race with * size changing by concurrent truncates and writes. * 1. Need inode mutex to operate transient pages. */ if (iov_iter_rw(iter) == READ) inode_lock(inode); while (iov_iter_count(iter)) { struct page **pages; size_t offs; count = min_t(size_t, iov_iter_count(iter), size); if (iov_iter_rw(iter) == READ) { if (file_offset >= i_size_read(inode)) break; if (file_offset + count > i_size_read(inode)) count = i_size_read(inode) - file_offset; } result = iov_iter_get_pages_alloc(iter, &pages, count, &offs); if (likely(result > 0)) { int n = DIV_ROUND_UP(result + offs, PAGE_SIZE); result = ll_direct_IO_seg(env, io, iov_iter_rw(iter), inode, result, file_offset, pages, n); ll_free_user_pages(pages, n, iov_iter_rw(iter) == READ); } if (unlikely(result <= 0)) { /* If we can't allocate a large enough buffer * for the request, shrink it to a smaller * PAGE_SIZE multiple and try again. * We should always be able to kmalloc for a * page worth of page pointers = 4MB on i386. */ if (result == -ENOMEM && size > (PAGE_SIZE / sizeof(*pages)) * PAGE_SIZE) { size = ((((size / 2) - 1) | ~PAGE_MASK) + 1) & PAGE_MASK; CDEBUG(D_VFSTRACE, "DIO size now %zu\n", size); continue; } GOTO(out, result); } iov_iter_advance(iter, result); tot_bytes += result; file_offset += result; } out: if (iov_iter_rw(iter) == READ) inode_unlock(inode); if (tot_bytes > 0) { struct vvp_io *vio = vvp_env_io(env); /* no commit async for direct IO */ vio->u.write.vui_written += tot_bytes; } return tot_bytes ? : result; } #else /* !HAVE_DIRECTIO_ITER && !HAVE_IOV_ITER_RW */ static inline int ll_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages, int *max_pages) { int result = -ENOMEM; /* set an arbitrary limit to prevent arithmetic overflow */ if (size > MAX_DIRECTIO_SIZE) { *pages = NULL; return -EFBIG; } *max_pages = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT; *max_pages -= user_addr >> PAGE_SHIFT; OBD_ALLOC_LARGE(*pages, *max_pages * sizeof(**pages)); if (*pages) { down_read(¤t->mm->mmap_sem); result = get_user_pages(current, current->mm, user_addr, *max_pages, (rw == READ), 0, *pages, NULL); up_read(¤t->mm->mmap_sem); if (unlikely(result <= 0)) OBD_FREE_LARGE(*pages, *max_pages * sizeof(**pages)); } return result; } static ssize_t ll_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t file_offset, unsigned long nr_segs) { struct ll_cl_context *lcc; const struct lu_env *env; struct cl_io *io; struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; ssize_t count = iov_length(iov, nr_segs); ssize_t tot_bytes = 0, result = 0; unsigned long seg = 0; size_t size = MAX_DIO_SIZE; ENTRY; /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */ if ((file_offset & ~PAGE_MASK) || (count & ~PAGE_MASK)) RETURN(-EINVAL); CDEBUG(D_VFSTRACE, "VFS Op:inode="DFID"(%p), size=%zd (max %lu), " "offset=%lld=%llx, pages %zd (max %lu)\n", PFID(ll_inode2fid(inode)), inode, count, MAX_DIO_SIZE, file_offset, file_offset, count >> PAGE_SHIFT, MAX_DIO_SIZE >> PAGE_SHIFT); /* Check that all user buffers are aligned as well */ for (seg = 0; seg < nr_segs; seg++) { if (((unsigned long)iov[seg].iov_base & ~PAGE_MASK) || (iov[seg].iov_len & ~PAGE_MASK)) RETURN(-EINVAL); } lcc = ll_cl_find(file); if (lcc == NULL) RETURN(-EIO); env = lcc->lcc_env; LASSERT(!IS_ERR(env)); io = lcc->lcc_io; LASSERT(io != NULL); for (seg = 0; seg < nr_segs; seg++) { size_t iov_left = iov[seg].iov_len; unsigned long user_addr = (unsigned long)iov[seg].iov_base; if (rw == READ) { if (file_offset >= i_size_read(inode)) break; if (file_offset + iov_left > i_size_read(inode)) iov_left = i_size_read(inode) - file_offset; } while (iov_left > 0) { struct page **pages; int page_count, max_pages = 0; size_t bytes; bytes = min(size, iov_left); page_count = ll_get_user_pages(rw, user_addr, bytes, &pages, &max_pages); if (likely(page_count > 0)) { if (unlikely(page_count < max_pages)) bytes = page_count << PAGE_SHIFT; result = ll_direct_IO_seg(env, io, rw, inode, bytes, file_offset, pages, page_count); ll_free_user_pages(pages, max_pages, rw==READ); } else if (page_count == 0) { GOTO(out, result = -EFAULT); } else { result = page_count; } if (unlikely(result <= 0)) { /* If we can't allocate a large enough buffer * for the request, shrink it to a smaller * PAGE_SIZE multiple and try again. * We should always be able to kmalloc for a * page worth of page pointers = 4MB on i386. */ if (result == -ENOMEM && size > (PAGE_SIZE / sizeof(*pages)) * PAGE_SIZE) { size = ((((size / 2) - 1) | ~PAGE_MASK) + 1) & PAGE_MASK; CDEBUG(D_VFSTRACE, "DIO size now %zu\n", size); continue; } GOTO(out, result); } tot_bytes += result; file_offset += result; iov_left -= result; user_addr += result; } } out: if (tot_bytes > 0) { struct vvp_io *vio = vvp_env_io(env); /* no commit async for direct IO */ vio->u.write.vui_written += tot_bytes; } RETURN(tot_bytes ? tot_bytes : result); } #endif /* HAVE_DIRECTIO_ITER || HAVE_IOV_ITER_RW */ /** * Prepare partially written-to page for a write. * @pg is owned when passed in and disowned when it returns non-zero result to * the caller. */ static int ll_prepare_partial_page(const struct lu_env *env, struct cl_io *io, struct cl_page *pg, struct file *file) { struct cl_attr *attr = vvp_env_thread_attr(env); struct cl_object *obj = io->ci_obj; struct vvp_page *vpg = cl_object_page_slice(obj, pg); loff_t offset = cl_offset(obj, vvp_index(vpg)); int result; ENTRY; cl_object_attr_lock(obj); result = cl_object_attr_get(env, obj, attr); cl_object_attr_unlock(obj); if (result) { cl_page_disown(env, io, pg); GOTO(out, result); } /* * If are writing to a new page, no need to read old data. * The extent locking will have updated the KMS, and for our * purposes here we can treat it like i_size. */ if (attr->cat_kms <= offset) { char *kaddr = ll_kmap_atomic(vpg->vpg_page, KM_USER0); memset(kaddr, 0, cl_page_size(obj)); ll_kunmap_atomic(kaddr, KM_USER0); GOTO(out, result = 0); } if (vpg->vpg_defer_uptodate) { vpg->vpg_ra_used = 1; GOTO(out, result = 0); } result = ll_io_read_page(env, io, pg, file); if (result) GOTO(out, result); /* ll_io_read_page() disowns the page */ result = cl_page_own(env, io, pg); if (!result) { if (!PageUptodate(cl_page_vmpage(pg))) { cl_page_disown(env, io, pg); result = -EIO; } } else if (result == -ENOENT) { /* page was truncated */ result = -EAGAIN; } EXIT; out: return result; } static int ll_tiny_write_begin(struct page *vmpage) { /* Page must be present, up to date, dirty, and not in writeback. */ if (!vmpage || !PageUptodate(vmpage) || !PageDirty(vmpage) || PageWriteback(vmpage)) return -ENODATA; return 0; } static int ll_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct ll_cl_context *lcc = NULL; const struct lu_env *env = NULL; struct cl_io *io = NULL; struct cl_page *page = NULL; struct cl_object *clob = ll_i2info(mapping->host)->lli_clob; pgoff_t index = pos >> PAGE_SHIFT; struct page *vmpage = NULL; unsigned from = pos & (PAGE_SIZE - 1); unsigned to = from + len; int result = 0; ENTRY; CDEBUG(D_VFSTRACE, "Writing %lu of %d to %d bytes\n", index, from, len); lcc = ll_cl_find(file); if (lcc == NULL) { vmpage = grab_cache_page_nowait(mapping, index); result = ll_tiny_write_begin(vmpage); GOTO(out, result); } env = lcc->lcc_env; io = lcc->lcc_io; if (file->f_flags & O_DIRECT && io->ci_designated_mirror > 0) { /* direct IO failed because it couldn't clean up cached pages, * this causes a problem for mirror write because the cached * page may belong to another mirror, which will result in * problem submitting the I/O. */ GOTO(out, result = -EBUSY); } again: /* To avoid deadlock, try to lock page first. */ vmpage = grab_cache_page_nowait(mapping, index); if (unlikely(vmpage == NULL || PageDirty(vmpage) || PageWriteback(vmpage))) { struct vvp_io *vio = vvp_env_io(env); struct cl_page_list *plist = &vio->u.write.vui_queue; /* if the page is already in dirty cache, we have to commit * the pages right now; otherwise, it may cause deadlock * because it holds page lock of a dirty page and request for * more grants. It's okay for the dirty page to be the first * one in commit page list, though. */ if (vmpage != NULL && plist->pl_nr > 0) { unlock_page(vmpage); put_page(vmpage); vmpage = NULL; } /* commit pages and then wait for page lock */ result = vvp_io_write_commit(env, io); if (result < 0) GOTO(out, result); if (vmpage == NULL) { vmpage = grab_cache_page_write_begin(mapping, index, flags); if (vmpage == NULL) GOTO(out, result = -ENOMEM); } } page = cl_page_find(env, clob, vmpage->index, vmpage, CPT_CACHEABLE); if (IS_ERR(page)) GOTO(out, result = PTR_ERR(page)); lcc->lcc_page = page; lu_ref_add(&page->cp_reference, "cl_io", io); cl_page_assume(env, io, page); if (!PageUptodate(vmpage)) { /* * We're completely overwriting an existing page, * so _don't_ set it up to date until commit_write */ if (from == 0 && to == PAGE_SIZE) { CL_PAGE_HEADER(D_PAGE, env, page, "full page write\n"); POISON_PAGE(vmpage, 0x11); } else { /* TODO: can be optimized at OSC layer to check if it * is a lockless IO. In that case, it's not necessary * to read the data. */ result = ll_prepare_partial_page(env, io, page, file); if (result) { /* vmpage should have been unlocked */ put_page(vmpage); vmpage = NULL; if (result == -EAGAIN) goto again; GOTO(out, result); } } } EXIT; out: if (result < 0) { if (vmpage != NULL) { unlock_page(vmpage); put_page(vmpage); } /* On tiny_write failure, page and io are always null. */ if (!IS_ERR_OR_NULL(page)) { lu_ref_del(&page->cp_reference, "cl_io", io); cl_page_put(env, page); } if (io) io->ci_result = result; } else { *pagep = vmpage; *fsdata = lcc; } RETURN(result); } static int ll_tiny_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned int len, unsigned int copied, struct page *vmpage) { struct cl_page *clpage = (struct cl_page *) vmpage->private; loff_t kms = pos+copied; loff_t to = kms & (PAGE_SIZE-1) ? kms & (PAGE_SIZE-1) : PAGE_SIZE; __u16 refcheck; struct lu_env *env = cl_env_get(&refcheck); int rc = 0; ENTRY; if (IS_ERR(env)) { rc = PTR_ERR(env); goto out; } /* This page is dirty in cache, so it should have a cl_page pointer * set in vmpage->private. */ LASSERT(clpage != NULL); if (copied == 0) goto out_env; /* Update the underlying size information in the OSC/LOV objects this * page is part of. */ cl_page_touch(env, clpage, to); out_env: cl_env_put(env, &refcheck); out: /* Must return page unlocked. */ unlock_page(vmpage); RETURN(rc); } static int ll_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *vmpage, void *fsdata) { struct ll_cl_context *lcc = fsdata; const struct lu_env *env; struct cl_io *io; struct vvp_io *vio; struct cl_page *page; unsigned from = pos & (PAGE_SIZE - 1); bool unplug = false; int result = 0; ENTRY; put_page(vmpage); CDEBUG(D_VFSTRACE, "pos %llu, len %u, copied %u\n", pos, len, copied); if (lcc == NULL) { result = ll_tiny_write_end(file, mapping, pos, len, copied, vmpage); GOTO(out, result); } LASSERT(lcc != NULL); env = lcc->lcc_env; page = lcc->lcc_page; io = lcc->lcc_io; vio = vvp_env_io(env); LASSERT(cl_page_is_owned(page, io)); if (copied > 0) { struct cl_page_list *plist = &vio->u.write.vui_queue; lcc->lcc_page = NULL; /* page will be queued */ /* Add it into write queue */ cl_page_list_add(plist, page); if (plist->pl_nr == 1) /* first page */ vio->u.write.vui_from = from; else LASSERT(from == 0); vio->u.write.vui_to = from + copied; /* To address the deadlock in balance_dirty_pages() where * this dirty page may be written back in the same thread. */ if (PageDirty(vmpage)) unplug = true; /* We may have one full RPC, commit it soon */ if (plist->pl_nr >= PTLRPC_MAX_BRW_PAGES) unplug = true; CL_PAGE_DEBUG(D_VFSTRACE, env, page, "queued page: %d.\n", plist->pl_nr); } else { cl_page_disown(env, io, page); lcc->lcc_page = NULL; lu_ref_del(&page->cp_reference, "cl_io", io); cl_page_put(env, page); /* page list is not contiguous now, commit it now */ unplug = true; } if (unplug || io->u.ci_wr.wr_sync) result = vvp_io_write_commit(env, io); if (result < 0) io->ci_result = result; out: RETURN(result >= 0 ? copied : result); } #ifdef CONFIG_MIGRATION static int ll_migratepage(struct address_space *mapping, struct page *newpage, struct page *page #ifdef HAVE_MIGRATEPAGE_4ARGS , enum migrate_mode mode #endif ) { /* Always fail page migration until we have a proper implementation */ return -EIO; } #endif const struct address_space_operations ll_aops = { .readpage = ll_readpage, .direct_IO = ll_direct_IO, .writepage = ll_writepage, .writepages = ll_writepages, .set_page_dirty = __set_page_dirty_nobuffers, .write_begin = ll_write_begin, .write_end = ll_write_end, .invalidatepage = ll_invalidatepage, .releasepage = (void *)ll_releasepage, #ifdef CONFIG_MIGRATION .migratepage = ll_migratepage, #endif };