/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * Lustre Lite I/O page cache routines shared by different kernel revs * * Copyright (c) 2001-2003 Cluster File Systems, Inc. * * This file is part of Lustre, http://www.lustre.org. * * Lustre is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * Lustre is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Lustre; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG_SUBSYSTEM S_LLITE #include #include #include "llite_internal.h" #include #ifndef list_for_each_prev_safe #define list_for_each_prev_safe(pos, n, head) \ for (pos = (head)->prev, n = pos->prev; pos != (head); \ pos = n, n = pos->prev ) #endif /* SYNCHRONOUS I/O to object storage for an inode */ static int ll_brw(int cmd, struct inode *inode, struct obdo *oa, struct page *page, int flags) { struct ll_inode_info *lli = ll_i2info(inode); struct lov_stripe_md *lsm = lli->lli_smd; struct timeval start; struct brw_page pg; int rc; ENTRY; do_gettimeofday(&start); pg.pg = page; pg.disk_offset = pg.page_offset = ((obd_off)page->index) << PAGE_SHIFT; if (cmd == OBD_BRW_WRITE && (pg.disk_offset + PAGE_SIZE > inode->i_size)) pg.count = inode->i_size % PAGE_SIZE; else pg.count = PAGE_SIZE; CDEBUG(D_PAGE, "%s %d bytes ino %lu at "LPU64"/"LPX64"\n", cmd & OBD_BRW_WRITE ? "write" : "read", pg.count, inode->i_ino, pg.disk_offset, pg.disk_offset); if (pg.count == 0) { CERROR("ZERO COUNT: ino %lu: size %p:%Lu(%p:%Lu) idx %lu off " LPU64"\n", inode->i_ino, inode, inode->i_size, page->mapping->host, page->mapping->host->i_size, page->index, pg.disk_offset); } pg.flag = flags; if (cmd == OBD_BRW_WRITE) lprocfs_counter_add(ll_i2sbi(inode)->ll_stats, LPROC_LL_BRW_WRITE, pg.count); else lprocfs_counter_add(ll_i2sbi(inode)->ll_stats, LPROC_LL_BRW_READ, pg.count); rc = obd_brw(cmd, ll_i2dtexp(inode), oa, lsm, 1, &pg, NULL); if (rc == 0) obdo_to_inode(inode, oa, OBD_MD_FLBLOCKS); else if (rc != -EIO) CERROR("error from obd_brw: rc = %d\n", rc); ll_stime_record(ll_i2sbi(inode), &start, &ll_i2sbi(inode)->ll_brw_stime); RETURN(rc); } __u64 lov_merge_size(struct lov_stripe_md *lsm, int kms); /* * this isn't where truncate starts. roughly: * sys_truncate->ll_setattr_raw->vmtruncate->ll_truncate * we grab the lock back in setattr_raw to avoid races. * * must be called with lli_size_sem held. */ void ll_truncate(struct inode *inode) { struct lov_stripe_md *lsm = ll_i2info(inode)->lli_smd; struct ll_inode_info *lli = ll_i2info(inode); struct obdo *oa = NULL; int rc; ENTRY; CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu/%u(%p) to %llu\n", inode->i_ino, inode->i_generation, inode, inode->i_size); if (!lsm) { CDEBUG(D_INODE, "truncate on inode %lu with no objects\n", inode->i_ino); GOTO(out_unlock, 0); } if (lli->lli_size_pid != current->pid) GOTO(out_unlock, 0); LASSERT(atomic_read(&lli->lli_size_sem.count) <= 0); if (lov_merge_size(lsm, 0) == inode->i_size) { CDEBUG(D_VFSTRACE, "skipping punch for "LPX64" (size = %llu)\n", lsm->lsm_object_id, inode->i_size); GOTO(out_unlock, 0); } CDEBUG(D_INFO, "calling punch for "LPX64" (new size %llu)\n", lsm->lsm_object_id, inode->i_size); oa = obdo_alloc(); if (oa == NULL) { CERROR("cannot alloc oa, error %d\n", -ENOMEM); EXIT; return; } oa->o_id = lsm->lsm_object_id; oa->o_gr = lsm->lsm_object_gr; oa->o_valid = OBD_MD_FLID | OBD_MD_FLGROUP; obdo_from_inode(oa, inode, OBD_MD_FLTYPE | OBD_MD_FLMODE | OBD_MD_FLATIME | OBD_MD_FLMTIME | OBD_MD_FLCTIME); obd_adjust_kms(ll_i2dtexp(inode), lsm, inode->i_size, 1); lli->lli_size_pid = 0; up(&lli->lli_size_sem); rc = obd_punch(ll_i2dtexp(inode), oa, lsm, inode->i_size, OBD_OBJECT_EOF, NULL); if (rc) CERROR("obd_truncate fails (%d) ino %lu\n", rc, inode->i_ino); else obdo_to_inode(inode, oa, OBD_MD_FLSIZE | OBD_MD_FLBLOCKS | OBD_MD_FLATIME | OBD_MD_FLMTIME | OBD_MD_FLCTIME); obdo_free(oa); EXIT; return; out_unlock: LASSERT(atomic_read(&lli->lli_size_sem.count) <= 0); up(&lli->lli_size_sem); } /* ll_truncate */ int ll_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to) { struct inode *inode = page->mapping->host; struct ll_inode_info *lli = ll_i2info(inode); struct lov_stripe_md *lsm = lli->lli_smd; obd_off offset = ((obd_off)page->index) << PAGE_SHIFT; struct obdo *oa = NULL; struct brw_page pga; __u64 kms; int rc = 0; ENTRY; LASSERT(PageLocked(page)); (void)llap_cast_private(page); /* assertion */ /* Check to see if we should return -EIO right away */ pga.pg = page; pga.disk_offset = pga.page_offset = offset; pga.count = PAGE_SIZE; pga.flag = 0; oa = obdo_alloc(); if (oa == NULL) RETURN(-ENOMEM); oa->o_id = lsm->lsm_object_id; oa->o_gr = lsm->lsm_object_gr; oa->o_mode = inode->i_mode; oa->o_valid = OBD_MD_FLID | OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLGROUP; rc = obd_brw(OBD_BRW_CHECK, ll_i2dtexp(inode), oa, lsm, 1, &pga, NULL); if (rc) GOTO(out_free_oa, rc); if (PageUptodate(page)) GOTO(out_free_oa, 0); /* We're completely overwriting an existing page, so _don't_ set it up * to date until commit_write */ if (from == 0 && to == PAGE_SIZE) { POISON_PAGE(page, 0x11); GOTO(out_free_oa, 0); } /* If are writing to a new page, no need to read old data. The extent * locking will have updated the KMS, and for our purposes here we can * treat it like i_size. */ down(&lli->lli_size_sem); kms = lov_merge_size(lsm, 1); up(&lli->lli_size_sem); if (kms <= offset) { memset(kmap(page), 0, PAGE_SIZE); kunmap(page); GOTO(prepare_done, rc = 0); } /* XXX could be an async ocp read.. read-ahead? */ rc = ll_brw(OBD_BRW_READ, inode, oa, page, 0); if (rc == 0) { /* bug 1598: don't clobber blksize */ oa->o_valid &= ~(OBD_MD_FLSIZE | OBD_MD_FLBLKSZ); obdo_refresh_inode(inode, oa, oa->o_valid); } EXIT; prepare_done: if (rc == 0) SetPageUptodate(page); out_free_oa: obdo_free(oa); return rc; } static int ll_ap_make_ready(void *data, int cmd) { struct ll_async_page *llap; struct page *page; ENTRY; llap = LLAP_FROM_COOKIE(data); page = llap->llap_page; LASSERT(cmd != OBD_BRW_READ); /* we're trying to write, but the page is locked.. come back later */ if (TryLockPage(page)) RETURN(-EAGAIN); LL_CDEBUG_PAGE(D_PAGE, page, "made ready\n"); page_cache_get(page); /* if we left PageDirty we might get another writepage call * in the future. list walkers are bright enough * to check page dirty so we can leave it on whatever list * its on. XXX also, we're called with the cli list so if * we got the page cache list we'd create a lock inversion * with the removepage path which gets the page lock then the * cli lock */ clear_page_dirty(page); RETURN(0); } /* We have two reasons for giving llite the opportunity to change the * write length of a given queued page as it builds the RPC containing * the page: * * 1) Further extending writes may have landed in the page cache * since a partial write first queued this page requiring us * to write more from the page cache. (No further races are possible, since * by the time this is called, the page is locked.) * 2) We might have raced with truncate and want to avoid performing * write RPCs that are just going to be thrown away by the * truncate's punch on the storage targets. * * The kms serves these purposes as it is set at both truncate and extending * writes. */ static int ll_ap_refresh_count(void *data, int cmd) { struct ll_inode_info *lli; struct ll_async_page *llap; struct lov_stripe_md *lsm; struct page *page; __u64 kms; ENTRY; /* readpage queues with _COUNT_STABLE, shouldn't get here. */ LASSERT(cmd != OBD_BRW_READ); llap = LLAP_FROM_COOKIE(data); page = llap->llap_page; lli = ll_i2info(page->mapping->host); lsm = lli->lli_smd; down(&lli->lli_size_sem); kms = lov_merge_size(lsm, 1); up(&lli->lli_size_sem); /* catch race with truncate */ if (((__u64)page->index << PAGE_SHIFT) >= kms) return 0; /* catch sub-page write at end of file */ if (((__u64)page->index << PAGE_SHIFT) + PAGE_SIZE > kms) return kms % PAGE_SIZE; return PAGE_SIZE; } void ll_inode_fill_obdo(struct inode *inode, int cmd, struct obdo *oa) { struct lov_stripe_md *lsm; obd_valid valid_flags; lsm = ll_i2info(inode)->lli_smd; oa->o_id = lsm->lsm_object_id; oa->o_gr = lsm->lsm_object_gr; oa->o_valid = OBD_MD_FLID | OBD_MD_FLGROUP; valid_flags = OBD_MD_FLTYPE | OBD_MD_FLATIME; if (cmd == OBD_BRW_WRITE) { oa->o_valid |= OBD_MD_FLIFID | OBD_MD_FLEPOCH; mdc_pack_id(obdo_id(oa), inode->i_ino, 0, inode->i_mode, id_group(&ll_i2info(inode)->lli_id), id_fid(&ll_i2info(inode)->lli_id)); oa->o_easize = ll_i2info(inode)->lli_io_epoch; valid_flags |= OBD_MD_FLMTIME | OBD_MD_FLCTIME; } obdo_from_inode(oa, inode, valid_flags); } static void ll_ap_fill_obdo(void *data, int cmd, struct obdo *oa) { struct ll_async_page *llap; ENTRY; llap = LLAP_FROM_COOKIE(data); ll_inode_fill_obdo(llap->llap_page->mapping->host, cmd, oa); EXIT; } static struct obd_async_page_ops ll_async_page_ops = { .ap_make_ready = ll_ap_make_ready, .ap_refresh_count = ll_ap_refresh_count, .ap_fill_obdo = ll_ap_fill_obdo, .ap_completion = ll_ap_completion, }; struct ll_async_page *llap_cast_private(struct page *page) { struct ll_async_page *llap = (struct ll_async_page *)page->private; LASSERTF(llap == NULL || llap->llap_magic == LLAP_MAGIC, "page %p private %lu gave magic %d which != %d\n", page, page->private, llap->llap_magic, LLAP_MAGIC); return llap; } /* XXX have the exp be an argument? */ struct ll_async_page *llap_from_page(struct page *page, unsigned origin) { struct ll_async_page *llap; struct obd_export *exp; struct inode *inode = page->mapping->host; struct ll_sb_info *sbi = ll_i2sbi(inode); int rc; ENTRY; LASSERTF(origin < LLAP__ORIGIN_MAX, "%u\n", origin); llap = llap_cast_private(page); if (llap != NULL) GOTO(out, llap); exp = ll_i2dtexp(page->mapping->host); if (exp == NULL) RETURN(ERR_PTR(-EINVAL)); OBD_ALLOC(llap, sizeof(*llap)); if (llap == NULL) RETURN(ERR_PTR(-ENOMEM)); llap->llap_magic = LLAP_MAGIC; rc = obd_prep_async_page(exp, ll_i2info(inode)->lli_smd, NULL, page, (obd_off)page->index << PAGE_SHIFT, &ll_async_page_ops, llap, &llap->llap_cookie); if (rc) { OBD_FREE(llap, sizeof(*llap)); RETURN(ERR_PTR(rc)); } CDEBUG(D_CACHE, "llap %p page %p cookie %p obj off "LPU64"\n", llap, page, llap->llap_cookie, (obd_off)page->index << PAGE_SHIFT); /* also zeroing the PRIVBITS low order bitflags */ __set_page_ll_data(page, llap); llap->llap_page = page; spin_lock(&sbi->ll_lock); sbi->ll_pglist_gen++; list_add_tail(&llap->llap_proc_item, &sbi->ll_pglist); spin_unlock(&sbi->ll_lock); out: llap->llap_origin = origin; RETURN(llap); } static int queue_or_sync_write(struct obd_export *exp, struct lov_stripe_md *lsm, struct ll_async_page *llap, unsigned to, obd_flags async_flags) { struct obd_io_group *oig; int rc; ENTRY; /* _make_ready only sees llap once we've unlocked the page */ llap->llap_write_queued = 1; rc = obd_queue_async_io(exp, lsm, NULL, llap->llap_cookie, OBD_BRW_WRITE, 0, 0, 0, async_flags); if (rc == 0) { LL_CDEBUG_PAGE(D_PAGE, llap->llap_page, "write queued\n"); //llap_write_pending(inode, llap); GOTO(out, 0); } llap->llap_write_queued = 0; rc = oig_init(&oig); if (rc) GOTO(out, rc); rc = obd_queue_group_io(exp, lsm, NULL, oig, llap->llap_cookie, OBD_BRW_WRITE, 0, to, 0, ASYNC_READY | ASYNC_URGENT | ASYNC_COUNT_STABLE | ASYNC_GROUP_SYNC); if (rc) GOTO(free_oig, rc); rc = obd_trigger_group_io(exp, lsm, NULL, oig); if (rc) GOTO(free_oig, rc); rc = oig_wait(oig); if (!rc && async_flags & ASYNC_READY) unlock_page(llap->llap_page); LL_CDEBUG_PAGE(D_PAGE, llap->llap_page, "sync write returned %d\n", rc); EXIT; free_oig: oig_release(oig); out: return rc; } /* be careful not to return success without setting the page Uptodate or * the next pass through prepare_write will read in stale data from disk. */ int ll_commit_write(struct file *file, struct page *page, unsigned from, unsigned to) { struct inode *inode = page->mapping->host; struct ll_inode_info *lli = ll_i2info(inode); struct lov_stripe_md *lsm = lli->lli_smd; struct obd_export *exp = NULL; struct ll_async_page *llap; loff_t size; int rc = 0; ENTRY; SIGNAL_MASK_ASSERT(); /* XXX BUG 1511 */ LASSERT(inode == file->f_dentry->d_inode); LASSERT(PageLocked(page)); CDEBUG(D_INODE, "inode %p is writing page %p from %d to %d at %lu\n", inode, page, from, to, page->index); llap = llap_from_page(page, LLAP_ORIGIN_COMMIT_WRITE); if (IS_ERR(llap)) RETURN(PTR_ERR(llap)); exp = ll_i2dtexp(inode); if (exp == NULL) RETURN(-EINVAL); /* queue a write for some time in the future the first time we * dirty the page */ if (!PageDirty(page)) { lprocfs_counter_incr(ll_i2sbi(inode)->ll_stats, LPROC_LL_DIRTY_MISSES); rc = queue_or_sync_write(exp, ll_i2info(inode)->lli_smd, llap, to, 0); if (rc) GOTO(out, rc); } else { lprocfs_counter_incr(ll_i2sbi(inode)->ll_stats, LPROC_LL_DIRTY_HITS); } /* put the page in the page cache, from now on ll_removepage is * responsible for cleaning up the llap. * don't dirty the page if it has been write out in q_o_s_w */ if (llap->llap_write_queued) set_page_dirty(page); EXIT; out: size = (((obd_off)page->index) << PAGE_SHIFT) + to; down(&lli->lli_size_sem); if (rc == 0) { obd_adjust_kms(exp, lsm, size, 0); if (size > inode->i_size) inode->i_size = size; SetPageUptodate(page); } else if (size > inode->i_size) { /* this page beyond the pales of i_size, so it can't be * truncated in ll_p_r_e during lock revoking. we must * teardown our book-keeping here. */ ll_removepage(page); } up(&lli->lli_size_sem); return rc; } static unsigned long ll_ra_count_get(struct ll_sb_info *sbi, unsigned long len) { struct ll_ra_info *ra = &sbi->ll_ra_info; unsigned long ret; ENTRY; spin_lock(&sbi->ll_lock); ret = min(ra->ra_max_pages - ra->ra_cur_pages, len); ra->ra_cur_pages += ret; spin_unlock(&sbi->ll_lock); RETURN(ret); } static void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len) { struct ll_ra_info *ra = &sbi->ll_ra_info; spin_lock(&sbi->ll_lock); LASSERTF(ra->ra_cur_pages >= len, "r_c_p %lu len %lu\n", ra->ra_cur_pages, len); ra->ra_cur_pages -= len; spin_unlock(&sbi->ll_lock); } int ll_writepage(struct page *page) { struct inode *inode = page->mapping->host; struct obd_export *exp; struct ll_async_page *llap; int rc = 0; ENTRY; LASSERT(!PageDirty(page)); LASSERT(PageLocked(page)); exp = ll_i2dtexp(inode); if (exp == NULL) GOTO(out, rc = -EINVAL); llap = llap_from_page(page, LLAP_ORIGIN_WRITEPAGE); if (IS_ERR(llap)) GOTO(out, rc = PTR_ERR(llap)); page_cache_get(page); if (llap->llap_write_queued) { LL_CDEBUG_PAGE(D_PAGE, page, "marking urgent\n"); rc = obd_set_async_flags(exp, ll_i2info(inode)->lli_smd, NULL, llap->llap_cookie, ASYNC_READY | ASYNC_URGENT); } else { rc = queue_or_sync_write(exp, ll_i2info(inode)->lli_smd, llap, PAGE_SIZE, ASYNC_READY | ASYNC_URGENT); } if (rc) page_cache_release(page); EXIT; out: if (rc) unlock_page(page); return rc; } /* called for each page in a completed rpc.*/ void ll_ap_completion(void *data, int cmd, struct obdo *oa, int rc) { struct ll_async_page *llap; struct page *page; ENTRY; llap = LLAP_FROM_COOKIE(data); page = llap->llap_page; LASSERT(PageLocked(page)); LL_CDEBUG_PAGE(D_PAGE, page, "completing cmd %d with %d\n", cmd, rc); if (cmd == OBD_BRW_READ && llap->llap_defer_uptodate) ll_ra_count_put(ll_i2sbi(page->mapping->host), 1); if (rc == 0) { if (cmd == OBD_BRW_READ) { if (!llap->llap_defer_uptodate) SetPageUptodate(page); } else { llap->llap_write_queued = 0; } ClearPageError(page); } else { if (cmd == OBD_BRW_READ) llap->llap_defer_uptodate = 0; SetPageError(page); } unlock_page(page); if (0 && cmd == OBD_BRW_WRITE) { llap_write_complete(page->mapping->host, llap); ll_try_done_writing(page->mapping->host); } if (PageWriteback(page)) { end_page_writeback(page); } page_cache_release(page); EXIT; } /* the kernel calls us here when a page is unhashed from the page cache. * the page will be locked and the kernel is holding a spinlock, so * we need to be careful. we're just tearing down our book-keeping * here. */ void ll_removepage(struct page *page) { struct inode *inode = page->mapping->host; struct obd_export *exp; struct ll_async_page *llap; struct ll_sb_info *sbi = ll_i2sbi(inode); int rc; ENTRY; LASSERT(!in_interrupt()); /* sync pages or failed read pages can leave pages in the page * cache that don't have our data associated with them anymore */ if (page->private == 0) { EXIT; return; } LL_CDEBUG_PAGE(D_PAGE, page, "being evicted\n"); exp = ll_i2dtexp(inode); if (exp == NULL) { CERROR("page %p ind %lu gave null export\n", page, page->index); EXIT; return; } llap = llap_from_page(page, 0); if (IS_ERR(llap)) { CERROR("page %p ind %lu couldn't find llap: %ld\n", page, page->index, PTR_ERR(llap)); EXIT; return; } //llap_write_complete(inode, llap); rc = obd_teardown_async_page(exp, ll_i2info(inode)->lli_smd, NULL, llap->llap_cookie); if (rc != 0) CERROR("page %p ind %lu failed: %d\n", page, page->index, rc); /* this unconditional free is only safe because the page lock * is providing exclusivity to memory pressure/truncate/writeback..*/ __clear_page_ll_data(page); spin_lock(&sbi->ll_lock); if (!list_empty(&llap->llap_proc_item)) list_del_init(&llap->llap_proc_item); sbi->ll_pglist_gen++; spin_unlock(&sbi->ll_lock); OBD_FREE(llap, sizeof(*llap)); EXIT; } static int ll_page_matches(struct page *page, int fd_flags, int readahead) { struct lustre_handle match_lockh = {0}; struct inode *inode = page->mapping->host; ldlm_policy_data_t page_extent; int flags, matches; ENTRY; if (fd_flags & LL_FILE_GROUP_LOCKED) RETURN(1); page_extent.l_extent.start = (__u64)page->index << PAGE_CACHE_SHIFT; page_extent.l_extent.end = page_extent.l_extent.start + PAGE_CACHE_SIZE - 1; flags = LDLM_FL_TEST_LOCK; if (!readahead) flags |= LDLM_FL_CBPENDING | LDLM_FL_BLOCK_GRANTED; matches = obd_match(ll_i2sbi(inode)->ll_dt_exp, ll_i2info(inode)->lli_smd, LDLM_EXTENT, &page_extent, LCK_PR | LCK_PW, &flags, inode, &match_lockh); RETURN(matches); } static int ll_issue_page_read(struct obd_export *exp, struct ll_async_page *llap, struct obd_io_group *oig, int defer) { struct page *page = llap->llap_page; int rc; page_cache_get(page); llap->llap_defer_uptodate = defer; llap->llap_ra_used = 0; rc = obd_queue_group_io(exp, ll_i2info(page->mapping->host)->lli_smd, NULL, oig, llap->llap_cookie, OBD_BRW_READ, 0, PAGE_SIZE, 0, ASYNC_COUNT_STABLE | ASYNC_READY | ASYNC_URGENT); if (rc) { LL_CDEBUG_PAGE(D_ERROR, page, "read queue failed: rc %d\n", rc); page_cache_release(page); } RETURN(rc); } static void ll_ra_stats_inc_unlocked(struct ll_ra_info *ra, enum ra_stat which) { LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which); ra->ra_stats[which]++; } static void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which) { struct ll_sb_info *sbi = ll_i2sbi(mapping->host); struct ll_ra_info *ra = &ll_i2sbi(mapping->host)->ll_ra_info; spin_lock(&sbi->ll_lock); ll_ra_stats_inc_unlocked(ra, which); spin_unlock(&sbi->ll_lock); } void ll_ra_accounting(struct page *page, struct address_space *mapping) { struct ll_async_page *llap; llap = llap_from_page(page, LLAP_ORIGIN_WRITEPAGE); if (IS_ERR(llap)) return; if (!llap->llap_defer_uptodate || llap->llap_ra_used) return; ll_ra_stats_inc(mapping, RA_STAT_DISCARDED); } #define RAS_CDEBUG(ras) \ CDEBUG(D_READA, "lrp %lu c %lu ws %lu wl %lu nra %lu\n", \ ras->ras_last_readpage, ras->ras_consecutive, \ ras->ras_window_start, ras->ras_window_len, \ ras->ras_next_readahead); static int index_in_window(unsigned long index, unsigned long point, unsigned long before, unsigned long after) { unsigned long start = point - before, end = point + after; if (start > point) start = 0; if (end < point) end = ~0; return start <= index && index <= end; } static int ll_readahead(struct ll_readahead_state *ras, struct obd_export *exp, struct address_space *mapping, struct obd_io_group *oig, int flags) { unsigned long i, start = 0, end = 0, reserved; struct ll_async_page *llap; struct page *page; int rc, ret = 0, match_failed = 0; __u64 kms; ENTRY; kms = lov_merge_size(ll_i2info(mapping->host)->lli_smd, 1); if (kms == 0) { ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN); RETURN(0); } spin_lock(&ras->ras_lock); /* reserve a part of the read-ahead window that we'll be issuing */ if (ras->ras_window_len) { start = ras->ras_next_readahead; end = ras->ras_window_start + ras->ras_window_len - 1; end = min(end, (unsigned long)(kms >> PAGE_CACHE_SHIFT)); ras->ras_next_readahead = max(end, end + 1); RAS_CDEBUG(ras); } spin_unlock(&ras->ras_lock); if (end == 0) { ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW); RETURN(0); } reserved = ll_ra_count_get(ll_i2sbi(mapping->host), end - start + 1); if (reserved < end - start + 1) ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT); for (i = start; reserved > 0 && !match_failed && i <= end; i++) { /* skip locked pages from previous readpage calls */ page = grab_cache_page_nowait(mapping, i); if (page == NULL) { CDEBUG(D_READA, "g_c_p_n failed\n"); continue; } /* we do this first so that we can see the page in the /proc * accounting */ llap = llap_from_page(page, LLAP_ORIGIN_READAHEAD); if (IS_ERR(llap) || llap->llap_defer_uptodate) goto next_page; /* skip completed pages */ if (Page_Uptodate(page)) goto next_page; /* bail when we hit the end of the lock. */ if ((rc = ll_page_matches(page, flags, 1)) <= 0) { LL_CDEBUG_PAGE(D_READA | D_PAGE, page, "lock match failed: rc %d\n", rc); ll_ra_stats_inc(mapping, RA_STAT_FAILED_MATCH); match_failed = 1; goto next_page; } rc = ll_issue_page_read(exp, llap, oig, 1); if (rc == 0) { reserved--; ret++; LL_CDEBUG_PAGE(D_READA| D_PAGE, page, "started read-ahead\n"); } if (rc) { next_page: LL_CDEBUG_PAGE(D_READA | D_PAGE, page, "skipping read-ahead\n"); unlock_page(page); } page_cache_release(page); } LASSERTF(reserved >= 0, "reserved %lu\n", reserved); if (reserved != 0) ll_ra_count_put(ll_i2sbi(mapping->host), reserved); if (i == end + 1 && end == (kms >> PAGE_CACHE_SHIFT)) ll_ra_stats_inc(mapping, RA_STAT_EOF); /* if we didn't get to the end of the region we reserved from * the ras we need to go back and update the ras so that the * next read-ahead tries from where we left off. we only do so * if the region we failed to issue read-ahead on is still ahead * of the app and behind the next index to start read-ahead from */ if (i != end + 1) { spin_lock(&ras->ras_lock); if (i < ras->ras_next_readahead && index_in_window(i, ras->ras_window_start, 0, ras->ras_window_len)) { ras->ras_next_readahead = i; RAS_CDEBUG(ras); } spin_unlock(&ras->ras_lock); } RETURN(ret); } static void ras_set_start(struct ll_readahead_state *ras, unsigned long index) { ras->ras_window_start = index & (~(PTLRPC_MAX_BRW_PAGES - 1)); } /* called with the ras_lock held or from places where it doesn't matter */ static void ras_reset(struct ll_readahead_state *ras, unsigned long index) { ras->ras_last_readpage = index; ras->ras_consecutive = 1; ras->ras_window_len = 0; ras_set_start(ras, index); ras->ras_next_readahead = ras->ras_window_start; RAS_CDEBUG(ras); } void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras) { spin_lock_init(&ras->ras_lock); ras_reset(ras, 0); } static void ras_update(struct ll_sb_info *sbi, struct ll_readahead_state *ras, unsigned long index, unsigned hit) { struct ll_ra_info *ra = &sbi->ll_ra_info; int zero = 0; ENTRY; spin_lock(&sbi->ll_lock); spin_lock(&ras->ras_lock); ll_ra_stats_inc_unlocked(ra, hit ? RA_STAT_HIT : RA_STAT_MISS); /* reset the read-ahead window in two cases. First when the app seeks * or reads to some other part of the file. Secondly if we get a * read-ahead miss that we think we've previously issued. This can * be a symptom of there being so many read-ahead pages that the VM is * reclaiming it before we get to it. */ if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) { zero = 1; ll_ra_stats_inc_unlocked(ra, RA_STAT_DISTANT_READPAGE); } else if (!hit && ras->ras_window_len && index < ras->ras_next_readahead && index_in_window(index, ras->ras_window_start, 0, ras->ras_window_len)) { zero = 1; ll_ra_stats_inc_unlocked(ra, RA_STAT_MISS_IN_WINDOW); } if (zero) { ras_reset(ras, index); GOTO(out_unlock, 0); } ras->ras_last_readpage = index; ras->ras_consecutive++; ras_set_start(ras, index); ras->ras_next_readahead = max(ras->ras_window_start, ras->ras_next_readahead); /* wait for a few pages to arrive before issuing readahead to avoid * the worst overutilization */ if (ras->ras_consecutive == 3) { ras->ras_window_len = PTLRPC_MAX_BRW_PAGES; GOTO(out_unlock, 0); } /* we need to increase the window sometimes. we'll arbitrarily * do it half-way through the pages in an rpc */ if ((index & (PTLRPC_MAX_BRW_PAGES - 1)) == (PTLRPC_MAX_BRW_PAGES >> 1)) { ras->ras_window_len += PTLRPC_MAX_BRW_PAGES; ras->ras_window_len = min(ras->ras_window_len, ra->ra_max_pages); } EXIT; out_unlock: RAS_CDEBUG(ras); spin_unlock(&ras->ras_lock); spin_unlock(&sbi->ll_lock); } /* * for now we do our readpage the same on both 2.4 and 2.5. The kernel's * read-ahead assumes it is valid to issue readpage all the way up to * i_size, but our dlm locks make that not the case. We disable the * kernel's read-ahead and do our own by walking ahead in the page cache * checking for dlm lock coverage. the main difference between 2.4 and * 2.6 is how read-ahead gets batched and issued, but we're using our own, * so they look the same. */ int ll_readpage(struct file *filp, struct page *page) { struct ll_file_data *fd = filp->private_data; struct inode *inode = page->mapping->host; struct obd_export *exp; struct ll_async_page *llap; struct obd_io_group *oig = NULL; int rc; ENTRY; LASSERT(PageLocked(page)); LASSERT(!PageUptodate(page)); CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu/%u(%p),offset="LPX64"\n", inode->i_ino, inode->i_generation, inode, (((obd_off)page->index) << PAGE_SHIFT)); LASSERT(atomic_read(&filp->f_dentry->d_inode->i_count) > 0); rc = oig_init(&oig); if (rc < 0) GOTO(out, rc); exp = ll_i2dtexp(inode); if (exp == NULL) GOTO(out, rc = -EINVAL); llap = llap_from_page(page, LLAP_ORIGIN_READPAGE); if (IS_ERR(llap)) GOTO(out, rc = PTR_ERR(llap)); if (ll_i2sbi(inode)->ll_flags & LL_SBI_READAHEAD) ras_update(ll_i2sbi(inode), &fd->fd_ras, page->index, llap->llap_defer_uptodate); if (llap->llap_defer_uptodate) { llap->llap_ra_used = 1; rc = ll_readahead(&fd->fd_ras, exp, page->mapping, oig, fd->fd_flags); if (rc > 0) obd_trigger_group_io(exp, ll_i2info(inode)->lli_smd, NULL, oig); LL_CDEBUG_PAGE(D_PAGE, page, "marking uptodate from defer\n"); SetPageUptodate(page); unlock_page(page); GOTO(out_oig, rc = 0); } rc = ll_page_matches(page, fd->fd_flags, 0); if (rc < 0) { LL_CDEBUG_PAGE(D_ERROR, page, "lock match failed: rc %d\n", rc); GOTO(out, rc); } if (rc == 0) { CWARN("ino %lu page %lu (%llu) not covered by " "a lock (mmap?). check debug logs.\n", inode->i_ino, page->index, (long long)page->index << PAGE_CACHE_SHIFT); } rc = ll_issue_page_read(exp, llap, oig, 0); if (rc) GOTO(out, rc); LL_CDEBUG_PAGE(D_PAGE, page, "queued readpage\n"); if (ll_i2sbi(inode)->ll_flags & LL_SBI_READAHEAD) ll_readahead(&fd->fd_ras, exp, page->mapping, oig, fd->fd_flags); rc = obd_trigger_group_io(exp, ll_i2info(inode)->lli_smd, NULL, oig); EXIT; out: if (rc) unlock_page(page); out_oig: if (oig != NULL) oig_release(oig); return rc; }