/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * Lustre Light Super operations * * Copyright (c) 2002, 2003 Cluster File Systems, Inc. * * This file is part of Lustre, http://www.lustre.org. * * Lustre is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * Lustre is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Lustre; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define DEBUG_SUBSYSTEM S_LLITE #include #include #include #include #include #include #include #include "llite_internal.h" kmem_cache_t *ll_file_data_slab; extern struct address_space_operations ll_aops; extern struct address_space_operations ll_dir_aops; extern struct super_operations ll_super_operations; #ifndef log2 #define log2(n) ffz(~(n)) #endif struct ll_sb_info *lustre_init_sbi(struct super_block *sb) { struct ll_sb_info *sbi = NULL; class_uuid_t uuid; ENTRY; OBD_ALLOC(sbi, sizeof(*sbi)); if (!sbi) RETURN(NULL); spin_lock_init(&sbi->ll_pglist_lock); INIT_LIST_HEAD(&sbi->ll_pglist); sbi->ll_pglist_gen = 0; INIT_LIST_HEAD(&sbi->ll_conn_chain); INIT_HLIST_HEAD(&sbi->ll_orphan_dentry_list); ll_s2sbi(sb) = sbi; generate_random_uuid(uuid); class_uuid_unparse(uuid, &sbi->ll_sb_uuid); RETURN(sbi); } void lustre_free_sbi(struct super_block *sb) { struct ll_sb_info *sbi = ll_s2sbi(sb); ENTRY; if (sbi != NULL) OBD_FREE(sbi, sizeof(*sbi)); ll_s2sbi(sb) = NULL; EXIT; } int lustre_common_fill_super(struct super_block *sb, char *mdc, char *osc) { struct inode *root = 0; struct ll_sb_info *sbi = ll_s2sbi(sb); struct obd_device *obd; struct ll_fid rootfid; struct obd_statfs osfs; struct ptlrpc_request *request = NULL; struct lustre_handle osc_conn = {0, }; struct lustre_handle mdc_conn = {0, }; struct lustre_md md; kdev_t devno; int err; obd = class_name2obd(mdc); if (!obd) { CERROR("MDC %s: not setup or attached\n", mdc); RETURN(-EINVAL); } if (proc_lustre_fs_root) { err = lprocfs_register_mountpoint(proc_lustre_fs_root, sb, osc, mdc); if (err < 0) CERROR("could not register mount in /proc/lustre"); } mdc_init_ea_size(obd, osc); err = obd_connect(&mdc_conn, obd, &sbi->ll_sb_uuid); if (err == -EBUSY) { CERROR("An MDS (mdc %s) is performing recovery, of which this" " client is not a part. Please wait for recovery to " "complete, abort, or time out.\n", mdc); GOTO(out, err); } else if (err) { CERROR("cannot connect to %s: rc = %d\n", mdc, err); GOTO(out, err); } sbi->ll_mdc_exp = class_conn2export(&mdc_conn); err = obd_statfs(obd, &osfs, jiffies - HZ); if (err) GOTO(out_mdc, err); LASSERT(osfs.os_bsize); sb->s_blocksize = osfs.os_bsize; sb->s_blocksize_bits = log2(osfs.os_bsize); sb->s_magic = LL_SUPER_MAGIC; sb->s_maxbytes = PAGE_CACHE_MAXBYTES; devno = get_uuid2int(sbi2mdc(sbi)->cl_import->imp_target_uuid.uuid, strlen(sbi2mdc(sbi)->cl_import->imp_target_uuid.uuid)); sb->s_dev = devno; obd = class_name2obd(osc); if (!obd) { CERROR("OSC %s: not setup or attached\n", osc); GOTO(out_mdc, err); } err = obd_connect(&osc_conn, obd, &sbi->ll_sb_uuid); if (err == -EBUSY) { CERROR("An OST (osc %s) is performing recovery, of which this" " client is not a part. Please wait for recovery to " "complete, abort, or time out.\n", osc); GOTO(out, err); } else if (err) { CERROR("cannot connect to %s: rc = %d\n", osc, err); GOTO(out_mdc, err); } sbi->ll_osc_exp = class_conn2export(&osc_conn); err = mdc_getstatus(sbi->ll_mdc_exp, &rootfid); if (err) { CERROR("cannot mds_connect: rc = %d\n", err); GOTO(out_osc, err); } CDEBUG(D_SUPER, "rootfid "LPU64"\n", rootfid.id); sbi->ll_rootino = rootfid.id; sb->s_op = &lustre_super_operations; /* make root inode * XXX: move this to after cbd setup? */ err = mdc_getattr(sbi->ll_mdc_exp, &rootfid, OBD_MD_FLNOTOBD|OBD_MD_FLBLOCKS, 0, &request); if (err) { CERROR("mdc_getattr failed for root: rc = %d\n", err); GOTO(out_osc, err); } err = mdc_req2lustre_md(request, 0, sbi->ll_osc_exp, &md); if (err) { CERROR("failed to understand root inode md: rc = %d\n",err); ptlrpc_req_finished (request); GOTO(out_osc, err); } LASSERT(sbi->ll_rootino != 0); root = ll_iget(sb, sbi->ll_rootino, &md); ptlrpc_req_finished(request); if (root == NULL || is_bad_inode(root)) { /* XXX might need iput() for bad inode */ CERROR("lustre_lite: bad iget4 for root\n"); GOTO(out_root, err = -EBADF); } err = ll_close_thread_start(&sbi->ll_lcq); if (err) { CERROR("cannot start close thread: rc %d\n", err); GOTO(out_root, err); } sb->s_root = d_alloc_root(root); RETURN(err); out_root: if (root) iput(root); out_osc: obd_disconnect(sbi->ll_osc_exp, 0); out_mdc: obd_disconnect(sbi->ll_mdc_exp, 0); out: lprocfs_unregister_mountpoint(sbi); RETURN(err); } void lustre_common_put_super(struct super_block *sb) { struct ll_sb_info *sbi = ll_s2sbi(sb); struct hlist_node *tmp, *next; ENTRY; ll_close_thread_shutdown(sbi->ll_lcq); list_del(&sbi->ll_conn_chain); obd_disconnect(sbi->ll_osc_exp, 0); lprocfs_unregister_mountpoint(sbi); if (sbi->ll_proc_root) { lprocfs_remove(sbi->ll_proc_root); sbi->ll_proc_root = NULL; } obd_disconnect(sbi->ll_mdc_exp, 0); // We do this to get rid of orphaned dentries. That is not really trw. spin_lock(&dcache_lock); hlist_for_each_safe(tmp, next, &sbi->ll_orphan_dentry_list) { struct dentry *dentry = hlist_entry(tmp, struct dentry, d_hash); shrink_dcache_parent(dentry); } spin_unlock(&dcache_lock); EXIT; } char *ll_read_opt(const char *opt, char *data) { char *value; char *retval; ENTRY; CDEBUG(D_SUPER, "option: %s, data %s\n", opt, data); if (strncmp(opt, data, strlen(opt))) RETURN(NULL); if ((value = strchr(data, '=')) == NULL) RETURN(NULL); value++; OBD_ALLOC(retval, strlen(value) + 1); if (!retval) { CERROR("out of memory!\n"); RETURN(NULL); } memcpy(retval, value, strlen(value)+1); CDEBUG(D_SUPER, "Assigned option: %s, value %s\n", opt, retval); RETURN(retval); } int ll_set_opt(const char *opt, char *data, int fl) { ENTRY; CDEBUG(D_SUPER, "option: %s, data %s\n", opt, data); if (strncmp(opt, data, strlen(opt))) RETURN(0); else RETURN(fl); } void ll_options(char *options, char **ost, char **mdc, int *flags) { char *this_char; #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)) char *opt_ptr = options; #endif ENTRY; if (!options) { EXIT; return; } #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)) for (this_char = strtok (options, ","); this_char != NULL; this_char = strtok (NULL, ",")) { #else while ((this_char = strsep (&opt_ptr, ",")) != NULL) { #endif CDEBUG(D_SUPER, "this_char %s\n", this_char); if (!*ost && (*ost = ll_read_opt("osc", this_char))) continue; if (!*mdc && (*mdc = ll_read_opt("mdc", this_char))) continue; if (!(*flags & LL_SBI_NOLCK) && ((*flags) = (*flags) | ll_set_opt("nolock", this_char, LL_SBI_NOLCK))) continue; } EXIT; } void ll_lli_init(struct ll_inode_info *lli) { sema_init(&lli->lli_open_sem, 1); lli->lli_flags = 0; lli->lli_maxbytes = PAGE_CACHE_MAXBYTES; spin_lock_init(&lli->lli_lock); INIT_LIST_HEAD(&lli->lli_pending_write_llaps); } int ll_fill_super(struct super_block *sb, void *data, int silent) { struct ll_sb_info *sbi; char *osc = NULL; char *mdc = NULL; int err; ENTRY; CDEBUG(D_VFSTRACE, "VFS Op: sb %p\n", sb); sbi = lustre_init_sbi(sb); if (!sbi) RETURN(-ENOMEM); sbi->ll_flags |= LL_SBI_READAHEAD; ll_options(data, &osc, &mdc, &sbi->ll_flags); if (!osc) { CERROR("no osc\n"); GOTO(out, err = -EINVAL); } if (!mdc) { CERROR("no mdc\n"); GOTO(out, err = -EINVAL); } err = lustre_common_fill_super(sb, mdc, osc); out: if (err) lustre_free_sbi(sb); if (mdc) OBD_FREE(mdc, strlen(mdc) + 1); if (osc) OBD_FREE(osc, strlen(osc) + 1); RETURN(err); } /* ll_read_super */ void ll_put_super(struct super_block *sb) { ENTRY; CDEBUG(D_VFSTRACE, "VFS Op: sb %p\n", sb); lustre_common_put_super(sb); lustre_free_sbi(sb); EXIT; } /* ll_put_super */ int lustre_process_log(struct lustre_mount_data *lmd, char * profile, struct config_llog_instance *cfg, int allow_recov) { struct lustre_cfg lcfg; struct portals_cfg pcfg; char * peer = "MDS_PEER_UUID"; struct obd_device *obd; struct lustre_handle mdc_conn = {0, }; struct obd_export *exp; char * name = "mdc_dev"; class_uuid_t uuid; struct obd_uuid mdc_uuid; struct llog_ctxt *ctxt; int rc = 0; int err; ENTRY; generate_random_uuid(uuid); class_uuid_unparse(uuid, &mdc_uuid); if (lmd->lmd_local_nid) { PCFG_INIT(pcfg, NAL_CMD_REGISTER_MYNID); pcfg.pcfg_nal = lmd->lmd_nal; pcfg.pcfg_nid = lmd->lmd_local_nid; err = kportal_nal_cmd(&pcfg); if (err <0) GOTO(out, err); } if (lmd->lmd_nal == SOCKNAL) { PCFG_INIT(pcfg, NAL_CMD_ADD_AUTOCONN); pcfg.pcfg_nal = lmd->lmd_nal; pcfg.pcfg_nid = lmd->lmd_server_nid; pcfg.pcfg_id = lmd->lmd_server_ipaddr; pcfg.pcfg_misc = lmd->lmd_port; pcfg.pcfg_size = 8388608; pcfg.pcfg_flags = 0x4; /*share*/ err = kportal_nal_cmd(&pcfg); if (err <0) GOTO(out, err); } LCFG_INIT(lcfg, LCFG_ADD_UUID, name); lcfg.lcfg_nid = lmd->lmd_server_nid; lcfg.lcfg_inllen1 = strlen(peer) + 1; lcfg.lcfg_inlbuf1 = peer; lcfg.lcfg_nal = lmd->lmd_nal; err = class_process_config(&lcfg); if (err < 0) GOTO(out_del_conn, err); LCFG_INIT(lcfg, LCFG_ATTACH, name); lcfg.lcfg_inlbuf1 = "mdc"; lcfg.lcfg_inllen1 = strlen(lcfg.lcfg_inlbuf1) + 1; lcfg.lcfg_inlbuf2 = mdc_uuid.uuid; lcfg.lcfg_inllen2 = strlen(lcfg.lcfg_inlbuf2) + 1; err = class_process_config(&lcfg); if (err < 0) GOTO(out_del_uuid, err); LCFG_INIT(lcfg, LCFG_SETUP, name); lcfg.lcfg_inlbuf1 = lmd->lmd_mds; lcfg.lcfg_inllen1 = strlen(lcfg.lcfg_inlbuf1) + 1; lcfg.lcfg_inlbuf2 = peer; lcfg.lcfg_inllen2 = strlen(lcfg.lcfg_inlbuf2) + 1; err = class_process_config(&lcfg); if (err < 0) GOTO(out_detach, err); obd = class_name2obd(name); if (obd == NULL) GOTO(out_cleanup, err = -EINVAL); /* Disable initial recovery on this import */ err = obd_set_info(obd->obd_self_export, strlen("initial_recov"), "initial_recov", sizeof(allow_recov), &allow_recov); if (err) GOTO(out_cleanup, err); err = obd_connect(&mdc_conn, obd, &mdc_uuid); if (err) { CERROR("cannot connect to %s: rc = %d\n", lmd->lmd_mds, err); GOTO(out_cleanup, err); } exp = class_conn2export(&mdc_conn); ctxt = llog_get_context(exp->exp_obd, LLOG_CONFIG_REPL_CTXT); rc = class_config_parse_llog(ctxt, profile, cfg); if (rc) { CERROR("class_config_parse_llog failed: rc = %d\n", rc); } err = obd_disconnect(exp, 0); out_cleanup: LCFG_INIT(lcfg, LCFG_CLEANUP, name); err = class_process_config(&lcfg); if (err < 0) GOTO(out, err); out_detach: LCFG_INIT(lcfg, LCFG_DETACH, name); err = class_process_config(&lcfg); if (err < 0) GOTO(out, err); out_del_uuid: LCFG_INIT(lcfg, LCFG_DEL_UUID, name); lcfg.lcfg_inllen1 = strlen(peer) + 1; lcfg.lcfg_inlbuf1 = peer; err = class_process_config(&lcfg); out_del_conn: if (lmd->lmd_nal == SOCKNAL) { PCFG_INIT(pcfg, NAL_CMD_DEL_AUTOCONN); pcfg.pcfg_nal = lmd->lmd_nal; pcfg.pcfg_nid = lmd->lmd_server_nid; pcfg.pcfg_id = lmd->lmd_server_ipaddr; pcfg.pcfg_flags = 1; /*share*/ err = kportal_nal_cmd(&pcfg); if (err <0) GOTO(out, err); } out: if (rc == 0) rc = err; RETURN(rc); } int lustre_fill_super(struct super_block *sb, void *data, int silent) { struct lustre_mount_data * lmd = data; struct ll_sb_info *sbi; char *osc = NULL; char *mdc = NULL; int err; ENTRY; CDEBUG(D_VFSTRACE, "VFS Op: sb %p\n", sb); sbi = lustre_init_sbi(sb); if (!sbi) RETURN(-ENOMEM); sbi->ll_flags |= LL_SBI_READAHEAD; if (lmd->lmd_profile) { struct lustre_profile *lprof; struct config_llog_instance cfg; int len; if (!lmd->lmd_mds) { CERROR("no mds name\n"); GOTO(out_free, err = -EINVAL); } OBD_ALLOC(sbi->ll_lmd, sizeof(*sbi->ll_lmd)); if (sbi->ll_lmd == NULL) GOTO(out_free, err = -ENOMEM); memcpy(sbi->ll_lmd, lmd, sizeof(*lmd)); /* generate a string unique to this super, let's try the address of the super itself.*/ len = (sizeof(sb) * 2) + 1; OBD_ALLOC(sbi->ll_instance, len); if (sbi->ll_instance == NULL) GOTO(out_free, err = -ENOMEM); sprintf(sbi->ll_instance, "%p", sb); cfg.cfg_instance = sbi->ll_instance; cfg.cfg_uuid = sbi->ll_sb_uuid; cfg.cfg_local_nid = lmd->lmd_local_nid; err = lustre_process_log(lmd, lmd->lmd_profile, &cfg, 0); if (err < 0) { CERROR("Unable to process log: %s\n", lmd->lmd_profile); GOTO(out_free, err); } lprof = class_get_profile(lmd->lmd_profile); if (lprof == NULL) { CERROR("No profile found: %s\n", lmd->lmd_profile); GOTO(out_free, err = -EINVAL); } if (osc) OBD_FREE(osc, strlen(osc) + 1); OBD_ALLOC(osc, strlen(lprof->lp_osc) + strlen(sbi->ll_instance) + 2); sprintf(osc, "%s-%s", lprof->lp_osc, sbi->ll_instance); if (mdc) OBD_FREE(mdc, strlen(mdc) + 1); OBD_ALLOC(mdc, strlen(lprof->lp_mdc) + strlen(sbi->ll_instance) + 2); sprintf(mdc, "%s-%s", lprof->lp_mdc, sbi->ll_instance); } if (!osc) { CERROR("no osc\n"); GOTO(out_free, err = -EINVAL); } if (!mdc) { CERROR("no mdc\n"); GOTO(out_free, err = -EINVAL); } err = lustre_common_fill_super(sb, mdc, osc); if (err) GOTO(out_free, err); out_dev: if (mdc) OBD_FREE(mdc, strlen(mdc) + 1); if (osc) OBD_FREE(osc, strlen(osc) + 1); RETURN(err); out_free: if (sbi->ll_lmd) { int len = strlen(sbi->ll_lmd->lmd_profile) + sizeof("-clean")+1; int err; if (sbi->ll_instance != NULL) { char * cln_prof; struct config_llog_instance cfg; cfg.cfg_instance = sbi->ll_instance; cfg.cfg_uuid = sbi->ll_sb_uuid; OBD_ALLOC(cln_prof, len); sprintf(cln_prof, "%s-clean", sbi->ll_lmd->lmd_profile); err = lustre_process_log(sbi->ll_lmd, cln_prof, &cfg, 0); if (err < 0) CERROR("Unable to process log: %s\n", cln_prof); OBD_FREE(cln_prof, len); OBD_FREE(sbi->ll_instance, strlen(sbi->ll_instance)+ 1); } OBD_FREE(sbi->ll_lmd, sizeof(*sbi->ll_lmd)); } lustre_free_sbi(sb); goto out_dev; } /* lustre_fill_super */ static void lustre_manual_cleanup(struct ll_sb_info *sbi) { struct lustre_cfg lcfg; struct obd_device *obd; int next = 0; while ((obd = class_devices_in_group(&sbi->ll_sb_uuid, &next)) != NULL) { int err; LCFG_INIT(lcfg, LCFG_CLEANUP, obd->obd_name); err = class_process_config(&lcfg); if (err) { CERROR("cleanup failed: %s\n", obd->obd_name); //continue; } LCFG_INIT(lcfg, LCFG_DETACH, obd->obd_name); err = class_process_config(&lcfg); if (err) { CERROR("detach failed: %s\n", obd->obd_name); //continue; } } if (sbi->ll_lmd != NULL) class_del_profile(sbi->ll_lmd->lmd_profile); } void lustre_put_super(struct super_block *sb) { struct obd_device *obd; struct ll_sb_info *sbi = ll_s2sbi(sb); int force_umount = 0; ENTRY; CDEBUG(D_VFSTRACE, "VFS Op: sb %p\n", sb); obd = class_exp2obd(sbi->ll_mdc_exp); if (obd) force_umount = obd->obd_no_recov; obd = NULL; lustre_common_put_super(sb); if (sbi->ll_lmd != NULL) { char * cln_prof; int len = strlen(sbi->ll_lmd->lmd_profile) + sizeof("-clean")+1; int err; struct config_llog_instance cfg; if (force_umount) { CERROR("force umount, doing manual cleanup\n"); lustre_manual_cleanup(sbi); GOTO(free_lmd, 0); } cfg.cfg_instance = sbi->ll_instance; cfg.cfg_uuid = sbi->ll_sb_uuid; OBD_ALLOC(cln_prof, len); sprintf(cln_prof, "%s-clean", sbi->ll_lmd->lmd_profile); err = lustre_process_log(sbi->ll_lmd, cln_prof, &cfg, 0); if (err < 0) { CERROR("Unable to process log: %s, doing manual cleanup" "\n", cln_prof); lustre_manual_cleanup(sbi); } OBD_FREE(cln_prof, len); free_lmd: OBD_FREE(sbi->ll_lmd, sizeof(*sbi->ll_lmd)); OBD_FREE(sbi->ll_instance, strlen(sbi->ll_instance) + 1); } lustre_free_sbi(sb); EXIT; } /* lustre_put_super */ struct inode *ll_inode_from_lock(struct ldlm_lock *lock) { struct inode *inode; l_lock(&lock->l_resource->lr_namespace->ns_lock); if (lock->l_ast_data) inode = igrab(lock->l_ast_data); else inode = NULL; l_unlock(&lock->l_resource->lr_namespace->ns_lock); return inode; } static int null_if_equal(struct ldlm_lock *lock, void *data) { if (data == lock->l_ast_data) lock->l_ast_data = NULL; if (lock->l_req_mode != lock->l_granted_mode) return LDLM_ITER_STOP; return LDLM_ITER_CONTINUE; } void ll_clear_inode(struct inode *inode) { struct ll_fid fid; struct ll_inode_info *lli = ll_i2info(inode); struct ll_sb_info *sbi = ll_i2sbi(inode); ENTRY; CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu/%u(%p)\n", inode->i_ino, inode->i_generation, inode); ll_inode2fid(&fid, inode); clear_bit(LLI_F_HAVE_MDS_SIZE_LOCK, &(ll_i2info(inode)->lli_flags)); mdc_change_cbdata(sbi->ll_mdc_exp, &fid, null_if_equal, inode); if (lli->lli_smd) obd_change_cbdata(sbi->ll_osc_exp, lli->lli_smd, null_if_equal, inode); if (lli->lli_smd) { obd_free_memmd(sbi->ll_osc_exp, &lli->lli_smd); lli->lli_smd = NULL; } if (lli->lli_symlink_name) { OBD_FREE(lli->lli_symlink_name, strlen(lli->lli_symlink_name) + 1); lli->lli_symlink_name = NULL; } EXIT; } /* If this inode has objects allocated to it (lsm != NULL), then the OST * object(s) determine the file size and mtime. Otherwise, the MDS will * keep these values until such a time that objects are allocated for it. * We do the MDS operations first, as it is checking permissions for us. * We don't to the MDS RPC if there is nothing that we want to store there, * otherwise there is no harm in updating mtime/atime on the MDS if we are * going to do an RPC anyways. * * If we are doing a truncate, we will send the mtime and ctime updates * to the OST with the punch RPC, otherwise we do an explicit setattr RPC. * I don't believe it is possible to get e.g. ATTR_MTIME_SET and ATTR_SIZE * at the same time. */ int ll_setattr_raw(struct inode *inode, struct iattr *attr) { struct lov_stripe_md *lsm = ll_i2info(inode)->lli_smd; struct ll_sb_info *sbi = ll_i2sbi(inode); struct ptlrpc_request *request = NULL; struct mdc_op_data op_data; int ia_valid = attr->ia_valid; int rc = 0; ENTRY; CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu\n", inode->i_ino); lprocfs_counter_incr(ll_i2sbi(inode)->ll_stats, LPROC_LL_SETATTR); if (ia_valid & ATTR_SIZE) { if (attr->ia_size > ll_file_maxbytes(inode)) { CDEBUG(D_INODE, "file too large %llu > "LPU64"\n", attr->ia_size, ll_file_maxbytes(inode)); RETURN(-EFBIG); } attr->ia_valid |= ATTR_MTIME | ATTR_CTIME; } /* POSIX: check before ATTR_*TIME_SET set (from inode_change_ok) */ if (ia_valid & (ATTR_MTIME_SET | ATTR_ATIME_SET)) { if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER)) RETURN(-EPERM); } /* We mark all of the fields "set" so MDS/OST does not re-set them */ if (attr->ia_valid & ATTR_CTIME) { attr->ia_ctime = CURRENT_TIME; attr->ia_valid |= ATTR_CTIME_SET; } if (!(ia_valid & ATTR_ATIME_SET) && (attr->ia_valid & ATTR_ATIME)) { attr->ia_atime = CURRENT_TIME; attr->ia_valid |= ATTR_ATIME_SET; } if (!(ia_valid & ATTR_MTIME_SET) && (attr->ia_valid & ATTR_MTIME)) { attr->ia_mtime = CURRENT_TIME; attr->ia_valid |= ATTR_MTIME_SET; } if (attr->ia_valid & (ATTR_MTIME | ATTR_CTIME)) CDEBUG(D_INODE, "setting mtime %lu, ctime %lu, now = %lu\n", LTIME_S(attr->ia_mtime), LTIME_S(attr->ia_ctime), LTIME_S(CURRENT_TIME)); if (lsm) attr->ia_valid &= ~ATTR_SIZE; /* If only OST attributes being set on objects, don't do MDS RPC. * In that case, we need to check permissions and update the local * inode ourselves so we can call obdo_from_inode() always. */ if (ia_valid & (lsm ? ~(ATTR_SIZE | ATTR_FROM_OPEN | ATTR_RAW) : ~0)) { struct lustre_md md; ll_prepare_mdc_op_data(&op_data, inode, NULL, NULL, 0, 0); rc = mdc_setattr(sbi->ll_mdc_exp, &op_data, attr, NULL, 0, NULL, 0, &request); if (rc) { ptlrpc_req_finished(request); if (rc != -EPERM && rc != -EACCES) CERROR("mdc_setattr fails: rc = %d\n", rc); RETURN(rc); } rc = mdc_req2lustre_md(request, 0, sbi->ll_osc_exp, &md); if (rc) { ptlrpc_req_finished(request); RETURN(rc); } /* Won't invoke vmtruncate as we already cleared ATTR_SIZE, * but needed to set timestamps backwards on utime. */ inode_setattr(inode, attr); ll_update_inode(inode, md.body, md.lsm); ptlrpc_req_finished(request); if (!lsm || !S_ISREG(inode->i_mode)) { CDEBUG(D_INODE, "no lsm: not setting attrs on OST\n"); RETURN(0); } } else { /* The OST doesn't check permissions, but the alternative is * a gratuitous RPC to the MDS. We already rely on the client * to do read/write/truncate permission checks, so is mtime OK? */ if (ia_valid & (ATTR_MTIME | ATTR_ATIME)) { /* from sys_utime() */ if (!(ia_valid & (ATTR_MTIME_SET | ATTR_ATIME_SET))) { if (current->fsuid != inode->i_uid && (rc=ll_permission(inode,MAY_WRITE,NULL))!=0) RETURN(rc); } else { /* from inode_change_ok() */ if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER)) RETURN(-EPERM); } } /* Won't invoke vmtruncate, as we already cleared ATTR_SIZE */ inode_setattr(inode, attr); } /* We really need to get our PW lock before we change inode->i_size. * If we don't we can race with other i_size updaters on our node, like * ll_file_read. We can also race with i_size propogation to other * nodes through dirtying and writeback of final cached pages. This * last one is especially bad for racing o_append users on other * nodes. */ if (ia_valid & ATTR_SIZE) { struct ldlm_extent extent = { .start = attr->ia_size, .end = OBD_OBJECT_EOF }; struct lustre_handle lockh = { 0 }; int err, ast_flags = 0; /* XXX when we fix the AST intents to pass the discard-range * XXX extent, make ast_flags always LDLM_AST_DISCARD_DATA * XXX here. */ if (attr->ia_size == 0) ast_flags = LDLM_AST_DISCARD_DATA; /* bug 1639: avoid write/truncate i_sem/DLM deadlock */ LASSERT(atomic_read(&inode->i_sem.count) <= 0); up(&inode->i_sem); rc = ll_extent_lock_no_validate(NULL, inode, lsm, LCK_PW, &extent, &lockh, ast_flags); down(&inode->i_sem); if (rc != ELDLM_OK) RETURN(rc); rc = vmtruncate(inode, attr->ia_size); if (rc == 0) set_bit(LLI_F_HAVE_OST_SIZE_LOCK, &ll_i2info(inode)->lli_flags); //ll_try_done_writing(inode); /* unlock now as we don't mind others file lockers racing with * the mds updates below? */ err = ll_extent_unlock(NULL, inode, lsm, LCK_PW, &lockh); if (err) { CERROR("ll_extent_unlock failed: %d\n", err); if (!rc) rc = err; } } else if (ia_valid & (ATTR_MTIME | ATTR_MTIME_SET)) { struct obdo oa; CDEBUG(D_INODE, "set mtime on OST inode %lu to %lu\n", inode->i_ino, LTIME_S(attr->ia_mtime)); oa.o_id = lsm->lsm_object_id; oa.o_valid = OBD_MD_FLID; obdo_from_inode(&oa, inode, OBD_MD_FLTYPE | OBD_MD_FLATIME | OBD_MD_FLMTIME | OBD_MD_FLCTIME); rc = obd_setattr(sbi->ll_osc_exp, &oa, lsm, NULL); if (rc) CERROR("obd_setattr fails: rc=%d\n", rc); } RETURN(rc); } int ll_setattr(struct dentry *de, struct iattr *attr) { LBUG(); /* code is unused, but leave this in case of VFS changes */ RETURN(-ENOSYS); } int ll_statfs_internal(struct super_block *sb, struct obd_statfs *osfs, unsigned long max_age) { struct ll_sb_info *sbi = ll_s2sbi(sb); struct obd_statfs obd_osfs; int rc; ENTRY; rc = obd_statfs(class_exp2obd(sbi->ll_mdc_exp), osfs, max_age); if (rc) { CERROR("mdc_statfs fails: rc = %d\n", rc); RETURN(rc); } osfs->os_type = sb->s_magic; CDEBUG(D_SUPER, "MDC blocks "LPU64"/"LPU64" objects "LPU64"/"LPU64"\n", osfs->os_bavail, osfs->os_blocks, osfs->os_ffree,osfs->os_files); rc = obd_statfs(class_exp2obd(sbi->ll_osc_exp), &obd_osfs, max_age); if (rc) { CERROR("obd_statfs fails: rc = %d\n", rc); RETURN(rc); } CDEBUG(D_SUPER, "OSC blocks "LPU64"/"LPU64" objects "LPU64"/"LPU64"\n", obd_osfs.os_bavail, obd_osfs.os_blocks, obd_osfs.os_ffree, obd_osfs.os_files); osfs->os_blocks = obd_osfs.os_blocks; osfs->os_bfree = obd_osfs.os_bfree; osfs->os_bavail = obd_osfs.os_bavail; /* If we don't have as many objects free on the OST as inodes * on the MDS, we reduce the total number of inodes to * compensate, so that the "inodes in use" number is correct. */ if (obd_osfs.os_ffree < osfs->os_ffree) { osfs->os_files = (osfs->os_files - osfs->os_ffree) + obd_osfs.os_ffree; osfs->os_ffree = obd_osfs.os_ffree; } RETURN(rc); } int ll_statfs(struct super_block *sb, struct kstatfs *sfs) { struct obd_statfs osfs; int rc; CDEBUG(D_VFSTRACE, "VFS Op:\n"); lprocfs_counter_incr(ll_s2sbi(sb)->ll_stats, LPROC_LL_STAFS); /* For now we will always get up-to-date statfs values, but in the * future we may allow some amount of caching on the client (e.g. * from QOS or lprocfs updates). */ rc = ll_statfs_internal(sb, &osfs, jiffies - 1); if (rc) return rc; statfs_unpack(sfs, &osfs); if (sizeof(sfs->f_blocks) == 4) { while (osfs.os_blocks > ~0UL) { sfs->f_bsize <<= 1; osfs.os_blocks >>= 1; osfs.os_bfree >>= 1; osfs.os_bavail >>= 1; } } sfs->f_blocks = osfs.os_blocks; sfs->f_bfree = osfs.os_bfree; sfs->f_bavail = osfs.os_bavail; return 0; } void dump_lsm(int level, struct lov_stripe_md *lsm) { CDEBUG(level, "objid "LPX64", maxbytes "LPX64", magic 0x%08X, " "stripe_size %u, stripe_count %u\n", lsm->lsm_object_id, lsm->lsm_maxbytes, lsm->lsm_magic, lsm->lsm_stripe_size, lsm->lsm_stripe_count); } void ll_update_inode(struct inode *inode, struct mds_body *body, struct lov_stripe_md *lsm) { struct ll_inode_info *lli = ll_i2info(inode); LASSERT ((lsm != NULL) == ((body->valid & OBD_MD_FLEASIZE) != 0)); if (lsm != NULL) { if (lli->lli_smd == NULL) { lli->lli_smd = lsm; lli->lli_maxbytes = lsm->lsm_maxbytes; if (lli->lli_maxbytes > PAGE_CACHE_MAXBYTES) lli->lli_maxbytes = PAGE_CACHE_MAXBYTES; } else { if (memcmp(lli->lli_smd, lsm, sizeof(*lsm))) { CERROR("lsm mismatch for inode %ld\n", inode->i_ino); CERROR("lli_smd:\n"); dump_lsm(D_ERROR, lli->lli_smd); CERROR("lsm:\n"); dump_lsm(D_ERROR, lsm); LBUG(); } } if (lli->lli_smd != lsm) obd_free_memmd(ll_i2obdexp(inode), &lsm); } if (body->valid & OBD_MD_FLID) inode->i_ino = body->ino; if (body->valid & OBD_MD_FLATIME) LTIME_S(inode->i_atime) = body->atime; if (body->valid & OBD_MD_FLMTIME && body->mtime > LTIME_S(inode->i_mtime)) { CDEBUG(D_INODE, "setting ino %lu mtime from %lu to %u\n", inode->i_ino, LTIME_S(inode->i_mtime), body->mtime); LTIME_S(inode->i_mtime) = body->mtime; } if (body->valid & OBD_MD_FLCTIME && body->ctime > LTIME_S(inode->i_ctime)) LTIME_S(inode->i_ctime) = body->ctime; if (body->valid & OBD_MD_FLMODE) inode->i_mode = (inode->i_mode & S_IFMT)|(body->mode & ~S_IFMT); if (body->valid & OBD_MD_FLTYPE) inode->i_mode = (inode->i_mode & ~S_IFMT)|(body->mode & S_IFMT); if (body->valid & OBD_MD_FLUID) inode->i_uid = body->uid; if (body->valid & OBD_MD_FLGID) inode->i_gid = body->gid; if (body->valid & OBD_MD_FLFLAGS) inode->i_flags = body->flags; if (body->valid & OBD_MD_FLNLINK) inode->i_nlink = body->nlink; if (body->valid & OBD_MD_FLGENER) inode->i_generation = body->generation; if (body->valid & OBD_MD_FLRDEV) #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)) inode->i_rdev = body->rdev; #else inode->i_rdev = old_decode_dev(body->rdev); #endif if (body->valid & OBD_MD_FLSIZE) inode->i_size = body->size; if (body->valid & OBD_MD_FLBLOCKS) inode->i_blocks = body->blocks; if (body->valid & OBD_MD_FLSIZE) set_bit(LLI_F_HAVE_MDS_SIZE_LOCK, &lli->lli_flags); } void ll_read_inode2(struct inode *inode, void *opaque) { struct lustre_md *md = opaque; struct ll_inode_info *lli = ll_i2info(inode); ENTRY; CDEBUG(D_VFSTRACE, "VFS Op:inode=%lu/%u(%p)\n", inode->i_ino, inode->i_generation, inode); ll_lli_init(lli); LASSERT(!lli->lli_smd); /* Core attributes from the MDS first. This is a new inode, and * the VFS doesn't zero times in the core inode so we have to do * it ourselves. They will be overwritten by either MDS or OST * attributes - we just need to make sure they aren't newer. */ LTIME_S(inode->i_mtime) = 0; LTIME_S(inode->i_atime) = 0; LTIME_S(inode->i_ctime) = 0; ll_update_inode(inode, md->body, md->lsm); /* OIDEBUG(inode); */ if (S_ISREG(inode->i_mode)) { inode->i_op = &ll_file_inode_operations; inode->i_fop = &ll_file_operations; inode->i_mapping->a_ops = &ll_aops; EXIT; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &ll_dir_inode_operations; inode->i_fop = &ll_dir_operations; inode->i_mapping->a_ops = &ll_dir_aops; EXIT; } else if (S_ISLNK(inode->i_mode)) { inode->i_op = &ll_fast_symlink_inode_operations; EXIT; } else { inode->i_op = &ll_special_inode_operations; #if (LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)) init_special_inode(inode, inode->i_mode, kdev_t_to_nr(inode->i_rdev)); #else init_special_inode(inode, inode->i_mode, inode->i_rdev); #endif EXIT; } } int ll_iocontrol(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct ll_sb_info *sbi = ll_i2sbi(inode); struct ptlrpc_request *req = NULL; int rc, flags = 0; ENTRY; switch(cmd) { case EXT3_IOC_GETFLAGS: { struct ll_fid fid; unsigned long valid = OBD_MD_FLFLAGS; struct mds_body *body; ll_inode2fid(&fid, inode); rc = mdc_getattr(sbi->ll_mdc_exp, &fid, valid, 0, &req); if (rc) { CERROR("failure %d inode %lu\n", rc, inode->i_ino); RETURN(-abs(rc)); } body = lustre_msg_buf(req->rq_repmsg, 0, sizeof(*body)); if (body->flags & S_APPEND) flags |= EXT3_APPEND_FL; if (body->flags & S_IMMUTABLE) flags |= EXT3_IMMUTABLE_FL; if (body->flags & S_NOATIME) flags |= EXT3_NOATIME_FL; ptlrpc_req_finished (req); RETURN(put_user(flags, (int *)arg)); } case EXT3_IOC_SETFLAGS: { struct mdc_op_data op_data; struct iattr attr; struct obdo *oa; struct lov_stripe_md *lsm = ll_i2info(inode)->lli_smd; if (get_user(flags, (int *)arg)) RETURN(-EFAULT); oa = obdo_alloc(); if (!oa) RETURN(-ENOMEM); ll_prepare_mdc_op_data(&op_data, inode, NULL, NULL, 0, 0); memset(&attr, 0x0, sizeof(attr)); attr.ia_attr_flags = flags; attr.ia_valid |= ATTR_ATTR_FLAG; rc = mdc_setattr(sbi->ll_mdc_exp, &op_data, &attr, NULL, 0, NULL, 0, &req); if (rc) { ptlrpc_req_finished(req); if (rc != -EPERM && rc != -EACCES) CERROR("mdc_setattr fails: rc = %d\n", rc); obdo_free(oa); RETURN(rc); } ptlrpc_req_finished(req); oa->o_id = lsm->lsm_object_id; oa->o_flags = flags; oa->o_valid = OBD_MD_FLID | OBD_MD_FLFLAGS; rc = obd_setattr(sbi->ll_osc_exp, oa, lsm, NULL); obdo_free(oa); if (rc) { if (rc != -EPERM && rc != -EACCES) CERROR("mdc_setattr fails: rc = %d\n", rc); RETURN(rc); } if (flags & EXT3_APPEND_FL) inode->i_flags |= S_APPEND; else inode->i_flags &= ~S_APPEND; if (flags & EXT3_IMMUTABLE_FL) inode->i_flags |= S_IMMUTABLE; else inode->i_flags &= ~S_IMMUTABLE; if (flags & EXT3_NOATIME_FL) inode->i_flags |= S_NOATIME; else inode->i_flags &= ~S_NOATIME; RETURN(0); } default: RETURN(-ENOSYS); } RETURN(0); } void ll_umount_begin(struct super_block *sb) { struct ll_sb_info *sbi = ll_s2sbi(sb); struct obd_device *obd; struct obd_ioctl_data ioc_data = { 0 }; ENTRY; CDEBUG(D_VFSTRACE, "VFS Op:\n"); obd = class_exp2obd(sbi->ll_mdc_exp); if (obd == NULL) { CERROR("Invalid MDC connection handle "LPX64"\n", sbi->ll_mdc_exp->exp_handle.h_cookie); EXIT; return; } obd->obd_no_recov = 1; obd_iocontrol(IOC_OSC_SET_ACTIVE, sbi->ll_mdc_exp, sizeof ioc_data, &ioc_data, NULL); obd = class_exp2obd(sbi->ll_osc_exp); if (obd == NULL) { CERROR("Invalid LOV connection handle "LPX64"\n", sbi->ll_osc_exp->exp_handle.h_cookie); EXIT; return; } obd->obd_no_recov = 1; obd_iocontrol(IOC_OSC_SET_ACTIVE, sbi->ll_osc_exp, sizeof ioc_data, &ioc_data, NULL); /* Really, we'd like to wait until there are no requests outstanding, * and then continue. For now, we just invalidate the requests, * schedule, and hope. */ schedule(); EXIT; } int ll_prep_inode(struct obd_export *exp, struct inode **inode, struct ptlrpc_request *req, int offset,struct super_block *sb) { struct lustre_md md; int rc = 0; rc = mdc_req2lustre_md(req, offset, exp, &md); if (rc) RETURN(rc); if (*inode) { ll_update_inode(*inode, md.body, md.lsm); } else { LASSERT(sb); *inode = ll_iget(sb, md.body->ino, &md); if (*inode == NULL || is_bad_inode(*inode)) { /* free the lsm if we allocated one above */ if (md.lsm != NULL) obd_free_memmd(exp, &md.lsm); rc = -ENOMEM; CERROR("new_inode -fatal: rc %d\n", rc); } } RETURN(rc); }