/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2010, 2014, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/ldlm/ldlm_resource.c * * Author: Phil Schwan * Author: Peter Braam */ #define DEBUG_SUBSYSTEM S_LDLM #include #include #include #include "ldlm_internal.h" struct kmem_cache *ldlm_resource_slab, *ldlm_lock_slab; int ldlm_srv_namespace_nr = 0; int ldlm_cli_namespace_nr = 0; struct mutex ldlm_srv_namespace_lock; struct list_head ldlm_srv_namespace_list; struct mutex ldlm_cli_namespace_lock; /* Client Namespaces that have active resources in them. * Once all resources go away, ldlm_poold moves such namespaces to the * inactive list */ struct list_head ldlm_cli_active_namespace_list; /* Client namespaces that don't have any locks in them */ struct list_head ldlm_cli_inactive_namespace_list; static struct proc_dir_entry *ldlm_type_proc_dir; static struct proc_dir_entry *ldlm_ns_proc_dir; struct proc_dir_entry *ldlm_svc_proc_dir; /* during debug dump certain amount of granted locks for one resource to avoid * DDOS. */ static unsigned int ldlm_dump_granted_max = 256; #ifdef CONFIG_PROC_FS static ssize_t lprocfs_dump_ns_seq_write(struct file *file, const char __user *buffer, size_t count, loff_t *off) { ldlm_dump_all_namespaces(LDLM_NAMESPACE_SERVER, D_DLMTRACE); ldlm_dump_all_namespaces(LDLM_NAMESPACE_CLIENT, D_DLMTRACE); RETURN(count); } LPROC_SEQ_FOPS_WO_TYPE(ldlm, dump_ns); LPROC_SEQ_FOPS_RW_TYPE(ldlm_rw, uint); LPROC_SEQ_FOPS_RO_TYPE(ldlm, uint); int ldlm_proc_setup(void) { int rc; struct lprocfs_vars list[] = { { .name = "dump_namespaces", .fops = &ldlm_dump_ns_fops, .proc_mode = 0222 }, { .name = "dump_granted_max", .fops = &ldlm_rw_uint_fops, .data = &ldlm_dump_granted_max }, { .name = "cancel_unused_locks_before_replay", .fops = &ldlm_rw_uint_fops, .data = &ldlm_cancel_unused_locks_before_replay }, { NULL }}; ENTRY; LASSERT(ldlm_ns_proc_dir == NULL); ldlm_type_proc_dir = lprocfs_register(OBD_LDLM_DEVICENAME, proc_lustre_root, NULL, NULL); if (IS_ERR(ldlm_type_proc_dir)) { CERROR("LProcFS failed in ldlm-init\n"); rc = PTR_ERR(ldlm_type_proc_dir); GOTO(err, rc); } ldlm_ns_proc_dir = lprocfs_register("namespaces", ldlm_type_proc_dir, NULL, NULL); if (IS_ERR(ldlm_ns_proc_dir)) { CERROR("LProcFS failed in ldlm-init\n"); rc = PTR_ERR(ldlm_ns_proc_dir); GOTO(err_type, rc); } ldlm_svc_proc_dir = lprocfs_register("services", ldlm_type_proc_dir, NULL, NULL); if (IS_ERR(ldlm_svc_proc_dir)) { CERROR("LProcFS failed in ldlm-init\n"); rc = PTR_ERR(ldlm_svc_proc_dir); GOTO(err_ns, rc); } rc = lprocfs_add_vars(ldlm_type_proc_dir, list, NULL); if (rc != 0) { CERROR("LProcFS failed in ldlm-init\n"); GOTO(err_svc, rc); } RETURN(0); err_svc: lprocfs_remove(&ldlm_svc_proc_dir); err_ns: lprocfs_remove(&ldlm_ns_proc_dir); err_type: lprocfs_remove(&ldlm_type_proc_dir); err: ldlm_svc_proc_dir = NULL; RETURN(rc); } void ldlm_proc_cleanup(void) { if (ldlm_svc_proc_dir) lprocfs_remove(&ldlm_svc_proc_dir); if (ldlm_ns_proc_dir) lprocfs_remove(&ldlm_ns_proc_dir); if (ldlm_type_proc_dir) lprocfs_remove(&ldlm_type_proc_dir); } static int lprocfs_ns_resources_seq_show(struct seq_file *m, void *v) { struct ldlm_namespace *ns = m->private; __u64 res = 0; struct cfs_hash_bd bd; int i; /* result is not strictly consistant */ cfs_hash_for_each_bucket(ns->ns_rs_hash, &bd, i) res += cfs_hash_bd_count_get(&bd); return lprocfs_u64_seq_show(m, &res); } LPROC_SEQ_FOPS_RO(lprocfs_ns_resources); static int lprocfs_ns_locks_seq_show(struct seq_file *m, void *v) { struct ldlm_namespace *ns = m->private; __u64 locks; locks = lprocfs_stats_collector(ns->ns_stats, LDLM_NSS_LOCKS, LPROCFS_FIELDS_FLAGS_SUM); return lprocfs_u64_seq_show(m, &locks); } LPROC_SEQ_FOPS_RO(lprocfs_ns_locks); static int lprocfs_lru_size_seq_show(struct seq_file *m, void *v) { struct ldlm_namespace *ns = m->private; __u32 *nr = &ns->ns_max_unused; if (ns_connect_lru_resize(ns)) nr = &ns->ns_nr_unused; return lprocfs_uint_seq_show(m, nr); } static ssize_t lprocfs_lru_size_seq_write(struct file *file, const char __user *buffer, size_t count, loff_t *off) { struct ldlm_namespace *ns = ((struct seq_file *)file->private_data)->private; char dummy[MAX_STRING_SIZE + 1], *end; unsigned long tmp; int lru_resize; dummy[MAX_STRING_SIZE] = '\0'; if (copy_from_user(dummy, buffer, MAX_STRING_SIZE)) return -EFAULT; if (strncmp(dummy, "clear", 5) == 0) { CDEBUG(D_DLMTRACE, "dropping all unused locks from namespace %s\n", ldlm_ns_name(ns)); if (ns_connect_lru_resize(ns)) { int canceled, unused = ns->ns_nr_unused; /* Try to cancel all @ns_nr_unused locks. */ canceled = ldlm_cancel_lru(ns, unused, 0, LDLM_CANCEL_PASSED); if (canceled < unused) { CDEBUG(D_DLMTRACE, "not all requested locks are canceled, " "requested: %d, canceled: %d\n", unused, canceled); return -EINVAL; } } else { tmp = ns->ns_max_unused; ns->ns_max_unused = 0; ldlm_cancel_lru(ns, 0, 0, LDLM_CANCEL_PASSED); ns->ns_max_unused = tmp; } return count; } tmp = simple_strtoul(dummy, &end, 0); if (dummy == end) { CERROR("invalid value written\n"); return -EINVAL; } lru_resize = (tmp == 0); if (ns_connect_lru_resize(ns)) { if (!lru_resize) ns->ns_max_unused = (unsigned int)tmp; if (tmp > ns->ns_nr_unused) tmp = ns->ns_nr_unused; tmp = ns->ns_nr_unused - tmp; CDEBUG(D_DLMTRACE, "changing namespace %s unused locks from %u to %u\n", ldlm_ns_name(ns), ns->ns_nr_unused, (unsigned int)tmp); ldlm_cancel_lru(ns, tmp, LCF_ASYNC, LDLM_CANCEL_PASSED); if (!lru_resize) { CDEBUG(D_DLMTRACE, "disable lru_resize for namespace %s\n", ldlm_ns_name(ns)); ns->ns_connect_flags &= ~OBD_CONNECT_LRU_RESIZE; } } else { CDEBUG(D_DLMTRACE, "changing namespace %s max_unused from %u to %u\n", ldlm_ns_name(ns), ns->ns_max_unused, (unsigned int)tmp); ns->ns_max_unused = (unsigned int)tmp; ldlm_cancel_lru(ns, 0, LCF_ASYNC, LDLM_CANCEL_PASSED); /* Make sure that LRU resize was originally supported before * turning it on here. */ if (lru_resize && (ns->ns_orig_connect_flags & OBD_CONNECT_LRU_RESIZE)) { CDEBUG(D_DLMTRACE, "enable lru_resize for namespace %s\n", ldlm_ns_name(ns)); ns->ns_connect_flags |= OBD_CONNECT_LRU_RESIZE; } } return count; } LPROC_SEQ_FOPS(lprocfs_lru_size); static int lprocfs_elc_seq_show(struct seq_file *m, void *v) { struct ldlm_namespace *ns = m->private; unsigned int supp = ns_connect_cancelset(ns); return lprocfs_uint_seq_show(m, &supp); } static ssize_t lprocfs_elc_seq_write(struct file *file, const char __user *buffer, size_t count, loff_t *off) { struct ldlm_namespace *ns = ((struct seq_file *)file->private_data)->private; unsigned int supp = -1; int rc; rc = lprocfs_wr_uint(file, buffer, count, &supp); if (rc < 0) return rc; if (supp == 0) ns->ns_connect_flags &= ~OBD_CONNECT_CANCELSET; else if (ns->ns_orig_connect_flags & OBD_CONNECT_CANCELSET) ns->ns_connect_flags |= OBD_CONNECT_CANCELSET; return count; } LPROC_SEQ_FOPS(lprocfs_elc); static void ldlm_namespace_proc_unregister(struct ldlm_namespace *ns) { if (ns->ns_proc_dir_entry == NULL) CERROR("dlm namespace %s has no procfs dir?\n", ldlm_ns_name(ns)); else lprocfs_remove(&ns->ns_proc_dir_entry); if (ns->ns_stats != NULL) lprocfs_free_stats(&ns->ns_stats); } static int ldlm_namespace_proc_register(struct ldlm_namespace *ns) { struct lprocfs_vars lock_vars[2]; char lock_name[MAX_STRING_SIZE + 1]; struct proc_dir_entry *ns_pde; LASSERT(ns != NULL); LASSERT(ns->ns_rs_hash != NULL); if (ns->ns_proc_dir_entry != NULL) { ns_pde = ns->ns_proc_dir_entry; } else { ns_pde = proc_mkdir(ldlm_ns_name(ns), ldlm_ns_proc_dir); if (ns_pde == NULL) return -ENOMEM; ns->ns_proc_dir_entry = ns_pde; } ns->ns_stats = lprocfs_alloc_stats(LDLM_NSS_LAST, 0); if (ns->ns_stats == NULL) return -ENOMEM; lprocfs_counter_init(ns->ns_stats, LDLM_NSS_LOCKS, LPROCFS_CNTR_AVGMINMAX, "locks", "locks"); lock_name[MAX_STRING_SIZE] = '\0'; memset(lock_vars, 0, sizeof(lock_vars)); lock_vars[0].name = lock_name; ldlm_add_var(&lock_vars[0], ns_pde, "resource_count", ns, &lprocfs_ns_resources_fops); ldlm_add_var(&lock_vars[0], ns_pde, "lock_count", ns, &lprocfs_ns_locks_fops); if (ns_is_client(ns)) { ldlm_add_var(&lock_vars[0], ns_pde, "lock_unused_count", &ns->ns_nr_unused, &ldlm_uint_fops); ldlm_add_var(&lock_vars[0], ns_pde, "lru_size", ns, &lprocfs_lru_size_fops); ldlm_add_var(&lock_vars[0], ns_pde, "lru_max_age", &ns->ns_max_age, &ldlm_rw_uint_fops); ldlm_add_var(&lock_vars[0], ns_pde, "early_lock_cancel", ns, &lprocfs_elc_fops); } else { ldlm_add_var(&lock_vars[0], ns_pde, "ctime_age_limit", &ns->ns_ctime_age_limit, &ldlm_rw_uint_fops); ldlm_add_var(&lock_vars[0], ns_pde, "lock_timeouts", &ns->ns_timeouts, &ldlm_uint_fops); ldlm_add_var(&lock_vars[0], ns_pde, "max_nolock_bytes", &ns->ns_max_nolock_size, &ldlm_rw_uint_fops); ldlm_add_var(&lock_vars[0], ns_pde, "contention_seconds", &ns->ns_contention_time, &ldlm_rw_uint_fops); ldlm_add_var(&lock_vars[0], ns_pde, "contended_locks", &ns->ns_contended_locks, &ldlm_rw_uint_fops); ldlm_add_var(&lock_vars[0], ns_pde, "max_parallel_ast", &ns->ns_max_parallel_ast, &ldlm_rw_uint_fops); } return 0; } #undef MAX_STRING_SIZE #else /* CONFIG_PROC_FS */ #define ldlm_namespace_proc_unregister(ns) ({;}) #define ldlm_namespace_proc_register(ns) ({0;}) #endif /* CONFIG_PROC_FS */ static unsigned ldlm_res_hop_hash(struct cfs_hash *hs, const void *key, unsigned mask) { const struct ldlm_res_id *id = key; unsigned val = 0; unsigned i; for (i = 0; i < RES_NAME_SIZE; i++) val += id->name[i]; return val & mask; } static unsigned ldlm_res_hop_fid_hash(struct cfs_hash *hs, const void *key, unsigned mask) { const struct ldlm_res_id *id = key; struct lu_fid fid; __u32 hash; __u32 val; fid.f_seq = id->name[LUSTRE_RES_ID_SEQ_OFF]; fid.f_oid = (__u32)id->name[LUSTRE_RES_ID_VER_OID_OFF]; fid.f_ver = (__u32)(id->name[LUSTRE_RES_ID_VER_OID_OFF] >> 32); hash = fid_flatten32(&fid); hash += (hash >> 4) + (hash << 12); /* mixing oid and seq */ if (id->name[LUSTRE_RES_ID_HSH_OFF] != 0) { val = id->name[LUSTRE_RES_ID_HSH_OFF]; hash += (val >> 5) + (val << 11); } else { val = fid_oid(&fid); } hash = hash_long(hash, hs->hs_bkt_bits); /* give me another random factor */ hash -= hash_long((unsigned long)hs, val % 11 + 3); hash <<= hs->hs_cur_bits - hs->hs_bkt_bits; hash |= ldlm_res_hop_hash(hs, key, CFS_HASH_NBKT(hs) - 1); return hash & mask; } static void *ldlm_res_hop_key(struct hlist_node *hnode) { struct ldlm_resource *res; res = hlist_entry(hnode, struct ldlm_resource, lr_hash); return &res->lr_name; } static int ldlm_res_hop_keycmp(const void *key, struct hlist_node *hnode) { struct ldlm_resource *res; res = hlist_entry(hnode, struct ldlm_resource, lr_hash); return ldlm_res_eq((const struct ldlm_res_id *)key, (const struct ldlm_res_id *)&res->lr_name); } static void *ldlm_res_hop_object(struct hlist_node *hnode) { return hlist_entry(hnode, struct ldlm_resource, lr_hash); } static void ldlm_res_hop_get_locked(struct cfs_hash *hs, struct hlist_node *hnode) { struct ldlm_resource *res; res = hlist_entry(hnode, struct ldlm_resource, lr_hash); ldlm_resource_getref(res); } static void ldlm_res_hop_put_locked(struct cfs_hash *hs, struct hlist_node *hnode) { struct ldlm_resource *res; res = hlist_entry(hnode, struct ldlm_resource, lr_hash); /* cfs_hash_for_each_nolock is the only chance we call it */ ldlm_resource_putref_locked(res); } static void ldlm_res_hop_put(struct cfs_hash *hs, struct hlist_node *hnode) { struct ldlm_resource *res; res = hlist_entry(hnode, struct ldlm_resource, lr_hash); ldlm_resource_putref(res); } static struct cfs_hash_ops ldlm_ns_hash_ops = { .hs_hash = ldlm_res_hop_hash, .hs_key = ldlm_res_hop_key, .hs_keycmp = ldlm_res_hop_keycmp, .hs_keycpy = NULL, .hs_object = ldlm_res_hop_object, .hs_get = ldlm_res_hop_get_locked, .hs_put_locked = ldlm_res_hop_put_locked, .hs_put = ldlm_res_hop_put }; static struct cfs_hash_ops ldlm_ns_fid_hash_ops = { .hs_hash = ldlm_res_hop_fid_hash, .hs_key = ldlm_res_hop_key, .hs_keycmp = ldlm_res_hop_keycmp, .hs_keycpy = NULL, .hs_object = ldlm_res_hop_object, .hs_get = ldlm_res_hop_get_locked, .hs_put_locked = ldlm_res_hop_put_locked, .hs_put = ldlm_res_hop_put }; typedef struct { ldlm_ns_type_t nsd_type; /** hash bucket bits */ unsigned nsd_bkt_bits; /** hash bits */ unsigned nsd_all_bits; /** hash operations */ struct cfs_hash_ops *nsd_hops; } ldlm_ns_hash_def_t; static ldlm_ns_hash_def_t ldlm_ns_hash_defs[] = { { .nsd_type = LDLM_NS_TYPE_MDC, .nsd_bkt_bits = 11, .nsd_all_bits = 16, .nsd_hops = &ldlm_ns_fid_hash_ops, }, { .nsd_type = LDLM_NS_TYPE_MDT, .nsd_bkt_bits = 14, .nsd_all_bits = 21, .nsd_hops = &ldlm_ns_fid_hash_ops, }, { .nsd_type = LDLM_NS_TYPE_OSC, .nsd_bkt_bits = 8, .nsd_all_bits = 12, .nsd_hops = &ldlm_ns_hash_ops, }, { .nsd_type = LDLM_NS_TYPE_OST, .nsd_bkt_bits = 11, .nsd_all_bits = 17, .nsd_hops = &ldlm_ns_hash_ops, }, { .nsd_type = LDLM_NS_TYPE_MGC, .nsd_bkt_bits = 4, .nsd_all_bits = 4, .nsd_hops = &ldlm_ns_hash_ops, }, { .nsd_type = LDLM_NS_TYPE_MGT, .nsd_bkt_bits = 4, .nsd_all_bits = 4, .nsd_hops = &ldlm_ns_hash_ops, }, { .nsd_type = LDLM_NS_TYPE_UNKNOWN, }, }; /** * Create and initialize new empty namespace. */ struct ldlm_namespace *ldlm_namespace_new(struct obd_device *obd, char *name, ldlm_side_t client, ldlm_appetite_t apt, ldlm_ns_type_t ns_type) { struct ldlm_namespace *ns = NULL; struct ldlm_ns_bucket *nsb; ldlm_ns_hash_def_t *nsd; struct cfs_hash_bd bd; int idx; int rc; ENTRY; LASSERT(obd != NULL); rc = ldlm_get_ref(); if (rc) { CERROR("ldlm_get_ref failed: %d\n", rc); RETURN(NULL); } for (idx = 0;;idx++) { nsd = &ldlm_ns_hash_defs[idx]; if (nsd->nsd_type == LDLM_NS_TYPE_UNKNOWN) { CERROR("Unknown type %d for ns %s\n", ns_type, name); GOTO(out_ref, NULL); } if (nsd->nsd_type == ns_type) break; } OBD_ALLOC_PTR(ns); if (!ns) GOTO(out_ref, NULL); ns->ns_rs_hash = cfs_hash_create(name, nsd->nsd_all_bits, nsd->nsd_all_bits, nsd->nsd_bkt_bits, sizeof(*nsb), CFS_HASH_MIN_THETA, CFS_HASH_MAX_THETA, nsd->nsd_hops, CFS_HASH_DEPTH | CFS_HASH_BIGNAME | CFS_HASH_SPIN_BKTLOCK | CFS_HASH_NO_ITEMREF); if (ns->ns_rs_hash == NULL) GOTO(out_ns, NULL); cfs_hash_for_each_bucket(ns->ns_rs_hash, &bd, idx) { nsb = cfs_hash_bd_extra_get(ns->ns_rs_hash, &bd); at_init(&nsb->nsb_at_estimate, ldlm_enqueue_min, 0); nsb->nsb_namespace = ns; } ns->ns_obd = obd; ns->ns_appetite = apt; ns->ns_client = client; INIT_LIST_HEAD(&ns->ns_list_chain); INIT_LIST_HEAD(&ns->ns_unused_list); spin_lock_init(&ns->ns_lock); atomic_set(&ns->ns_bref, 0); init_waitqueue_head(&ns->ns_waitq); ns->ns_max_nolock_size = NS_DEFAULT_MAX_NOLOCK_BYTES; ns->ns_contention_time = NS_DEFAULT_CONTENTION_SECONDS; ns->ns_contended_locks = NS_DEFAULT_CONTENDED_LOCKS; ns->ns_max_parallel_ast = LDLM_DEFAULT_PARALLEL_AST_LIMIT; ns->ns_nr_unused = 0; ns->ns_max_unused = LDLM_DEFAULT_LRU_SIZE; ns->ns_max_age = LDLM_DEFAULT_MAX_ALIVE; ns->ns_ctime_age_limit = LDLM_CTIME_AGE_LIMIT; ns->ns_timeouts = 0; ns->ns_orig_connect_flags = 0; ns->ns_connect_flags = 0; ns->ns_stopping = 0; rc = ldlm_namespace_proc_register(ns); if (rc != 0) { CERROR("Can't initialize ns proc, rc %d\n", rc); GOTO(out_hash, rc); } idx = ldlm_namespace_nr_read(client); rc = ldlm_pool_init(&ns->ns_pool, ns, idx, client); if (rc) { CERROR("Can't initialize lock pool, rc %d\n", rc); GOTO(out_proc, rc); } ldlm_namespace_register(ns, client); RETURN(ns); out_proc: ldlm_namespace_proc_unregister(ns); ldlm_namespace_cleanup(ns, 0); out_hash: cfs_hash_putref(ns->ns_rs_hash); out_ns: OBD_FREE_PTR(ns); out_ref: ldlm_put_ref(); RETURN(NULL); } EXPORT_SYMBOL(ldlm_namespace_new); extern struct ldlm_lock *ldlm_lock_get(struct ldlm_lock *lock); /** * Cancel and destroy all locks on a resource. * * If flags contains FL_LOCAL_ONLY, don't try to tell the server, just * clean up. This is currently only used for recovery, and we make * certain assumptions as a result--notably, that we shouldn't cancel * locks with refs. */ static void cleanup_resource(struct ldlm_resource *res, struct list_head *q, __u64 flags) { struct list_head *tmp; int rc = 0, client = ns_is_client(ldlm_res_to_ns(res)); bool local_only = !!(flags & LDLM_FL_LOCAL_ONLY); do { struct ldlm_lock *lock = NULL; /* First, we look for non-cleaned-yet lock * all cleaned locks are marked by CLEANED flag. */ lock_res(res); list_for_each(tmp, q) { lock = list_entry(tmp, struct ldlm_lock, l_res_link); if (ldlm_is_cleaned(lock)) { lock = NULL; continue; } LDLM_LOCK_GET(lock); ldlm_set_cleaned(lock); break; } if (lock == NULL) { unlock_res(res); break; } /* Set CBPENDING so nothing in the cancellation path * can match this lock. */ ldlm_set_cbpending(lock); ldlm_set_failed(lock); lock->l_flags |= flags; /* ... without sending a CANCEL message for local_only. */ if (local_only) ldlm_set_local_only(lock); if (local_only && (lock->l_readers || lock->l_writers)) { /* This is a little bit gross, but much better than the * alternative: pretend that we got a blocking AST from * the server, so that when the lock is decref'd, it * will go away ... */ unlock_res(res); LDLM_DEBUG(lock, "setting FL_LOCAL_ONLY"); if (lock->l_flags & LDLM_FL_FAIL_LOC) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(cfs_time_seconds(4)); set_current_state(TASK_RUNNING); } if (lock->l_completion_ast) lock->l_completion_ast(lock, LDLM_FL_FAILED, NULL); LDLM_LOCK_RELEASE(lock); continue; } if (client) { struct lustre_handle lockh; unlock_res(res); ldlm_lock2handle(lock, &lockh); rc = ldlm_cli_cancel(&lockh, LCF_ASYNC); if (rc) CERROR("ldlm_cli_cancel: %d\n", rc); } else { ldlm_resource_unlink_lock(lock); unlock_res(res); LDLM_DEBUG(lock, "Freeing a lock still held by a " "client node"); ldlm_lock_destroy(lock); } LDLM_LOCK_RELEASE(lock); } while (1); } static int ldlm_resource_clean(struct cfs_hash *hs, struct cfs_hash_bd *bd, struct hlist_node *hnode, void *arg) { struct ldlm_resource *res = cfs_hash_object(hs, hnode); __u64 flags = *(__u64 *)arg; cleanup_resource(res, &res->lr_granted, flags); cleanup_resource(res, &res->lr_converting, flags); cleanup_resource(res, &res->lr_waiting, flags); return 0; } static int ldlm_resource_complain(struct cfs_hash *hs, struct cfs_hash_bd *bd, struct hlist_node *hnode, void *arg) { struct ldlm_resource *res = cfs_hash_object(hs, hnode); lock_res(res); CERROR("%s: namespace resource "DLDLMRES" (%p) refcount nonzero " "(%d) after lock cleanup; forcing cleanup.\n", ldlm_ns_name(ldlm_res_to_ns(res)), PLDLMRES(res), res, atomic_read(&res->lr_refcount) - 1); ldlm_resource_dump(D_ERROR, res); unlock_res(res); return 0; } /** * Cancel and destroy all locks in the namespace. * * Typically used during evictions when server notified client that it was * evicted and all of its state needs to be destroyed. * Also used during shutdown. */ int ldlm_namespace_cleanup(struct ldlm_namespace *ns, __u64 flags) { if (ns == NULL) { CDEBUG(D_INFO, "NULL ns, skipping cleanup\n"); return ELDLM_OK; } cfs_hash_for_each_nolock(ns->ns_rs_hash, ldlm_resource_clean, &flags); cfs_hash_for_each_nolock(ns->ns_rs_hash, ldlm_resource_complain, NULL); return ELDLM_OK; } EXPORT_SYMBOL(ldlm_namespace_cleanup); /** * Attempts to free namespace. * * Only used when namespace goes away, like during an unmount. */ static int __ldlm_namespace_free(struct ldlm_namespace *ns, int force) { ENTRY; /* At shutdown time, don't call the cancellation callback */ ldlm_namespace_cleanup(ns, force ? LDLM_FL_LOCAL_ONLY : 0); if (atomic_read(&ns->ns_bref) > 0) { struct l_wait_info lwi = LWI_INTR(LWI_ON_SIGNAL_NOOP, NULL); int rc; CDEBUG(D_DLMTRACE, "dlm namespace %s free waiting on refcount %d\n", ldlm_ns_name(ns), atomic_read(&ns->ns_bref)); force_wait: if (force) lwi = LWI_TIMEOUT(msecs_to_jiffies(obd_timeout * MSEC_PER_SEC) / 4, NULL, NULL); rc = l_wait_event(ns->ns_waitq, atomic_read(&ns->ns_bref) == 0, &lwi); /* Forced cleanups should be able to reclaim all references, * so it's safe to wait forever... we can't leak locks... */ if (force && rc == -ETIMEDOUT) { LCONSOLE_ERROR("Forced cleanup waiting for %s " "namespace with %d resources in use, " "(rc=%d)\n", ldlm_ns_name(ns), atomic_read(&ns->ns_bref), rc); GOTO(force_wait, rc); } if (atomic_read(&ns->ns_bref)) { LCONSOLE_ERROR("Cleanup waiting for %s namespace " "with %d resources in use, (rc=%d)\n", ldlm_ns_name(ns), atomic_read(&ns->ns_bref), rc); RETURN(ELDLM_NAMESPACE_EXISTS); } CDEBUG(D_DLMTRACE, "dlm namespace %s free done waiting\n", ldlm_ns_name(ns)); } RETURN(ELDLM_OK); } /** * Performs various cleanups for passed \a ns to make it drop refc and be * ready for freeing. Waits for refc == 0. * * The following is done: * (0) Unregister \a ns from its list to make inaccessible for potential * users like pools thread and others; * (1) Clear all locks in \a ns. */ void ldlm_namespace_free_prior(struct ldlm_namespace *ns, struct obd_import *imp, int force) { int rc; ENTRY; if (!ns) { EXIT; return; } spin_lock(&ns->ns_lock); ns->ns_stopping = 1; spin_unlock(&ns->ns_lock); /* * Can fail with -EINTR when force == 0 in which case try harder. */ rc = __ldlm_namespace_free(ns, force); if (rc != ELDLM_OK) { if (imp) { ptlrpc_disconnect_import(imp, 0); ptlrpc_invalidate_import(imp); } /* * With all requests dropped and the import inactive * we are gaurenteed all reference will be dropped. */ rc = __ldlm_namespace_free(ns, 1); LASSERT(rc == 0); } EXIT; } /** * Performs freeing memory structures related to \a ns. This is only done * when ldlm_namespce_free_prior() successfully removed all resources * referencing \a ns and its refc == 0. */ void ldlm_namespace_free_post(struct ldlm_namespace *ns) { ENTRY; if (!ns) { EXIT; return; } /* Make sure that nobody can find this ns in its list. */ ldlm_namespace_unregister(ns, ns->ns_client); /* Fini pool _before_ parent proc dir is removed. This is important as * ldlm_pool_fini() removes own proc dir which is child to @dir. * Removing it after @dir may cause oops. */ ldlm_pool_fini(&ns->ns_pool); ldlm_namespace_proc_unregister(ns); cfs_hash_putref(ns->ns_rs_hash); /* Namespace \a ns should be not on list at this time, otherwise * this will cause issues related to using freed \a ns in poold * thread. */ LASSERT(list_empty(&ns->ns_list_chain)); OBD_FREE_PTR(ns); ldlm_put_ref(); EXIT; } /** * Cleanup the resource, and free namespace. * bug 12864: * Deadlock issue: * proc1: destroy import * class_disconnect_export(grab cl_sem) -> * -> ldlm_namespace_free -> * -> lprocfs_remove(grab _lprocfs_lock). * proc2: read proc info * lprocfs_fops_read(grab _lprocfs_lock) -> * -> osc_rd_active, etc(grab cl_sem). * * So that I have to split the ldlm_namespace_free into two parts - the first * part ldlm_namespace_free_prior is used to cleanup the resource which is * being used; the 2nd part ldlm_namespace_free_post is used to unregister the * lprocfs entries, and then free memory. It will be called w/o cli->cl_sem * held. */ void ldlm_namespace_free(struct ldlm_namespace *ns, struct obd_import *imp, int force) { ldlm_namespace_free_prior(ns, imp, force); ldlm_namespace_free_post(ns); } EXPORT_SYMBOL(ldlm_namespace_free); void ldlm_namespace_get(struct ldlm_namespace *ns) { atomic_inc(&ns->ns_bref); } /* This is only for callers that care about refcount */ static int ldlm_namespace_get_return(struct ldlm_namespace *ns) { return atomic_inc_return(&ns->ns_bref); } void ldlm_namespace_put(struct ldlm_namespace *ns) { if (atomic_dec_and_lock(&ns->ns_bref, &ns->ns_lock)) { wake_up(&ns->ns_waitq); spin_unlock(&ns->ns_lock); } } /** Register \a ns in the list of namespaces */ void ldlm_namespace_register(struct ldlm_namespace *ns, ldlm_side_t client) { mutex_lock(ldlm_namespace_lock(client)); LASSERT(list_empty(&ns->ns_list_chain)); list_add(&ns->ns_list_chain, ldlm_namespace_inactive_list(client)); ldlm_namespace_nr_inc(client); mutex_unlock(ldlm_namespace_lock(client)); } /** Unregister \a ns from the list of namespaces. */ void ldlm_namespace_unregister(struct ldlm_namespace *ns, ldlm_side_t client) { mutex_lock(ldlm_namespace_lock(client)); LASSERT(!list_empty(&ns->ns_list_chain)); /* Some asserts and possibly other parts of the code are still * using list_empty(&ns->ns_list_chain). This is why it is * important to use list_del_init() here. */ list_del_init(&ns->ns_list_chain); ldlm_namespace_nr_dec(client); mutex_unlock(ldlm_namespace_lock(client)); } /** Should be called with ldlm_namespace_lock(client) taken. */ void ldlm_namespace_move_to_active_locked(struct ldlm_namespace *ns, ldlm_side_t client) { LASSERT(!list_empty(&ns->ns_list_chain)); LASSERT(mutex_is_locked(ldlm_namespace_lock(client))); list_move_tail(&ns->ns_list_chain, ldlm_namespace_list(client)); } /** Should be called with ldlm_namespace_lock(client) taken. */ void ldlm_namespace_move_to_inactive_locked(struct ldlm_namespace *ns, ldlm_side_t client) { LASSERT(!list_empty(&ns->ns_list_chain)); LASSERT(mutex_is_locked(ldlm_namespace_lock(client))); list_move_tail(&ns->ns_list_chain, ldlm_namespace_inactive_list(client)); } /** Should be called with ldlm_namespace_lock(client) taken. */ struct ldlm_namespace *ldlm_namespace_first_locked(ldlm_side_t client) { LASSERT(mutex_is_locked(ldlm_namespace_lock(client))); LASSERT(!list_empty(ldlm_namespace_list(client))); return container_of(ldlm_namespace_list(client)->next, struct ldlm_namespace, ns_list_chain); } /** Create and initialize new resource. */ static struct ldlm_resource *ldlm_resource_new(void) { struct ldlm_resource *res; int idx; OBD_SLAB_ALLOC_PTR_GFP(res, ldlm_resource_slab, GFP_NOFS); if (res == NULL) return NULL; INIT_LIST_HEAD(&res->lr_granted); INIT_LIST_HEAD(&res->lr_converting); INIT_LIST_HEAD(&res->lr_waiting); /* Initialize interval trees for each lock mode. */ for (idx = 0; idx < LCK_MODE_NUM; idx++) { res->lr_itree[idx].lit_size = 0; res->lr_itree[idx].lit_mode = 1 << idx; res->lr_itree[idx].lit_root = NULL; } atomic_set(&res->lr_refcount, 1); spin_lock_init(&res->lr_lock); lu_ref_init(&res->lr_reference); /* Since LVB init can be delayed now, there is no longer need to * immediatelly acquire mutex here. */ mutex_init(&res->lr_lvb_mutex); res->lr_lvb_initialized = false; return res; } /** * Return a reference to resource with given name, creating it if necessary. * Args: namespace with ns_lock unlocked * Locks: takes and releases NS hash-lock and res->lr_lock * Returns: referenced, unlocked ldlm_resource or NULL */ struct ldlm_resource * ldlm_resource_get(struct ldlm_namespace *ns, struct ldlm_resource *parent, const struct ldlm_res_id *name, ldlm_type_t type, int create) { struct hlist_node *hnode; struct ldlm_resource *res = NULL; struct cfs_hash_bd bd; __u64 version; int ns_refcount = 0; LASSERT(ns != NULL); LASSERT(parent == NULL); LASSERT(ns->ns_rs_hash != NULL); LASSERT(name->name[0] != 0); cfs_hash_bd_get_and_lock(ns->ns_rs_hash, (void *)name, &bd, 0); hnode = cfs_hash_bd_lookup_locked(ns->ns_rs_hash, &bd, (void *)name); if (hnode != NULL) { cfs_hash_bd_unlock(ns->ns_rs_hash, &bd, 0); GOTO(found, res); } version = cfs_hash_bd_version_get(&bd); cfs_hash_bd_unlock(ns->ns_rs_hash, &bd, 0); if (create == 0) return ERR_PTR(-ENOENT); LASSERTF(type >= LDLM_MIN_TYPE && type < LDLM_MAX_TYPE, "type: %d\n", type); res = ldlm_resource_new(); if (res == NULL) return ERR_PTR(-ENOMEM); res->lr_ns_bucket = cfs_hash_bd_extra_get(ns->ns_rs_hash, &bd); res->lr_name = *name; res->lr_type = type; res->lr_most_restr = LCK_NL; cfs_hash_bd_lock(ns->ns_rs_hash, &bd, 1); hnode = (version == cfs_hash_bd_version_get(&bd)) ? NULL : cfs_hash_bd_lookup_locked(ns->ns_rs_hash, &bd, (void *)name); if (hnode != NULL) { /* Someone won the race and already added the resource. */ cfs_hash_bd_unlock(ns->ns_rs_hash, &bd, 1); /* Clean lu_ref for failed resource. */ lu_ref_fini(&res->lr_reference); OBD_SLAB_FREE(res, ldlm_resource_slab, sizeof *res); found: res = hlist_entry(hnode, struct ldlm_resource, lr_hash); return res; } /* We won! Let's add the resource. */ cfs_hash_bd_add_locked(ns->ns_rs_hash, &bd, &res->lr_hash); if (cfs_hash_bd_count_get(&bd) == 1) ns_refcount = ldlm_namespace_get_return(ns); cfs_hash_bd_unlock(ns->ns_rs_hash, &bd, 1); OBD_FAIL_TIMEOUT(OBD_FAIL_LDLM_CREATE_RESOURCE, 2); /* Let's see if we happened to be the very first resource in this * namespace. If so, and this is a client namespace, we need to move * the namespace into the active namespaces list to be patrolled by * the ldlm_poold. */ if (ns_is_client(ns) && ns_refcount == 1) { mutex_lock(ldlm_namespace_lock(LDLM_NAMESPACE_CLIENT)); ldlm_namespace_move_to_active_locked(ns, LDLM_NAMESPACE_CLIENT); mutex_unlock(ldlm_namespace_lock(LDLM_NAMESPACE_CLIENT)); } return res; } EXPORT_SYMBOL(ldlm_resource_get); struct ldlm_resource *ldlm_resource_getref(struct ldlm_resource *res) { LASSERT(res != NULL); LASSERT(res != LP_POISON); atomic_inc(&res->lr_refcount); CDEBUG(D_INFO, "getref res: %p count: %d\n", res, atomic_read(&res->lr_refcount)); return res; } static void __ldlm_resource_putref_final(struct cfs_hash_bd *bd, struct ldlm_resource *res) { struct ldlm_ns_bucket *nsb = res->lr_ns_bucket; if (!list_empty(&res->lr_granted)) { ldlm_resource_dump(D_ERROR, res); LBUG(); } if (!list_empty(&res->lr_converting)) { ldlm_resource_dump(D_ERROR, res); LBUG(); } if (!list_empty(&res->lr_waiting)) { ldlm_resource_dump(D_ERROR, res); LBUG(); } cfs_hash_bd_del_locked(nsb->nsb_namespace->ns_rs_hash, bd, &res->lr_hash); lu_ref_fini(&res->lr_reference); if (cfs_hash_bd_count_get(bd) == 0) ldlm_namespace_put(nsb->nsb_namespace); } /* Returns 1 if the resource was freed, 0 if it remains. */ int ldlm_resource_putref(struct ldlm_resource *res) { struct ldlm_namespace *ns = ldlm_res_to_ns(res); struct cfs_hash_bd bd; LASSERT_ATOMIC_GT_LT(&res->lr_refcount, 0, LI_POISON); CDEBUG(D_INFO, "putref res: %p count: %d\n", res, atomic_read(&res->lr_refcount) - 1); cfs_hash_bd_get(ns->ns_rs_hash, &res->lr_name, &bd); if (cfs_hash_bd_dec_and_lock(ns->ns_rs_hash, &bd, &res->lr_refcount)) { __ldlm_resource_putref_final(&bd, res); cfs_hash_bd_unlock(ns->ns_rs_hash, &bd, 1); if (ns->ns_lvbo && ns->ns_lvbo->lvbo_free) ns->ns_lvbo->lvbo_free(res); OBD_SLAB_FREE(res, ldlm_resource_slab, sizeof *res); return 1; } return 0; } EXPORT_SYMBOL(ldlm_resource_putref); /* Returns 1 if the resource was freed, 0 if it remains. */ int ldlm_resource_putref_locked(struct ldlm_resource *res) { struct ldlm_namespace *ns = ldlm_res_to_ns(res); LASSERT_ATOMIC_GT_LT(&res->lr_refcount, 0, LI_POISON); CDEBUG(D_INFO, "putref res: %p count: %d\n", res, atomic_read(&res->lr_refcount) - 1); if (atomic_dec_and_test(&res->lr_refcount)) { struct cfs_hash_bd bd; cfs_hash_bd_get(ldlm_res_to_ns(res)->ns_rs_hash, &res->lr_name, &bd); __ldlm_resource_putref_final(&bd, res); cfs_hash_bd_unlock(ns->ns_rs_hash, &bd, 1); /* NB: ns_rs_hash is created with CFS_HASH_NO_ITEMREF, * so we should never be here while calling cfs_hash_del, * cfs_hash_for_each_nolock is the only case we can get * here, which is safe to release cfs_hash_bd_lock. */ if (ns->ns_lvbo && ns->ns_lvbo->lvbo_free) ns->ns_lvbo->lvbo_free(res); OBD_SLAB_FREE(res, ldlm_resource_slab, sizeof *res); cfs_hash_bd_lock(ns->ns_rs_hash, &bd, 1); return 1; } return 0; } /** * Add a lock into a given resource into specified lock list. */ void ldlm_resource_add_lock(struct ldlm_resource *res, struct list_head *head, struct ldlm_lock *lock) { check_res_locked(res); LDLM_DEBUG(lock, "About to add this lock:\n"); if (ldlm_is_destroyed(lock)) { CDEBUG(D_OTHER, "Lock destroyed, not adding to resource\n"); return; } LASSERT(list_empty(&lock->l_res_link)); list_add_tail(&lock->l_res_link, head); } /** * Insert a lock into resource after specified lock. * * Obtain resource description from the lock we are inserting after. */ void ldlm_resource_insert_lock_after(struct ldlm_lock *original, struct ldlm_lock *new) { struct ldlm_resource *res = original->l_resource; check_res_locked(res); ldlm_resource_dump(D_INFO, res); LDLM_DEBUG(new, "About to insert this lock after %p:\n", original); if (ldlm_is_destroyed(new)) { CDEBUG(D_OTHER, "Lock destroyed, not adding to resource\n"); goto out; } LASSERT(list_empty(&new->l_res_link)); list_add(&new->l_res_link, &original->l_res_link); out:; } void ldlm_resource_unlink_lock(struct ldlm_lock *lock) { int type = lock->l_resource->lr_type; check_res_locked(lock->l_resource); if (type == LDLM_IBITS || type == LDLM_PLAIN) ldlm_unlink_lock_skiplist(lock); else if (type == LDLM_EXTENT) ldlm_extent_unlink_lock(lock); list_del_init(&lock->l_res_link); } EXPORT_SYMBOL(ldlm_resource_unlink_lock); void ldlm_res2desc(struct ldlm_resource *res, struct ldlm_resource_desc *desc) { desc->lr_type = res->lr_type; desc->lr_name = res->lr_name; } /** * Print information about all locks in all namespaces on this node to debug * log. */ void ldlm_dump_all_namespaces(ldlm_side_t client, int level) { struct list_head *tmp; if (!((libcfs_debug | D_ERROR) & level)) return; mutex_lock(ldlm_namespace_lock(client)); list_for_each(tmp, ldlm_namespace_list(client)) { struct ldlm_namespace *ns; ns = list_entry(tmp, struct ldlm_namespace, ns_list_chain); ldlm_namespace_dump(level, ns); } mutex_unlock(ldlm_namespace_lock(client)); } static int ldlm_res_hash_dump(struct cfs_hash *hs, struct cfs_hash_bd *bd, struct hlist_node *hnode, void *arg) { struct ldlm_resource *res = cfs_hash_object(hs, hnode); int level = (int)(unsigned long)arg; lock_res(res); ldlm_resource_dump(level, res); unlock_res(res); return 0; } /** * Print information about all locks in this namespace on this node to debug * log. */ void ldlm_namespace_dump(int level, struct ldlm_namespace *ns) { if (!((libcfs_debug | D_ERROR) & level)) return; CDEBUG(level, "--- Namespace: %s (rc: %d, side: %s)\n", ldlm_ns_name(ns), atomic_read(&ns->ns_bref), ns_is_client(ns) ? "client" : "server"); if (cfs_time_before(cfs_time_current(), ns->ns_next_dump)) return; cfs_hash_for_each_nolock(ns->ns_rs_hash, ldlm_res_hash_dump, (void *)(unsigned long)level); spin_lock(&ns->ns_lock); ns->ns_next_dump = cfs_time_shift(10); spin_unlock(&ns->ns_lock); } /** * Print information about all locks in this resource to debug log. */ void ldlm_resource_dump(int level, struct ldlm_resource *res) { struct ldlm_lock *lock; unsigned int granted = 0; CLASSERT(RES_NAME_SIZE == 4); if (!((libcfs_debug | D_ERROR) & level)) return; CDEBUG(level, "--- Resource: "DLDLMRES" (%p) refcount = %d\n", PLDLMRES(res), res, atomic_read(&res->lr_refcount)); if (!list_empty(&res->lr_granted)) { CDEBUG(level, "Granted locks (in reverse order):\n"); list_for_each_entry_reverse(lock, &res->lr_granted, l_res_link) { LDLM_DEBUG_LIMIT(level, lock, "###"); if (!(level & D_CANTMASK) && ++granted > ldlm_dump_granted_max) { CDEBUG(level, "only dump %d granted locks to " "avoid DDOS.\n", granted); break; } } } if (!list_empty(&res->lr_converting)) { CDEBUG(level, "Converting locks:\n"); list_for_each_entry(lock, &res->lr_converting, l_res_link) LDLM_DEBUG_LIMIT(level, lock, "###"); } if (!list_empty(&res->lr_waiting)) { CDEBUG(level, "Waiting locks:\n"); list_for_each_entry(lock, &res->lr_waiting, l_res_link) LDLM_DEBUG_LIMIT(level, lock, "###"); } } EXPORT_SYMBOL(ldlm_resource_dump);