/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*- * vim:expandtab:shiftwidth=8:tabstop=8: * * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * GPL HEADER END */ /* * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. */ /* * This file is part of Lustre, http://www.lustre.org/ * Lustre is a trademark of Sun Microsystems, Inc. * * lustre/ldlm/ldlm_resource.c * * Author: Phil Schwan * Author: Peter Braam */ #define DEBUG_SUBSYSTEM S_LDLM #ifdef __KERNEL__ # include #else # include #endif #include #include "ldlm_internal.h" cfs_mem_cache_t *ldlm_resource_slab, *ldlm_lock_slab; cfs_atomic_t ldlm_srv_namespace_nr = CFS_ATOMIC_INIT(0); cfs_atomic_t ldlm_cli_namespace_nr = CFS_ATOMIC_INIT(0); cfs_semaphore_t ldlm_srv_namespace_lock; CFS_LIST_HEAD(ldlm_srv_namespace_list); cfs_semaphore_t ldlm_cli_namespace_lock; CFS_LIST_HEAD(ldlm_cli_namespace_list); cfs_proc_dir_entry_t *ldlm_type_proc_dir = NULL; cfs_proc_dir_entry_t *ldlm_ns_proc_dir = NULL; cfs_proc_dir_entry_t *ldlm_svc_proc_dir = NULL; extern unsigned int ldlm_cancel_unused_locks_before_replay; #ifdef LPROCFS static int ldlm_proc_dump_ns(struct file *file, const char *buffer, unsigned long count, void *data) { ldlm_dump_all_namespaces(LDLM_NAMESPACE_SERVER, D_DLMTRACE); ldlm_dump_all_namespaces(LDLM_NAMESPACE_CLIENT, D_DLMTRACE); RETURN(count); } int ldlm_proc_setup(void) { int rc; struct lprocfs_vars list[] = { { "dump_namespaces", NULL, ldlm_proc_dump_ns, NULL }, { "cancel_unused_locks_before_replay", lprocfs_rd_uint, lprocfs_wr_uint, &ldlm_cancel_unused_locks_before_replay, NULL }, { NULL }}; ENTRY; LASSERT(ldlm_ns_proc_dir == NULL); ldlm_type_proc_dir = lprocfs_register(OBD_LDLM_DEVICENAME, proc_lustre_root, NULL, NULL); if (IS_ERR(ldlm_type_proc_dir)) { CERROR("LProcFS failed in ldlm-init\n"); rc = PTR_ERR(ldlm_type_proc_dir); GOTO(err, rc); } ldlm_ns_proc_dir = lprocfs_register("namespaces", ldlm_type_proc_dir, NULL, NULL); if (IS_ERR(ldlm_ns_proc_dir)) { CERROR("LProcFS failed in ldlm-init\n"); rc = PTR_ERR(ldlm_ns_proc_dir); GOTO(err_type, rc); } ldlm_svc_proc_dir = lprocfs_register("services", ldlm_type_proc_dir, NULL, NULL); if (IS_ERR(ldlm_svc_proc_dir)) { CERROR("LProcFS failed in ldlm-init\n"); rc = PTR_ERR(ldlm_svc_proc_dir); GOTO(err_ns, rc); } rc = lprocfs_add_vars(ldlm_type_proc_dir, list, NULL); RETURN(0); err_ns: lprocfs_remove(&ldlm_ns_proc_dir); err_type: lprocfs_remove(&ldlm_type_proc_dir); err: ldlm_svc_proc_dir = NULL; RETURN(rc); } void ldlm_proc_cleanup(void) { if (ldlm_svc_proc_dir) lprocfs_remove(&ldlm_svc_proc_dir); if (ldlm_ns_proc_dir) lprocfs_remove(&ldlm_ns_proc_dir); if (ldlm_type_proc_dir) lprocfs_remove(&ldlm_type_proc_dir); } static int lprocfs_rd_lru_size(char *page, char **start, off_t off, int count, int *eof, void *data) { struct ldlm_namespace *ns = data; __u32 *nr = &ns->ns_max_unused; if (ns_connect_lru_resize(ns)) nr = &ns->ns_nr_unused; return lprocfs_rd_uint(page, start, off, count, eof, nr); } static int lprocfs_wr_lru_size(struct file *file, const char *buffer, unsigned long count, void *data) { struct ldlm_namespace *ns = data; char dummy[MAX_STRING_SIZE + 1], *end; unsigned long tmp; int lru_resize; dummy[MAX_STRING_SIZE] = '\0'; if (cfs_copy_from_user(dummy, buffer, MAX_STRING_SIZE)) return -EFAULT; if (strncmp(dummy, "clear", 5) == 0) { CDEBUG(D_DLMTRACE, "dropping all unused locks from namespace %s\n", ns->ns_name); if (ns_connect_lru_resize(ns)) { int canceled, unused = ns->ns_nr_unused; /* Try to cancel all @ns_nr_unused locks. */ canceled = ldlm_cancel_lru(ns, unused, LDLM_SYNC, LDLM_CANCEL_PASSED); if (canceled < unused) { CDEBUG(D_DLMTRACE, "not all requested locks are canceled, " "requested: %d, canceled: %d\n", unused, canceled); return -EINVAL; } } else { tmp = ns->ns_max_unused; ns->ns_max_unused = 0; ldlm_cancel_lru(ns, 0, LDLM_SYNC, LDLM_CANCEL_PASSED); ns->ns_max_unused = tmp; } return count; } tmp = simple_strtoul(dummy, &end, 0); if (dummy == end) { CERROR("invalid value written\n"); return -EINVAL; } lru_resize = (tmp == 0); if (ns_connect_lru_resize(ns)) { if (!lru_resize) ns->ns_max_unused = (unsigned int)tmp; if (tmp > ns->ns_nr_unused) tmp = ns->ns_nr_unused; tmp = ns->ns_nr_unused - tmp; CDEBUG(D_DLMTRACE, "changing namespace %s unused locks from %u to %u\n", ns->ns_name, ns->ns_nr_unused, (unsigned int)tmp); ldlm_cancel_lru(ns, tmp, LDLM_ASYNC, LDLM_CANCEL_PASSED); if (!lru_resize) { CDEBUG(D_DLMTRACE, "disable lru_resize for namespace %s\n", ns->ns_name); ns->ns_connect_flags &= ~OBD_CONNECT_LRU_RESIZE; } } else { CDEBUG(D_DLMTRACE, "changing namespace %s max_unused from %u to %u\n", ns->ns_name, ns->ns_max_unused, (unsigned int)tmp); ns->ns_max_unused = (unsigned int)tmp; ldlm_cancel_lru(ns, 0, LDLM_ASYNC, LDLM_CANCEL_PASSED); /* Make sure that originally lru resize was supported before * turning it on here. */ if (lru_resize && (ns->ns_orig_connect_flags & OBD_CONNECT_LRU_RESIZE)) { CDEBUG(D_DLMTRACE, "enable lru_resize for namespace %s\n", ns->ns_name); ns->ns_connect_flags |= OBD_CONNECT_LRU_RESIZE; } } return count; } void ldlm_proc_namespace(struct ldlm_namespace *ns) { struct lprocfs_vars lock_vars[2]; char lock_name[MAX_STRING_SIZE + 1]; LASSERT(ns != NULL); LASSERT(ns->ns_name != NULL); lock_name[MAX_STRING_SIZE] = '\0'; memset(lock_vars, 0, sizeof(lock_vars)); lock_vars[0].name = lock_name; snprintf(lock_name, MAX_STRING_SIZE, "%s/resource_count", ns->ns_name); lock_vars[0].data = &ns->ns_refcount; lock_vars[0].read_fptr = lprocfs_rd_atomic; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); snprintf(lock_name, MAX_STRING_SIZE, "%s/lock_count", ns->ns_name); lock_vars[0].data = &ns->ns_locks; lock_vars[0].read_fptr = lprocfs_rd_atomic; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); if (ns_is_client(ns)) { snprintf(lock_name, MAX_STRING_SIZE, "%s/lock_unused_count", ns->ns_name); lock_vars[0].data = &ns->ns_nr_unused; lock_vars[0].read_fptr = lprocfs_rd_uint; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); snprintf(lock_name, MAX_STRING_SIZE, "%s/lru_size", ns->ns_name); lock_vars[0].data = ns; lock_vars[0].read_fptr = lprocfs_rd_lru_size; lock_vars[0].write_fptr = lprocfs_wr_lru_size; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); snprintf(lock_name, MAX_STRING_SIZE, "%s/lru_max_age", ns->ns_name); lock_vars[0].data = &ns->ns_max_age; lock_vars[0].read_fptr = lprocfs_rd_uint; lock_vars[0].write_fptr = lprocfs_wr_uint; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); } else { snprintf(lock_name, MAX_STRING_SIZE, "%s/ctime_age_limit", ns->ns_name); lock_vars[0].data = &ns->ns_ctime_age_limit; lock_vars[0].read_fptr = lprocfs_rd_uint; lock_vars[0].write_fptr = lprocfs_wr_uint; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); snprintf(lock_name, MAX_STRING_SIZE, "%s/lock_timeouts", ns->ns_name); lock_vars[0].data = &ns->ns_timeouts; lock_vars[0].read_fptr = lprocfs_rd_uint; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); snprintf(lock_name, MAX_STRING_SIZE, "%s/max_nolock_bytes", ns->ns_name); lock_vars[0].data = &ns->ns_max_nolock_size; lock_vars[0].read_fptr = lprocfs_rd_uint; lock_vars[0].write_fptr = lprocfs_wr_uint; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); snprintf(lock_name, MAX_STRING_SIZE, "%s/contention_seconds", ns->ns_name); lock_vars[0].data = &ns->ns_contention_time; lock_vars[0].read_fptr = lprocfs_rd_uint; lock_vars[0].write_fptr = lprocfs_wr_uint; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); snprintf(lock_name, MAX_STRING_SIZE, "%s/contended_locks", ns->ns_name); lock_vars[0].data = &ns->ns_contended_locks; lock_vars[0].read_fptr = lprocfs_rd_uint; lock_vars[0].write_fptr = lprocfs_wr_uint; lprocfs_add_vars(ldlm_ns_proc_dir, lock_vars, 0); } } #undef MAX_STRING_SIZE #else #define ldlm_proc_namespace(ns) do {} while (0) #endif /* LPROCFS */ struct ldlm_namespace *ldlm_namespace_new(struct obd_device *obd, char *name, ldlm_side_t client, ldlm_appetite_t apt) { struct ldlm_namespace *ns = NULL; cfs_list_t *bucket; int rc, idx, namelen; ENTRY; rc = ldlm_get_ref(); if (rc) { CERROR("ldlm_get_ref failed: %d\n", rc); RETURN(NULL); } OBD_ALLOC_PTR(ns); if (!ns) GOTO(out_ref, NULL); OBD_VMALLOC(ns->ns_hash, sizeof(*ns->ns_hash) * RES_HASH_SIZE); if (!ns->ns_hash) GOTO(out_ns, NULL); ns->ns_appetite = apt; LASSERT(obd != NULL); ns->ns_obd = obd; namelen = strlen(name); OBD_ALLOC(ns->ns_name, namelen + 1); if (!ns->ns_name) GOTO(out_hash, NULL); strcpy(ns->ns_name, name); CFS_INIT_LIST_HEAD(&ns->ns_root_list); CFS_INIT_LIST_HEAD(&ns->ns_list_chain); ns->ns_refcount = 0; ns->ns_client = client; cfs_spin_lock_init(&ns->ns_hash_lock); cfs_atomic_set(&ns->ns_locks, 0); ns->ns_resources = 0; cfs_waitq_init(&ns->ns_waitq); ns->ns_max_nolock_size = NS_DEFAULT_MAX_NOLOCK_BYTES; ns->ns_contention_time = NS_DEFAULT_CONTENTION_SECONDS; ns->ns_contended_locks = NS_DEFAULT_CONTENDED_LOCKS; for (bucket = ns->ns_hash + RES_HASH_SIZE - 1; bucket >= ns->ns_hash; bucket--) CFS_INIT_LIST_HEAD(bucket); CFS_INIT_LIST_HEAD(&ns->ns_unused_list); ns->ns_nr_unused = 0; ns->ns_max_unused = LDLM_DEFAULT_LRU_SIZE; ns->ns_max_age = LDLM_DEFAULT_MAX_ALIVE; ns->ns_ctime_age_limit = LDLM_CTIME_AGE_LIMIT; ns->ns_timeouts = 0; cfs_spin_lock_init(&ns->ns_unused_lock); ns->ns_orig_connect_flags = 0; ns->ns_connect_flags = 0; ldlm_proc_namespace(ns); idx = cfs_atomic_read(ldlm_namespace_nr(client)); rc = ldlm_pool_init(&ns->ns_pool, ns, idx, client); if (rc) { CERROR("Can't initialize lock pool, rc %d\n", rc); GOTO(out_proc, rc); } at_init(&ns->ns_at_estimate, ldlm_enqueue_min, 0); ldlm_namespace_register(ns, client); RETURN(ns); out_proc: ldlm_namespace_cleanup(ns, 0); OBD_FREE(ns->ns_name, namelen + 1); out_hash: OBD_VFREE(ns->ns_hash, sizeof(*ns->ns_hash) * RES_HASH_SIZE); out_ns: OBD_FREE_PTR(ns); out_ref: ldlm_put_ref(); RETURN(NULL); } extern struct ldlm_lock *ldlm_lock_get(struct ldlm_lock *lock); /* If flags contains FL_LOCAL_ONLY, don't try to tell the server, just cleanup. * This is currently only used for recovery, and we make certain assumptions * as a result--notably, that we shouldn't cancel locks with refs. -phil * * Called with the ns_lock held. */ static void cleanup_resource(struct ldlm_resource *res, cfs_list_t *q, int flags) { cfs_list_t *tmp; int rc = 0, client = ns_is_client(ldlm_res_to_ns(res)); int local_only = (flags & LDLM_FL_LOCAL_ONLY); ENTRY; do { struct ldlm_lock *lock = NULL; /* first, we look for non-cleaned-yet lock * all cleaned locks are marked by CLEANED flag */ lock_res(res); cfs_list_for_each(tmp, q) { lock = cfs_list_entry(tmp, struct ldlm_lock, l_res_link); if (lock->l_flags & LDLM_FL_CLEANED) { lock = NULL; continue; } LDLM_LOCK_GET(lock); lock->l_flags |= LDLM_FL_CLEANED; break; } if (lock == NULL) { unlock_res(res); break; } /* Set CBPENDING so nothing in the cancellation path * can match this lock */ lock->l_flags |= LDLM_FL_CBPENDING; lock->l_flags |= LDLM_FL_FAILED; lock->l_flags |= flags; /* ... without sending a CANCEL message for local_only. */ if (local_only) lock->l_flags |= LDLM_FL_LOCAL_ONLY; if (local_only && (lock->l_readers || lock->l_writers)) { /* This is a little bit gross, but much better than the * alternative: pretend that we got a blocking AST from * the server, so that when the lock is decref'd, it * will go away ... */ unlock_res(res); LDLM_DEBUG(lock, "setting FL_LOCAL_ONLY"); if (lock->l_completion_ast) lock->l_completion_ast(lock, 0, NULL); LDLM_LOCK_RELEASE(lock); continue; } if (client) { struct lustre_handle lockh; unlock_res(res); ldlm_lock2handle(lock, &lockh); rc = ldlm_cli_cancel(&lockh); if (rc) CERROR("ldlm_cli_cancel: %d\n", rc); } else { ldlm_resource_unlink_lock(lock); unlock_res(res); LDLM_DEBUG(lock, "Freeing a lock still held by a " "client node"); ldlm_lock_destroy(lock); } LDLM_LOCK_RELEASE(lock); } while (1); EXIT; } int ldlm_namespace_cleanup(struct ldlm_namespace *ns, int flags) { cfs_list_t *tmp; int i; if (ns == NULL) { CDEBUG(D_INFO, "NULL ns, skipping cleanup\n"); return ELDLM_OK; } for (i = 0; i < RES_HASH_SIZE; i++) { cfs_spin_lock(&ns->ns_hash_lock); tmp = ns->ns_hash[i].next; while (tmp != &(ns->ns_hash[i])) { struct ldlm_resource *res; res = cfs_list_entry(tmp, struct ldlm_resource, lr_hash); ldlm_resource_getref(res); cfs_spin_unlock(&ns->ns_hash_lock); LDLM_RESOURCE_ADDREF(res); cleanup_resource(res, &res->lr_granted, flags); cleanup_resource(res, &res->lr_converting, flags); cleanup_resource(res, &res->lr_waiting, flags); cfs_spin_lock(&ns->ns_hash_lock); tmp = tmp->next; /* XXX: former stuff caused issues in case of race * between ldlm_namespace_cleanup() and lockd() when * client gets blocking ast when lock gets distracted by * server. This is 1_4 branch solution, let's see how * will it behave. */ LDLM_RESOURCE_DELREF(res); if (!ldlm_resource_putref_locked(res)) { CERROR("Namespace %s resource refcount nonzero " "(%d) after lock cleanup; forcing " "cleanup.\n", ns->ns_name, cfs_atomic_read(&res->lr_refcount)); CERROR("Resource: %p ("LPU64"/"LPU64"/"LPU64"/" LPU64") (rc: %d)\n", res, res->lr_name.name[0], res->lr_name.name[1], res->lr_name.name[2], res->lr_name.name[3], cfs_atomic_read(&res->lr_refcount)); } } cfs_spin_unlock(&ns->ns_hash_lock); } return ELDLM_OK; } static int __ldlm_namespace_free(struct ldlm_namespace *ns, int force) { ENTRY; /* At shutdown time, don't call the cancellation callback */ ldlm_namespace_cleanup(ns, force ? LDLM_FL_LOCAL_ONLY : 0); if (ns->ns_refcount > 0) { struct l_wait_info lwi = LWI_INTR(LWI_ON_SIGNAL_NOOP, NULL); int rc; CDEBUG(D_DLMTRACE, "dlm namespace %s free waiting on refcount %d\n", ns->ns_name, ns->ns_refcount); force_wait: if (force) lwi = LWI_TIMEOUT(obd_timeout * CFS_HZ / 4, NULL, NULL); rc = l_wait_event(ns->ns_waitq, ns->ns_refcount == 0, &lwi); /* Forced cleanups should be able to reclaim all references, * so it's safe to wait forever... we can't leak locks... */ if (force && rc == -ETIMEDOUT) { LCONSOLE_ERROR("Forced cleanup waiting for %s " "namespace with %d resources in use, " "(rc=%d)\n", ns->ns_name, ns->ns_refcount, rc); GOTO(force_wait, rc); } if (ns->ns_refcount) { LCONSOLE_ERROR("Cleanup waiting for %s namespace " "with %d resources in use, (rc=%d)\n", ns->ns_name, ns->ns_refcount, rc); RETURN(ELDLM_NAMESPACE_EXISTS); } CDEBUG(D_DLMTRACE, "dlm namespace %s free done waiting\n", ns->ns_name); } RETURN(ELDLM_OK); } /** * Performs various cleanups for passed \a ns to make it drop refc and be ready * for freeing. Waits for refc == 0. * * The following is done: * (0) Unregister \a ns from its list to make inaccessible for potential users * like pools thread and others; * (1) Clear all locks in \a ns. */ void ldlm_namespace_free_prior(struct ldlm_namespace *ns, struct obd_import *imp, int force) { int rc; ENTRY; if (!ns) { EXIT; return; } /* * Can fail with -EINTR when force == 0 in which case try harder. */ rc = __ldlm_namespace_free(ns, force); if (rc != ELDLM_OK) { if (imp) { ptlrpc_disconnect_import(imp, 0); ptlrpc_invalidate_import(imp); } /* * With all requests dropped and the import inactive * we are gaurenteed all reference will be dropped. */ rc = __ldlm_namespace_free(ns, 1); LASSERT(rc == 0); } EXIT; } /** * Performs freeing memory structures related to \a ns. This is only done when * ldlm_namespce_free_prior() successfully removed all resources referencing * \a ns and its refc == 0. */ void ldlm_namespace_free_post(struct ldlm_namespace *ns) { ENTRY; if (!ns) { EXIT; return; } /* * Make sure that nobody can find this ns in its list. */ ldlm_namespace_unregister(ns, ns->ns_client); /* * Fini pool _before_ parent proc dir is removed. This is important as * ldlm_pool_fini() removes own proc dir which is child to @dir. Removing * it after @dir may cause oops. */ ldlm_pool_fini(&ns->ns_pool); #ifdef LPROCFS { struct proc_dir_entry *dir; dir = lprocfs_srch(ldlm_ns_proc_dir, ns->ns_name); if (dir == NULL) { CERROR("dlm namespace %s has no procfs dir?\n", ns->ns_name); } else { lprocfs_remove(&dir); } } #endif OBD_VFREE(ns->ns_hash, sizeof(*ns->ns_hash) * RES_HASH_SIZE); OBD_FREE(ns->ns_name, strlen(ns->ns_name) + 1); /* * Namespace \a ns should be not on list in this time, otherwise this * will cause issues realted to using freed \a ns in pools thread. */ LASSERT(cfs_list_empty(&ns->ns_list_chain)); OBD_FREE_PTR(ns); ldlm_put_ref(); EXIT; } /* Cleanup the resource, and free namespace. * bug 12864: * Deadlock issue: * proc1: destroy import * class_disconnect_export(grab cl_sem) -> * -> ldlm_namespace_free -> * -> lprocfs_remove(grab _lprocfs_lock). * proc2: read proc info * lprocfs_fops_read(grab _lprocfs_lock) -> * -> osc_rd_active, etc(grab cl_sem). * * So that I have to split the ldlm_namespace_free into two parts - the first * part ldlm_namespace_free_prior is used to cleanup the resource which is * being used; the 2nd part ldlm_namespace_free_post is used to unregister the * lprocfs entries, and then free memory. It will be called w/o cli->cl_sem * held. */ void ldlm_namespace_free(struct ldlm_namespace *ns, struct obd_import *imp, int force) { ldlm_namespace_free_prior(ns, imp, force); ldlm_namespace_free_post(ns); } void ldlm_namespace_get_locked(struct ldlm_namespace *ns) { ns->ns_refcount++; } void ldlm_namespace_get(struct ldlm_namespace *ns) { cfs_spin_lock(&ns->ns_hash_lock); ldlm_namespace_get_locked(ns); cfs_spin_unlock(&ns->ns_hash_lock); } void ldlm_namespace_put_locked(struct ldlm_namespace *ns, int wakeup) { LASSERT(ns->ns_refcount > 0); ns->ns_refcount--; if (ns->ns_refcount == 0 && wakeup) cfs_waitq_signal(&ns->ns_waitq); } void ldlm_namespace_put(struct ldlm_namespace *ns, int wakeup) { cfs_spin_lock(&ns->ns_hash_lock); ldlm_namespace_put_locked(ns, wakeup); cfs_spin_unlock(&ns->ns_hash_lock); } /* Register @ns in the list of namespaces */ void ldlm_namespace_register(struct ldlm_namespace *ns, ldlm_side_t client) { cfs_mutex_down(ldlm_namespace_lock(client)); LASSERT(cfs_list_empty(&ns->ns_list_chain)); cfs_list_add(&ns->ns_list_chain, ldlm_namespace_list(client)); cfs_atomic_inc(ldlm_namespace_nr(client)); cfs_mutex_up(ldlm_namespace_lock(client)); } /* Unregister @ns from the list of namespaces */ void ldlm_namespace_unregister(struct ldlm_namespace *ns, ldlm_side_t client) { cfs_mutex_down(ldlm_namespace_lock(client)); LASSERT(!cfs_list_empty(&ns->ns_list_chain)); /* * Some asserts and possibly other parts of code still using * list_empty(&ns->ns_list_chain). This is why it is important * to use list_del_init() here. */ cfs_list_del_init(&ns->ns_list_chain); cfs_atomic_dec(ldlm_namespace_nr(client)); cfs_mutex_up(ldlm_namespace_lock(client)); } /* Should be called under ldlm_namespace_lock(client) taken */ void ldlm_namespace_move_locked(struct ldlm_namespace *ns, ldlm_side_t client) { LASSERT(!cfs_list_empty(&ns->ns_list_chain)); LASSERT_SEM_LOCKED(ldlm_namespace_lock(client)); cfs_list_move_tail(&ns->ns_list_chain, ldlm_namespace_list(client)); } /* Should be called under ldlm_namespace_lock(client) taken */ struct ldlm_namespace *ldlm_namespace_first_locked(ldlm_side_t client) { LASSERT_SEM_LOCKED(ldlm_namespace_lock(client)); LASSERT(!cfs_list_empty(ldlm_namespace_list(client))); return container_of(ldlm_namespace_list(client)->next, struct ldlm_namespace, ns_list_chain); } static __u32 ldlm_hash_fn(struct ldlm_resource *parent, const struct ldlm_res_id *name) { __u32 hash = 0; int i; for (i = 0; i < RES_NAME_SIZE; i++) hash += name->name[i]; hash += (__u32)((unsigned long)parent >> 4); return (hash & RES_HASH_MASK); } static struct ldlm_resource *ldlm_resource_new(void) { struct ldlm_resource *res; int idx; OBD_SLAB_ALLOC_PTR_GFP(res, ldlm_resource_slab, CFS_ALLOC_IO); if (res == NULL) return NULL; memset(res, 0, sizeof(*res)); CFS_INIT_LIST_HEAD(&res->lr_childof); CFS_INIT_LIST_HEAD(&res->lr_granted); CFS_INIT_LIST_HEAD(&res->lr_converting); CFS_INIT_LIST_HEAD(&res->lr_waiting); /* initialize interval trees for each lock mode*/ for (idx = 0; idx < LCK_MODE_NUM; idx++) { res->lr_itree[idx].lit_size = 0; res->lr_itree[idx].lit_mode = 1 << idx; res->lr_itree[idx].lit_root = NULL; } cfs_atomic_set(&res->lr_refcount, 1); cfs_spin_lock_init(&res->lr_lock); lu_ref_init(&res->lr_reference); /* one who creates the resource must unlock * the semaphore after lvb initialization */ cfs_init_mutex_locked(&res->lr_lvb_sem); return res; } /* must be called with hash lock held */ static struct ldlm_resource * ldlm_resource_find(struct ldlm_namespace *ns, const struct ldlm_res_id *name, __u32 hash) { cfs_list_t *bucket, *tmp; struct ldlm_resource *res; LASSERT_SPIN_LOCKED(&ns->ns_hash_lock); bucket = ns->ns_hash + hash; cfs_list_for_each(tmp, bucket) { res = cfs_list_entry(tmp, struct ldlm_resource, lr_hash); if (memcmp(&res->lr_name, name, sizeof(res->lr_name)) == 0) return res; } return NULL; } /* Args: locked namespace * Returns: newly-allocated, referenced, unlocked resource */ static struct ldlm_resource * ldlm_resource_add(struct ldlm_namespace *ns, struct ldlm_resource *parent, const struct ldlm_res_id *name, __u32 hash, ldlm_type_t type) { cfs_list_t *bucket; struct ldlm_resource *res, *old_res; ENTRY; LASSERTF(type >= LDLM_MIN_TYPE && type < LDLM_MAX_TYPE, "type: %d\n", type); res = ldlm_resource_new(); if (!res) RETURN(NULL); res->lr_name = *name; res->lr_namespace = ns; res->lr_type = type; res->lr_most_restr = LCK_NL; cfs_spin_lock(&ns->ns_hash_lock); old_res = ldlm_resource_find(ns, name, hash); if (old_res) { /* someone won the race and added the resource before */ ldlm_resource_getref(old_res); cfs_spin_unlock(&ns->ns_hash_lock); /* clean lu_ref for failed resource */ lu_ref_fini(&res->lr_reference); OBD_SLAB_FREE(res, ldlm_resource_slab, sizeof *res); /* synchronize WRT resource creation */ if (ns->ns_lvbo && ns->ns_lvbo->lvbo_init) { cfs_down(&old_res->lr_lvb_sem); cfs_up(&old_res->lr_lvb_sem); } RETURN(old_res); } /* we won! let's add the resource */ bucket = ns->ns_hash + hash; cfs_list_add(&res->lr_hash, bucket); ns->ns_resources++; ldlm_namespace_get_locked(ns); LASSERT(parent == NULL); /* legacy... */ cfs_list_add(&res->lr_childof, &ns->ns_root_list); cfs_spin_unlock(&ns->ns_hash_lock); if (ns->ns_lvbo && ns->ns_lvbo->lvbo_init) { int rc; OBD_FAIL_TIMEOUT(OBD_FAIL_LDLM_CREATE_RESOURCE, 2); rc = ns->ns_lvbo->lvbo_init(res); if (rc) CERROR("lvbo_init failed for resource " LPU64": rc %d\n", name->name[0], rc); /* we create resource with locked lr_lvb_sem */ cfs_up(&res->lr_lvb_sem); } RETURN(res); } /* Args: unlocked namespace * Locks: takes and releases ns->ns_lock and res->lr_lock * Returns: referenced, unlocked ldlm_resource or NULL */ struct ldlm_resource * ldlm_resource_get(struct ldlm_namespace *ns, struct ldlm_resource *parent, const struct ldlm_res_id *name, ldlm_type_t type, int create) { __u32 hash = ldlm_hash_fn(parent, name); struct ldlm_resource *res = NULL; ENTRY; LASSERT(ns != NULL); LASSERT(ns->ns_hash != NULL); LASSERT(name->name[0] != 0); cfs_spin_lock(&ns->ns_hash_lock); res = ldlm_resource_find(ns, name, hash); if (res) { ldlm_resource_getref(res); cfs_spin_unlock(&ns->ns_hash_lock); /* synchronize WRT resource creation */ if (ns->ns_lvbo && ns->ns_lvbo->lvbo_init) { cfs_down(&res->lr_lvb_sem); cfs_up(&res->lr_lvb_sem); } RETURN(res); } cfs_spin_unlock(&ns->ns_hash_lock); if (create == 0) RETURN(NULL); res = ldlm_resource_add(ns, parent, name, hash, type); RETURN(res); } struct ldlm_resource *ldlm_resource_getref(struct ldlm_resource *res) { LASSERT(res != NULL); LASSERT(res != LP_POISON); cfs_atomic_inc(&res->lr_refcount); CDEBUG(D_INFO, "getref res: %p count: %d\n", res, cfs_atomic_read(&res->lr_refcount)); return res; } void __ldlm_resource_putref_final(struct ldlm_resource *res) { struct ldlm_namespace *ns = ldlm_res_to_ns(res); LASSERT_SPIN_LOCKED(&ns->ns_hash_lock); if (!cfs_list_empty(&res->lr_granted)) { ldlm_resource_dump(D_ERROR, res); LBUG(); } if (!cfs_list_empty(&res->lr_converting)) { ldlm_resource_dump(D_ERROR, res); LBUG(); } if (!cfs_list_empty(&res->lr_waiting)) { ldlm_resource_dump(D_ERROR, res); LBUG(); } /* Pass 0 here to not wake ->ns_waitq up yet, we will do it few * lines below when all children are freed. */ ldlm_namespace_put_locked(ns, 0); cfs_list_del_init(&res->lr_hash); cfs_list_del_init(&res->lr_childof); lu_ref_fini(&res->lr_reference); ns->ns_resources--; if (ns->ns_resources == 0) cfs_waitq_signal(&ns->ns_waitq); } int ldlm_resource_putref_internal(struct ldlm_resource *res, int locked) { struct ldlm_namespace *ns = ldlm_res_to_ns(res); ENTRY; CDEBUG(D_INFO, "putref res: %p count: %d\n", res, cfs_atomic_read(&res->lr_refcount) - 1); LASSERTF(cfs_atomic_read(&res->lr_refcount) > 0, "%d", cfs_atomic_read(&res->lr_refcount)); LASSERTF(cfs_atomic_read(&res->lr_refcount) < LI_POISON, "%d", cfs_atomic_read(&res->lr_refcount)); if (locked && !cfs_atomic_dec_and_test(&res->lr_refcount)) RETURN(0); if (!locked && !cfs_atomic_dec_and_lock(&res->lr_refcount, &ns->ns_hash_lock)) RETURN(0); __ldlm_resource_putref_final(res); if (!locked) cfs_spin_unlock(&ns->ns_hash_lock); if (ns->ns_lvbo && ns->ns_lvbo->lvbo_free) ns->ns_lvbo->lvbo_free(res); OBD_SLAB_FREE(res, ldlm_resource_slab, sizeof *res); RETURN(1); } int ldlm_resource_putref(struct ldlm_resource *res) { return ldlm_resource_putref_internal(res, 0); } int ldlm_resource_putref_locked(struct ldlm_resource *res) { return ldlm_resource_putref_internal(res, 1); } void ldlm_resource_add_lock(struct ldlm_resource *res, cfs_list_t *head, struct ldlm_lock *lock) { check_res_locked(res); ldlm_resource_dump(D_INFO, res); CDEBUG(D_OTHER, "About to add this lock:\n"); ldlm_lock_dump(D_OTHER, lock, 0); if (lock->l_destroyed) { CDEBUG(D_OTHER, "Lock destroyed, not adding to resource\n"); return; } LASSERT(cfs_list_empty(&lock->l_res_link)); cfs_list_add_tail(&lock->l_res_link, head); } void ldlm_resource_insert_lock_after(struct ldlm_lock *original, struct ldlm_lock *new) { struct ldlm_resource *res = original->l_resource; check_res_locked(res); ldlm_resource_dump(D_INFO, res); CDEBUG(D_OTHER, "About to insert this lock after %p:\n", original); ldlm_lock_dump(D_OTHER, new, 0); if (new->l_destroyed) { CDEBUG(D_OTHER, "Lock destroyed, not adding to resource\n"); goto out; } LASSERT(cfs_list_empty(&new->l_res_link)); cfs_list_add(&new->l_res_link, &original->l_res_link); out:; } void ldlm_resource_unlink_lock(struct ldlm_lock *lock) { int type = lock->l_resource->lr_type; check_res_locked(lock->l_resource); if (type == LDLM_IBITS || type == LDLM_PLAIN) ldlm_unlink_lock_skiplist(lock); else if (type == LDLM_EXTENT) ldlm_extent_unlink_lock(lock); cfs_list_del_init(&lock->l_res_link); } void ldlm_res2desc(struct ldlm_resource *res, struct ldlm_resource_desc *desc) { desc->lr_type = res->lr_type; desc->lr_name = res->lr_name; } void ldlm_dump_all_namespaces(ldlm_side_t client, int level) { cfs_list_t *tmp; if (!((libcfs_debug | D_ERROR) & level)) return; cfs_mutex_down(ldlm_namespace_lock(client)); cfs_list_for_each(tmp, ldlm_namespace_list(client)) { struct ldlm_namespace *ns; ns = cfs_list_entry(tmp, struct ldlm_namespace, ns_list_chain); ldlm_namespace_dump(level, ns); } cfs_mutex_up(ldlm_namespace_lock(client)); } void ldlm_namespace_dump(int level, struct ldlm_namespace *ns) { cfs_list_t *tmp; if (!((libcfs_debug | D_ERROR) & level)) return; CDEBUG(level, "--- Namespace: %s (rc: %d, side: %s)\n", ns->ns_name, ns->ns_refcount, ns_is_client(ns) ? "client" : "server"); if (cfs_time_before(cfs_time_current(), ns->ns_next_dump)) return; cfs_spin_lock(&ns->ns_hash_lock); tmp = ns->ns_root_list.next; while (tmp != &ns->ns_root_list) { struct ldlm_resource *res; res = cfs_list_entry(tmp, struct ldlm_resource, lr_childof); ldlm_resource_getref(res); cfs_spin_unlock(&ns->ns_hash_lock); LDLM_RESOURCE_ADDREF(res); lock_res(res); ldlm_resource_dump(level, res); unlock_res(res); LDLM_RESOURCE_DELREF(res); cfs_spin_lock(&ns->ns_hash_lock); tmp = tmp->next; ldlm_resource_putref_locked(res); } ns->ns_next_dump = cfs_time_shift(10); cfs_spin_unlock(&ns->ns_hash_lock); } void ldlm_resource_dump(int level, struct ldlm_resource *res) { cfs_list_t *tmp; int pos; CLASSERT(RES_NAME_SIZE == 4); if (!((libcfs_debug | D_ERROR) & level)) return; CDEBUG(level, "--- Resource: %p ("LPU64"/"LPU64"/"LPU64"/"LPU64 ") (rc: %d)\n", res, res->lr_name.name[0], res->lr_name.name[1], res->lr_name.name[2], res->lr_name.name[3], cfs_atomic_read(&res->lr_refcount)); if (!cfs_list_empty(&res->lr_granted)) { pos = 0; CDEBUG(level, "Granted locks:\n"); cfs_list_for_each(tmp, &res->lr_granted) { struct ldlm_lock *lock; lock = cfs_list_entry(tmp, struct ldlm_lock, l_res_link); ldlm_lock_dump(level, lock, ++pos); } } if (!cfs_list_empty(&res->lr_converting)) { pos = 0; CDEBUG(level, "Converting locks:\n"); cfs_list_for_each(tmp, &res->lr_converting) { struct ldlm_lock *lock; lock = cfs_list_entry(tmp, struct ldlm_lock, l_res_link); ldlm_lock_dump(level, lock, ++pos); } } if (!cfs_list_empty(&res->lr_waiting)) { pos = 0; CDEBUG(level, "Waiting locks:\n"); cfs_list_for_each(tmp, &res->lr_waiting) { struct ldlm_lock *lock; lock = cfs_list_entry(tmp, struct ldlm_lock, l_res_link); ldlm_lock_dump(level, lock, ++pos); } } }