/* * GPL HEADER START * * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 only, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License version 2 for more details (a copy is included * in the LICENSE file that accompanied this code). * * You should have received a copy of the GNU General Public License * version 2 along with this program; If not, see * http://www.gnu.org/licenses/gpl-2.0.html * * GPL HEADER END */ /* * Copyright (c) 2003 Hewlett-Packard Development Company LP. * Developed under the sponsorship of the US Government under * Subcontract No. B514193 * * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * Copyright (c) 2010, 2017, Intel Corporation. */ /* * This file is part of Lustre, http://www.lustre.org/ */ /** * This file implements POSIX lock type for Lustre. * Its policy properties are start and end of extent and PID. * * These locks are only done through MDS due to POSIX semantics requiring * e.g. that locks could be only partially released and as such split into * two parts, and also that two adjacent locks from the same process may be * merged into a single wider lock. * * Lock modes are mapped like this: * PR and PW for READ and WRITE locks * NL to request a releasing of a portion of the lock * * These flock locks never timeout. */ #define DEBUG_SUBSYSTEM S_LDLM #include #include #include #include #include #include "ldlm_internal.h" int ldlm_flock_blocking_ast(struct ldlm_lock *lock, struct ldlm_lock_desc *desc, void *data, int flag); /** * list_for_remaining_safe - iterate over the remaining entries in a list * and safeguard against removal of a list entry. * \param pos the &struct list_head to use as a loop counter. pos MUST * have been initialized prior to using it in this macro. * \param n another &struct list_head to use as temporary storage * \param head the head for your list. */ #define list_for_remaining_safe(pos, n, head) \ for (n = pos->next; pos != (head); pos = n, n = pos->next) static inline int ldlm_same_flock_owner(struct ldlm_lock *lock, struct ldlm_lock *new) { return ((new->l_policy_data.l_flock.owner == lock->l_policy_data.l_flock.owner) && (new->l_export == lock->l_export)); } static inline int ldlm_flocks_overlap(struct ldlm_lock *lock, struct ldlm_lock *new) { return ((new->l_policy_data.l_flock.start <= lock->l_policy_data.l_flock.end) && (new->l_policy_data.l_flock.end >= lock->l_policy_data.l_flock.start)); } static inline void ldlm_flock_blocking_link(struct ldlm_lock *req, struct ldlm_lock *lock) { /* For server only */ if (req->l_export == NULL) return; LASSERT(hlist_unhashed(&req->l_exp_flock_hash)); req->l_policy_data.l_flock.blocking_owner = lock->l_policy_data.l_flock.owner; req->l_policy_data.l_flock.blocking_export = lock->l_export; atomic_set(&req->l_policy_data.l_flock.blocking_refs, 0); cfs_hash_add(req->l_export->exp_flock_hash, &req->l_policy_data.l_flock.owner, &req->l_exp_flock_hash); } static inline void ldlm_flock_blocking_unlink(struct ldlm_lock *req) { /* For server only */ if (req->l_export == NULL) return; check_res_locked(req->l_resource); if (req->l_export->exp_flock_hash != NULL && !hlist_unhashed(&req->l_exp_flock_hash)) cfs_hash_del(req->l_export->exp_flock_hash, &req->l_policy_data.l_flock.owner, &req->l_exp_flock_hash); } static inline void ldlm_flock_destroy(struct ldlm_lock *lock, enum ldlm_mode mode, __u64 flags) { ENTRY; LDLM_DEBUG(lock, "ldlm_flock_destroy(mode: %d, flags: %#llx)", mode, flags); /* Safe to not lock here, since it should be empty anyway */ LASSERT(hlist_unhashed(&lock->l_exp_flock_hash)); list_del_init(&lock->l_res_link); if (flags == LDLM_FL_WAIT_NOREPROC) { /* client side - set a flag to prevent sending a CANCEL */ lock->l_flags |= LDLM_FL_LOCAL_ONLY | LDLM_FL_CBPENDING; /* when reaching here, it is under lock_res_and_lock(). Thus, * need call the nolock version of ldlm_lock_decref_internal */ ldlm_lock_decref_internal_nolock(lock, mode); } ldlm_lock_destroy_nolock(lock); EXIT; } #ifdef HAVE_SERVER_SUPPORT /** * POSIX locks deadlock detection code. * * Given a new lock \a req and an existing lock \a bl_lock it conflicts * with, we need to iterate through all blocked POSIX locks for this * export and see if there is a deadlock condition arising. (i.e. when * one client holds a lock on something and want a lock on something * else and at the same time another client has the opposite situation). */ struct ldlm_flock_lookup_cb_data { __u64 *bl_owner; struct ldlm_lock *lock; struct obd_export *exp; }; static int ldlm_flock_lookup_cb(struct obd_export *exp, void *data) { struct ldlm_flock_lookup_cb_data *cb_data = data; struct ldlm_lock *lock; if (exp->exp_failed) return 0; lock = cfs_hash_lookup(exp->exp_flock_hash, cb_data->bl_owner); if (lock == NULL) return 0; /* Stop on first found lock. Same process can't sleep twice */ cb_data->lock = lock; cb_data->exp = class_export_get(exp); return 1; } static int ldlm_flock_deadlock(struct ldlm_lock *req, struct ldlm_lock *bl_lock) { struct obd_export *req_exp = req->l_export; struct obd_export *bl_exp = bl_lock->l_export; __u64 req_owner = req->l_policy_data.l_flock.owner; __u64 bl_owner = bl_lock->l_policy_data.l_flock.owner; /* For server only */ if (req_exp == NULL) return 0; class_export_get(bl_exp); while (1) { struct ldlm_flock_lookup_cb_data cb_data = { .bl_owner = &bl_owner, .lock = NULL, .exp = NULL, }; struct ptlrpc_connection *bl_exp_conn; struct obd_export *bl_exp_new; struct ldlm_lock *lock = NULL; struct ldlm_flock *flock; bl_exp_conn = bl_exp->exp_connection; if (bl_exp->exp_flock_hash != NULL) { int found; found = obd_nid_export_for_each(bl_exp->exp_obd, bl_exp_conn->c_peer.nid, ldlm_flock_lookup_cb, &cb_data); if (found) lock = cb_data.lock; } if (lock == NULL) break; class_export_put(bl_exp); bl_exp = cb_data.exp; LASSERT(req != lock); flock = &lock->l_policy_data.l_flock; LASSERT(flock->owner == bl_owner); bl_owner = flock->blocking_owner; bl_exp_new = class_export_get(flock->blocking_export); class_export_put(bl_exp); cfs_hash_put(bl_exp->exp_flock_hash, &lock->l_exp_flock_hash); bl_exp = bl_exp_new; if (bl_exp->exp_failed) break; if (bl_owner == req_owner && (bl_exp_conn->c_peer.nid == req_exp->exp_connection->c_peer.nid)) { class_export_put(bl_exp); return 1; } } class_export_put(bl_exp); return 0; } static void ldlm_flock_cancel_on_deadlock(struct ldlm_lock *lock, struct list_head *work_list) { CDEBUG(D_INFO, "reprocess deadlock req=%p\n", lock); if ((exp_connect_flags(lock->l_export) & OBD_CONNECT_FLOCK_DEAD) == 0) { CERROR("deadlock found, but client doesn't support flock canceliation\n"); } else { LASSERT(lock->l_completion_ast); LASSERT(!ldlm_is_ast_sent(lock)); lock->l_flags |= (LDLM_FL_AST_SENT | LDLM_FL_CANCEL_ON_BLOCK | LDLM_FL_FLOCK_DEADLOCK); ldlm_flock_blocking_unlink(lock); ldlm_resource_unlink_lock(lock); ldlm_add_ast_work_item(lock, NULL, work_list); } } #endif /* HAVE_SERVER_SUPPORT */ /** * Process a granting attempt for flock lock. * Must be called under ns lock held. * * This function looks for any conflicts for \a lock in the granted or * waiting queues. The lock is granted if no conflicts are found in * either queue. */ int ldlm_process_flock_lock(struct ldlm_lock *req, __u64 *flags, enum ldlm_process_intention intention, enum ldlm_error *err, struct list_head *work_list) { struct ldlm_resource *res = req->l_resource; struct ldlm_namespace *ns = ldlm_res_to_ns(res); struct list_head *tmp; struct list_head *ownlocks = NULL; struct ldlm_lock *lock = NULL; struct ldlm_lock *new = req; struct ldlm_lock *new2 = NULL; enum ldlm_mode mode = req->l_req_mode; int local = ns_is_client(ns); int added = (mode == LCK_NL); int overlaps = 0; int splitted = 0; const struct ldlm_callback_suite null_cbs = { NULL }; #ifdef HAVE_SERVER_SUPPORT struct list_head *grant_work = (intention == LDLM_PROCESS_ENQUEUE ? NULL : work_list); #endif ENTRY; CDEBUG(D_DLMTRACE, "flags %#llx owner %llu pid %u mode %u start " "%llu end %llu\n", *flags, new->l_policy_data.l_flock.owner, new->l_policy_data.l_flock.pid, mode, req->l_policy_data.l_flock.start, req->l_policy_data.l_flock.end); *err = ELDLM_OK; if (local) { /* No blocking ASTs are sent to the clients for * Posix file & record locks */ req->l_blocking_ast = NULL; } else { /* Called on the server for lock cancels. */ req->l_blocking_ast = ldlm_flock_blocking_ast; } reprocess: if ((*flags == LDLM_FL_WAIT_NOREPROC) || (mode == LCK_NL)) { /* This loop determines where this processes locks start * in the resource lr_granted list. */ list_for_each(tmp, &res->lr_granted) { lock = list_entry(tmp, struct ldlm_lock, l_res_link); if (ldlm_same_flock_owner(lock, req)) { ownlocks = tmp; break; } } } #ifdef HAVE_SERVER_SUPPORT else { int reprocess_failed = 0; lockmode_verify(mode); /* This loop determines if there are existing locks * that conflict with the new lock request. */ list_for_each(tmp, &res->lr_granted) { lock = list_entry(tmp, struct ldlm_lock, l_res_link); if (ldlm_same_flock_owner(lock, req)) { if (!ownlocks) ownlocks = tmp; continue; } /* locks are compatible, overlap doesn't matter */ if (lockmode_compat(lock->l_granted_mode, mode)) continue; if (!ldlm_flocks_overlap(lock, req)) continue; if (intention != LDLM_PROCESS_ENQUEUE) { if (ldlm_flock_deadlock(req, lock)) { ldlm_flock_cancel_on_deadlock( req, grant_work); RETURN(LDLM_ITER_CONTINUE); } reprocess_failed = 1; break; } if (*flags & LDLM_FL_BLOCK_NOWAIT) { ldlm_flock_destroy(req, mode, *flags); *err = -EAGAIN; RETURN(LDLM_ITER_STOP); } if (*flags & LDLM_FL_TEST_LOCK) { ldlm_flock_destroy(req, mode, *flags); req->l_req_mode = lock->l_granted_mode; req->l_policy_data.l_flock.pid = lock->l_policy_data.l_flock.pid; req->l_policy_data.l_flock.start = lock->l_policy_data.l_flock.start; req->l_policy_data.l_flock.end = lock->l_policy_data.l_flock.end; *flags |= LDLM_FL_LOCK_CHANGED; RETURN(LDLM_ITER_STOP); } /* add lock to blocking list before deadlock * check to prevent race */ ldlm_flock_blocking_link(req, lock); if (ldlm_flock_deadlock(req, lock)) { ldlm_flock_blocking_unlink(req); ldlm_flock_destroy(req, mode, *flags); *err = -EDEADLK; RETURN(LDLM_ITER_STOP); } ldlm_resource_add_lock(res, &res->lr_waiting, req); *flags |= LDLM_FL_BLOCK_GRANTED; RETURN(LDLM_ITER_STOP); } if (reprocess_failed) RETURN(LDLM_ITER_CONTINUE); } if (*flags & LDLM_FL_TEST_LOCK) { ldlm_flock_destroy(req, mode, *flags); req->l_req_mode = LCK_NL; *flags |= LDLM_FL_LOCK_CHANGED; RETURN(LDLM_ITER_STOP); } /* In case we had slept on this lock request take it off of the * deadlock detection hash list. */ ldlm_flock_blocking_unlink(req); #endif /* HAVE_SERVER_SUPPORT */ /* Scan the locks owned by this process that overlap this request. * We may have to merge or split existing locks. */ if (!ownlocks) ownlocks = &res->lr_granted; list_for_remaining_safe(ownlocks, tmp, &res->lr_granted) { lock = list_entry(ownlocks, struct ldlm_lock, l_res_link); if (!ldlm_same_flock_owner(lock, new)) break; if (lock->l_granted_mode == mode) { /* If the modes are the same then we need to process * locks that overlap OR adjoin the new lock. The extra * logic condition is necessary to deal with arithmetic * overflow and underflow. */ if ((new->l_policy_data.l_flock.start > (lock->l_policy_data.l_flock.end + 1)) && (lock->l_policy_data.l_flock.end != OBD_OBJECT_EOF)) continue; if ((new->l_policy_data.l_flock.end < (lock->l_policy_data.l_flock.start - 1)) && (lock->l_policy_data.l_flock.start != 0)) break; if (new->l_policy_data.l_flock.start < lock->l_policy_data.l_flock.start) { lock->l_policy_data.l_flock.start = new->l_policy_data.l_flock.start; } else { new->l_policy_data.l_flock.start = lock->l_policy_data.l_flock.start; } if (new->l_policy_data.l_flock.end > lock->l_policy_data.l_flock.end) { lock->l_policy_data.l_flock.end = new->l_policy_data.l_flock.end; } else { new->l_policy_data.l_flock.end = lock->l_policy_data.l_flock.end; } if (added) { ldlm_flock_destroy(lock, mode, *flags); } else { new = lock; added = 1; } continue; } if (new->l_policy_data.l_flock.start > lock->l_policy_data.l_flock.end) continue; if (new->l_policy_data.l_flock.end < lock->l_policy_data.l_flock.start) break; ++overlaps; if (new->l_policy_data.l_flock.start <= lock->l_policy_data.l_flock.start) { if (new->l_policy_data.l_flock.end < lock->l_policy_data.l_flock.end) { lock->l_policy_data.l_flock.start = new->l_policy_data.l_flock.end + 1; break; } ldlm_flock_destroy(lock, lock->l_req_mode, *flags); continue; } if (new->l_policy_data.l_flock.end >= lock->l_policy_data.l_flock.end) { lock->l_policy_data.l_flock.end = new->l_policy_data.l_flock.start - 1; continue; } /* split the existing lock into two locks */ /* if this is an F_UNLCK operation then we could avoid * allocating a new lock and use the req lock passed in * with the request but this would complicate the reply * processing since updates to req get reflected in the * reply. The client side replays the lock request so * it must see the original lock data in the reply. */ /* XXX - if ldlm_lock_new() can sleep we should * release the lr_lock, allocate the new lock, * and restart processing this lock. */ if (new2 == NULL) { unlock_res_and_lock(req); new2 = ldlm_lock_create(ns, &res->lr_name, LDLM_FLOCK, lock->l_granted_mode, &null_cbs, NULL, 0, LVB_T_NONE); lock_res_and_lock(req); if (IS_ERR(new2)) { ldlm_flock_destroy(req, lock->l_granted_mode, *flags); *err = PTR_ERR(new2); RETURN(LDLM_ITER_STOP); } goto reprocess; } splitted = 1; new2->l_granted_mode = lock->l_granted_mode; new2->l_policy_data.l_flock.pid = new->l_policy_data.l_flock.pid; new2->l_policy_data.l_flock.owner = new->l_policy_data.l_flock.owner; new2->l_policy_data.l_flock.start = lock->l_policy_data.l_flock.start; new2->l_policy_data.l_flock.end = new->l_policy_data.l_flock.start - 1; lock->l_policy_data.l_flock.start = new->l_policy_data.l_flock.end + 1; new2->l_conn_export = lock->l_conn_export; if (lock->l_export != NULL) { new2->l_export = class_export_lock_get(lock->l_export, new2); if (new2->l_export->exp_lock_hash && hlist_unhashed(&new2->l_exp_hash)) cfs_hash_add(new2->l_export->exp_lock_hash, &new2->l_remote_handle, &new2->l_exp_hash); } if (*flags == LDLM_FL_WAIT_NOREPROC) ldlm_lock_addref_internal_nolock(new2, lock->l_granted_mode); /* insert new2 at lock */ ldlm_resource_add_lock(res, ownlocks, new2); LDLM_LOCK_RELEASE(new2); break; } /* if new2 is created but never used, destroy it*/ if (splitted == 0 && new2 != NULL) ldlm_lock_destroy_nolock(new2); /* At this point we're granting the lock request. */ req->l_granted_mode = req->l_req_mode; /* Add req to the granted queue before calling ldlm_reprocess_all(). */ if (!added) { list_del_init(&req->l_res_link); /* insert new lock before ownlocks in list. */ ldlm_resource_add_lock(res, ownlocks, req); } if (*flags != LDLM_FL_WAIT_NOREPROC) { #ifdef HAVE_SERVER_SUPPORT if (intention == LDLM_PROCESS_ENQUEUE) { /* If this is an unlock, reprocess the waitq and * send completions ASTs for locks that can now be * granted. The only problem with doing this * reprocessing here is that the completion ASTs for * newly granted locks will be sent before the unlock * completion is sent. It shouldn't be an issue. Also * note that ldlm_process_flock_lock() will recurse, * but only once because 'intention' won't be * LDLM_PROCESS_ENQUEUE from ldlm_reprocess_queue. */ if ((mode == LCK_NL) && overlaps) { LIST_HEAD(rpc_list); int rc; restart: ldlm_reprocess_queue(res, &res->lr_waiting, &rpc_list, LDLM_PROCESS_RESCAN, 0); unlock_res_and_lock(req); rc = ldlm_run_ast_work(ns, &rpc_list, LDLM_WORK_CP_AST); lock_res_and_lock(req); if (rc == -ERESTART) GOTO(restart, rc); } } else { LASSERT(req->l_completion_ast); ldlm_add_ast_work_item(req, NULL, grant_work); } #else /* !HAVE_SERVER_SUPPORT */ /* The only one possible case for client-side calls flock * policy function is ldlm_flock_completion_ast inside which * carries LDLM_FL_WAIT_NOREPROC flag. */ CERROR("Illegal parameter for client-side-only module.\n"); LBUG(); #endif /* HAVE_SERVER_SUPPORT */ } /* In case we're reprocessing the requested lock we can't destroy * it until after calling ldlm_add_ast_work_item() above so that laawi() * can bump the reference count on \a req. Otherwise \a req * could be freed before the completion AST can be sent. */ if (added) ldlm_flock_destroy(req, mode, *flags); ldlm_resource_dump(D_INFO, res); RETURN(LDLM_ITER_CONTINUE); } /** * Flock completion callback function. * * \param lock [in,out]: A lock to be handled * \param flags [in]: flags * \param *data [in]: ldlm_work_cp_ast_lock() will use ldlm_cb_set_arg * * \retval 0 : success * \retval <0 : failure */ int ldlm_flock_completion_ast(struct ldlm_lock *lock, __u64 flags, void *data) { struct file_lock *getlk = lock->l_ast_data; struct obd_device *obd; enum ldlm_error err; int rc = 0; ENTRY; OBD_FAIL_TIMEOUT(OBD_FAIL_LDLM_CP_CB_WAIT2, 4); if (OBD_FAIL_PRECHECK(OBD_FAIL_LDLM_CP_CB_WAIT3)) { lock_res_and_lock(lock); lock->l_flags |= LDLM_FL_FAIL_LOC; unlock_res_and_lock(lock); OBD_FAIL_TIMEOUT(OBD_FAIL_LDLM_CP_CB_WAIT3, 4); } CDEBUG(D_DLMTRACE, "flags: %#llx data: %p getlk: %p\n", flags, data, getlk); LASSERT(flags != LDLM_FL_WAIT_NOREPROC); if (flags & LDLM_FL_FAILED) goto granted; if (!(flags & LDLM_FL_BLOCKED_MASK)) { if (NULL == data) /* mds granted the lock in the reply */ goto granted; /* CP AST RPC: lock get granted, wake it up */ wake_up(&lock->l_waitq); RETURN(0); } LDLM_DEBUG(lock, "client-side enqueue returned a blocked lock, sleeping"); obd = class_exp2obd(lock->l_conn_export); /* Go to sleep until the lock is granted. */ rc = l_wait_event_abortable(lock->l_waitq, is_granted_or_cancelled(lock)); if (rc < 0) { /* take lock off the deadlock detection hash list. */ lock_res_and_lock(lock); ldlm_flock_blocking_unlink(lock); /* client side - set flag to prevent lock from being * put on LRU list */ ldlm_set_cbpending(lock); unlock_res_and_lock(lock); LDLM_DEBUG(lock, "client-side enqueue waking up: failed (%d)", rc); RETURN(rc); } granted: OBD_FAIL_TIMEOUT(OBD_FAIL_LDLM_CP_CB_WAIT, 10); if (OBD_FAIL_PRECHECK(OBD_FAIL_LDLM_CP_CB_WAIT4)) { lock_res_and_lock(lock); /* DEADLOCK is always set with CBPENDING */ lock->l_flags |= LDLM_FL_FLOCK_DEADLOCK | LDLM_FL_CBPENDING; unlock_res_and_lock(lock); OBD_FAIL_TIMEOUT(OBD_FAIL_LDLM_CP_CB_WAIT4, 4); } if (OBD_FAIL_PRECHECK(OBD_FAIL_LDLM_CP_CB_WAIT5)) { lock_res_and_lock(lock); /* DEADLOCK is always set with CBPENDING */ lock->l_flags |= (LDLM_FL_FAIL_LOC | LDLM_FL_FLOCK_DEADLOCK | LDLM_FL_CBPENDING); unlock_res_and_lock(lock); OBD_FAIL_TIMEOUT(OBD_FAIL_LDLM_CP_CB_WAIT5, 4); } lock_res_and_lock(lock); /* Protect against race where lock could have been just destroyed * due to overlap in ldlm_process_flock_lock(). */ if (ldlm_is_destroyed(lock)) { unlock_res_and_lock(lock); LDLM_DEBUG(lock, "client-side enqueue waking up: destroyed"); /* An error is still to be returned, to propagate it up to * ldlm_cli_enqueue_fini() caller. */ RETURN(-EIO); } /* ldlm_lock_enqueue() has already placed lock on the granted list. */ ldlm_resource_unlink_lock(lock); /* Import invalidation. We need to actually release the lock * references being held, so that it can go away. No point in * holding the lock even if app still believes it has it, since * server already dropped it anyway. Only for granted locks too. */ /* Do the same for DEADLOCK'ed locks. */ if (ldlm_is_failed(lock) || ldlm_is_flock_deadlock(lock)) { int mode; if (flags & LDLM_FL_TEST_LOCK) LASSERT(ldlm_is_test_lock(lock)); if (ldlm_is_test_lock(lock) || ldlm_is_flock_deadlock(lock)) mode = getlk->fl_type; else mode = lock->l_req_mode; if (ldlm_is_flock_deadlock(lock)) { LDLM_DEBUG(lock, "client-side enqueue deadlock " "received"); rc = -EDEADLK; } ldlm_flock_destroy(lock, mode, LDLM_FL_WAIT_NOREPROC); unlock_res_and_lock(lock); /* Need to wake up the waiter if we were evicted */ wake_up(&lock->l_waitq); /* An error is still to be returned, to propagate it up to * ldlm_cli_enqueue_fini() caller. */ RETURN(rc ? : -EIO); } LDLM_DEBUG(lock, "client-side enqueue granted"); if (flags & LDLM_FL_TEST_LOCK) { /* * fcntl(F_GETLK) request * The old mode was saved in getlk->fl_type so that if the mode * in the lock changes we can decref the appropriate refcount. */ LASSERT(ldlm_is_test_lock(lock)); ldlm_flock_destroy(lock, getlk->fl_type, LDLM_FL_WAIT_NOREPROC); switch (lock->l_granted_mode) { case LCK_PR: getlk->fl_type = F_RDLCK; break; case LCK_PW: getlk->fl_type = F_WRLCK; break; default: getlk->fl_type = F_UNLCK; } getlk->fl_pid = (pid_t)lock->l_policy_data.l_flock.pid; getlk->fl_start = (loff_t)lock->l_policy_data.l_flock.start; getlk->fl_end = (loff_t)lock->l_policy_data.l_flock.end; } else { __u64 noreproc = LDLM_FL_WAIT_NOREPROC; /* We need to reprocess the lock to do merges or splits * with existing locks owned by this process. */ ldlm_process_flock_lock(lock, &noreproc, 1, &err, NULL); } unlock_res_and_lock(lock); RETURN(rc); } EXPORT_SYMBOL(ldlm_flock_completion_ast); int ldlm_flock_blocking_ast(struct ldlm_lock *lock, struct ldlm_lock_desc *desc, void *data, int flag) { ENTRY; LASSERT(lock); LASSERT(flag == LDLM_CB_CANCELING); /* take lock off the deadlock detection hash list. */ lock_res_and_lock(lock); ldlm_flock_blocking_unlink(lock); unlock_res_and_lock(lock); RETURN(0); } void ldlm_flock_policy_wire_to_local(const union ldlm_wire_policy_data *wpolicy, union ldlm_policy_data *lpolicy) { lpolicy->l_flock.start = wpolicy->l_flock.lfw_start; lpolicy->l_flock.end = wpolicy->l_flock.lfw_end; lpolicy->l_flock.pid = wpolicy->l_flock.lfw_pid; lpolicy->l_flock.owner = wpolicy->l_flock.lfw_owner; } void ldlm_flock_policy_local_to_wire(const union ldlm_policy_data *lpolicy, union ldlm_wire_policy_data *wpolicy) { memset(wpolicy, 0, sizeof(*wpolicy)); wpolicy->l_flock.lfw_start = lpolicy->l_flock.start; wpolicy->l_flock.lfw_end = lpolicy->l_flock.end; wpolicy->l_flock.lfw_pid = lpolicy->l_flock.pid; wpolicy->l_flock.lfw_owner = lpolicy->l_flock.owner; } /* * Export handle<->flock hash operations. */ static unsigned ldlm_export_flock_hash(struct cfs_hash *hs, const void *key, unsigned mask) { return cfs_hash_u64_hash(*(__u64 *)key, mask); } static void * ldlm_export_flock_key(struct hlist_node *hnode) { struct ldlm_lock *lock; lock = hlist_entry(hnode, struct ldlm_lock, l_exp_flock_hash); return &lock->l_policy_data.l_flock.owner; } static int ldlm_export_flock_keycmp(const void *key, struct hlist_node *hnode) { return !memcmp(ldlm_export_flock_key(hnode), key, sizeof(__u64)); } static void * ldlm_export_flock_object(struct hlist_node *hnode) { return hlist_entry(hnode, struct ldlm_lock, l_exp_flock_hash); } static void ldlm_export_flock_get(struct cfs_hash *hs, struct hlist_node *hnode) { struct ldlm_lock *lock; struct ldlm_flock *flock; lock = hlist_entry(hnode, struct ldlm_lock, l_exp_flock_hash); LDLM_LOCK_GET(lock); flock = &lock->l_policy_data.l_flock; LASSERT(flock->blocking_export != NULL); class_export_get(flock->blocking_export); atomic_inc(&flock->blocking_refs); } static void ldlm_export_flock_put(struct cfs_hash *hs, struct hlist_node *hnode) { struct ldlm_lock *lock; struct ldlm_flock *flock; lock = hlist_entry(hnode, struct ldlm_lock, l_exp_flock_hash); flock = &lock->l_policy_data.l_flock; LASSERT(flock->blocking_export != NULL); class_export_put(flock->blocking_export); if (atomic_dec_and_test(&flock->blocking_refs)) { flock->blocking_owner = 0; flock->blocking_export = NULL; } LDLM_LOCK_RELEASE(lock); } static struct cfs_hash_ops ldlm_export_flock_ops = { .hs_hash = ldlm_export_flock_hash, .hs_key = ldlm_export_flock_key, .hs_keycmp = ldlm_export_flock_keycmp, .hs_object = ldlm_export_flock_object, .hs_get = ldlm_export_flock_get, .hs_put = ldlm_export_flock_put, .hs_put_locked = ldlm_export_flock_put, }; int ldlm_init_flock_export(struct obd_export *exp) { if( strcmp(exp->exp_obd->obd_type->typ_name, LUSTRE_MDT_NAME) != 0) RETURN(0); exp->exp_flock_hash = cfs_hash_create(obd_uuid2str(&exp->exp_client_uuid), HASH_EXP_LOCK_CUR_BITS, HASH_EXP_LOCK_MAX_BITS, HASH_EXP_LOCK_BKT_BITS, 0, CFS_HASH_MIN_THETA, CFS_HASH_MAX_THETA, &ldlm_export_flock_ops, CFS_HASH_DEFAULT | CFS_HASH_NBLK_CHANGE); if (!exp->exp_flock_hash) RETURN(-ENOMEM); RETURN(0); } void ldlm_destroy_flock_export(struct obd_export *exp) { ENTRY; if (exp->exp_flock_hash) { cfs_hash_putref(exp->exp_flock_hash); exp->exp_flock_hash = NULL; } EXIT; }